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Abstract

In this review, the sub�eld of visual interpretation and understanding is

�rst de�ned and three major issues for using knowledge to increase the

functionality and performance of vision systems are introduced. These

selected issues concern the role of context, control and learning. In sec-

tion 2, four approaches to reasoning are distinguished and illustrated

with key papers on 1) constraint-based vision, 2) model-based vision,

3) formal logic, and 4) probabilistic frameworks for visual interpre-

tation and control. In section 3, exploitation of these techniques is

discussed for automating linguistic descriptions of scenes, enhancing

human computer interaction in multimodal and multimedia systems,

in behavioural control for robotics, advanced surveillance systems and

biomedical image analysis systems. Finally, promising directions for

future research are suggested. These use the deformable models, dy-

namic learning, and situated approaches to visual understanding dis-

cussed in the main sections of the report.

1 Introduction

Most current research on computer vision attempts to model generic capabil-

ities for image feature detection and region segmentation, stereo and motion

perception, object recognition and tracking etc. However, these general ap-

proaches are not su�cient, in themselves, to cope with the wide variability

in real-world scenes and task-speci�c requirements of many applied vision

systems. The sub�eld of visual interpretation and understanding combines
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techniques from AI and knowledge-based systems with computer vision tech-

niques to deliver enhanced functionality in such systems. Naturally, we en-

counter many of the major issues in AI such as knowledge representation

and reasoning, control and the handling of uncertainty, as well as machine

learning. Much of this work assumes that knowledge drives reasoning in

visual interpretation, using expectation or a hypothesis to direct the pro-

cessing. This means we take sides in one of the great debates in vision

research since knowledge-based vision introduces a major \seeing as" bias,

rather than being just another level of generic processing. In our sub�eld,

visual context is seen as essential for understanding what is depicted in im-

ages or image sequences. If we are to build e�cient systems that can tackle

many di�erent tasks, high-level attention and control of the processing is

also seen as essential. In addition, if we are to incorporate scene and task

knowledge, we have to address the question of how such knowledge can be

acquired. Formal structural and propositional knowledge has to be designed

by hand but, as we will see, some representations can be learnt.

Research in this sub�eld goes beyond the recognition of features and

objects to give descriptions of the scene content that are meaningful to the

observer or user of the system. To achieve this, we build in domain speci�c

knowledge of the scene and tasks by representing prior knowledge in a readily

accessible form. For example, in VIEWS [12, 18], which was a major Euro-

pean knowledge-based vision project, advanced visual surveillance capabili-

ties were developed using a mixture of constraint-based, model-based, logic-

based and probabilistic interpretation techniques. Demonstrations showed

that, for object detection and tracking, performance was much improved

by scene-based knowledge of expected object trajectories, size and speed

[26, 27]. Also, both scene and task-based knowledge allowed selective pro-

cessing under attentional control for behavioural evaluation in tra�c scenes

[31, 32]. There are many such applications where the existence of prior

scene and task knowledge provides context for conditioning computer vision

algorithms.

1.1 Context

Traditional computer vision systems attempt to recognise static objects and

their dynamic behaviour using bottom-up, data-driven processing with min-

imal use of prior knowledge. However, such systems are bound to fail for

complex domains as the information in the images alone is insu�cient for de-

tailed interpretation or understanding of the objects and events. Knowledge-
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based vision research relies primarily on scene context to overcome this kind

of uncertainty. For example, Strat and Fischler [60, 61] combine many sim-

ple vision procedures that analyse colour, stereo, and range images with

relevant contextual knowledge to achieve reliable recognition. There are

many other types of contextual knowledge such as functional context [59],

where attributes such as shape are used to infer the functional role of the

object and direct the visual processing [6]. Another type of context, which

is particularly relevant to multimodal and multimedia systems, is linguistic

context [55, 62]. In addition, task context is an important source of control

for the visual processing [13, 20]. The role of context, then, is central to

visual interpretation and understanding and representing context in an ap-

propriate way, so that it improves the e�ectiveness and e�ciency of visual

reasoning, is a key issue in the �eld.

1.2 Control

Another failing of traditional vision systems is the lack of attention given to

purposeful, selective control of the processing. This is again a key issue when

real-time, dynamic applications are being developed. Ballard's in
uential

paper [2] signalled the start of a new consensus in the computer vision

community that vision is active, highly selective and purposeful. Rao and

Ballard [49] have also proposed an active vision architecture, inspired by

the organisation of human visual processing, that uses simply acquired and

indexable iconic representations. Interdisciplinary research also shows that

the task and the nature of the scene determine visual attention and can

allow selective tuning of visual processing [68]. This requirement for highly

selective visual processing was the main theme of VAP [19, 20], which was

a major European project to develop active visual processing. Much of

this active vision research has concentrated on camera control, navigation

and lower-level visual tasks which do not involve visual understanding using

stored knowledge. However, ideas from active vision have been extended and

applied to high-level reasoning [13, 33]. This control of visual processing is

deeply task-dependent and usually requires indexable knowledge structures

for real-time systems.

1.3 Learning

A further development in this sub�eld involves representations to support

task-level control and learning. For example, by using Hidden Markov
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Models (HMMs) we can used for learning probabilistic relationships for eye

movement control [51] and applied to modelling of vehicle trajectories [26].

On-line updating using such visually augmented HMMs enables both track-

ing and reporting of these purposive vehicle movements. More recently,

Bayesian Belief Networks (BBNs) have been used to support the learning of

both initial and conditional probabilities for camera control [52] and for seg-

menting and tracking vehicles [27]. In addition, BBNs have been used with

behavioural models to provide task-dependent control in behavioural analy-

sis [15, 33]. These kinds of learning are essentially conditional parameter es-

timation using the statistics of example image sequences. Learning dynamic,

parametric models for visual motion patterns [7] is an important capability

for intelligent tracking. Also, learning statistically-based deformable models

is crucial for many medical applications [17], and in tracking moving people

[3] for surveillance. In these examples, the knowledge is acquired o�-line

and exploited in the on-line system. The role of learning can be extended

to behavioural models by using on-line evaluation or reinforcement learning

[53, 69] in order to create a more open system that can adapt its behaviour to

the changing environment. This is an exciting �eld in which we can envisage

fully autonomous visual agents learning their own goals and representations.

2 Approaches

Reasoning is the main focus of work in visual interpretation and understand-

ing so here we discuss four major approaches 1) constraint-based vision, 2)

model-based vision, 3) formal logic, and 4) probabilistic frameworks. In each

of these subsections, we �rst describe the general history of the approach

and then go on to recent developments.

2.1 Constraint-based Reasoning

VISIONS (Visual Integration by Semantic Interpretation of Natural Scenes)

[28] was an early knowledge-based system for static image interpretation.

An early example for dynamic scene analysis, which also used constraint-

based reasoning, was the ALVEN system [67]. In contraint-based vision, a

set of interacting constraints about the scene and task context are used to

guide the reasoning. For example, the VISIONS system had many levels for

representation in both the long-term knowledge base and the short-term in-

terpretation of a particular image. It used both declarative and procedural
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knowledge in hypothesis generation using bottom-up and top-down reason-

ing. The schema mechanism supported a conceptual hierarchy by allowing

entities to be described as themselves, part of a higher level schema, or a

schema for lower level entities. It was necessary to develop VISIONS to

incorporate Bayesian belief probabilities [48] and more recently, Dempster-

Shafer belief functions [24] to handle uncertainty in visual evidence. This

move from simple constraint-based reasoning to incorporate more sophis-

ticated probabilistic reasoning with the symbolic knowledge has been one

of the major trends in research on visual interpretation and understand-

ing. This is mainly because it allows more �nely tuned selective processing

(through e�ective information integration and resource allocation) in the

face of poor visual evidence.

Constraint satisfaction remains a major approach for bringing knowledge

into real-time vision. In VIEWS, the main demonstration of behavioural

evaluation and incident detection in tra�c scenes used such techniques [37].

Furthermore, although knowledge-based vision has a poor history in robotics

[11], innovative research by Mackworth [43] has shown that contraint-based

vision can deliver a \quick and clean" response. In his situated agent ap-

proach, constraint nets specify robot behaviour in terms of both the goals

and low-level reactions using a formal model that incorporates a symmet-

rical coupling of the robot with its environment. In situated cognition,

the role of the environment is emphasised for active problem solving so

that both the agent acting on the environment and the environment shap-

ing the behaviour of the agent is fully modelled. Mackworth automatically

constructs a constraint-satisfying controller from the formal model for the

on-line system using a generalised dynamical system language. This use of

more situated models, inspired by interdisciplinary research, is a promising,

new direction in the sub�eld.

2.2 Model-based Reasoning

The model-based vision approach also has an early knowledge-based exam-

plar, ACRONYM [10], which used symbolic reasoning to aid static scene

interpretation. WALKER [29] was an early dynamic model-driven interpre-

tation system that could identify examples of moving people in image se-

quences. In model-based vision, the stored knowledge is concerned with the

expected objects, often specifying part-whole relationships and constraints

among the subparts, but also relationships over time. The visual processing

is driven by hypotheses, primarily top-down. For example, the ACRONYM
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system used stored models in the form of slot and �ller frames which formed

the nodes of the \object graph". Generalised cylinders were used as prim-

itives in this hierarchical structure which represented objects from coarse

to �ne detail. Algebraic constraints could also be speci�ed to build up the

hierarchical \restriction graph". To drive the processing, ACRONYM con-

structed a \prediction graph" using these models and some reasoning. Then

low-level edge and ribbon-like structures were constructed under the direc-

tion of the predictor module to form the \observation graph". Finally, the

\interpretation graph" matched the observed features and relationships to

the models using more reasoning to eliminate inconsistencies. Again, more

recently, model-based vision systems have been re�ned using probabilistic

techniques, for example [5].

Model-based vision techniques have also been re�ned by Koller and Nagel

[39] using fully parameterised object models which can deliver detailed de-

scriptions of tracked objects. Another important technique is to use 2D

iconic representations from di�erent views of the 3D model to simplify the

matching. For example, Sullivan and colleagues [65, 70] have developed

model-based tracking in tra�c scenes for performance under real-time con-

straints. There is ongoing debate about the roles of iconic and 3D represen-

tations in the many di�erent tasks performed by computer vision systems.

Another notable development in model-based vision is the use of deformable

objects which have to be described using statistical rather than geometric

relationships [17, 64]. A major advantage of such representations is that they

can be learnt from examples, as shown by the work of Baumberg and Hogg

[3]. The use of iconic representations and statistical relationships, which

can easily be acquired from images, is generally accepted to be biologically

plausible. However, there are many open questions about the e�ectiveness of

more formal analysis and the modelling of high-level invariance for computer

vision tasks.

2.3 Logic Frameworks

In common with much work in AI, logic-based approaches have a great deal

to o�er in terms of consistency checking and explicit, declarative knowl-

edge representation. In particular, formal approaches using well-de�ned lan-

guages with clear meaning for time, events, and causality, e.g., Allen [1] and

Shoham [56], are useful for validating and prototyping new approaches in

many AI sub�elds. For image interpretation, the reconstruction of MAPSEE

within a logical framework [50] is a classic example. Spatial and temporal
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logics are characterised by declarative representation in some formal descrip-

tion language and reasoning using some form of theorem-proving or calculus.

However, translating the knowledge into a precompiled procedural form for

fast execution, as in the work of Kaelbling and Rosenschein [36], is a major

trend in the �eld. For example, the work described earlier by Mackworth

[43] using contraint-based vision in situated agents was based on underly-

ing formal logic notions, so that the designer can achieve provably correct

behaviour. The constraint net models were transformed into their dynamic

forms to allow fast processing in the on-line system. This trend makes for-

mal modelling extremely useful for robotics and in classifying objects and

types of events, as well as for spatiotemporal reasoning in knowledge-based

vision.

Recently, the need for formal descriptions in visual knowledge represen-

tation has been emphasised by Schroeder and Neumann [54]. They advocate

the use of an object-centred, description logic tailored to the requirements

of image understanding, together with an e�ective calculus. Their language

can be used to formalise scene-independent domain knowledge using a set

of axioms. However, there is still some way to go in making the calculus

tractable for realistic problems. More applied work on spatiotemporal rea-

soning in VIEWS for advanced surveillance used logical rules which could

be made into executable networks for incident detection [37] or used for

occlusion reasoning [66]. Semantic regions underlying the interpretation of

behavior in tra�c scenes [22] and trajectories for event descriptions [35] have

also been learnt from images to support high-level reasoning.

2.4 Probabilistic Frameworks

Also in common with more general AI, probabilistic approaches have much

to o�er in dealing with the pervasive problems of uncertainty and in allowing

information integration. In probabilistic reasoning, the likelihood of classes

of objects or events is inferred by propagation of belief values in the light

of changing evidence. The two main frameworks for such reasoning used in

knowledge-based vision are Bayesian Belief Networks (BBNs) advocated by

Pearl [48] and the Dempster-Shafer theory of evidence [24]. For example,

early work by Binford [5] used Bayesian inference to make model-based

vision reliable while remaining computationally tractable. Dempster-Shafer

theory has also been used [4], but the computational complexity of the

scheme means that it is only practical at the level of conceptual evaluation.

BBNs, on the other hand, have been more widely adopted in vision systems
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as they are applicable to all levels of the visual processing because of the

fast updating possible with singly connected trees. For example, Rimey and

Brown [52] used them to model geometric constraints for active control of

camera movements and Gong and Buxton [27] grouped optic 
ow vectors

for segmentation and tracking. BBNs provide a clear mapping of contextual

knowledge onto the computation to constrain interpretation by combining

known causal dependencies with estimated statistical knowledge. They also

support closed-loop control and attentional processing using both top-down

and bottom up messages in the propagation of belief values, as well as the

possibility of learning and re�ning representations by observation [13].

Bayesian belief nets are now being used in many demanding applica-

tions such as BATmobile [23] and TEA [53] to provide essential informa-

tion integration. Buxton and Gong [13] have also developed a systematic

methodology for the design, integration and implementation of advanced vi-

sion systems using BBNs. These networks allow dynamic updating of values

in visual evidence and interpretation nodes, but not speci�cation of the tem-

poral constraints themselves. Howarth and Buxton [32] used dynamically

recon�gured networks to model the evolving spatial relationships of vehicles

as they move through the scene. Others [23] have adopted the dynamic prob-

abilistic networks developed by Dean and Kanazawa [21] which make use of

the simple Markov property that the future is independent of the past given

the present. BBNs support the active control of visual processing and o�-

line learning of the prior and conditional probabilities in many applications,

see Spiegelhalter and Cowell [58]. They have even been learnt on-line using

reinforcement learning by Whitehead and Ballard [69]. These approaches,

then, are very promising for advanced vision systems that require ongoing

exploitation and acquisition of knowledge.

3 Exploitation

As discussed in the introduction, the task-speci�c requirements of applied

vision systems often drive the development of high-level vision capabilities.

Thus, a great deal of innovative research in interpretation and understand-

ing is both developed and exploited in a variety of application contexts. For

example, there has been important research to integrate vision and language

and deliver conceptual descriptions for advanced surveillance. Pioneering re-

search on describing behaviour in tra�c scenes by Nagel [46] and Neumann

[47] established a useful ontology for the events and episodes observed. More
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recently, this has been extended in terms of both the complexity of vehicle

interactions analysed by Howarth and Buxton [14, 33] and the sophistica-

tion of the linguistic descriptions computed by Nagel and colleagues [25, 40].

Real-time constraints for descriptions in video-surveillance applications have

also received attention in the new PASSWORDS project [16]. These tech-

niques were clearly developed for advanced surveillance but are also more

generally applicable in interactive vision systems.

Suchman [63] proposed a situated approach for general human computer

interaction and here, again, there is a clear requirement for systems that

integrate both vision and language, for example [55]. Interdisciplinary work

in cognitive science, HCI, and AI approaches to vision and language will

be an important component of long term work in this area. In the short

term, many researchers are developing useful techniques for multimodal and

multimedia interaction. For example, Kender [38] has been active in bringing

spatial reasoning and gesture recognition to these problems. Bobick [8, 9]

has also been leading work at MIT Media lab for a variety of interactive

vision applications. These applications seek to understand actions directly

from the image sequences using approximate models in order to meet real-

time constraints.

Smart cars using new sensor technology for vehicle control are also being

developed in conjuction with tra�c monitoring in intelligent highway system

projects by Malik and colleagues [34, 44]. This type of application is also

closely linked to innovative work on behavioural control in robotics by Bajcsy

and colleagues [41, 57] using discrete event dynamic systems. The idea

of integrating work on understanding scenes with behavioural control for

automatic vehicle guidance has great commercial potential and exciting new

work is being done in this area. In addition, a new situated approach using

constraint-based vision by Mackworth [43] is being developed to integrate

knowledge-based and behavioural control in robotics. These developments,

then, involve fundamental science while being highly applicable for real-

world applications.

4 New Directions

In conclusion, there are many new directions that seem promising for this

rapidly expanding sub�eld. We have seen that probabilistic reasoning is

being used to provide e�ective integration, allowing representation of con-

text, control, and even learning. The use of iconic representations, which
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are easily acquired from example images and can be used in subsequent

recognition of the objects and behaviours, is also a major new direction. In

a very di�erent direction, there is a requirement to formalise reasoning to

provide provably correct behaviour in many applications. This requires close

interaction of specialised sub�elds using logic in AI and high-level vision re-

search. Another move in this direction is the integration of work in vision

and language for many application areas in advanced surveillance, medical

analysis systems, and multimodal interaction. Work on such interactive sys-

tems forces the developers to use frameworks with a common semantics and

to adopt cognitive models of the system users.

In addition to the directions above, there are new themes that are be-

ginning to in
uence work on knowledge-based vision. In particular, the

combination of deformable models with dynamic learning of their statisti-

cal properties seems set to grow rapidly. As we have seen, there are many

applications of deformable models in biomedical image analysis [17], face

recognition [42], and tracking of people [3]. The acquisition of these models

by training can allow the development of generative models and these are

now starting to model physical forces for visual understanding. In addi-

tion, situated cognition is now being taken seriously in the interpretation

and understanding community, although there is a rejection of strong anti-

representational positions like that of Brooks [11]. For example, work by

Howarth and Buxton [13, 30] on situated behavioural analysis and work by

Mackworth [43] on situated agents for robotics. These examples are just

a part of the groundshift over the last two decades from the traditional

approach based on symbolic reasoning in Good Old-Fashioned Arti�cial In-

telligence (GOFAI) to simpler, behaviour-based approaches.
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