
In: Proceedings of the Fifth Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE’96), Stanford,
California, June 19-21, 1996. IEEE Computer Society Press. Pp232-237.

Independent Validation of Specifications: A coordination headache

Steve Easterbrook John Callahan

steve@atlantis.ivv.nasa.gov callahan@cerc.wvu.edu

Software Research Lab

NASA/WVU IV&V Facility

Fairmont, WV 26554

Abstract
Large, complex projects face significant barriers to

coordination and communication due to continuous, rapid

changes during a project's lifecycle. Such changes must be

tracked, analyzed, and reconciled to ensure high-quality

in the end-product, otherwise problems may be get lost or

ignored in the overall complexity. We report on “work-in-

progress” in the study of coordination problems between

two independent, separate groups: software development

and software analysis. We have begun to construct a

taxonomy of coordination problem, which we illustrate

with two scenarios. We briefly describe current attempts to

introduce incremental improvements to coordination

problems in such projects via World-Wide-Web tools.

Based on actual project experiences, we plan to deploy

such tools in a non-intrusive fashion to improve

coordination and communication between software

development groups.

1. Introduction

This paper describes some of the coordination

problems faced in the verification and validation (V&V)

of large software systems. In particular, we examine the

process of Independent V&V (or IV&V), a practice used

on large, safety-critical software systems in the defense

and aerospace industries. IV&V faces many of the same

coordination problems as any large development project,

and introduces many problems of its own. In particular,

IV&V requires two organizations with conflicting goals to

cooperate to satisfy a single customer. Not only is there a

lack of suitable tools to support the coordination needed,

but often even the infrastructure in which such tools

would be used is missing. We will illustrate some of the

problems faced by IV&V through two scenarios, and

describe our initial work on the development of web-based

tools that address the problems.

Although we focus on IV&V, many of the coordination

problems are found in any large project. In many projects,

coordination problems surface merely as tensions and

frustrations, perhaps leading to schedule and budget

problems. In an IV&V process, the coordination crosses

organizational boundaries. This makes it harder for the

people involved to find ways to work around any lack of

cooperation. Hence, the problems are more visible, and

easier to study.

Within the IV&V process, we concentrate on the

analysis of requirements specifications. This is a deliberate

choice: independent analysis of requirements specific-

ations has the potential for the biggest impact of any

IV&V activity. The quality of the analysis of design and

implementation and the rigor of testing depend to some

extent on the availability of good quality specifications.

In this paper, we identify the interdependence of large

volumes of documentation as a key problem in software

specification. Any change to one part of a specification

may have many small impacts (“ripples of influence” [6])

throughout the documentation, which may be hard to track

down. Certainly this kind of problem was an important

factor in the fatal decision to launch Challenger [1]. The

mechanical problem that caused the blast was well known

before the accident; however, failures in tracking the

problem and in keeping all documentation consistent led

to faulty decision making by NASA managers.

In this paper, we outline the IV&V process and identify

a number of coordination problems that we have observed

in actual IV&V processes. Specifically, we draw on our

informal observations of and interactions with IV&V

personnel working on the Space Station and the Earth

Sciences Data and Information System (ESDIS) projects.

We present two scenarios, which reveal the extent to

which coordination problems can reduce the effectiveness

of IV&V. We then describe our initial work with the

World Wide Web to provide infrastructure and tools to

overcome some of these problems.

2. Coordination Problems in IV&V

Independent Verification and Validation (IV&V) is a

process in which the products of the software development

life cycle phases are independently reviewed, verified, and

validated by an organization that is neither the developer

nor the acquirer of the software [2]. As the IV&V agent

has no stake in the success or failure of the software, it can

provide an unbiased assessment of the status of a project's

schedule, cost, and the viability of its product during

development. IV&V provides an early warning of

problems, and helps to identify and manage both technical

and programmatic risks.

An example of an IV&V activity is the analysis of

specifications on the Space Station project. An SRS is

written by a development contractor for each Software

Configuration Item (CSCI). These are in natural language,

and follow the format of DOD-STD-2167A. The IV&V

contractor periodically receives copies of the SRS

documents, in various stages of completion, and analyses

them for technical integrity, to identify requirements

problems or risks. The kind of analysis performed will

vary according to the level and the type of specification,

and will cover issues such as clarity, testability,

traceability, consistency and completeness. If problems

are identified, the IV&V contractor may recommend

either that the requirements be rewritten, or that the

problem be tracked through subsequent phases.

There are a number of tensions that interfere with the

smooth running of an IV&V contract. The development

contractor and IV&V contractor have conflicting goals:

the development contractor's goal is to produce the

required system within cost and schedule constraints; the

IV&V contractor's goal is to identify errors and risks.

These goals are in conflict whenever problems identified

by IV&V have cost or schedule implications. The extent

to which this conflict causes problems depends very much

on the attitude of the project managers within the

development contractor. If they regard the IV&V agent as

an ally in the effort to produce high-quality software, then

the conflict can be avoided. If they regard the IV&V agent

as an enemy put there to find fault with their work, the

conflict becomes central to the relationship between

developer and IV&V.

Within this context, there are a number of factors that

affect the relationship:

• Timing - IV&V needs to report problems as early as

possible. In general, the earlier a problem is detected,

the less it costs to fix. Also, by the time IV&V

produces its reports, the reports might be irrelevant:

the product may have changed, or errors may have

already been fixed. Delayed reporting by the IV&V

agent can sour the relationship with the developer.

• Access - In order to do its job, IV&V needs timely

access to a large amount of project data and

documentation. Preferably, it needs to receive early

drafts of documents, as well as regular updates.

Developers are naturally unhappy about releasing

drafts to an IV&V agent: draft documents are full of

known problems. The development contractor needs

to be able to trust the IV&V contractor to handle draft

documents sensitively.

• Evolution - IV&V analysis and development effort

proceed in parallel, so that effectively IV&V is

dealing with a moving target. Even if the IV&V agent

can obtain regular updates of a product, these updates

only represent snapshots, and do not capture the

evolution of the product. Hence, problems may recur

or disappear, without any explanation.

• Appropriateness - When reporting problems to the

customer, the IV&V contractor needs to be careful to

match the report with the status of the product it

applies to. For instance, if a document is an early

draft, then it should not be treated as a finished

product: the IV&V agent need not report problems

that can be reasonably expected to be fixed by the

developer in due course.

Central to the work of IV&V is the problem of issue

tracking. Problems that are important enough to be

reported to the customer need to be tracked so that

responses can be assessed. Minor problems need to be

tracked in case they become major. While formal issue

tracking processes (and tools that support these processes)

help, they do not address the need to trace dependencies

and decision rationale.

Many of these problems are common to all large

projects: in an IV&V project the problems are more

obvious because they cross an organizational boundary.

3. Scenarios

This section presents two scenarios, drawn from our

observations of IV&V processes. In each case, we present

a normal process, and then discuss potential commun-

ication and coordination problems. Our aim is to use these

scenarios to understand how better to support the process.

3.1. Scenario 1

An IV&V analyst (let us call her Alice) is reading a

specification, and notices a requirement that begins

"Within 110ms of ...". The figure of 110ms seems wrong,

but she cannot check it immediately as it will require a

calculation using data available elsewhere.

A typical, informal process is illustrated in figure 1.

Briefly, Alice makes a note to herself to come back and

check the figure, which reaches the top of her to-do list

after a couple of weeks. She then makes the calculation,

and confirms that the figure is indeed wrong. She phones

the author (let us call him Bob) of the section of the

document in which this requirement occurs, and leaves

him a voice mail message explaining the problem.

Bob gets the message, checks the relevant section, and

concludes that Alice's assessment is correct. He phones

Alice to say he will fix it before the next draft of the

document. Alice makes a note to remind herself to check

that the fix has been made when she gets the next release.

Two months later, she receives the new release, runs

through her list of things to check, and finds that the

figure has been corrected.

Now look at what could have gone wrong. First, any of

the communications in figure 1 could have failed to occur.

For example, Alice might have failed to make a note to

herself, she might not be able to trace the author of the

document, Bob might never return her call, and so on.

Communication might also fail because either Alice or

Bob leave the company, or move to a different project, at

any point during the scenario. Figure 1 is annotated with

these possible communication failures.

Second, there are a number of places where

coordination problems may occur. For example, Bob may

disagree with Alice’s assessment of the problem. This

might be because either he or Alice made a mistake in

their calculations, because Bob misunderstands Alice’s

message, or because he looks at the wrong section. A

decision must be made over whether the issue is important

enough to pursue further: Alice may decide to write a

formal discrepancy report.

Other changes to the specification may also cause

problems. For example, someone else might make

conflicting changes to the same section of the

specification, they may delete the whole section, they

might change the figures on which Alice’s calculation was

based, or they may undo Bob’s change. This is especially

a problem if other people have no visibility into the

process that Alice and Bob went through.

Finally, if everything else goes well, the figure might

still be wrong in the new draft. This could be because Bob

changed it but still got it wrong, because he changed the

wrong figure, because he never got round to it, or because

the same problem recurs throughout the specification and

Bob did not track down all of them.

Some of the problems illustrated in this scenario could

be addressed with an issue tracking system, and our next

scenario shows the use of such a system. However, for this

first scenario, an issue tracking system might be too

formal. If Alice can resolve the problem by picking up the

phone, she may be reluctant to incur the overhead of

entering the problem into an issue tracking system.

The scenario also illustrates the inter-relatedness of

different parts of the specification. When Alice checks the

figure, she uses data from elsewhere in the documentation.

She knows what data to use from her familiarity with the

specifications: nowhere is it recorded that the data she

uses is related to the figure she is checking. Alice may or

may not be the first person to notice the relationship. In

either case, once the relationship is noticed, it ought to be

recorded for future reference. With a little intelligence

AliceNotes Phone BobSpec library

draft specification

"check figure"

"to do" list

wrong
figure is

phones Bob

voicemail

Bob calls Alice
note: check
Bob's fix

New
draft

to do list

agrees

figure looks
wrong

figure is
correct

doesn'tmake a note
forgets tocome backto it

cant locateauthor

doesn'tmake a note
never callsback

doesn't leavea message

Alice leavesthe company
forgets tocome backto it

Figure 1. The first scenario, annotated with potential communication problems

built into support tools, it should be possible to detect that

Alice uses some parts of a spec to check others, and hence

record a dependency relationship. Section 4 discusses our

current project to introduce such support tools

incrementally into ongoing projects.

3.2. Scenario 2

The second scenario (Figure 2) illustrates a more

formal process, in which fewer communication problems

can occur. An IV&V analyst (let us call him Carl) is

analyzing a section of the requirements document by

generating a tabular version of the section, and then

running the resulting tables through an automated

consistency checking tool. The tool reports an

inconsistency, which Carl traces back to a mistake in the

original document. He writes a Discrepancy Report (DR).

Let us call this DR#101.

Three months later, a new draft of the specification is

released. Carl checks the DR database, to see which of his

DRs have been addressed in this new draft. DR#101 is

marked as having been worked on (by Diane), and is

awaiting approval for closure. As originator of the DR,

Carl's signature is required before the issue can be closed.

He updates his tabular representation to reflect the new

draft, runs the new version of the table through the tool

again, and confirms that the problem is now fixed. He

therefore signs off the DR as closed.

The DR tracking tool removes many potential

communication problems, and ensures that closure is

achieved for each reported problem. However,

coordination problems can still occur.

For example, Carl could have made mistakes in the

translation from the text to the table - it is hard to confirm

that the table is a faithful representation of the textual

requirements. Similarly, Carl might not be able to trace the

inconsistency back to the original requirements. He would

then have great difficulty reporting the problem in a DR,

unless he includes his tables, a description of the checking

process, and some evidence that the tables are faithful to

the original. This will make the DR rather cumbersome for

a review panel to process.

Diane might not understand the problem: she might not

be familiar with the tool that Carl uses. She might fail to

correct the inconsistency, or might introduce more

inconsistencies in this section. Carl may have problems

updating his tables, perhaps because Diane (or someone

else) has reorganized the section. Carl might not have the

time to update the tables and so just performs a visual

check, in which case he might not notice if the correction

introduced any new errors.

Finally, the process might need to be repeated

indefinitely. Diane’s changes might not have corrected the

problem, or other people might make further changes after

the DR is signed off. Does this mean Carl has to update

the table and re-run his checks again every time a changed

draft is released? The problem here is to do with the

relationship between alternative representations of the

same information. Currently, such a relationship exists

only in Carl's head - there is no representation of the

draft specification

errors in table

Spec library

New
draft

Carl Analysis tool DR tracker Diane

creates table

writes DR#101
disposition

closes issue

List of closed issues

updates table

no errors

signs off DR #101

runs tool

runs tool

fixes errors

traces
errors

makesmistakes✬✬

cant tra
ce

errors
doesn'tundersta

nd
the prob

lem

no time
availabl

e
errorstill ther

e

new drafts
keep com

ing

introduc
es

other err
ors

makesmistakes
section h

as
been re-

written

✬✬

✬✬

✬✬

✬✬

✬✬ ✬✬

✬✬

✬✬

Figure 2. The second scenario, annotated with potential coordination problems

relationship anywhere else. Either of the two chunks of

specification may evolve, but there is no way to trace the

“ripples of influence” of any changes. Hence, there is no

opportunity for tool support to reason about how changes

to one side affect the other.

The scenario illustrates how expensive it can be to

develop and maintain an alternative representation of an

evolving specification. This may mean that this type of

analysis gets delayed until the specification is relatively

stable. This is undesirable.

Notice that the relationship is bi-directional. Although

the table is generated and updated from the text, Carl

needs to be able to trace problems from the table back into

the text. It is also highly likely that Carl may want to alter

the table to see what possible fixes there are, and then see

what effect this has on the text.

4. The Web as an enabling technology

The problems identified in the scenarios show how

time-consuming and costly it can be to track changes,

especially where there are many dependencies throughout

the specifications. A full solution to these problems would

require all dependencies between different parts of a

specification to be explicitly represented. Such a solution

requires significant advances in the capture and

representation of dependencies between specification

elements. Partial solutions exist for individual methods

(e.g. the consistency checking for SCR [3]). A general

solution for multiple methods is still a long way off.

To explore such a general solution, we have adopted an

incremental, empirical approach. We need to put into

place the infrastructure for recording data about each

chunk of specification, including annotations and

relationships with other chunks. However, we also need to

integrate this infrastructure with the existing project

support systems on the projects we wish to study, to

minimize the disruption caused. We will not be able to

proceed with our empirical study unless each step is

relatively painless for the project.

The infrastructure we need to put in place must satisfy

two major criteria. It must be adaptable enough to fit in

with a wide range of existing project support tools on

different platforms, using heterogeneous networks, and

accessing existing project data in a variety of different

formats. Second, it must provide the ability to record and

track arbitrary relationships between chunks of

specifications [4].

Initial experiments indicate that the World-Wide-Web

will satisfy most of the first criteria. In particular:

• It removes dependence upon any one platform, and

allows us to design tools that can immediately run on

any platform without reconfiguration

• It hides networking details, so that remote access to

documents is as straightforward as local access.

• It is extensible via Java, so that tool development is

feasible.

• It provides a basic hypertext functionality.

• Most project documentation on the projects we wish

to study is already available in electronic format, and

can easily be converted to HTML.

Despite these benefits, a number of problems remain.

Firstly, the hypertext model provided by HTML is far too

simplistic. Links are unidirectional, and encode no

semantic information. In general, links are hardwired into

documents, although Javascript makes dynamic links

feasible. Navigational aids are still relatively primitive,

limited to path tracing and keyword searching; no tools

yet exist for integrating graphical views of hypertext

structure. Documents themselves are static: the web is a

passive browsing mechanism - browsers cannot edit or

annotate documents. Editing of documents normally takes

place offline.

Another serious shortcoming of the Web is the inability

to represent the structure of non-textual documents (e.g.

diagrams). Hence manipulation of structured documents

can only be achieved by using extensions to web

browsers.

5. The WHERE project

The Web-based Hypertext Environment for

Requirements Engineering (WHERE) project is an

experiment in extending the capabilities of the Web, using

viewpoints [7] instead of web pages as the basic building

block. viewpoints combine the idea of an actor, role or

agent in the development process, and the idea of a view

or perspective that an actor maintains. In software terms,

viewpoints are loosely coupled, locally managed, coarse-

grained objects which encapsulate a partial specification in

a suitable representation scheme, and partial knowledge of

the process of development.

The Viewpoints framework divides a specification into

manageable chunks ('viewpoints'), each of which has the

following attributes:

• a representation style, the scheme and notation by

which the viewpoint expresses what it can see;

• a domain, which defines the area of concern

addressed by the viewpoint;

• a work plan, which comprises the set of actions by

which the specification can be built, and a process

model to guide application of these actions;

• a work record, which contains an annotated history of

actions performed on the viewpoint.

Each viewpoint has a defined owner. The owner is

responsible for developing a viewpoint specification using

the notation defined in the style slot, following the

strategy defined by the work plan, for a particular problem

domain. A development history is maintained in the work

record. This framework encourages multiple

representations, and is a deliberate move away from

attempts to develop monolithic specification languages. It

is also independent from any particular software

development method.

The WHERE project will implement this framework

using the Web. The core functionality will be provided by

three Java applets:

The Viewpoint Editor is a configurable specification

editor. The editor is configured from one of three

templates: depending on whether the notation to be edited

is graphical, tabular, or textual. Each template takes a

syntax description as a parameter, to provide a syntax-

directed editor for the given notation. Note that the editor

will not need to be able to generate large specifications, as

a specification is broken down into individual viewpoints.

For example, if a specification method calls for three

different types of table, each table will be represented as a

different viewpoint, and three different configurations of

the tabular viewpoint editor will be needed, one for each

table type.

The Viewpoint Reviewer allows a user to browse and

annotate viewpoints created by other people. If the

viewpoint to be loaded was developed outside the

WHERE environment, the Reviewer will provide a

rudimentary parsing of the viewpoint, so that annotations

can be attached to different parts of its structure. The

reviewer will not allow a user to edit the viewpoint, and

will store annotations and meta-viewpoint data as a

separate 'view' of the viewpoint.

The consistency checker allows the user to define and

check relationships between viewpoints. Each viewpoint

can have three types of relationships with other

viewpoints: method-defined, user-defined, and emergent.

Method-defined relationships describe relationships that

should hold between two viewpoints of a particular type.

User-defined relationships are entered by users to record

and track non-standard relationships between particular

viewpoints. Emergent relationships are recorded as the

result of certain actions on viewpoints, where the action

reveals that a relationship must exist.

The tools can be used to provide support for the entire

requirements specification process, or as a partial aid to

some aspects of it. The partial mode allows a gradual

introduction of the tool into existing projects. For

example, existing specification documents can be loaded

into the viewpoint reviewer and annotated. New

viewpoints can be created using the viewpoint editor, with

defined relationships to the existing documentation. A

typical use would be to model a portion of an existing

specification in a new notation, while explicitly recording

relationships with the existing specification.

6. Conclusions

Our approach to empirical investigation and

incremental tool deployment is based largely on the

Experience Factory model [5] that has been successfully

employed on other NASA software efforts. Based on the

experiences with IV&V analysts using our tools, we will

continue to refine and add features.

Technologies like the World-Wide-Web and Java are

essential enablers that will allow software developers to

manage the volume of change of large, complex software

projects. We have demonstrated briefly how failures in

coordination and communication can wreak havoc on such

projects even in situations where potential problems are

identified early in the project's lifecycle. The use of an

independent analysis team, such as an IV&V group, is

highly effective, but requires additional coordination

mechanisms to reap the benefits of such analysis.

7. Acknowledgments

We acknowledge the assistance of Chuck Neppach and Dan

McCaugherty (Intermetrics) for discussions regarding IV&V

pragmatics and Darryl Lakins and George Sabolish (NASA) for

insight into IV&V effectiveness issues. We thank our students,

Amer Al-Rawas, Swarn Dhaliwal, Zhong Zhang and Gevony

Laughlin for their inputs to this work.

8. References

[1] N. G. Leveson “Safeware: System Safety and Computers”,
Reading MA: Addison Wesley, 1995

[2] NASA NASA Software Assurance Guidebook, NASA-GB-
A201, prepared by the Software Assurance Technology
Center, Goddard Space Flight Center, 1989

[3] C. Heitemeyer, B. Labaw and D. Kiskis, “Consistency
Checking of SCR-Style Requirements Specifications”,
Second IEEE Int. Symp. on Requirements Engineering,,
York, UK, March 1995, pp56-63.

[4] S. M. Easterbrook and B. A. Nuseibeh, “Using ViewPoints
for Inconsistency Management”, BCS/IEE Software
Engineering J., 11(1), Jan 1996.

[5] V. Basili, “The Experience Factory and its Relationship to
Other Improvement Paradigms”, Proc, 4th European
Software Engineering Conference, Garmish-Partenkirchen,
Germany, September 1993.

[6] M. Klein, “Core Service for Coordination in Concurrent
Engineering”, Proc. 4th IEEE Workshop on Enabling
Technologies: Infrastructure for Collaboration
Enterprises, Coolfront, West Virginia, April 1995.

[7] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein and
M. Goedicke, “ViewPoints: A Framework for Multiple
Perspectives in System Development”, Int. J. of Software
Eng. and Knowledge Eng. 2(1) Jan 1996, pp31-5.

