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Abstract

Work is currently underway to devise learning methods which are bet-

ter able to transfer knowledge from one task to another. The process of

knowledge transfer is usually viewed as logically separate from the induc-

tive procedures of ordinary learning. However, this paper argues that this

`seperatist' view leads to a number of conceptual di�culties. It o�ers a

task analysis which situates the transfer process inside a generalised in-

ductive protocol. It argues that transfer should be viewed as a subprocess

within induction and not as an independent procedure for transporting

knowledge between learning trials.

1 Introduction

Where learning tasks are closely related, it seems reasonable to expect a learner

to be able to improve its performance on a particular learning task by reapplying

knowledge gained on some previous learning task. The learner should, we feel,

be able to transfer knowledge from one task to another. Unfortunately, popular

learning methods such as backpropagation [1] often exhibit erratic transfer ef-

fects [2]. Sometimes positive transfer e�ects are obtained
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but sometimes they
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In fact Harvey and Stone [3] argue that there is always a positive, initial transfer e�ect

with backpropagation learning

1



are exactly reverse of what we want: the acquisition of new knowledge appears

to catastrophically interfere with existing knowledge [4].

Many workers are engaged in the attempt to realise the bene�ts of knowledge

tranfer within learning [cf. 5, 6, 7, 8].
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However, there seems to be some residual

fuzziness in our thinking about the relationship between transfer and learning.

In particular, di�erent assumptions are made about the way in which these two

processes interact.

In some cases the role of learning is simply rote storage (i.e., memorisation) of

presented data. However, in most cases learning involves going beyond presented

data, i.e., it involves some form of induction. Where the goal of learning is some

form of behaviour then producing high performance means doing the right thing

at the right time. But we can, of course, always see this as a kind of induction

simply by treating the motor commands to be learned as the `target outputs'

in a conventional induction problem.

If we accept the idea that learning can usually be viewed as some sort of

inductive process, we have to ask how transfer �ts in. A common view is that

transfer is an operation which takes place between learning tasks. This suggests

that the process is somehow independent and separated from normal inductive

activity. On the other hand, transfer seems pointless unless it contributes in

some way to learning (i.e., inductive) performance. This seems to imply that

we should view transfer as being a part of an higher-level inductive process.

There are thus conceptual problems to deal with whether we treat transfer

as separate from induction or as closely integrated with it. To try to resolve

these I present a task analysis of induction [9]. This di�ers from some theoretical

treatments of learning (e.g., COLT treatments such as [10]) since it concentrates

exclusively on properties of the induction problem and ignores possible solutions

altogether. Interestingly, it leads to a view of induction which gives a clear role

to a transfer process
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and also allows us to formulate a criterion for deciding

when and if such transfer has occurred. The paper thus provides theoretical

ammunition for those who take the view that transfer should be treated as an

aspect of induction rather than a separate activity (i.e., the `anti-separatist'

view).

The paper divides up into four main sections. The next section (section two)

provides the task analysis of induction. The third section shows how the task

analysis supports a particular conceptualisation of the learning process. The

fourth section shows how this conceptualisation leads to a new appraisal of the

role transfer plays in induction.

2

Some recent work was presented at the NIPS-95 workshop on `learning to learn

and transfer'. Lori Pratt has a WWW page giving a useful set of pointers, see

http://vita.mines.colorado.edu:3857/lpratt/transfer.html
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Not necessarily the transfer process.
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2 A task analysis of induction

Imagine we have a body of data D, as shown in Table 1. Each datum in D (i.e.,

each row) is made up of the values of variables x

1

; x

2

; x

3

, x

4

and x

5

. One of

the values of x

3

is missing (see the `?' in the x

3

column). Can we use the other

data to predict this missing value? In other words, can we empirically induce

the missing value from the data which are provided?

x

1

x

2

x

3

x

4

x

5

c d f a b

a b h d b

e c h d e

c b f a e

a c f d e

c c ? a e

b c f a e

b d h d e

e d f a c

a c h d c

c d h a c

Table 1: Sample induction problem.

If we observe that every possible value of the relevant variable has the same

probability then we clearly cannot make any prediction at all. If all values do

not have the same probability then we will rationally predict the missing value

to be the one which has the highest observed probability. However, there are

several ways in which we can work out `observed probabilities'. First, we can

look at the unconditional probability of seeing a particular value v of x

i

.

P (x

i

= v)

In the present case this is not productive since both possible values of x

3

have the same unconditional probability. This is just the chance value of 0.5,

i.e.,

P (x

i

= v) =

1

jV j

where V is the set of all possible values of x

i

.

Second, we can look at the probability of seeing a particular value conditional

on explicit instantiations of the other values, i.e.,

P (x

i

= v

a

jx

j

= v

b

:::)
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where v

a

and v

b

are possible values and `...' denotes the optional inclusion

of other instantiations. This is more rewarding since it turns out that

P (x

3

= f jx

4

= a) = 0:8

In other words, we see x

3

=f in 4 of the 5 cases where we see x

4

=a.
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Third and �nally we can look at the probability of seeing a particular value

conditional on there being an implicit property among the instantiations of other

variables:

P (x

i

= vjg(X) = v

g

)

Here X is the entire datum and v

g

is the value of an imaginary function g,

which evaluates the implicit property. This is more rewarding still since it turns

out that

P (x

3

= hjduplicates(X)) = 1

where the duplicates function is a predicate which tests whether there are

duplicated values in the datum. In other words, it turns out that we always see

x

3

=h when there are duplicates among the other values.

These three formulae represent the only ways in which a particular guess

might be empirically justi�ed.
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In fact, there are really only two formulae to

consider since we can always regard an unconditional probability as a conditional

probabilitywith an empty condition. Thus the task analysis shows that there are

really just two sources inductive justi�cation: one based on explicitly observed

probabilities and the other based on implicitly observed probabilities.

If we want to make an inductive guess regarding the missing value of x

3

, we

therefore must exploit some combination of these two sources. In the present

example we will probably guess that x

3

=h since the highest probability we have

unearthed (so far) is based on the observation that this value occurs in every

case where there are duplicates among the remaining values.

6

Methods which attempt to discover and exploit such probabilities for induc-

tive purposes | without using any other source of information| are empirical

learning algorithms. The development of these methods is the concern of sev-

eral research communities including Machine Learning and Connectionism (see

[11, 12, 13]).
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Of course this is not the only signi�cant conditional probability.
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If this seems counter-intuitive note that the third formula acts as a kind of catch-all since

it covers any computational, mathematical or functional justi�cation for an inductive guess.
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In doing so we make the unrealistic but | in the absence of background knowledge |

inevitable assumption that all probability values are independent.
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3 Statistical v. relational learning

The fact that inductive guesses depend on just two sources of justi�cation im-

plies that any inductive method must exploit either implicit or explicit justi-

�cation, or some combination of the two. This allows one to make a basic

complexity distinction between inductive methods. A method that attempts to

exploit explicit probabilities confronts a relatively easy task. Only cases that

are explicitly observed in the data need to be taken into account. There are

a �nite number of these. The task thus involves deriving frequency statistics

(probabilities) over a �nite dataset.

A method that attempts to exploit implicit probabilities, on the other hand,

confronts a harder task since it has to �rst identify the appropriate evaluation

function for the implicit property (i.e., it has to guess what the property is). If

functions with an in�nite range are to be considered, then the task is in�nitely

hard, since there are clearly an in�nite number of such functions. Even if we

restrict attention to functions with a �nite range, the task is still hard since the

number of functions to be considered is exponentially related to the number

of observed cases. Consider the simplest case. We have n variables each of

which takes m values and we consider only functions with a binary range and

minimum arity n. The number of possible functions is then 2

m

n

.

The general implication is that explicit justi�cation is more easily exploited

than implicit justi�cation. It is no surprise, then, to �nd that practical learning

methods tend to be predisposed towards the former approach, i.e., they tend to

exploit probabilities of the explicit form rather than of the implicit form [14].

In this analysis no assumptions are made about the imaginary function g or

about how it behaves. However, we can say that it must be doing something

more than simply testing for explicit patterns of absolute variable values. In this

case the function would be playing a redundant role; the relevant justi�cation

would not be based on a formula of the third form; it would really be based

on a set of formulae of the second form. But if values of g cannot depend on

absolutes, they must depend on non-absolutes, i.e., relational e�ects. Thus g is

necessarily a relational function: it tests or measures a relationship among its

inputs.

This is a satisfying connection to make since it allows us to say that `hard'

learning problems | i.e., those which involve exploitation of implicit justi�-

cation | are relational. This rea�rms the long-standing Machine Learning

heuristic that `learning relationships is hard' (cf. [15]). Problems which merely

involve exploitation of explicit probabilities can be viewed as `statistical', since

they can be solved by deriving frequency statistics over a �nite dataset.

Applying this terminology to learning methods allows us to speak about `sta-

tistical methods' (i.e., methods which depend exclusively on explicit justi�cation

sources) `relational methods' (methods which depend on implicit justi�cation

sources) and `hybrid methods' (methods which depend on some combination of

the two types of justi�cation). This taxonomy is, of course, purely analytic. In

5



practice it may be hard to allocate a particular method to a particular category.

A small number of cases can be conclusively classi�ed within the scheme.

The ID3 method [16], now more often used in its updated manifestation as C4.5

[17] is a case in point. ID3 takes a training set of sample input/output pairs

from an input/output mapping, and constructs a decision tree (for generating

outputs) by recursively partitioning the training set until every pair in a given

partition has the same output value.

At each stage of the process, a new partitioning is constructed by dividing

up the cases in an existing partition according to which value they have on

the variable whose values are most strongly associated (within the partition)

with speci�c output values. This has the e�ect of maximising the output-value

uniformity of new partitions and thus minimising (subject to horizon e�ects)

the total number of partitions required in order to achieve full uniformity. The

algorithm is thus guided only by statistical e�ects in the training data. It is

thus an exclusively statistical method.

Aside from ID3, learning methods which can be classi�ed as exclusively sta-

tistical include the CART algorithms [18], the competitive learning regime of

Rumelhart and Zipser [19], the Kohonen net [20] and in fact any algorithmic

method which is based on the method of clustering [21]. There are also exam-

ples of exclusively relational learning methods. Examples include the `BACON'

methods of Langley and co-workers [22; 23; 24; 25] and related methods such

as [26; 27; 28; 29]. All these systems carry out explicit searches for relational

e�ects and in most cases ignore statistical e�ects altogether.

4 Transfer Revisited

One of the interesting properties of the task analysis is that it allows us to assign

a clear role to knowledge transfer and to say exactly how it contributes within

the overall process of induction. As we will see, it also allows us to explain why

transfer has typically been treated as a separate and independent process.

The task analysis divides the inductive process into two parts: a statistical

part and a relational part. We see immediately that the statistical part |

the exploitation of statistical e�ects | appears to o�er no role whatsoever to

any sort of transfer process. Statistical e�ects exist, by de�nition, in the data;

prior experience is thus essentially irrelevant. With a �nite dataset there are

always a �nite number of statistical e�ects and the process of identifying them

is tractable. If we must �nd a role for transfer within the statistical aspect

of induction we might argue that since, in practice, statistical learners focus

on a subset of the space of e�ects, they operate with a (statistical) bias and

that this bias might be adapted and improved with experience. However, this

seems contrived and tendentious. It leads, moreover, to a view of transfer which

deviates markedly from the view that most researchers apply to the process.

Fortunately, the relational part of the induction process o�ers a rather clear
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and obvious role to knowledge transfer. Arguably, it requires that transfer play

a role. Recall that exploitation of relational e�ects involves the identi�cation

of relationships in the data. Since in general the space of possible relationships

is in�nite this identi�cation necessarily involves a bias. A learner seeking to

exploit relationships in the data must always have some particular relationships

`in mind.' Thus the learner uses assumptions regarding the relevance or salience

of relationships. These assumptions constitute `knowledge' which, if it is justi-

�ed at all, must be justi�ed in terms of prior, relevant experience. Relational

learning, then, is either unjusti�ed or based on knowledge transfer.

The implication is worth spelling out. A well justi�ed, relational learning

process applied to a sequence tasks necessarily engages in knowledge transfer.

The process can be viewed in terms of the acquisition of a suitable bias. This

bias is constituted in the set of salient relationships which are used as candidates

in the e�ect-identi�cation process. Thus the task analysis suggests how and why

a transfer process will operate within induction.

The analysis also gives us a way of detecting the occurrence of transfer.

Recall that within relational learning, relationships in the data are exploited

through the application of suitable relational functions (i.e., suitable gs.) This

necessarily introduces new statistical e�ects | it e�ectively reduces relational

e�ects to statistical ones. Thus it is possible to decide whether transfer has

taken place by seeing whether the actions of the learner have introduced new

statistical e�ects.
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5 Comments

The task analysis presented by this paper o�ers a way of visualising the knowl-

edge transfer process and of understanding its role within induction. Of course,

the transfer process envisaged herein may not be the `right' or `only' one. It

may well be far removed from the transfer process that forms the focus of in-

vestigations for other researchers. However, it is clear that viewing transfer as a

knowledge-accumulation operation within relational learning does have tangible

bene�ts. It allows us to form a more coherent view of the way in which transfer

and induction interact. We see in particular that there is an important part of

induction which has nothing to do with transfer. And we also see that transfer

is an optional extra in a relational learning process | only of use in the case

where the learner confronts a sequence of tasks.

The view that transfer and induction are separate operations now becomes

explicable as a natural consequence of viewing induction in terms of statistical

exploitation processes such as ID3. And the worry over whether, why or how

transfer `contributes' to induction falls away since the contribution is now fully

accounted for in terms of the supporting role that transfer plays within relational

7

This check has to be made, of course, with respect to the original data and to any internal

data created by the learner.
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learning. The proposed model thus o�ers some real bene�ts for the achievement

of a better understanding of transfer. Whether it has any worth for those

engaged in the application of transfer in practical contexts remains to be seen.
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