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Abstract

This paper present experiments using an radial basis function variant of the

time-delay neural network with image sequences of human faces. The network

is shown to be able to learn simple behaviours based on y-axis head rotation and

generalise on different data. The network model’s suitability for future dynamic

vision applications is discussed.
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1 Introduction

Recognising simple behaviours is an important capability for many computer vision

applications, e.g. visual surveillance (Gong & Buxton 1995) or biomedical sequence

understanding (Psarrou & Buxton 1993). The behaviour in the experiments reported

in this paper is simply head rotation to the left or right. However, the work raises

important issues for connectionist techniques: 1) time, 2) representation, and 3) learning

with generalisation. Multi-layer perceptrons with supervised learning are very popular

for applications which use static representations, but time is important in many domains

e.g. vision, speech and motor control. Dynamic neural networks can be constructed

by adding recurrent connections to form a contextual memory for prediction in time

(Jordan 1989, Elman 1990, Mozer 1993). These partially recurrent neural networks can

be trained using back-propagation but there may be problems with stability and very

long training sequences when using dynamic representations. Instead, we use simple

Time Delay (TD) in conjunction with Radial Basis Function (RBF) networks to allow

fast, robust solutions to our problem of recognising head turning behaviour.

The RBF network has been identified as valuable model (Moody & Darken 1988,

Ahmad & Tresp 1993, Bishop 1995) and is seen as ideal for practical vision applications
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by Girosi (1992) where handling sparse, high-dimensional data (common in images) and

using approximation (rather than interpolation) is important for dealing with noisy, real-

life data. In our previous work we have used an adaptive learning component based on

RBF networks to tackle the unconstrained face recognition problem (Howell & Buxton

1996a) and to identify appropriate receptive field functions for this task (Howell & Bux-

ton 1995a, Howell & Buxton 1995c). In learning to recognise behaviour with a TDRBF

network, it is again important to use an input representation (now ordered in time) that

allows generalisation over variations in lighting, scale and shift. From our recent work it

seems that complex 2D Gabor filters (Daugman 1988), which approximate the receptive

fields of simple cells in the primary visual cortex, provide just such a representation. The

main purpose of this paper is to show how we can adapt this work on face recognition

from a single image frame to the problem of behaviour recognition in extended video

sequences. With our approach, images containing pre-segmented faces in a typical mo-

tion sequence can be analyzed to obtain the appropriate Gabor representation for each

time frame in the motion sequence.

2 The Time-Delay RBF Model

The Time-Delay Neural Network (TDNN) model (for an introduction, see Hertz et al.

(1991)), incorporates the concept of time-delays in order to process temporal context,

and has been successfully applied to speech and handwriting recognition tasks (Waibel

et al. 1989). Its structured design allows it to specialise on spatio-temporal tasks, but, as

in weight-sharing network, the reduction of trainable parameters can increase generali-

sation (Le Cun et al. 1989).

The RBF network is a two-layer, hybrid learning network (Moody & Darken 1988,

Moody & Darken 1989), with a supervised layer from the hidden to the output units,

and an unsupervised layer, from the input to the hidden units, where individual radial

Gaussian functions for each hidden unit simulate the effect of overlapping and locally

tuned receptive fields. The Time-Delay version of this, such as used by Berthold (1994),

combines data from a fixed time ‘window’ into a single vector as input (see Figure 1).

Berthold, however took a constructive approach, combining the idea of a sliding input

window from the standard TDNN network with a training procedure for adding and

adjusting RBF units when required. We have used a simpler technique, successful in

previous work with RBF networks (Howell & Buxton 1996a), which uses an RBF units

for each example, and a simple pseudo-inverse process to calculate weights.

3 Application of TDRBF Model

Simple experiments were made with the TDRBF network using image sequences to

train it to identify types of y-axis rotation. The data used is of 10 people each in 10

different poses at 10� intervals from face-on to profile, for details see Howell & Buxton

(1995a). For the following tests, half of the database were used to train the network,

and the other half used to test it. Two schemes were devised to split the data up: the

Alternate Frames Tests (see Section 3.1) used alternate frames from each person, so that
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Figure 1: Structure of a single class for a TDRBF network with time window of 3 and

a integration window of 5 (after Berthold (1994)).
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(a) (b)

Figure 2: Example Data for Alternate Frame Tests with a Time Window of 3 Frames:

(a) Training - Frames 2, 4 and 6 (b) Test - Frames 3, 5 and 7.

(a) (b)

Figure 3: Example Data for Alternate Person Tests with a Time Window of 3 Frames:

(a) Training (b) Test - both using Frames 2, 3 and 4.

training and test data contained all ten people, and the Alternate Person Tests (see Section

3.2) used all the frames from 5 people for training, and the other 5 for testing.

Gabor wavelet analysis at a range of scales was used for preprocessing of the images.

Data was sampled at four non-overlapping scales from 8�8 to 1�1 and three orientations

(0�, 120�, 240�) with sine and cosine components (details in Howell & Buxton (1995b)).

The Samples column in the tables show the total number of Gabor coefficients contained

in each input vector. A discard measure was used on some of the tests to exclude low-

confidence output; the proportion discarded and the subsequent generalisation rate are

shown for these tests.

3.1 Alternate Frame Tests

These tests used alternate frames from all ten people for training and testing. Three

types of network training were used:

Static/LR Here the training simulates left to right y-axis head rotation, and trains with

a window from frames 0, 2, 4, 6 and 8 of all ten people, and tests on a window
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Window Samples Train/Test Initial % % Discarded % after Discard

5 2550 20/20 100 5 100

4 2040 40/40 95 5 100

3 1530 60/60 100 8 100

2 1020 80/80 90 8 92

Table 1: Static/LR or Static/RL Sequences from Alternate Frames (2 Classes).

Window Samples Train/Test Initial % % Discarded % after Discard

5 2550 30/30 100 7 100

4 2040 60/60 97 8 100

3 1530 90/90 93 8 100

2 1020 120/120 83 25 96

Table 2: Static/LR/RL Sequences from Alternate Frames (3 Classes).

from frames 1, 3, 5, 7 and 9, ie using 20� intervals. Two classes are trained for:

left to right movement and static. Static sequences are simulated by repeating the

middle frame of the time window.

Static/RL This is similar to LR, except that the rotation is in the other direction, so

that it trains with frames 8, 6, 4, 2 and 0, and tests on 9, 7, 5, 3 and 1.

Static/LR/RL This is similar to LR and RL, but trains for three classes: left to right

movement, right to left movement and static.

As the LR sequence vectors are mirror-images of the RL in Euclidean space, ie the

distance of LR sequence 3-5-7 to 2-4-6 is the same as the RL sequence 7-5-3 to 6-4-2,

the results for the Static/RL tests are identical to those for the Static/LR tests.

3.2 Alternate Person Tests

These tests used alternate people for training and testing, each using data from five

people. This is a harder test for the network, as it is tested with images of people not

seen during training. Three types of network training were used:

Static/LR As before, but trains with a window from all ten frames from 0 to 9 of five

people, and tests on a window from all ten frames from 0 to 9 of the other five,

ie using 10� intervals.

Static/RL As before, but trains and tests with frames from 9 to 0.

Static/LR/RL As before.
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Window Samples Train/Test Initial % % Discarded % after Discard

10 4410 10/10 90 40 100

8 3528 30/30 100 30 100

6 2646 50/50 98 22 100

4 1764 70/70 91 29 98

2 882 90/90 81 40 89

Table 3: Static/LR or Static/RL Sequences from Alternate People (2 Classes).

Window Samples Train/Test Initial % % Discarded % after Discard

10 4410 15/15 87 20 100

8 3528 45/45 89 13 100

6 2646 75/75 83 21 100

4 1764 105/105 77 37 100

2 882 135/135 63 56 93

Table 4: Static/LR/RL Sequences from Alternate People (3 Classes).

Figure 4: The test image sequence. Note the variation in head position and gaze

direction.
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Window Samples Training/Test Integration Layer

1 3 5 7 9

6 3060 75/57 54 53 53 53 54

5 2550 90/58 62 62 67 64 69

4 2040 105/59 64 61 76 83 75

3 1530 120/60 63 60 73 80 78

2 1020 135/61 56 56 52 57 48

Table 5: Static/LR/RL Sequences From Alternate People (Tested on QMW Sequence).

4 Use of Real Image Sequences

To investigate the TDRBF network further, trained networks were tested on previously

unseen image sequences containing a variety of head movement (see Figure 4). These

image sequences are the result of collaboration with Stephen McKenna and Shaogang

Gong at Queen Mary and Westfield College (QMW), University of London, who

are researching real-time face detection and tracking. The standard RBF network has

already been shown to work well with this data (Howell & Buxton 1996b).

The issue of the time base of actions, ie how fast or slow actions occur, was seen to be

important here. Although Berthold (1994) used the integration layer to cope with shifts

in time, the scale of events was not discussed. In particular, here we have to cope with

different speeds of head rotation. This type of variation can be handled by a recurrent

network, or training data which explicitly demonstrated the classes at different speeds.

Taking this into account, the original image sequence was subsampled to match the

rotation speed of the original data, which was 10� per time step. An integration layer

was introduced for this test, as the network was being tested on a real image sequence.

The optimum size for this layer seems to be around 7 time steps, reflecting the slow

speed of head rotation present in the data.

5 Observations

Several points can seen from the results:

� The TDRBF network is shown to be able to learn certain simple behaviours

based on y-axis head rotation.

� The TDRBF network maintained a high level of performance even on data con-

taining individuals not seen during training (the alternate person test).

� An integration layer in a TDRBF network can allow the extraction of behaviour

information even with quite markedly different data to that with which the net-

work was trained.
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6 Conclusion

The main points here are 1) the simple, deterministic ‘training’ of the TDRBF networks

means that they are highly suited to on-line learning, 2) the shift invariance and ability

to recognise features in time means they are capable of recognising simple behaviours,

and 3) high levels of performance on the generalisation to new datasets that behave in

similar ways means they are very useful for such practical dynamic vision tasks. The

limitations of this technique are 1) the problem of the time-base which was not fully

overcome even with the addition of an integration layer, and 2) the problem of defining

the simple behaviours. The TDRBF networks are capable of distinguishing a ‘quick

turn’ from a ‘slow turn’ as well as distinguishing whether the turn was to the right or

the left, but it seems that more qualitative definitions of behaviour would best be tackled

using more general recurrent networks. This issue is discussed further by Mozer (1993)

and by Psarrou & Buxton (1994). In addition, Cleeremans (1989) shows that partially

recurrent networks together with a qualitative input representation can be sucessfully

used even for the demanding task of predicting state to state transitions in finite state

automata. It is clear, however, that the TDRBF networks are able to perform extremely

well where there is a straightforward quantitative relationship between the data and the

simple behaviour pattern to be learnt.
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