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Abstract

The paper uses a task analysis of induction to justify the idea that in-

duction and abduction are extreme points on a single dimension of learning

processes.

Topic areas: frameworks of integration of abduction and induction,

abduction in inductive Machine Learning

1 Introduction

The distinction between induction and abduction can sometimes seem unclear.

In the call-for-papers for this workshop
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the two processes are described thus.

Abduction is used to generate a reason, an explanation, for the truth

of the observation in terms of hypotheses which are typically speci�c

to the situation and individual objects at hand ... On the other

hand, induction is used when we want to synthesize the information

conveyed by the observations into a hypothesis that can account for

all the observations together in a common way.
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ECAI-96 workshop on the relationship between induction and abduction.
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On this account, both processes ultimately involve the identi�cation of hy-

potheses which account for (the truth of) observations. The uninitiated might

therefore feel that the distinction being made is somewhat arti�cial. However,

there are various ways in which we can make it more concrete.

In this paper I present a task analysis of induction and show how it leads

to a model of the induction process which logically entails processes plausibly

regarded as abductive. Although the approach I take may not be the only (or

the best) way of formalising the connection between induction and abduction,

it does have the advantage of relative simplicity.

2 Inductive Task Analysis

Imagine we have a body of data D, as shown in Table 1. Each datum in D (i.e.,

each row) is made up of the values of variables x

1

; x

2

; x

3

, x

4

and x

5

. One of

the values of x

3

is missing (see the `?' in the x

3

column). Can we use the other

data to predict this missing value? In other words, can we empirically induce

the missing value from the data which are provided?

x

1

x

2

x

3

x

4

x

5

c d f a b

a b h d b

e c h d e

c b f a e

a c f d e

c c ? a e

b c f a e

b d h d e

e d f a c

a c h d c

c d h a c

Table 1: Sample induction problem.

If we observe that every possible value of the relevant variable has the same

probability then we clearly cannot make any prediction at all. If all values do

not have the same probability then we will rationally predict the missing value

to be the one which has the highest observed probability. However, there are

several ways in which we can work out `observed probabilities'. First, we can

look at the unconditional probability of seeing a particular value v of x

i

.

P (x

i

= v)
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In the present case this is not productive since both possible values of x

3

have the same unconditional probability. This is just the chance value of 0.5,

i.e.,

P (x

i

= v) =

1

jV j

where V is the set of all possible values of x

i

.

Second, we can look at the probability of seeing a particular value conditional

on explicit instantiations of the other values, i.e.,

P (x

i

= v

a

jx

j

= v

b

:::)

where v

a

and v

b

are possible values and `...' denotes the optional inclusion

of other instantiations. This is more rewarding since it turns out that

P (x

3

= f jx

4

= a) = 0:8

In other words, we see x

3

=f in 4 of the 5 cases where we see x

4

=a.
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Third and �nally we can look at the probability of seeing a particular value

conditional on there being an implicit property (i.e., a relationship) among the

instantiations of other variables:

P (x

i

= vjg(X) = v

g

)

Here X is the entire datum and v

g

is the value of an imaginary function g,

which evaluates the relationship. This is more rewarding still since it turns out

that

P (x

3

= hjduplicates(X)) = 1

where the duplicates function is a predicate which tests whether there are

duplicated values in the datum. In other words, it turns out that we always see

x

3

=h when there are duplicates among the other values.

These three formulae represent the only ways in which a particular guess

might be empirically justi�ed.
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In fact, there are really only two formulae to

consider since we can always regard an unconditional probability as a conditional

probabilitywith an empty condition. Thus the task analysis shows that there are

really just two sources inductive justi�cation: one based on explicitly observed

probabilities and the other based on implicitly observed probabilities.

4

2

Of course this is not the only signi�cant conditional probability.

3

If this seems counter-intuitive note that the third formula acts as a kind of catch-all since

it covers any computational, mathematical or functional justi�cation for an inductive guess.
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The assumption is made that the concept of `implicit property' is well de�ned. With-

out this assumption, any mapping over the data might be viewed as measuring an `implicit

property' and thus every guess would have a justi�cation.
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If we want to make an inductive guess regarding the missing value of x

3

,

we therefore must exploit some combination of these two sources. In practice,

we must either exploit the statistical e�ects underlying explicitly observed

probabilities, or the relational e�ects underlying implicitly observed proba-

bilities. In the present example we will probably guess that x

3

=h since the

highest probability we have unearthed (so far) is based on the observation that

this value occurs in every case where there are duplicates among the remaining

values (i.e., a relational e�ect).

Methods which attempt to discover and exploit such probabilities for induc-

tive purposes | without using any other source of information| are empirical

learning algorithms. The development of these methods is the concern of sev-

eral research communities including Machine Learning and Connectionism (see

(1, 2, 3)).

3 Complexity

A method that attempts to exploit explicit probabilities confronts a relatively

easy task. Only cases that are explicitly observed in the data need to be taken

into account. If the dataset if �nite, there are a �nite number of these. The task

thus involves deriving frequency statistics (probabilities) over a �nite dataset.

A method that attempts to exploit implicit probabilities, on the other hand,

confronts a harder task since it has to �rst identify the appropriate evaluation

function for the implicit property (i.e., it has to guess what the relational e�ect

is). If functions with an in�nite range are to be considered, then the task

is in�nitely hard, since there are clearly an in�nite number of such functions.

Even if we restrict attention to functions with a �nite range, the task is still

hard since the number of functions to be considered is exponentially related to

the number of observed cases. Consider the simplest case. We have n variables

each of which takes m values and we consider only functions with a binary range

and minimum arity n. The number of possible functions is then 2

m

n

.

The general implication is that statistical e�ects are more easily exploited

than relational ones. This reinforces the long-standing belief among Machine

Learning researchers that `learning relationships is hard' (cf. (4)). Statisti-

cal learning methods (i.e., methods which exploit statistical e�ects only) thus

execute an easier task than relational methods, i.e., methods which exploit re-

lational e�ects. (In practice, learning methods often attempt to exploit both

types of e�ect.)

4 Discussion

Since the space of relationships is, in general, in�nitely large, relational learners

always and necessarily incorporate some form of bias [5], i.e., they have a pre-
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disposition to focus attention on certain types of relationship. We can regard

this as a form of knowledge or a set of hypotheses about the data. The process

of relational learning can then be viewed as the task of assimilating observa-

tions to a speci�c set of hypotheses, i.e., as a form of abduction. The process

of statistical learning, on the other hand, involves exploitation of observed sta-

tistical associations and is thus more easily viewed as a form of induction. The

task analysis, then, suggests that, to a �rst approximation, abduction can be

equated with relational learning while induction can be equated with statistical

learning.

However, there is an alternative way of utilising the analysis which leads to

a more interesting viewpoint. Relational learners are always potentially `recur-

sive'. The identi�cation of any set of relational e�ects involves the application of

evaluations (functions) to the original data. This e�ectively creates new values

and thus new data. These new data can themselves be processed for statisti-

cal and relational e�ects in a recursive manner. A full-blown relational learner

thus operates recursively and necessarily generates structured hypotheses about

the original data. Statistical learning carried out at higher levels within such

structures has the e�ect of assimilating raw data within (or `to') the relevant

structured hypothesis. This is a process which appears to be strongly abductive

in character.

The general implication of the analysis, then, is that abduction is what

happens when we move beyond exploitation of statistical associations into the

realms of knowledge-based discovery. It suggests that the distinction between

induction and abduction is not black-and-white but rather a question of degree.

Inductive processes can be more or less abductive and vice versa. The more

relational the learning is, and the deeper the generated recursion, the more

`abductive' is the underlying learning (or reasoning) process. If there is little

use of relational bias and no recursion then the process is `minimally abductive'.

In extreme cases, we may want to say that learning is exclusively inductive

or exclusively abductive. But in general we will need to think in terms of a

combination of the two processes.
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