
Learning Stochastic Context-Free Grammars from Corpora

Using a Genetic Algorithm

Bill Keller and R�udi Lutz

School of Cognitive and Computing Sciences

The University of Sussex

email: fbillk,rudilg@cogs.susx.ac.uk

Abstract

A genetic algorithm for inferring stochastic context-free grammars from �nite

language samples is described. Solutions to the inference problem are evolved by op-

timizing the parameters of a covering grammar for a given language sample. We de-

scribe a number of experiments in learning grammars for a range of formal languages.

The results of these experiments are encouraging and compare very favourably with

other approaches to stochastic grammatical inference.

Keywords: grammatical inference, genetic algorithms, stochastic grammar, formal lan-

guages, induction.

1 Introduction

This paper describes an evolutionary approach to the problem of inferring stochastic

context-free grammars from �nite language samples or corpora. Grammatical inference

[Go78] is a fundamental problem in many areas of arti�cial intelligence and cognitive

science, including speech and language processing, syntactic pattern recognition and au-

tomated programming. Although a wide variety of techniques for automated grammatical

inference have been devised (for surveys see [FB86, AS83]) most are subject to limitations

which severely restrict their range of application. For example, inference may be limited

to grammars for the regular languages, or require access to both positive (grammatical)

and negative (ungrammatical) instances of the target language. A goal of the present

work is to provide a general method for inferring a wide class of grammars on the basis

of just positive information about the target language.

Genetic algorithms [Ho75] are a family of robust, probabilistic optimization techniques

that o�er advantages over specialised procedures for automated grammatical inference.

A number of researchers have already described applications of genetic algorithms to lan-

guage identi�cation problems with some success [ZG86, Lu93, SJ92, La94, Wy91, DPB94,

Hu93, SO95]. However, with the exception of recent work reported by Schwem and Ost

[SO95], the problem of inferring stochastic language models has not been addressed. This

is surprising in view of the many practical applications of such models to tasks including

1



S! A B (1:0)

A! a (0:6)

A! C S (0:4)

B! b (1:0)

C! a (1:0)

Figure 1: SCFG for the language a

n

b

n

(n � 1)

speech recognition, part-of-speech tagging, optical character recognition and robust pars-

ing. While Schwem and Ost recognize the importance of the stochastic inference problem,

their approach is restricted to the inference of stochastic regular grammars. In contrast,

the present work tackles the more general problem of inferring stochastic grammars for

the class of context-free languages.

The following sections describe our approach to grammatical inference in more detail.

Stochastic context-free grammars are briey described in section 2. Section 3 discusses the

problem of inferring stochastic grammars from corpora. Details of the genetic algorithm

are then given in section 4 and in section 5 we present the results of several experiments

in learning grammars for a range of formal languages.

2 Stochastic Context-Free Grammars

A stochastic context-free grammar (SCFG) is a variant of ordinary context-free grammar

in which each grammar rule is associated with a probability, a real number in the range

[0,1]. The set of production probabilities will be referred to as the parameters of the SCFG.

For a SCFG to be consistent , the probabilities associated with all rules that expand the

same non-terminal symbol must sum to one.

The language L(G) generated by a SCFG G comprises the set of all strings of terminal

symbols derivable from the start symbol of the grammar (typically, S). In addition, the

parameters de�ne a probability distribution over strings in L(G). For a string � 2 L(G),

the probability of a parse tree for � is given by the product of the probabilities of all the

grammar rules involved in its construction. The probability P

G

(�) of the string � is the

sum of the probabilities of all of its parses.

An example of a simple SCFG is shown in �gure 1, with the probability associated with

each production given in parentheses. The SCFG generates the language fa

n

b

n

jn � 1g,

where P

G

(ab) = 0:6, P

G

(aabb) = 0:24, and so on.

A corpus C for a language L is a �nite set of strings drawn from L, where each string

� 2 C is associated with an integer f

�

representing its frequency of occurrence. The size

N

C

of the corpus is de�ned as the sum of the frequencies of the individual strings in C.

That is:

N

C

=

X

�2C

f

�

The relative frequency p

�

of a string � 2 C is de�ned as p

�

= f

�

=N

C

2



ab 595

aabb 238

aaabbb 97

aaaabbbb 49

aaaaabbbbb 14

aaaaaabbbbbb 5

Figure 2: A Corpus for the Language a

n

b

n

An example of a corpus for the language fa

n

b

n

jn � 1g is shown in �gure 2. The

frequency of the string ab is 595, the frequency of aabb is 238, and so on. The total size

of the corpus is 998. The relative frequencies of the strings ab and aabb are given by

p

ab

= 0:596192, p

aabb

= 0:238477.

3 Corpus-Based Grammatical Inference

Given a corpus C as training data, the inference problem is to identify a SCFG that

(a) models the corpus as accurately as possible, and (b) generalizes appropriately to the

wider language from which the corpus was drawn. For a stochastic grammar, a natural

measure of accuracy is the likelihood of the corpus data given the grammar. The most

accurate model in this sense is that SCFG

^

G given by

^

G = argmax

G

P (CjG) (1)

where P (CjG) (the conditional probability of the language data C given the grammar

G) is de�ned as:

P (CjG) =

Y

�2C

P

G

(�)

f

�

It may be observed that the grammar maximizing the likelihood of the corpus data

according to equation 3 will not generally meet the further requirement of generalization.

To see this, note that a perfectly accurate model of a �nite corpus is one which generates

exactly the �nite corpus and assigns to each string the correct relative frequency. In other

words, the most accurate grammar will over-�t the training data. Intuitively, what we

actually require is the grammar that is most likely given the training data. That is, we

wish to �nd

^

G such that

^

G = argmax

G

P (GjC) (2)

Unfortunately, it is not clear how to calculate P (GjC) directly. From Bayes rule we

have:

P (GjC) =

P (CjG)P (G)

P (C)

3



Ignoring P (C), which is a constant, maximising P (GjC) just corresponds to max-

imising the product of P (CjG) (which we can calculate directly) and P (G), the prior

probability of the grammar G. Of course, this poses the problem of �xing an appropriate

prior probability distribution over grammars. In principle there are many di�erent priors

that could be chosen. Other things being equal, however, it seems reasonable to assume

that we should prefer smaller or simpler grammars to larger, more complex ones. Our

choice of prior is related to the minimum description length principle of Risannen [Ri78]

as well as earlier work on inductive inference due to Solomono� [So64]. In outline, we

�rst �x a probability distribution over (parameterized) grammar rules, such that shorter

rules are more probable than longer rules. The prior probability of a grammar is then

obtained simply as the product of the prior probabilities of all of its rules.

In practice, it is not convenient to compute the conditional probability P (GjC) di-

rectly as a means of evaluating the �tness of grammars. Instead, the genetic algorithm

uses an objective function F given by

F (G) =

�K

C

logP (CjG) + log P (G)

(3)

Note that minimizing the denominator in 3 (ignoring sign) just amounts to maximising

P (GjC). The numerator �K

C

is a problem (corpus) dependent normalization factor that

yields �tness values in the range [0;1].

4 The Genetic Algorithm

Given a corpus C as training data, our approach to grammatical inference involves the

following steps:

1. construct a covering grammar that generates the corpus as a (proper) subset.

2. set up a population of individuals encoding parameter settings for the rules of the

covering grammar;

3. repeatedly apply genetic operations (cross-over, mutation) to selected individuals

in the population until an optimal set of parameters is found.

Step one involves �rst �xing a set of non-terminals to be used in the covering grammar.

The grammar itself is a large context-free grammar in Chomsky Normal Form (CNF),

which contains every rule of the form A ! BC (where A, B and C are non-terminals)

and every rule of the form A ! a where A is a non-terminal and a a terminal symbol

appearing in the corpus. By restricting attention to CNF grammars over �nite sets of

terminal and non-terminal symbols, the covering grammar is guaranteed to be �nite

1

.

On the other hand, there is no loss of generality: for any SCFG (not generating the empty

string) there is a SCFG in CNF which generates exactly the same language with exactly

the same probability distribution.

1

For a covering grammar in CNF with n nonterminals and m terminals, there will be n

3

+ nm

productions.

4



The population maintained by the genetic algorithm is organized as a two dimensional

grid, with opposing sides of the grid identi�ed (i.e. members of the population inhabit the

surface of a torus). Thus, each member of the population has exactly eight neighbours.

A member of the population encodes a set of parameters for the rules of the covering

grammar, with each parameter encoded as a �xed-length bit string. If a block of n bits

is used to encode each parameter, then for a covering grammar having M rules each

member of the population has a genome of length Mn bits, where the jth parameter is

encoded as the jth n-bit block.

Because the parameters of a SCFG are not independent of one another, we do not

encode their values directly. Instead, each n-bit block is treated as an encoding of a

numerical weight . To obtain the actual parameters of the SCFG, the weights are normal-

ized as part of the decoding process. If w

j

is the weight associated with rule r

j

, then

p

j

= w

j

=W is the probability associated with this rule (where W is the sum of all those

weights associated with rules expanding the same non-terminal as r

j

). A weight of zero

means that the corresponding rule does not belong to the rule-set of the SCFG.

An obvious scheme for encoding the weights is to treat each n-bit block as a binary

representation of an integer value. However, this simple scheme has the drawback that

it makes it relatively unlikely that a rule will be assigned a zero weight. In general, the

covering grammar has many more rules than are required for the target SCFG, so it makes

sense to use an encoding that is biased in favour of rules having zero weight rather than

the other way around. To achieve this, the encoding scheme is modi�ed by reserving a

small number of initial bits in each block. If each of these initial bits is set to 1, then the

remaining bits are decoded to obtain the rule weight. In all other cases the rule �weight is

zero, and the remaining bits are ignored. The number of reserved bits e�ectively controls

the amount of bias in favour of a rule being assigned a weight of zero, while the number

of remaining bits controls the size of the rule weights and thus the precision of the rule

probabilities. For the experiments described in the following section we have found that

between one and three initial bits and 7 `weight' bits is su�cient

2

.

The members of the initial population are generated randomly, after which the genetic

algorithm repeatedly executes the following select-breed-replace cycle:

Select a random member of the population for breeding, and choose the �ttest of

its eight neighbours as the second parent.

Breed by applying crossover and mutation to produce two children.

Replace the weakest parent by the �ttest child.

Selection and replacement are carried out within a small, local population. This allows

for rival solutions to emerge at di�erent locations and discourages too rapid a spread of

successful genetic information throughout the whole population. By replacing the weakest

parent, rather than the weakest neighbour, relatively un�t individuals still get a chance

at breeding while useful genetic material from the weakest parent may survive through

the �ttest child.

2

The actual number of initial bits is determined automatically in proportion to the size of the covering

grammar. The larger the grammar, the more weight bits are used.

5



A characteristic of our parameter encoding scheme is that the probability associated

with any given rule does not depend solely on local properties of the genome (i.e. the

state of the relevant n-bit block). In general, it will also depend on the state of all the

weight encodings associated with rules expanding the same non-terminal symbol. Fur-

thermore, the �tness of a given individual may be crucially dependent on the state of

weight encodings that are widely separated within the genome. In short, our representa-

tion is one which exhibits high epistasis and where global properties of the genome are in

many ways more important than local properties. This presents a problem, because such

global characteristics are more likely to be destroyed than preserved under the classical,

one-point crossover operator.

We have experimented with a number of alternatives to the classical crossover opera-

tor. Good performance has been achieved using a novel genetic operator which we refer

to as and-or crossover . As its name suggests, this works by inspecting corresponding

positions in the parent's genomes and then performing the logical operations of and and

or . Two children are built up bit-by-bit, with one child selected (with some crossover

probability) to receive the value returned by the and operation, and the other the value of

the or . Best results are obtained when the crossover probability is itself randomly gener-

ated at the start of each breeding phase. This operator preserves shared characteristics in

the genomes of the two parents (via logical and), whilst permitting useful intermingling

of di�ering characteristics (via logical or ). A desirable property of and -or crossover from

out point of view is that is is capable of preserving �t schemata of arbitrary length. The

genetic algorithm employs a standard, point-wise mutation operator, which is performed

with low probability

3

.

5 Experimental Results

We have conducted a number of experiments in learning grammars for a range of formal

languages. The languages are representative of those considered in other studies:

1. EQ: the language of all strings consisting of equal numbers of as and bs;

2. the language a

n

b

n

(n � 1);

3. BRA1: the language of balanced brackets;

4. BRA2: balanced brackets with two sorts of bracketing symbols;

5. PAL1: palindromes over fa; bg

6. PAL2: palindromes over fa; b; cg

For each experiment, a corpus was �rst produced automatically using a hand-crafted

SCFG for the target language. This involved randomly generating on the order of 16,000

strings up to a pre-speci�ed `maximum sentence length' (typically 6 or 8). For the covering

3

The mutation rate is set inversely proportional to the length of the genome

6



Language Nonterminals Parameters Successful Best Worst

EQ 3 33 9/10 0.971 0.679

a

n

b

n

4 72 10/10 0.979 0.941

BRA1 3 33 10/10 0.956 0.951

BRA2 5 145 9/10 0.957 0.622

PAL1 5 135 2/10 0.950 0.871

PAL2 7 364 1/3 0.937 0.892

Figure 3: Results on a number of language learning tasks

grammar, the number of non-terminal symbols was �xed as the number used in the hand-

crafted SCFG

4

. For each problem, the population size was determined automatically in

proportion to the number of parameters (i.e. rules) in the covering grammar. We have

found that setting the population size to twice the number of parameters gives good

results.

In order to assess the performance of the genetic algorithm, multiple runs were com-

pleted on each language learning task. With the exception of PAL2 (three symbol palin-

dromes), ten runs each of the genetic algorithm were performed. For PAL2, the current

implementation requires considerable processor time and for this reason only three runs

were executed. A run of the genetic algorithm was terminated as `successful' if a SCFG

was found with �tness above a threshold value of 0.93. While this �gure is somewhat ar-

bitrary, experience has shown that grammars attaining this �tness are almost invariably

correct in the sense that they generate the target language exactly, and assign appropri-

ate probabilities to the strings. Runs of the genetic algorithm that failed to attain the

threshold value were terminated after a maximum number of select-breed-replace cycles.

The number of cycles was set individually for each problem and was high enough to

ensure convergence in the population.

The results of the experiments are summarized in the table given in �gure 3. For each

learning task, the table gives the number of nonterminals used in the covering grammar,

the number of parameters to be optimized, the success rate (number of runs that attained

the threshold �tness value) as well as the maximum �tness value found on the best and

worst runs of the genetic algorithm. As can be seen, the �rst four tasks (EQ, a

n

b

n

,

BRA1 and BRA2) presented little di�culty. In particular, for a

n

b

n

and BRA1 all ten

runs in each case terminated successfully. Inspection of the grammars produced for these

experiments showed that they were indeed correct

5

. For EQ and BRA2, one run in each

case failed to produce an adequate grammar. The relatively poor �tness values attained

on these runs (0.679 and 0.622 respectively) suggests the presence of local maxima around

which the population has converged.

4

For more realistic problems, where the target grammar is not known in advance, this would not be

possible. We are currently conducting further experiments to assess the e�ects of introducing surplus

non-terminals.

5

Occassionally, a grammar contained an additional, spurious rule with `near zero' probability. A

post-processing phase to prune these rules could easily be implemented.

7



S! C B (0:51875)

S! DA (0:48125)

A! a (1:0)

B! S C (0:24778)

B! b (0:752212)

C! b (1:0)

D! A S (0:252066)

D! AC (0:066116)

D! a (0:681818)

Figure 4: Near-miss grammar for the language of two symbol palindromes

The results for the two palindrome languages initially appear less encouraging. For

PAL1, only two runs attained the threshold �tness value, while for PAL2 only one of the

three runs was terminated successfully. On the other hand, even on the worst runs in

each case the algorithm found grammars with quite high �tness. Furthermore, it should

be recalled that the threshold �tness value represents an arbitrary measure of success. In

particular, failure to attain this threshold does not imply that the algorithm has failed

to �nd a grammar with a correct (or nearly correct) set of rules. For example, it is

possible that the grammar generates the target language exactly, but with a non-optimal

probability distribution.

Inspection of the grammars produced for all runs of the PAL1 learning task showed

that the algorithm had performed rather better than suggested by the 2/10 success rate

given in the table. Figure 5 shows the grammar ranked �fth best (with a �tness of

0.897355) out of all those produced by the algorithm on this task. Aside from the presence

of one spurious production D! AC, which has a low associated probability (0.066116),

the grammar is otherwise correct. Indeed, it was found that the �ve �ttest grammars

produced by the algorithm were all of this type. Similar comments apply in the case of

PAL2. In this case the second-ranked grammar actually achieved a �tness of 0.925312,

narrowly missing the threshold value.

6 Conclusion

The approach to grammatical inference described in this paper di�ers from previous work

using genetic algorithms in addressing the problem of corpus-based inference of stochas-

tic context-free grammar. This di�erence makes direct comparison of our results with

those of other researchers di�cult. However, the experiments that we have conducted

are typical of those in other studies and the results reported in this paper appear promis-

ing. The approach also compares well with other (non-genetic) techniques for stochastic

grammatical inference, for example the work reported by Lari and Young [LY90] using

the Inside-Outside algorithm [Ba79].

The main limitation of our approach is the cost involved in evaluating the �tness of

8



each candidate solution, which requires parsing every string in the corpus in all possible

ways. Although inference can be performed very quickly for small covering grammars,

the number of parses that must be considered increases exponentially with the number of

non-terminals. In the current implementation, this makes the cost prohibitive for CNF

covering grammars with more than about 8 non-terminal symbols. We are currently

investigating ways of overcoming this problem, including the possibility of a massively

parallel implementation of our algorithm.

References

[AS83] Angluin, D. and C. Smith (1983) Inductive inference: theory and methods,

Computing Surveys , 15(3), 237{269.

[Ba79] Baker, J.K. (1979) Trainable grammars for speech recognition. Proceedings of

the Spring Conference of the Acoustical Society of America, 547{550, Boston,

MA.

[DPB94] Dunay, D., F. Petry and B. Buckles (1994) Regular language induction with

genetic programming, Proceedings of the First International Conference on

Evolutionary Computing , 396{400.

[FB86] Fu, K.S. and T.L. Booth (1986) Grammatical inference: introduction and

survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8,

343{375.

[Go78] Gold, E. M. (1978) Language identi�cation in the limit, Information and

Control , 10, 447{474.

[Ho75] Holland, J.H. (1975)Adaptation in Natural and Arti�cial Systems , University

of Michigan Press, Ann Arbor.

[Hu93] Huijsen, W.-0. (1993) Genetic Grammatical Inference: Induction of Push-

down Automata and Context-Free Grammars from Examples Using Genetic

Algorithms . Master's thesis, Dept. of Computer Science, University of Twente,

Enschede, The Netherlands.

[La94] Lankhorst, M.M. (1994) Grammatical inference with a genetic algorithm, in

L.Dekker, W.Smit and J.C.Zuidervaart (eds.), Proceedings of the 1994 EU-

ROSIM Conference on Massively Parallel Processing Applications and Devel-

opment , 423-430, Delft, The Netherlands.

[LY90] Lari, K. and S.J. Young (1990) The estimation of stochastic context-free gram-

mars using the inside-outside algorithm, Computer Speech and Language, 5,

237{257.

[Lu93] Lucas, S. (1993) Biased chromosomes for grammatical inference, Proceedings

of Natural Algorithms in Signal Processing , IEE Workshop, Danbury Park,

UK.

9



[Ri78] Risannen, J. (1978) Modelling by shortest data description, Automatica, 14,

465-471.

[SO95] Schwem, M. and A. Ost (1995) Inference of stochastic regular grammars by

massively parallel genetic algorithms, Proceedings of the Sixth International

Conference on Genetic Algorithms , 520{527, Morgan-Kaufmann, CA.

[SJ92] Sen, S. and J. Janakiraman (1992) Learning to construct pushdown automata

for accepting deterministic context-free languages, in G.Biswas (ed.), SPIE

Vol. 1707: Applications of Arti�cial Intelligence X: Knowledge-Based Sys-

tems , 207{213.

[So64] Solomono�, R.J. (1964) A formal theory of inductive inference, Information

and Control , 7, 1{22; 224{254.

[Wy91] Wyard, P. (1991) Context-free grammar induction using genetic algorithms,

in R.Belew and L.B. Booker (eds.), Proceedings of the Fourth International

Conference on Genetic Algorithms, ICGA'92 , 514{418, Morgan Kaufmann.

CA.

[ZG86] Zhou, H. and J.J. Grefenstette (1986) Induction of �nite automata by ge-

netic algorithms, Proceedings of the 1986 IEEE International Conference on

Systems, Man and Cybernetics , 170{174, Atlanta, GA.

10


