
A New Crossover Operator for Rapid Function Optimisation

Using a Genetic Algorithm.

Bill Keller and Rudi Lutz

School of Cognitive and Computing Sciences

The University of Sussex

email: fbillk,rudilg@cogs.susx.ac.uk

Abstract

This paper describes experiments with a new genetic operator, randomised and/or

crossover (RAOC), which shows good performance on a range of function optimisa-

tion problems. Originally motivated by work on grammatical inference, RAOC was

observed to outperform more traditional crossover operators both in terms of its abil-

ity to locate global optima in the search space and in terms of its speed (measured as

the number of function evaluations taken to reach a solution). This paper describes

an extensive empirical study comparing RAOC with a number of more standard op-

erators on a range of function optimisation problems. The results of this study bear

out the earlier observations and demonstrate that RAOC is of wider applicability

than to the original grammatical inference problem which motivated it.

1 Introduction

Much of the power of genetic algorithms (GAs) derives from the use of appropriate genetic

operators for recombining or crossing the encodings of candidate solutions. Crossover op-

erators allow for the rapid identi�cation of good regions of the search space by combining

successful characteristics of partial solutions in novel ways. It is not surprising that re-

searchers have investigated a variety of crossover operators in an attempt to improve the

performance of GAs.

We have investigated the behaviour of a new crossover operator, randomised and/or

crossover (RAOC), which was introduced in the context of a GA based approach to the

problem of stochastic grammatical inference. RAOC was observed consistently to out-

perform more conventional operators in this domain. In the present paper, RAOC is

properly de�ned and compared to several other operators on a range of function optimi-

sation problems of the kind examined in other studies. The results of this comparison

demonstrate that RAOC is of wider applicability than to the grammatical inference prob-

lem which originally motivated it. In general, RAOC outperforms other operators both

in terms of its ability to �nd global solutions in the search space and the speed with which

these solutions are identi�ed.

1



2 The Grammatical Inference Problem

The RAOC operator was originally developed as part of a novel approach to the prob-

lem of unsupervised learning of stochastic context-free grammars from corpora [5]. A

stochastic context-free grammar (SCFG) is a variant of ordinary context-free grammar in

which each grammar rule is associated with a probability, a real number in the range

[0,1]. The set of production probabilities are called the parameters of the SCFG. An

example of a simple SCFG is shown in �gure 1, with the probability associated with each

production given in parentheses. The SCFG generates the language fa

n

b

n

jn � 1g, where

the probability of generating the string ab is 0:6, the probability of generating aabb is

0:24, and so on.

S! A B (1:0)

A! a (0:6)

A! C S (0:4)

B! b (1:0)

C! a (1:0)

Figure 1: SCFG for the language a

n

b

n

(n � 1)

A corpus is a �nite set of strings, where each string is associated with an integer

representing its frequency of occurrence. An example of a corpus is shown in �gure 2.

Given a corpus as training data, the problem is to identify a SCFG that models the corpus

data as accurately as possible, while generalizing appropriately to the wider language from

which the sample strings are drawn.

ab 595

aabb 238

aaabbb 97

aaaabbbb 49

aaaaabbbbb 14

aaaaaabbbbbb 5

Figure 2: A corpus for the language a

n

b

n

Our approach employs a genetic algorithm to search for the most likely grammar for a

given corpus. Each genome encodes a complete set of parameters for a covering grammar

consisting of all possible Chomsky normal form rules over a �xed set of terminal and

nonterminal symbols. Since some of the parameters may be zero, a genome e�ectively

picks out a subset of the rules: just those rules with non-zero probability. The �tness

of the SCFG represented by a given genome is calculated by summing a measure of the

likelihood of the corpus given the grammar and a measure of grammar size favouring

smaller or simpler grammars over larger, more complex ones (see [5] for further details).

2



Experiments were conducted using a number of di�erent crossover operators (de�ni-

tions are given in section 3). The results of these experiments were unequivocal: RAOC

consistently outperformed the other operators. Figure 3 shows a plot of maximum gram-

mar �tness against number of generations for each of the crossover operators tested on the

a

n

b

n

problem. Not only does RAOC �nd the best solution overall, it also seems to home

in on this solution very rapidly. Very similar outcomes were observed for a number of

other grammar induction problems and this motivated the more general study described

in the following sections.

Figure 3: Comparison of di�erent crossover operators on the a

n

b

n

problem

3 Crossover Operators

A crossover operator C takes two genomes p

1

and p

2

and produces two o�spring c

1

and

c

2

. Let p

ij

denote the j

th

bit of genome p

i

, and assume the length of a genome (in bits)

is chromlen. There are a variety of crossover operators that have been developed for

di�erent problems, the commonest of which are:

� One-point crossover (1PC ): Choose a random k such that 1 � k � chromlen.

De�ne c

1

and c

2

by:

c

1i

=

(

p

1i

1 � i < k

p

2i

otherwise

and

c

2i

=

(

p

2i

1 � i < k

p

1i

otherwise

3



� Two-point crossover (2PC): Choose random j; k such that 1 � j � k � chromlen.

De�ne c

1

and c

2

by:

c

1i

=

8

>

<

>

:

p

1i

1 � i < j

p

1i

k < i � chromlen

p

2i

otherwise

and

c

2i

=

8

>

<

>

:

p

2i

1 � i < j

p

2i

k < i � chromlen

p

1i

otherwise

� �-crossover [8]: This is often referred to as parameterised uniform crossover [7] and

is really a family of operators, one for each � 2 [0; 1]. Let X

i

be 1 with probability

�, and 0 with probability (1� �). �-crossover can then be de�ned by:

c

1i

=

(

p

1i

if X

i

= 1

p

2i

otherwise

and

c

2i

=

(

p

2i

if X

i

= 1

p

1i

otherwise

Note that �-crossover is symmetrical in the sense that, for 0 � � <= 0:5, �-

crossover behaves in exactly the same way as (1 � �)-crossover with c

1

and c

2

interchanged. 0.5-crossover is usually called uniform crossover (UC ) [8], and is the

most commonly used of this family of operators.

In order to de�ne randomised and/or crossover, it is convenient to �rst de�ne:

� �-and/or crossover: Like �-crossover, this is a family of operators, one for each

� 2 [0; 1]. Let X

i

be 1 with probability �, and 0 with probability (1 � �), then

�-and/or crossover can then be de�ned by:

c

1i

=

(

p

1i

^ p

2i

if X

i

= 1

p

2i

_ p

2i

otherwise

and

c

2i

=

(

p

1i

_ p

2i

if X

i

= 1

p

1i

^ p

2i

otherwise

where ^ and _ are the Boolean operators and and or , respectively.

The e�ect of this operator is that with probability �, at each bit position the �rst

child gets the logical and of the corresponding bits of the parents, while the second gets

the logical or . Conversely, with probability (1 � �) the �rst child gets the logical or

and the second gets the logical and . Like �-crossover, this operator is also symmetrical

with respect to values of � above and below 0.5. We are now in a position to de�ne the

randomized operator:

4



� Randomised and/or crossover (RAOC ): This is de�ned in terms of the family of

�-and/or operators. Each time two parents are chosen to reproduce, pick a value

of � at random (uniform distribution) and then carry out �-and/or crossover. Note

that � varies with each mating.

For comparison purposes we also de�ne the following operator:

� Randomised uniform crossover (RUC ): This is de�ned in terms of the family of

�-crossover operators. Each time two parents are chosen to reproduce, pick a value

of � at random (uniform distribution) and then carry out �-crossover. Again, note

that � varies with each mating.

4 The Test Problems

In order to compare the various crossover operators we used a set of 22 \standard"

optimisation problems, which we will refer to as F1-F8, SF1-SF8 and P1-P6. F1-F5 are

�ve problems originally due to De Jong [3]. F6 is Ackley's function [1], F7 is the Schubert

Function [9] and F8 is Scha�er's sine envelope sine wave function [6]. Davis [2] has

suggested that GAs can take advantage of the position of the optima for these problems

relative to Hamming \cli�s", and suggested that \shifted" versions of the problems may

provide a better test. Accordingly, SF1-SF8 are shifted versions of F1-F8, where the

process of shifting will be described more fully in section 5. Finally, P1-P6 are 6 n-peak

problems used in a recent study of multi-point crossover operators by De Jong and Spears

[4].

The objective functions for the 22 problems are described next

1

:

F1 This function has a single optimal value of 0:0, and is de�ned by:

�

3

X

i=1

x

2

i

for �5:12 � x

i

� 5:12

F2 This function has a single optimal value of 0:0, and is de�ned by

�100(x

2

1

� x

2

)

2

� (1� x

1

)

2

for �2:048 � x

i

� 2:048

F3 This has a single optimal value of 25:0, and is de�ned by:

�

5

X

i=1

intof(x

i

)

for �5:12 � x

i

� 5:12

1

Note that we have inverted the normal de�nitions of these functions as our GA performs function

maximisation rather than minimisation.

5



F4 This is a \noisy" function with random noise added to its values every time it is

evaluated. Without the noise it has a single optimal value of 0:0 at x

i

= 0; 1 � i �

30. It is de�ned by:

�(

30

X

i=1

ix

4

i

+Gauss(0; 1))

for �1:28 � x

i

� 1:28 where Gauss(�; �) is random Gaussian noise with mean �,

and standard deviation �.

F5 This function has an optimal value of 499:002, but there are numerous suboptimal

maxima. It is de�ned by:

500�

1

0:002 +

P

24

i=0

1

1+i+(x

1

�a

i

)

6

+(x

2

�b

i

)

6

for �65:536 � x

i

� 65:536, where a

i

and b

i

are de�ned by:

a

i

= 16((i mod 5)� 2)

and

b

i

= 16(bi=5c� 2)

F6 This function has a maximum value of 0:0, and is de�ned by:

20e

�

�0:2

q

1

2

P

2

i=1

x

2

i

�

+ e

�

1

2

P

2

i=1

cos(2�x

i

)

�

� 20� e

for �30:0 � x

i

� 30:0.

F7 This function has a global maximum of 186:731, and is de�ned by:

�

2

Y

i=1

5

X

j=1

j cos((j + 1)x

i

+ j)

for �10 � x

i

� 10. Within this range there are 760 local maxima, of which 18 are

global maxima.

F8 This function has a single global maximum of 1.0, and is de�ned by:

0:5�

(sin(

q

x

2

1

+ x

2

2

))

2

� 0:5

1 + 0:001(x

2

1

+ x

2

2

)

2

for �100 � x

i

� 100. It should be noted however that there are numerous local

maxima.

Problems SF1-SF8 are de�ned according to the functions F1-F8 given above. The

di�erence lies is in the way in which the genomes are decoded, and will be explained later

in section 5. Following De Jong and Spears [4], we de�ne P1-P6 as follows:

6



P1 =

^

1�i�30

Q

i

P2 = P1 _ (Q

1

^

^

1�i�30

Q

i

)

P3 = P2 _ (Q

1

^

^

1�i�15

Q

i

^

^

16�j�30

Q

j

)

P4 = P3 _ (Q

1

^

^

1�i�15

Q

i

^

^

16�j�30

Q

j

)

P5 = P4 _ (Q

1

^

^

1�i odd�30

Q

i

^

^

1�j even�30

Q

j

)

P6 = P5 _ (Q

1

^

^

1�i odd�30

Q

i

^

^

1�j even�30

Q

j

)

These are Boolean satis�ability problems de�ned over the 30 propositional variables

Q

1

: : :Q

30

. We associate with each problem P

m

a function h

m

from valuations (assign-

ments of truth values to variables) to [-1, 1] such that h

m

(V ) = 1 if and only if P

m

is

satis�ed under valuation V . The function h

m

is de�ned as follows. Let E

m

(1 � m � 5)

denote that Boolean expression such that P

m+1

= P

m

_ E

m

. So, for example, P2 = P1

_ E1, where

E1 = (Q

1

^

^

1�i�30

Q

i

)

and so on. Note that each of the E

m

is actually unsatis�able. Now, de�ne:

score(X; V ) =

T (X; V )� F (X; V )

30

where T (X; V ) is de�ned as the number of literals (propositional variables or their nega-

tion) in expression X that are true under valuation V and F (X; V ) is de�ned as the

number of literals in X that are false under valuation V .

Finally, de�ne:

h

1

(V ) = score(P

1

; V )

h

m+1

(V ) = max(h

m

(V ); score(E

m

; V ))

The function h

m

has the property that it has a single, global maximum value of 1,

corresponding to assigning true to all the variables Q

i

. However, there are m � 1 local

maxima corresponding to nearly satisfying the extra, unsatis�able expressions E

1

, . . . ,

E

m�1

.

5 The Genetic Algorithm

For the study we used a distributed GA having a structured population consisting of a

two dimensional toroidal grid with N �N squares. Each grid square `contained' a single

individual. The algorithm involved repeatedly executing the following mating strategy:

7



� select an individual at random, taking the �ttest of its immediate neighbours as its

partner;

� produce two children in the usual way by crossover and mutation and evaluate

according to the objective function;

� replace the weakest parent by the �ttest child.

Note that because this strategy does not involve converting �tness values to probabil-

ities, we could work with the values of the function to be optimised directly. In general,

we did not normalize function values as part of the decoding process.

For problems F1{F8 we used 30 bits to encode each parameter. For example, F4,

which has 30 parameters, had a total chromosome length of 900 bits. The bits representing

each parameter were decoded as two's complement integers, and then scaled to bring the

resulting number into the required range. For the \shifted" problems, SF1-SF8, the 30

bits representing each parameter were �rst decoded just as for F1-F8. However, 10% of

the absolute value of the result was then taken away. If the result fell below the permitted

range, then the value was `wrapped around' to the top of the range by the same amount

that it had gone below (see [2] for more details). The six n-peak problems, P1-P6 were

all carried out with a chromosome length of 30 bits (i.e. 1 bit per Boolean variable) with

the obvious decoding strategy of 1 representing true, and 0 representing false.

6 The Experiments

We compared the performance of the di�erent crossover operators on each of the test

problems described above. Initially, this was done with the following crossover operators:

� 1-point crossover

� 2-point crossover

� uniform crossover

� randomised and/or crossover

A total of 20 runs, each of 100 generations were carried out for each crossover operator

on each problem (where a generation was arbitrarily de�ned as 128 function evaluations).

This was repeated for di�erent population sizes (4, 16, 64, 256 and 1024). For all runs,

the mutation rate was �xed at 1=chromlen At the start of each run, the population was

initialized randomly: each bit in each genome was chosen to be either 1 or 0 with equal

probability.

Further runs were also carried out to compare randomized and/or crossover with

randomized uniform crossover and �-and/or crossover, with � �xed at 0:75. This was done

to see whether the advantages of RAOC come from random variations around uniform

crossover (since 0.5-and/or crossover is the same as uniform crossover) and to rule out the

possibility that we would do as well with 0.75-and/or crossover (since 0.75 is the e�ective

mean value of � in RAOC).

8



Figure 4: Comparison of di�erent crossover operators on F8 (population size 256)

The performance of the di�erent operators was measured with respect to the following

criteria:

� Hit Rate (HR). This is the percentage of the 20 runs for a given combination of

problem, population size, and crossover operator, in which at least one individual

has a �tness of within 0.005 of the optimum value for that problem. In a sense this

measures how often a solution to a problem is found.

� Average Evaluations (AE). This is the average number of evaluations needed to

�rst obtain an individual satisfying the hit rate criterion. The average is only taken

over runs in which such an individual is found. This measures how fast a solution

is found, provided that one is found.

� Average of Best Values (AV). This is the average over the 20 runs of the �tness of

the best individual at the end of each run. This measures how well the system does

on the average.

7 Results

The results of the experiments described above bore out earlier observations. In

general, RAOC performed best (as measured by HR, AE and AV) on more of the test

problems than any of the other operators. This showed up more strongly as the population

size increased. Table 1 shows the results for a population size of 256. (In the table, bold

face type is used to indicate best performance.) At this population size, RAOC is the

clear winner on 17 out of the 22 problems. The increase in performance is often quite

9



Size 1PC 2PC UC RAOC

256 HR AE AV HR AE AV HR AE AV HR AE AV

P1 100 2278 1.0 100 2198 1.0 100 1929 1.0 100 650 1.0

P2 100 2730 1.0 100 2714 1.0 100 2558 1.0 100 865 1.0

P3 80 2433 0.997 75 2805 0.996 95 2525 0.999 100 727 1.0

P4 85 3106 0.997 75 3339 0.996 95 2431 0.999 100 779 1.0

P5 85 3036 0.997 75 2788 0.996 80 2616 0.997 100 798 1.0

P6 85 2505 0.997 90 2977 0.998 85 2710 0.997 100 838 1.0

F1 100 1832 0.0 100 1686 0.0 100 1411 0.0 100 436 0.0

F2 75 3096 -0.005 90 3038 -0.002 95 1524 -0.001 100 1641 -0.0

F3 100 3423 25.0 100 3028 25.0 100 3014 25.0 100 598 25.0

F4 0 1 -1.76 0 1 -1.395 0 1 -0.58 100 938 -0.08

F5 100 1388 499.002 100 1339 499.002 100 1545 499.002 100 1184 499.002

SF1 100 1784 0.0 100 1799 0.0 100 1468 0.0 100 426 0.0

SF2 90 3171 -0.003 75 1934 -0.003 95 1608 -0.001 90 1206 -0.001

SF3 95 4193 24.95 100 4991 25.0 95 6101 24.95 20 7499 24.2

SF4 0 1 -2.072 0 1 -1.519 0 1 -0.555 100 951 -0.043

SF5 100 1493 499.002 100 1693 499.002 95 2892 499.002 75 4225 498.901

F6 100 3317 0.0 100 3137 0.0 100 3058 0.0 100 616 0.0

SF6 100 3341 0.0 100 3080 0.0 100 3000 0.0 100 659 0.0

F7 100 3211 186.731 100 2915 186.731 95 4187 186.731 90 4195 186.706

SF7 100 3348 186.731 100 3074 186.732 95 4178 186.729 100 3741 186.731

F8 65 2804 0.985 45 3040 0.976 85 3115 0.993 100 549 1.0

SF8 45 4089 0.976 55 3119 0.98 95 3430 0.998 100 687 1.0

Table 1: Results for population size 256

dramatic, with an increased hit rate and a much lower average number of evaluations.

This is illustrated in Figure 4 which shows the graph of �tness (for the best of each

generation) for the various operators on problem F8.

On the other hand, it should be noted that there are a few problems on which RAOC

actually performs least well. In particular this is the case for SF3, SF5, and F7 (it also

fares less well on SF7). It is not yet clear why these problems pose such di�culties for

RAOC. One possibility that we are currently investigating is that the operator performs

rather like a very e�cient stochastic hill-climber. It is notable, for example, that the

problems on which it does not do very well seem to have plateaus, and we suspect that

it does badly in landscapes with many plateaus.

As stated earlier, we also compared RAOC with 0.75-and/or crossover and randomised

uniform crossover. The results are given in table 2. It can clearly be seen from this ta-

ble that although randomised uniform, and 0.75-crossover occasionally outperform ran-

domised and/or crossover, in general randomised and/or crossover performs best. This

would seem to indicate that it is not simply the use of a crossover operator \centered"

around uniform crossover that gives the improvement. nor is it simply the fact that

randomising the parameter averages out at 0.75.

10



Size RUC 0:75-AOC RAOC

256 HR AE AV HR AE AV HR AE AV

P1 100 2053 1.0 100 879 1.0 100 650 1.0

P2 100 2436 1.0 100 1023 1.0 100 865 1.0

P3 80 2461 0.997 100 1160 1.0 100 727 1.0

P4 75 2742 0.996 100 1122 1.0 100 779 1.0

P5 75 2830 0.996 100 1135 1.0 100 798 1.0

P6 65 2816 0.994 100 1136 1.0 100 838 1.0

F1 100 1366 0.0 100 574 0.0 100 436 0.0

F2 95 1684 -0.001 100 1284 -0.0 100 1641 -0.0

F3 100 3081 25.0 100 943 25.0 100 598 25.0

F4 0 1 -0.641 100 1590 -0.045 100 938 -0.08

F5 95 1295 498.992 95 1021 498.982 100 1184 499.002

SF1 100 1635 0.0 100 585 0.0 100 426 0.0

SF2 80 2217 -0.002 100 1722 -0.0 90 1206 -0.001

SF3 85 6812 24.85 60 9900 24.6 20 7499 24.2

SF4 0 1 -0.799 100 1477 -0.121 100 951 -0.043

SF5 90 2882 499.001 85 2865 499.001 75 4225 498.901

F6 100 2899 0.0 100 987 0.0 100 616 0.0

SF6 100 3027 0.0 100 945 0.0 100 659 0.0

F7 85 3977 186.665 100 4007 186.731 90 4195 186.706

SF7 90 4264 186.716 100 4669 186.731 100 3741 186.731

F8 80 2655 0.991 100 884 1.0 100 549 1.0

SF8 75 3611 0.989 100 1067 1.0 100 687 1.0

Table 2: Comparison with RU and 0.75-AOC for population size 256

8 Conclusions

Our results show that randomised and/or crossover consistently outperforms 1-point,

2-point, and uniform crossover on nearly all of the test problems. This con�rms the

results of earlier experiments on the grammatical inference problem. The improvement

in performance is often quite dramatic, with both an increase in the success rate, and an

increase in the speed at which solutions are found. This suggests that RAOC should be

considered as a possible alternative to other crossover operators whenever such a choice

is feasible.

9 Acknowledgements

We would like to thank Malcolm McIllhagga and Rob Duncan for use of their work-

stations. We would also like to thank Phil Husbands, and Inman Harvey for various

suggestions relating to this work.

11



References

[1] Ackley, D.H. and Littman, M.L. (1990) Learning from natural selection in an ar-

ti�cial environment. Proceedings of the International Joint Conference on Neural

Networks, Vol. 1, pp. 189-193.

[2] Davis, L. (1991) Bit-climbing, representational bias, and test suite design. Proceed-

ings of the Fourth International Conference on Genetic Algorithms, San Diego, VA,

pp. 18-23.

[3] De Jong, K.A. (1975) An Analysis of the Behaviour of a Class of Genetic Adaptive

Systems, Doctoral Thesis, Dept. of Computer and Communication Sciences, Univer-

sity of Michigan, Ann Arbor.

[4] De Jong, K.A. and Spears, W.M. (1990) An analysis of the interacting roles of

population size and crossover. Proc. 1st Int'l Conf. on Parallel Problem Solving from

Nature, Dortmund, Germany, October 1990.

[5] Keller,W. and Lutz, R. (1996) Learning stochastic context-free grammars from cor-

pora using a genetic algorithm. Cognitive Science Research Paper 444, School of

Cognitive and Computing Sciences, The University of Sussex. To appear in Proceed-

ings of the 3rd International Conference on Arti�cial Neural Networks and Genetic

Algorithms (ICANNGA-97).

[6] Scha�er, J.D., Caruana, R.A., Eshelman, L.J., and Das, R. (1989) A study of con-

trol parameters a�ecting online performance of genetic algorithms for function opti-

mization. Proceedings of the Third International Conference on Genetic Algorithms,

Morgan Kaufmann Publishing.

[7] Spears, W.M. and De Jong, K.A. (1991) On the virtues of parameterized uniform

crossover. Proceedings of the Fourth Internationa Conference on Genetic Algorithms,

San Diego, VA, pp.237-244.

[8] Syswerda, G. (1989) Uniform crossover in genetic algorithms. Proceedings of the

Third International Conference on Genetic Algorithms, Morgan Kaufmann Publish-

ing.

[9] Torn, A. and Zilinskas, A. (1989) Global Optimization. Springer-Verlag, Berlin.

12


