
The Application of a Distributed Genetic

Algorithm to a

Generic Scheduling System.

CSRP 455

M. McIlhagga and P. Husbands

School of Cognitive and Computing Sciences

University of Sussex

Falmer

Brighton

BN1 9QH

March 7, 1997

Abstract

This CSRP describes a Distributed Genetic Algorithm (DGA) which

has been used to solve generic scheduling problems. The system is

capable of allowing its user to de�ne and solve any scheduling prob-

lem using a Scheduling Description Language (SDL), e.g. job-shop

scheduling, time-tabling, resource sequencing etc. We will describe a

unique encoding/decoding scheme that allows simple representation,

straightforward chromosome recombination and fast schedule building

and therefore evaluation times. A comparative study has been made

of the DGA, random search and a heuristic method of scheduling using

100 very large scale problems; problems of the order of 500 tasks. This

is the �rst study of its kind to look at problems of this scale. It was

found that, although it is possible to reduce the makespan of a schedule

by about

2

5

of a randomly generated solution using dispatching rules,

only the DGA produced solutions that had as high as a

3

5

reduction.

1

1 Introduction

Scheduling in its various guises has been used by the GA community for

a number of years to investigate the application of GAs to a challenging

and important class of combinatorial optimisation problems. These stud-

ies have concentrated on speci�c scheduling problems or speci�c classes of

scheduling problems [1]; [9]; [6]. This report describes the application of a

Distributed GA to the generic scheduling problem (i.e. the entire class of

scheduling problems). We have achieved this by formulating and implement-

ing a framework for de�ning, simulating and solving scheduling problems in

a generalised way.

The results reported here are based on preliminary testing of the system

using 100 large scale problems in a comparison of three scheduling tech-

niques: random search, dispatching rules (a heuristic technique) and a DGA.

The problems were generated to re
ect the underlying form of JSS that we

have tackled previously [6], however they were scaled up to have approxi-

mately 50{100 times more schedulable tasks. We found that the random

search and dispatching rules methods were able to reduce the makespan of a

schedule (using the mean of 10 random solutions as a base for comparison)

by about 40 percent. Whereas, the GA was, on average, able to reduce the

makespan by 60 percent.

2 A Generic Scheduling System

MOGS (a Model for Optimisation of Generic Schedules) is a system design

[5] developed to �nd near optimal schedules for any de�nable scheduling

problem. We have implemented a large part of that model as a `proof of

principal' system; this we call SMOGS (Small MOGS). SMOGS implements

all of the concepts in MOGS, but is limited in some functionality. Future

work will include the full implementation of the system, eradicating certain

ine�ciencies in the system and implementing further system attributes to

allow the solution of larger and more complex problems.

Section 2.1 details how we used a Scheduling Description Language

(SDL

1

) to specify the problems that we are interested in. Section 2.2 out-

lines how SMOGS simulates the scheduling environment that the problem

description (formulated in SDL) represents.

1

It is not possible to fully describe our SDL here.

2

2.1 Problem Description

MOGS incorporates an SDL that enables the user to describe scheduling

problems using a set of general concepts. The user's front-end is currently

limited: it reads a problem description �le containing a scheduling scenario

using SDL. Future developments will investigate possibilities of visual prob-

lem description. Users may �nd it an easier and more powerful metaphor

to use a visual programming tool to formulate scheduling problems.

SDL is a relatively simple declarative language (we plan to expand it

giving the user more
exibility by including a macro language). It enables

the user to describe their problem in terms of tasks and their attributes,

resources and their attributes, materials and their attributes, material
ow

rates, material release rates, resource and material location, etc.

These terms are largely taken from the language of JSS, however there

are some important di�erences: in MOGS these terms have an exact mean-

ing. In JSS language the term resource is badly de�ned. It usually refers to

materials supplied to machines or tools available to machines. Sometimes,

however, people or even machines are seen as resources. The term machine

is not used at all by MOGS (it uses the term resource) and the term task

largely replaces the terms job, batch and operation (i.e. unit of work).

MOGS regarded each scheduling problem as a set of tasks that need to

be completed. Resources are those things that complete tasks (machines,

teams of people, individuals etc.). Each task has a varying number of at-

tributes, e.g.: when it must be completed by, the required attributes of a

resource capable of completing that task etc. Resources also have attributes:

type of task attributes that they process etc. These attributes might be a

machine operation such as drilling (JSS) or they might be a skill, such as

experience with SQL data-base languages (human resource scheduling) or a

rooms seating capacity (room timetabling).

MOGS also accounts for (or schedules) the supply and processing of ma-

terials to resources to compete tasks. In JSS terms this would include the

supply of raw materials to machines, for example plastics or metal blanks.

It would also include the supply and �tting of tool parts (these are regarded

as a special case of material supply, i.e. reusable materials). Materials are

supplied from reservoirs; represented as queues or stacks. These are �lled

according to data suppled by the user which re
ects the actual supply of

those materials, e.g. as deliveries from third parties or as supplied by the

output of some resource. Because the completion of a task is the result of a

resource acting on some materials to produce another material, it is possible

to set up a hierarchical supply and demand situation between a number

3

1. Nib

2. Ink Tube

3. Case

ink

tube
ink-tube

nib
refill

outer
pen

Figure 1: Assemblage Parts of a Ball Point Pen

of resources. This allows the user to implicitly de�ne ordering constraints

(they can also do this explicitly if they wish). For instance, an assembly

situation can be described by simply stating the input/output relation be-

tween various tasks and SMOGS will derived the necessary constraints in

the system.

An example of this might be the assembly of a ball-point pen from sup-

plied parts as in �gure 1. We can de�ne the task of making an ink tube as

injecting the ink into an empty tube. We can then de�ne the task of making

a re�ll as assembling a nib and an ink tube, giving the output re�ll. We

can also de�ne the task of pen assemblage as combining re�ll and outer to

give the �nal output: pen. The tree diagram in �gure 1 shows that there

is a hierarchy of ordering constraints for this assembly process. In MOGS,

because we model the use of materials, simply de�ning the tasks also de�nes

4

many of the necessary constraints in the problem.

This aspect of the system adds to the dimensionality of the problem.

Although the problems we have used for this study are based on job-shop

problems they also include the aspect of material supply: transport rate,

stock control etc. This more accurately models the real scheduling problems

that industry encounters. These problem are in the class of JSS problems,

but are much harder than those usually tackled [8] because they have been

reformulated to include material scheduling.

2.2 Objective Functions

SMOGS reads the problem description and creates a model of the schedul-

ing environment. Candidate solutions are created by one of the search tech-

niques available, presently: random search, dispatching rules or a DGA.

One (or a combination) of a number of possible objective functions are used

to determine the worthiness of that schedule. The objective function is a

discrete event simulation which builds schedules by decoding chromosomes

evolved by the DGA. These are mapped into a 'gantt chart' (cf. [2]) like

data structure via a `resource availability graph' (see section 2.3). The re-

source availability graph is built only once at the beginning of each run.

At the present time the user can set the objective function to any one or

user de�ned combination of: makespan, mean
ow time, resource utilisation,

proportion tardy, total tardy, total lateness, total earliness, mean earliness,

mean 'on-timeness'. Other less JSS like objectives will be made available in

later versions.

Total earliness is the sum of the amount of time each task is completed

early (lateness not included). Mean earliness is total earliness divided by

the number of tasks. Mean on-timeness is the mean (modulus) di�erence

between the expected completion of tasks and their actual completion. All

other terms are the more usual metrics found in the literature [2], [7], and

are de�ned in table 1.

Given n tasks, TA

j

(1 � j � n). Where the tasks are to be carried out

by r resources, RE

i

, (1 � i � r). For a given schedule TA

j

there exists a

number of useful features and statistics for that schedule, see table 1.

2.3 Resource Availability Graph

When the problem description is read from a �le, a data structure know

as the resource (availability) graph is created and modi�ed according to

the problem at hand. The resource graph is essentially a decision tree.

5

UHOHDVH�GDWH 5'M

D�GXH�GDWH ''M

D�FRPSOHWLRQ�WLPH &7M

IORZ�WLPH)7M� �&7M���5'M

ODWHQHVV /$M� �&7M���''M

WDUGLQHVV 71M� �PD[���/$M��

'XUDWLRQ�RI�7$M�RQ�5(L 'XLM

PDNHVSDQ�RU�WRWDO�VFKHGXOH�WLPH 06� �&7PD[���5'PLQ

PHDQ�IORZ�WLPH 0)7� �VXP�M L��M Q��)7M�Q�

WRWDO�WDUGLQHVV 771� �VXP�M ���M Q��71M�

WRWDO�ODWHQHVV 7/$� �VXP�M ���M Q��/$M�

LQLWLDO�UHVRXUFH�DYDLODELOLW\�GDWH $'L

UHVRXUFH�XWLOLVDWLRQ 58L� �VXP�M ��M Q��'8LM��06�$'L��

Table 1: Cost Functions

6

Possible paths through which are de�ned by each legal chromosome. The

tree limits the space of all possible solutions to the space of legal solutions:

matching viable resources to each task and possible supplies of material to

each resource. Each branch of the tree has a `logical' index which is used to

map chromosome genes to `physical' resources, reservoirs and materials etc.

The upshot of using this scheme is that all genes in all chromosomes are

inevitably legal and the only search space that can be represented is a legal

one. Moreover, aspects of the encoding (see section 4) allow random bit

mutation and simple crossover to be applied without fear of corrupting the

legality of the chromosome. This meant that a GA tool kit could be used to

implement the search aspect of the system. Only the crossover function that

combines the task orders had to be written speci�cally for this application.

3 Search Techniques Available

3.1 Random Search

The Random search implemented in this study works by �nding 30,000

consecutive random solutions to each scheduling problem and storing the

best as they are generated. To generate a random solution it was necessary

to call the random number generator some 1500 times per schedule.

3.2 Dispatching Rules

Dispatching or priority rules are a popular heuristic used in constructing

schedules in many types of scheduling problems [2]. Often used within simple

constructive search algorithms to �nd the next operation to process, the

most common are: SPT, Shortest Processing Time; FCFS, First Come First

Served; MWKR, Most Work Remaining; LWKR, Least Work Remaining;

MOPNR, Most Operations Remaining; RDM, Random.

As a heuristic technique for building schedules we currently use of a dis-

patching rule based on slack time (the di�erence between time remaining

to due date and anticipated total process time). Whenever a resource be-

comes available, the task chosen to be processed next is the one with least

slack time (LST). Slack time is a concept that applies to a task. In order to

decide between candidate task/resource combinations, we make use of the

SI (shortest imminent processing time) rule. Thus the general scheduling

problem is tackled by using a LST rule to choose between tasks, and the SI

rule to choose the task-resource combinations. This technique is one with

which we have made comparisons before. It was �rst used by Khoshnevis

7

neighbourhood

C1 C23

C2

C11 Cn

Figure 2: A Distributed GA Uses a 2D Geographical Grid for Breeding

and Chen [3] and later by Palmer [7]. Recently we compared Palmer's com-

parison of Khoshnevis and Chen's Dispatch Rules and Simulated Annealing

with a distributed GA approach [6]. Further heuristics will be experimented

with in later versions of the system, but these rules are applicable to a very

wide range of problem types.

3.3 Genetic Algorithm

The Genetic algorithm uses a fairly standard distributed model where each

chromosome has a 2D location on a toroidal grid (see �gure 2).

The GA was parameterized in a similar way to previous work [6]. How-

ever, due to the relatively long evaluation time (�1 second per schedule)

the population was reduced, from a more ideal size of 1600 chromosomes,

to 300 chromosomes. Other parameters were:

� Parent selection: ranked local section with a neighbourhood of the 12

nearest. The nearest 12 chromosomes to an initial randomly selected

parent are placed in a selection pool. The pool is ranked in �tness

8

order and a standard rank selection is applied to choose the second

parent.

� Replacement strategy: replace worst parent. There is only a �nite

amount of memory allocated to the population. Each allocated slot

for a chromosome is always in use. Creating a new chromosome means

deleting one already in the population. The memory that the worst

parent of the new chromosome occupies is over-written by its new

o�spring, however its geographical location may not be the same as

its now deleted parents.

� Placement strategy: place new chromosomes `random-local' to their

parents. An empty random location is selected within the neighbour-

hood used to choose the second parent of the new chromosome. This

becomes the new location of the child chromosome.

� Operators: crossover (see section 5) and mutation at a rate of 0.056

(this is the probability that any one bit in each 'gene' is
ipped).

We used GPDGA

2

, the Generic Parallel Distributed Genetic Algorithm

tool kit to implement the evolutionary search aspect of this study [4].

4 Genetic Encoding

The chromosome is coded as an array of integers, as in table 2. It is split

into three sections. First, the ordering of tasks is represented. Second, the

resources to be allocated to each task are encoded. Finally, the reservoirs

that will supply each of the materials required by the resource for each task

are encoded. The chromosome is of a �xed length for any one problem,

but varies between problems. The chromosomes is of a �xed length because

there are a de�ned number of tasks in a problem and only one resource

will be allocated to each tasks (i.e 2 � T genes). However, the number of

materials need for each task can vary, so it is not possible to determine

the chromosome length from just a cursory look at the problem description.

The third section maps an appropriate material supply reservoir for each

material needed to complete each task.

If we say that T is the number of tasks in the problem and that each

integer (probably 32 bits) is a gene then (refer to table 2):

2

GPDGA was developed under the EPSRC funded project no GR/J 40812.

9

CHROMOSOME STRUCTURE

format G G G G G G G G G G G G G G G G G GG GG G G G GGG G

type O O O O O O O O T T T T T T T T T TT TT T T T TTT T

map N N N N N N N N

label task order resources reservoirs

number 8 8 12

bytes 32 32 48

Table 2: Example Encoding of a Chromosome.

1. The �rst T genes contain integers in the range 0 < Tn < T denoting

the ordering of tasks, i.e. how they are place on the gantt chart. The

ordering not only de�nes the precedence of one task over another on a

given resource, but also assigns precedence of material supply to tasks

earlier in the order, (even though their time slot might be later than

a task later in the order which is placed on a less utilised resource).

2. The next T genes in the chromosome denote the resources that tasks

will use to complete. The format is such that the �rst resource is

allocated to task 1 in the problem data structure, not the �rst task in

the ordering de�ned in the �rst part of the chromosome.

3. The rest of the chromosome is dedicated to mapping which reservoir

will supply what material to which task{reservoir pair. A reservoir

can be thought of as a bu�er that releases materials to (in the case of

a job-shop, machines) the resources which process tasks. It is mapped

out in the following way:

for each task in the problem data structure

and for each material required by that task

there is a gene that denotes the reservoir

that will supply the material.

Example 1: This very simple problem has 8 tasks, 1 of which requires

3 materials, 2 of which requires 2 materials, the rest requiring only 1. The

chromosome structure would look like table 2.

10

4.1 Encoding Types

As table 2 suggests, the encoding for the �rst part of the chromosome is

di�erent from that of the second and third part. The O (table 2) or Order

Type of encoding contains a number in the range 1 to the number of tasks

(T) and the whole section contains 1 (and no more) of each number in

that range. This encoding requires special crossover and mutation routines

(see section 5). This section of the chromosomes represents the order and

therefore the priority with which tasks are placed into the schedule. This

process of constructing the schedule should not be confused with the actual

scheduled times of each task. It is quite possible for the chromosome to place

the task that is scheduled to start last onto the schedule data structure

�rst; it simply monopolises its resource and, as a result, will not have to

compromise the start and completion dates that it wanted.

The numbers represented in the second and third section of the chromo-

some do not map to resource and material indecies described by the user in

SDL. Rather, they map to legal resources and reservoirs for each task in the

resource graph, making each gene by de�nition legal. All bits are set in these

genes. They are decoded by �nding the remainder of an integer division of

the gene value with the maximum number of legal resources or reservoirs

for that task.

The T or Torrodal type was especially formulated to allow the represen-

tation of varying ranges of numbers using a blind encoding. That is, all T

types can have any bit in the gene set and still maintain a legal encoding

of any range of integer values (with the proviso that numbers are within

the combinatorial range of the integer on that speci�c machine). This is

achieved by making all binary values that the gene can hold legal and by

taking the integer remainder of a division of the chromosome by the max-

imum value of its range (T) as the decoded value. This causes a minor

problem for mutation, but one that is simply solved (see section 5). In order

to implement this model a chromosome map or template must be maintained

that describes the range of numbers in each gene (see Table 2). In this case

the range of e.g. resources, denotes the list of viable resources for that task

detailed in the resource availability graph data structure and not the list of

all resources in the problem. Using this encoding with a graph of this type

in the evaluation module forces any gene value to map to a resource that

has the right attributes to enable it to carry out that task; illegal encodings

are therefore not possible.

The upshot of using these representations and encoding is that the pro-

cess of breeding and evaluation is very simple to implement and fast to ex-

11

ecute. Much of the schedule building work has been `taken out of the loop'

by building the resource availability graph and the chromosome 'range' map

at the start of the run. Thus enabling the solution of larger problems. The

real signi�cance of this rather speci�c encoding is that it is not speci�c to

any sub-class of the generic scheduling problem, but encodes for the whole

class of problems.

5 Operators

Crossover in the �rst (type O) section of the chromosome works in the

following way: a sub-string of one parent is found and inserted into the

other parent once the items in the sub-string have been removed from the

receiving parent. Sub-string length, position and insertion point are chosen

at random.

Crossover for type T is more straight forward. It is implemented in the

following way. N crossover points are chosen in the parent chromosomes.

Often this will be one crossover point per chromosome, however this can be

de�ned by the user. The section before the crossover point in parent A is

concatenated with the section after the crossover point in parent B to form

the new child chromosome.

Mutating the �rst section of the chromosome, which represent a unique

ordering of tasks, is more problematic than bit mutation of the binary strings

used for the second and third section of the chromosome. Mutation of an

ordered set can take a number of forms. In all cases, the restriction that one

of each of the numbers in the range f1; Tg, where T is the number of genes

in the ordered section of the chromosome, must hold. This can be achieved

by implementing 1 or all of:

1. Swapping the order of two juxtaposed tasks in the chromosome.

2. Swapping the order of two task allocated the same resource.

3. Moving a higher priority task on ResourceN to just after the juxtapose

(lower priority) task on Resource N .

Mutation of type T genes can be done in two ways:

1. Mutate one or more bits. This can cause big or small changes in

what any give gene represents and there is no way of knowing what

that might be by. having the bit position in the gene. This is not a

problem as this method is functionally equivalent to random mutation

in the working bit range of a chromosome that is directly encoded.

12

2. When using a direct representation, random walk or Lower order mu-

tation (near the LSB of gene) is equivalent to (e.g. for lower three bits)

the addition of one of the following set of numbers chosen at random

: f1;�1; 2;�2;�4;�4g. This sort of mutation can be implemented by

decoding the chromosome and making the random addition and re-

encoding the new value, taking into account the result of the integer

division of the chromosome by the range (see section 4).

6 Results of Study

6.1 Description of Study

A comparison of random search, dispatch rules and a distributed GA as tech-

niques for the solution of large scale general scheduling problems was made.

The set of problems described below are modelled on standard JSS prob-

lems. However, they are much more than that. Because of the way MOGS

models material
ow a more natural representation of ordering constraints

is present. Another di�erence between these and many JSS problems is that

resources are not already allocated to tasks. These factors combined with

the scale of the problems in terms of the number of tasks means that we are

dealing with much harder problems than `tradition' JSS.

The problem set that we used comprised 100 scheduling problems, i.e.

100 �les containing a lengthly description of a problem using our SDL. Each

problem had between 400 and 500 tasks (randomly distributed throughout

the 100 problems).

The signi�cant parameters that combine to de�ne the search space of

each problem are:

� The number of tasks, the number of resources capable of completing

each task (typically 4-10 in this study).

� The number of reservoirs capable of supplying each of those resources

(1,2 or 3 in this study).

� The number of attributes that each tasks has (upto 10).

� The number of input materials and material
ow as de�ned by resource

location, release rates and travel rate.

A typical search space is 1� 10

1500

solutions. These problems are only

limited by the parameters of this study and are by no means the limit of

13

0$.(63$1�3(5&(17$*(�'(&5($6(

0HDQ 6WG��'HY� 0LQ 0D[

5DQGRP 39.2580 14.0824 22.8734 62.4510

+HXULVWLF 42.8347 12.0045 18.9035 64.9084

(YROXWLRQDU\ 60.0127 13.7439 19.2982 75.9534

Table 3: Statistic for Percentage di�erences in Makespan (all Techniques)

the system. Memory and processor speed allowing, it is possible to de�ne

a scheduling problem of any size | there is no practical upper limit on the

number of tasks, resources, or materials etc., other than the type length

of the variables used to store these values and the physical limits of the

available computing resources.

6.2 Results

Table 3 shows all of the �gures for percentage decrease of makespan (from

the mean of ten random solutions) for all techniques: the comparative de-

crease made by the DGA is 17.178 percent over heuristic search and 20.7547

percent over random search.

The evolutionary technique produces decreases in makespan of 20.7547

percent over random search. This �gure, as can be seen from Table 3, is

a highly signi�cant improvement on the heuristic (dispatch rule) approach.

We also made a comparison of relative resource slack time between schedules

generated by the di�erent techniques. Slack time is simply the time that

the machine is not utilised by a task. This varies slightly from resource

utilisation, as a task may hold a resource unutilised as it waits for materials.

We found that the evolutionary approach could make better use of the

resource e�ciency attribute of each resource, and thereby leave less resources

standing idle during the period that the schedule covers. Table 4 shows the

di�erences between each of the techniques.

The reduction of resource slack time and therefore related (but not the

same) resource (machine) utilisation is a signi�cant indication of why the

DGA was able to �nd better schedules than the other techniques.

14

0($1�3(5&(17$*(�5(6285&(�6/$&.�7,0(

0HDQ

5DQGRP 20.8234

+HXULVWLF 18.7123

(YROXWLRQDU\ 12.5137

Table 4: Mean Percentage Slack Time for Each Resource

7 Conclusions

Because the mean improvement in makespan using random search (from a

mean of 10 randomly generated solutions) is 39 percent, it would be foolish

to entirely dismiss this technique.

The mean improvement in makespan using a heuristic scheduler is 42

percent. Although the �gure may not appear to be that much better than

random search, if the improvement were to be divided into computational

time taken to �nd solutions we �nd that the heuristic method is exceptionally

e�cient.

It is the case that where the schedule is required before the more compu-

tationally intensive technique (the genetic algorithm) is capable of exceeding

the quality of the solution found by heuristic means, that heuristic search

will out perform all other techniques. However this time window is very

small and in most cases we can take advantage of an evolutionary approach.

Of the techniques investigated, only the Genetic Algorithm can provide

useful solutions with little resource slack time. Current literature does not

contain any study where the problems are of this order of magnitude. Nor do

any other systems use a completely generic approach to scheduling problems.

These problems are extremely di�cult to tackle. The search spaces are

of the order of 1� 10

1500

solutions where each solution takes up to a second

to evaluate. We can only hope to search a very tiny percentage of the search

space, so appropriate direction as to where to search is paramount. It is

this sort of problem that distributed GAs seem to thrive on. Although the

solutions found may be sub-optimal, there is now no doubt that powerful

evolutionary search techniques, such as those developed for this system, are

capable of producing solutions of a quality that far exceeds that of those

15

produced by the traditional techniques in place in industry today. This

problem set has really stretched the limit of what is possible with current

GA technology.

Future work will include a full implementation of the MOGS system de-

sign. Although this report has not covered the di�erence between the MOGS

speci�cation and the SMOGS implementation, various classes of scheduling

problems can be easily speci�ed using MOGS (which supports a hierarchi-

cal task structure) that are di�cult to represent and solve using SMOGS. A

full implementation of MOGS will also provide a faster and more e�ective

problem modeller.

References

[1] L. Davis. Job-shop scheduling with genetic algorithms. In J. Grefen-

stette, editor, Proc. Int. Conf. on GAs, pages 136{140. Lawrence Erl-

baum, 1985.

[2] S. French. Sequencing and scheduling: an introduction to the mathemat-

ics of the job-shop. Ellis Horwood, 1982.

[3] B. Khoshnevis and Q. Chen. Integration of process planning and schedul-

ing functions. Journal of Intelligent Manufacturing, 1:165{176, 1990.

[4] M. McIlhagga. A generic encoding for scheduling problems. Technical

report, University of Sussex, 1995.

[5] M. McIlhagga. Gpdga user documentation. Technical report, University

of Sussex, 1995.

[6] M. McIlhagga, P. Husbands, and R. Ives. A comparison of simulated

annealing, dispatching rules and a coevolutionary distributed genetic al-

gorithm as optimization techniques for various integrated manufacturing

planning problems. problem. In Proceedings of PPSN IV, volume LNCS,

1141, pages 604{613. Springer Verlag, 1996.

[7] G. Palmer. An Integrated Approach to Manufacturing Planning. PhD

thesis, University of Hudders�eld, 1994.

[8] K. Sycara, S. Roth, and M. Fox. Resource allocation in disributed factory

scheduling. IEEE Expert, pages 29{40, Feb. 1991.

16

[9] H. Tamaki and Y. Nishikawa. Parallelled genetic algorithm based on

a neighborhood model and its application to job-shop scheduling. In

Proceedings of PPSN II. Springer Verlag, 1992.

17

