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Abstract

It is accepted that the early connectionist learning methods such as

the perceptron algorithm cannot solve parity learning problems. But since

the early 1980s, there have been many demonstrations purporting to show

that the backpropagation method can do so. However these demonstra-

tions are misleading. Backpropagation in fact reliably fails to solve parity

problems when they are posed as genuine, supervised learning problems,

i.e., as problems involving generalisation. Thus backpropagation is sub-

ject to some of the same limitations as the perceptron method.
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1 Backpropagation performance on parity gen-

eralisation

The parity problem is one of the best established of all benchmarks for neural-

network learning methods. In a parity problem we have a number of boolean

input variables and one boolean output variable. The input/output rule states

that the output is true i� an odd number of input values are true. If there are

just two input variables the problem is known as `Exclusive-OR' (XOR) since

it is e�ectively the rule that either of the inputs can be true, but not both. The

full mapping for the 3-bit parity problem can be written as a training set (using

1=true, 0=false) as follows.
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The parity rule turns out to be surprisingly hard to learn. Learning proce-

dures such as the perceptron learning algorithm are known to be incapable of

acquiring parity mappings [1]. But even state-of-the-art symbolic methods such

as C4.5 [2] and backpropagation [3] generalise poorly from incomplete parity

mappings. With 4-bit parity, 16 minimally incomplete training sets (i.e., train-
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ing sets which contain all but one of the possible cases) can be constructed. C4.5

actually generalises incorrectly in all 16 cases; i.e., it always `gets the answer

wrong'.

Backpropagation performs no better. In an extensive empirical analysis,

backpropagation was tested for its ability to generalise to one, randomly selected

unseen case in the 4-bit parity mapping. In this analysis a standard, two-

layer, (strictly) feed-forward network was used with the number of hidden units

being varied between 3 and 80. Data were collected for 20 successful runs (i.e.,

achievement of negligible error on the training data) with each architecture.

The learning rate was 0.2 and the momentum value was 0.9.

The results are summarised in Figure 1. This shows the post-training mean

error for seens and unseens averaged over the 20 successful training runs which

were performed in each architecture. The basic error value used here is simply

the average di�erence between the target output and actual output produced.

The graph shows negligible mean error for seen cases due to the fact that data

were only recorded for successful runs. More interestingly, it shows that the

mean error on the unseen case is very poor for all architectures used, i.e., no

generalisation is achieved. (The reason why the generalisation error is so much

worse than chance is explained below.)

2 Performance on related problems

Generalisation failures on parity mappings are sometimes dismissed on the

grounds that the parity problem is an arti�cial construct upon which learn-

ing methods cannot be expected to perform properly. To show that this is not

the case we need to demonstrate that backpropagation fails on other problems

as well as parity. The key property of the parity mapping is that, in its full

form, it is statistically neutral. That is to say, the conditional probability of
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Figure 1: Post-training mean-error curves for parity generalisation.

seeing a particular output value given the presence of a particular input value

always has the chance value of 0.5. It is this property which makes the parity

problem so hard to learn. No associations exist between particular inputs and

particular outputs. A natural hypothesis is that backpropagation will perform

badly on any problem which exhibits statistical neutrality. As it turns out,

empirical experiments tend to con�rm this.

A fertile source of statistically neutral mappings is the `modulus-addition'

learning problem, i.e., a mapping in which the output value in each pair is

always the modulus sum of the input values. It turns out that any such problem

is guaranteed to be statistically neutral provided that the number of possible
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values for any given input variable is equal to, or a multiple of the number of

possible output values.

If the training set for some learning problem is statistically neutral then all

the conditional output probabilities must be at their chance levels. This tells us

that in the training set we will see each value of an input variable X appearing

with each output value an equal number of times (i.e., that the number of

possible values of X must be equal to, or a multiple of the number of possible

outputs). We could therefore map the N values of our input variable X onto

integers in the range 0:::N � 1 and the M output values onto integers in the

range 0:::M � 1. Moreover, since the only constraint is that each input value

must associate with each output value an equal number of times, we could do

this in such a way as to ensure that the output value is always the modulus to

base M of the value of X.

If we do this to each input variable in turn, using a �xed mapping of the

output values, we end up with a purely numeric version of the training set. Then,

`incrementing' the integer value of any variable (i.e., switching attention to a case

in the training set showing the next highest value of the variable) always has the

e�ect of `incrementing' the output value. The training set therefore instantiates

a modulus-addition rule. The general conclusion is that any problem which can

be translated into a modulus-addition problem (such that the cardinality of the

set of output values is a factor of the cardinalities of all the input-value sets) is

guaranteed to be statistically neutral.
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3 Dealing with neutrality in non-parity prob-

lems

Consider the `likelihood problem' whose target mapping is shown below. This

is a straightforward learning problem with a relatively obvious input/output

rule. However, we can translate it into a modulus-addition problem with the

following substitutions: person/0, computer/1, consumes/0, dislikes/1, heat/0,

electricity/1, moisture/2, silicon/3, yes/0, no/1. Under this translation, the

requirement that the input-set cardinalities are equal to, or a multiple of the

output-set cardinality is met so we know that the problem is necessarily sta-

tistically neutral. It is in fact easy to con�rm that every single conditional

output-probability has the chance value, which is 0.5 here because there are

just two output values.
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person consumes heat =) yes

person consumes electricity =) no

person consumes moisture =) yes

person consumes silicon =) no

person dislikes heat =) no

person dislikes electricity =) yes

person dislikes moisture =) no

person dislikes silicon =) yes

computer consumes heat =) no

computer consumes electricity =) yes

computer consumes moisture =) no

computer consumes silicon =) yes

computer dislikes heat =) yes

computer dislikes electricity =) no

computer dislikes moisture =) yes

computer dislikes silicon =) no

The neutrality of the likelihood problem implies that we should expect gen-

eralisation performance on this problem by backpropagation (and C4.5) to be

just as poor as it was in the case of parity. And in fact this is exactly what we do

�nd. Backpropagation's generalisation performance on the likelihood problem

using one, randomly selected unseen case is summarised in the Figure 2. Again,

the generalisation performance is very poor in all architectures tested. As ex-

pected, C4.5 generalises incorrectly on all 16, minimally incomplete training sets

for this problem.

It is interesting to note that the generalisation performance on this new

problem hovers around the chance level. This is of course where we would expect
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Figure 2: Post-training mean-error curves for likelihood generalisation.

it to be on the hypothesis that backpropagation cannot deal with statistically

netural mappings. In the case of the true parity problem, it will be recalled that

the generalisation was considerably worse than chance. The explanation for this

appears to be that in deleting a single case from a parity mapping, a strong but

misleading association is created between input cases one Hamming unit away

from the deleted case and the complement of the output for those cases (i.e., the

`wrong' output). Backpropagation detects and exploits this phoney association

and is thus led to always produce the complement of the correct generalisation.
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4 Concluding comment

The paper has shown that backpropagation reliable fails to solve parity learning

problems when they are posed as genuine supervised learning problems. The

algorithm is thus subject to at least one of the limitations that Minsky and

Papert attributed to the perceptron method in the late 1960s. The �rm con�-

dence which researchers sometimes place in backpropagation may therefore be

less than fully justi�ed.
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