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Abstract

Magnetic resonance spectroscopy (MRS) provides a unique non-invasive method for obtaining

information on the biochemistry of living tissue in situ, and therefore has great potential as a

clinical tool. However, presently in vivo MRS is used mainly for research, rather than for clinical

applications.

There are a number of reasons for this. The information may be difficult to extract from the

spectrum due to low signal-to-noise ratio and other problems associated with obtaining a signal

from living tissue. Interpretation may be difficult due to the large number of metabolites repre-

sented by the spectra. Another problem is that most current methods for analysing MRS data are

targeted at providing information on specific metabolites, rather than the more general information

appropriate for clinical applications, such as the disease stage or state of the tissue being examined.

This thesis shows how pattern recognition techniques may be used to help overcome these

problems and to provide methods for classifying in vivo spectra according to their tissue type. A

prototype system for classifying spectra is developed using features that are extracted automati-

cally, using the whole spectrum, rather than selected peaks. These features were selected purely on

the basis of their power to discriminate between different types of spectra, using no prior knowl-

edge of biochemistry. Among the techniques used were wavelets, principal component analysis

and linear discriminant function analysis. These techniques were tested on two sets of in vivo

data: 75 13C spectra obtained from healthy human volunteers from three different dietary groups

of adipose tissue in the leg and 55 31P spectra obtained from tumorous and normal tissue in rats.

For both datasets most of the spectra were assigned to their correct groups (94% of the 13C and 86

– 100% of the 31P spectra) without the need for explicit identification or measurement of peaks.
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Chapter 1

Introduction

1.1 Nuclear Magnetic Resonance in Medicine

The use of Nuclear Magnetic Resonance (NMR) in medicine allows us to ‘see’ what is going on

inside the body without carrying out invasive surgery or inserting optical instruments. NMR is

not unique in this; there are other techniques for imaging the body such as X-rays and ultrasound.

However, unlike other methods, NMR makes it possible not only to visualise anatomical struc-

ture with magnetic resonance imaging (MRI), but also to investigate physiological function with

magnetic resonance spectroscopy (MRS). The extra dimension of information offered by magnetic

resonance spectroscopy and also the fact that the technique has no known harmful effects makes

NMR a unique and powerful imaging technique for clinical medicine.

NMR is concerned with the behaviour of atomic nuclei and their interaction with electromag-

netic radiation. Certain nuclei, for example those of hydrogen (1H), carbon (13C) and phosphorus

(31P) ‘resonate’ when exposed to electromagnetic radiation at a particular frequency. This fre-

quency is dependent on the type of nucleus and also on the intensity of the surrounding magnetic

field. An NMR signal is produced by inducing nuclei of interest to resonate by exposing them to

a pulse of radiation at their resonance frequency, and then allowing the nuclei to relax when they

will release radiation at this same frequency. Because the strength of the resulting signal will de-

pend on the number of nuclei present, it can be used to give a measure of the proportion of nuclei

in a sample.

MRI depends on the fact that it is possible not only to obtain a measure of the nuclei resonating

within a sample but also to spatially encode this measure. MRI is normally based on the 1H nucleus

(proton) and uses the fact that living tissue is largely composed of water, which in turn contains

protons. The relative number of protons in different locations in a sample can be deduced from

the NMR signal and displayed as an image. MRI was developed in the 1970’s and has recently

progressed to being a major imaging modality in clinical medicine. It has the advantage over the

other most common form of imaging, X-ray, in that it does not, as far as is known, cause any harm

to the patient. It has proved particularly successful in visualising organs such as the brain, where

it can often eliminate the need for investigative surgery.

MRS is based on the fact that a nucleus will resonate at a slightly different frequency depend-

ing on its molecular environment. This phenomenon, known as ‘chemical shift’, is due to the fact

that atoms and molecules surrounding a nucleus produce a shielding effect which influences its
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local magnetic field. The relative numbers of nuclei resonating in different molecular sites in a

sample can be deduced from the NMR signal. The peaks in the NMR spectrum represent nuclei

resonating at slightly different frequencies, and the quantities of certain substances can be calcu-

lated by measuring the area under each peak. MRS is widely used tool in analytical chemistry

where it is used, for example to elucidate the chemical structures of molecules. However it is

not limited to the chemical laboratory as it can also be used to study living tissue. Spectra can

be obtained in vivo allowing detailed biochemical information to be obtained non-invasively from

patients.

MRS provides a unique means of observing living biochemistry in situ and thus has great po-

tential as a clinical tool. However, while it is now widely used as a research tool, its use in clinical

medicine has been so far slow to develop. This is partly due to the high cost of acquiring in vivo

data and also because difficulties associated with obtaining a signal from living tissues, especially

at the low magnetic fields acceptable for human patients, may make accurate quantification of the

metabolites represented by the spectra very difficult.

Another reason that MRS is not yet widely used in clinical medicine is that spectral analysis

and interpretation is a very time-consuming task which requires considerable expertise by a highly

trained operator. In recent years the advances in technology have resulted in a huge information

explosion, but, while it has become much easier to collect and process data, the development

of methods for extracting meaningful and useful information has lagged behind. MRS is a good

example of this; extremely sophisticated techniques have been developed for collecting MRS data,

but relatively few for automating the analysis and interpretation of this data once it has been

obtained.

Although there are a number of computer-based methods available for analysing spectra, most

of these still need considerable interaction by the user in order to determine which metabolites are

present in the spectrum, and in which proportions. Once the metabolites have been quantified it is

up to the user to apply an understanding of biochemistry to draw conclusions from the composition

of the sample about the probable nature of the tissue. The time and expertise required for the

currently available methods to analyse and interpret spectra in vivo have contributed to the fact that

MRS has remained primarily a research tool, despite its great potential for clinical applications.

If MRS is to realise its full potential as a clinical tool it will be essential to have reliable

automated methods for analysing and interpreting MRS data. In particular it will be necessary to

have methods which are specifically targeted to providing the kind of information that is required

for clinical use. Developing and investigating such methods is the aim of the work described in

this thesis.

1.2 Analysis of Spectra for Clinical Applications

In order to develop methods specifically targeted to providing the kind of information that is re-

quired for clinical use, it is first necessary to consider what kind of information will be needed,

and what questions will need answering. As in all areas of data analysis it is important to match

the methods of analysis to the specific questions to be addressed, not only to obtain the right an-

swer, but also because the use of inappropriate methods may result in losing potentially relevant

information.

Most current methods for spectral analysis aim at explicit quantification of the individual

metabolites in individual spectra. This quantification may be essential for ascertaining the bio-

chemical structure of the tissue being examined, as will be the case when the data are to be used

for research purposes. However explicit quantification of metabolites may not be necessary, or



1.3. The Pattern Recognition Approach 3

indeed desirable, if the aim is to use MRS as an aid to the decision making process of clinicians,

for example to help them make a diagnosis. In this case, more abstract information will be re-

quired about the tissue being examined, such as its disease type or stage. In order to do this it

will be necessary to have methods which can confidently discriminate between spectra of different

clinical types.

Distinguishing between spectra of different clinical types is essentially a problem of clas-

sification, i.e. the fitting of chemical sample analyses or patient tests into a well-defined class.

Classification methods are usually described under the general heading of ‘pattern recognition’, a

term which encompasses a wide range of techniques which try to find patterns in groups of data

and to distinguish between different subgroups. Once these patterns are identified they can be used

to assign unknown individuals to a particular classification.

Feature extraction is concerned with finding the best patterns to discriminate and classify the

data. In the case of MRS spectra this means choosing appropriate measurements to represent the

spectra, and then finding which combination or subset of these measurements provides the best

discrimination.

1.3 The Pattern Recognition Approach

Pattern recognition (PR) is a discipline which is devoted to extracting relevant information from

data by identifying meaningful patterns. PR methods can be used to attempt to automate tasks

that are carried out naturally by the human sensory systems, such as vision or speech recognition.

Alternatively, and more realistically, they can be used to help make sense of multidimensional nu-

merical data which we find much more difficult to interpret. It is thus a very appropriate method-

ology for the interpretation of MRS data. It is particularly appropriate for the purpose of this thesis

because:

� Most clinical applications, such as medical diagnosis or the study of a patient’s response

to drug treatments will require the classification of the spectra into distinct groups. Clas-

sifying data is one of the main objectives of PR analysis, in fact the terms classification,

discrimination and pattern recognition are often used synonymously.

� PR is usually a computer-based approach, designed to handle large amounts of data at the

same time and is thus ideal for developing an automated system.

There are many other advantages of the PR approach which will be discussed in later chapters.

It is convenient to divide the PR process into three stages, although these stages normally

overlap considerably:

� acquisition and pre-processing of the data

� extraction of features which can be used to describe the data

� classification of the data.

A computer system for classifying spectra will need automated methods for each of these three

stages. Since the object of this thesis is to develop methods for discriminating between spectra

using no prior knowledge of biochemistry, the methods investigated here use the whole spectrum
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and features are chosen solely on the basis of their power to discriminate between different classes

of spectra.

The benefits of such an investigation are twofold: firstly the development of such techniques

will be necessary if the spectra are to be used as a routine aid to the medical decision process.

Secondly PR involves not only methods for classifying data but also finding the important dis-

criminatory features. It can therefore provide an alternative ‘view’ of the data from that obtained

by the more traditional methods of spectral analysis.

1.4 Thesis Structure

The structure of the thesis is as follows. In the next chapter on MR theory the phenomenon of MR

and its potential applications in clinical medicine are explained in enough detail to give necessary

background for the particular problems that will need to be addressed. Particular emphasis is

placed on the potential relevance of the technique in clinical medicine and the difficulties that

need to be surmounted in order that MRS can be a useful tool. The aim of the third chapter is to

explain why and which PR methods were suitable for this project, and to give a brief history of their

use in MRS data analysis. Since the main aim is to develop fully automated methods for feature

extraction, most attention will be given to methods and previous studies which work towards

this aim. The fourth chapter concentrates on the actual methods that were used in developing a

prototype system for analysing in vivo data. In particular details are given of the methods used to

process the data before statistical analysis and methods used to extract and select features. The

methods explained in detail are: PCA, wavelet analysis, discriminant analysis and feature selection

methods.

The fifth chapter presents the results using these methods on two data sets: 13C spectra ob-

tained in vivo from healthy human volunteers, of adipose tissue in the leg and 31P spectra obtained

in vivo from tumorous and normal tissue in rats.

The sixth chapter is devoted to discussion and future work.



Chapter 2

Nuclear Magnetic Resonance Theory

Nuclear Magnetic Resonance (NMR) is concerned with the paramagnetic behaviour of atomic

nuclei and their interaction with electromagnetic radiation. Certain nuclei, such as the 1H nucleus

(the proton) and the 31P nucleus, have nuclear spin – we can think of a nucleus as spinning around

its own axis in the same way that the Earth turns around its axis, with an associated angular

momentum. The spinning of these charged particles generates a magnetic moment along the axis

of spin so that the nucleus can be regarded as a tiny bar magnet with its axis along the axis of

rotation [Gadian, 1995]. If a sample containing such nuclei is placed in a strong magnetic field,

some of these nuclear magnets will align themselves with the direction of the field, similar to

the way compass needles point in the direction of the Earth’s magnetic field. However, unlike a

compass needle, the magnetic moment can have more than one orientation depending on its spin

quantum number. For example the hydrogen nucleus (which has spin quantum number I = 1
2 )

can have one of two orientations with respect to the applied field: parallel, in which the nuclear

magnetic moment is aligned with the magnetic field, and anti-parallel when it is aligned against

it. These two orientations have different energies associated with them, the parallel orientation

having the lower energy. The nuclear magnets interact very weakly with the applied magnetic

field, and therefore the values of the energy separation are low [Gadian, 1995].

Normally there will be a slightly higher proportion of nuclei in the lower energy state, but

if a pulse of electromagnetic radiation at the correct frequency is applied to the sample, some

of the nuclei in the lower energy state will absorb energy and ‘flip over’ into to the anti-parallel

orientation resulting in a higher proportion of nuclei now being in the high energy state. When the

pulse ceases, the nuclear magnets return to equilibrium and release this energy. This energy can

be detected in a radio-frequency (RF) coil, inducing a voltage which is the MR signal. This signal

provides qualitative and quantitative information about the nuclei which can be utilised to produce

either an image or a spectrum. Images are normally based on the density of hydrogen nuclei

in the body while spectra represent the densities of a certain nucleus in its different molecular

environments.

For nuclei with spin numbers greater than 1
2

there will be more than two possible orientations

and in each case a set of equally spaced energy levels result. The radiation that is used, unlike other

forms of medical imaging, is in the form of radio waves, which are at a much lower frequency,

than X-rays (and hence have lower energy) and are thought to be harmless [Gadian, 1982].

The aim of this chapter is to introduce NMR at a level of abstraction appropriate to this project
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and therefore only a very simplified description of the NMR process is given in the following

sections. Full details of the physics of the NMR process can be found in numerous texts, for

example [Hennel and Klinowski, 1993] [Slichter, 1989].

2.1 Nuclear Magnetic Resonance

The absorption of energy described above by the nuclear magnets is called nuclear resonance.

Nuclei of certain atoms resonate when stimulated with radio waves of exactly the right frequency,

called their Larmor frequency [Gadian, 1995]. Different nuclei resonate at different frequencies

and then release electromagnetic radiation at this same frequency when they return to equilibrium.

Images are usually based on 1H nuclei. The most common nuclei used for medical applications of

MRS are 1H, 31P, 13C, 23Na and 19F.

Apart from the nature of the nucleus, the resonance frequency also depends on the strength of

the surrounding magnetic field. The Larmor frequency for a particular nucleus is calculated using

the following equation known as the Larmor equation:

ω = γBeff (2.1)

where ω is the Larmor angular velocity of precession, γ is the nucleus’ gyromagnetic ratio, and Beff

is the effective magnetic field, that is the strength of the magnetic field surrounding the nucleus.

From this equation it can be seen that to stimulate a particular nucleus (and also to interpret the

resulting signal) it is necessary to know not only its gyromagnetic ratio, which is a constant, but

also the strength of the effective magnetic field Beff [Gadian, 1995]. There are two factors which

determine the strength of the magnetic field surrounding an individual nucleus. The main factor

is the strength of the applied field B0, that is the strength of the magnet that is being used. The

second factor is the small local variations in field strength due to magnetic perturbations caused

by surrounding electrons or other nuclei. This means that nuclei in different molecules, or located

in various chemical groups in the same molecule will experience slightly different magnetic field

strengths and will therefore resonate at a slightly different frequencies. The total effective field

can be written as

Beff = B0(1�σ) (2.2)

where σ is the shielding or screening constant which expresses the contribution of the small

secondary field generated by the electrons and which depends on the chemical environment of each

nucleus [Gadian, 1995]. The difference in resonance frequency, caused by these local variations

is called the chemical shift and is the basis for magnetic resonance spectroscopy (MRS).

The steps for NMR, both for imaging and spectroscopy are:

� Place the sample (e.g. the part of the body to be scanned) in a strong, homogeneous magnetic

field.

� Excite the sample with a pulse of electromagnetic radiation to stimulate the nuclei to res-

onate. The frequency of the radiation used is determined by which nuclei we wish to ob-

serve, calculated using the Larmor equation.
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� Allow the nuclei to ‘relax’ – that is return to equilibrium. As they do so they emit radiation

at the same frequency at which it was absorbed and this can be picked up as a signal. This

signal, called the free induction decay (FID) signal, provides the information to create an

image or spectrum.

For MRS, the scan will cover a range of frequencies, since the resonance frequency for the

nucleus of interest will vary according to its chemical environment. Rather than scan at each

different frequency separately, it is usual to generate a RF pulse ranging over a selected bandwidth.

Using Fourier transformation, the resulting FID signal, which is a function of time, can be analysed

mathematically for the frequencies that it contains, to obtain a spectrum which is a function of

frequency [Bracewell, 1986]. The intensity of the signal at a particular frequency is directly related

to the number of the nuclei in the sample resonating at that frequency.

The intensity of the MR signals are dependent not only on the concentrations of the nuclei that

give rise to the signals but also on many other parameters, including the time that the magnetisation

of the sample takes to return to equilibrium (relaxation). This process is characterised by two

relaxation times, T1, the spin-lattice relaxation time and T2, the spin-spin relaxation time. T1 is

the time constant for the recovery of magnetisation of the sample along the direction of B0 and T2

is the time constant for the recovery of magnetisation in the plane perpendicular to B0. In general

T2 is significantly shorter than T1[Sanders and Hunter, 1993].

2.2 The NMR Spectrum

The NMR spectrum represents the quantity of nuclei resonating at each frequency within the cho-

sen bandwidth of radiation. The x-axis of the spectrum represents resonance frequency and the

y-axis represents the intensity of the signal [Spisni, 1992]. The nuclei resonating at a particular

frequency are normally quantified by measuring the areas under the ‘peaks’ at the various frequen-

cies. Figure 2.1 shows an example of an FID signal and 13C spectrum (the real part – see Section

2.3) obtained using a surface coil on a human thigh.

In order to make data collected on different instruments comparable, the resonance frequencies

are always quoted in parts per million (ppm) from an arbitrarily chosen reference frequency. It is

traditional to display the spectrum with the ppm scale decreasing along the x-axis. The left hand

side of the spectrum is referred to as the low field region and the right hand side is called the high

field region.

Fig 2.1 (a) shows the FID signal from which the spectrum was obtained. Fig 2.1 (b) shows the

signal after Fourier transformation.

The 13C spectrum shown above is an example of an spectrum obtained using a surface coil,

which is based on the signal acquired from the area (i.e. the subcutaneous fat) directly underneath

the coil. It is also possible to produce localised spectra from well-defined volume elements (vox-

els) at selected locations in the body using more sophisticated localisation techniques [Andrew et

al., 1990] [Cady, 1990].

Localisation techniques (other than surface coil techniques) are generally performed after se-

lecting the region of interest using MRI. They fall into two categories: single voxel methods which

involve obtaining spectra from a single volume of interest, and chemical shift (or spectroscopic)

imaging methods in which spectra are acquired from multiple voxels. The advantage of localised

spectroscopy is the ability to select the region of interest to be studied, for example a tumour or

specific part of the brain. Chemical shift imaging has the additional advantage that it provides the
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Figure 2.1. 13C FID signal (a) and spectrum (b) from a human thigh

ability to acquire images that reflect the spatial distribution of metabolites. Localised spectra usu-

ally take longer to acquire than spectra obtained using a surface coil, and interpretation of spectra

is generally more difficult, since the signal-to-noise ratio is lower and a necessary time delay in

acquiring the signal may result in distortion of the shape of the spectrum [Wang, 1992].

It can be seen that some of the peaks in the above spectrum appear to be duplicated, for

example the pairs of peaks in the group of four peaks towards the left-hand side of the spectrum

look remarkably similar, and also the large group of peaks towards the right-hand-side appear to be

symmetrical about the largest peak. This is due a phenomenon known as spin-spin coupling, where

the spectral resonance arising from the same component is split into two or more components. This

splitting is caused by an interaction between neighbouring nuclear spins which is transmitted by

means of the electrons in the bonds joining the nuclei. Because the coupling effect may make

the spectrum very complicated, a process known as proton decoupling is often used. This has the

effect of collapsing multiplet signals into single lines. For more details of this effect see [Gadian,

1995].

2.3 Acquisition and Processing

In Fourier-transform NMR, the radio-frequency field that is used for excitation of signals is applied

in the form of pulses. The bandwidth of these pulses, i.e. their effective spread in frequency, is

sufficiently large to excite all of the nuclei within the required frequency range. The resulting

signal, the FID, is a decaying signal which decays to zero with the time constant T�

2. T�

2 differs

from T2 in that it incorporates the effect of field inhomogeneities as well as intrinsic relaxation

effects. This signal is a superposition of the signals from resonant nuclei in the different chemical

sites.

In general the spectral line widths are dictated by molecular mobility. Thus spectra reveal
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narrow signals from metabolites which have a high degree of mobility whereas macromolecules

which are highly immobilised produce very much broader signals, which are either invisible or

appear as a broad hump underlying the signals from the metabolites. However linewidths and

lineshapes can also be influenced by a range of other factors. Magnetic field homogeneity is

a critical issue in NMR which affects the spectral linewidths and lineshapes, and therefore the

resolution of the spectra. In order to obtain a high field homogeneity, the acquisition of the FID

is preceded by a procedure known as ‘shimming’ which involves adjustments that are designed to

optimise the field homogeneity for each given study.

Typically the signals that constitute a spectrum may have a centre frequency of, say, 63 MHz,

occupying a frequency range of, say, a few kilohertz [Gadian, 1995]. Because the detection of

signals at such high frequencies is difficult, the signal must be mixed with a reference frequency.

The signal thus obtained is a much lower frequency difference signal. At such high frequencies, it

is normal to subtract the centre frequency corresponding to the applied field. In order to determine

the sign of the frequency of the signals compared with the reference frequency, the NMR receiver

incorporates quadrature detection which results in two free induction decays 90� out of phase with

each other being produced. See [Gadian, 1995] [Hennel and Klinowski, 1993] or [de Certaines et

al., 1992] for a full description of this technique.

Since the sensitivity of metabolites measured by MRS is low, the signal will usually be very

weak in comparison with the random electrical noise in the system. To enhance the signal-to-noise

ratio, a process called ‘data accumulation’ is carried out in which a large number of FIDs are ac-

quired and added together [Andrew et al., 1990] [Cady, 1990] [Gadian, 1982]. The accumulation

of N consecutive acquisitions has the effect of increasing the signal-to-noise ratio by a factor of
p

N because the signal increases by a factor of N whereas the background noise, being random,

increases by
p

N.

Once the required number of signals have been acquired, Fourier transformation is carried

out to produce a spectrum. In order to enhance the signal-to-noise ratio of the signal it is com-

mon at this stage to multiply the signal by a decaying exponential function. This process called

apodisation (‘cutting the feet off’), has the effect of reducing noise by preferentially lending more

weight to the initial part of the free induction decay, where the signal-to-noise ratio is high, than

to the latter part where the ratio is much lower [Gadian, 1982]. While the signal-to-noise ratio is

considerably enhanced, this process does have the effect of increasing the linewidth, and there-

fore decreasing the spectral resolution. This is particularly undesirable when the peaks are close

together or overlapping. The optimal signal-to-noise ratio in the spectrum is achieved when the

decaying exponential has the same time constant as the free induction decay (T�

2) [Gadian, 1995].

The result of the Fourier transformation is two components called the real and imaginary

terms. Ideally the real part of the spectrum will be in ‘absorption’ mode and the imaginary part in

‘dispersion’ mode [Gadian, 1982]. The absorption mode spectrum is the form that characterises

the absorption of energy by the nuclear spins and is the form that is normally displayed. Ideally

the absorption mode has a Lorentzian lineshape g(ν) the equation for which is

g(ν) ∝
T2

1+4π2T2
2
(ν�ν0)

2
(2.3)

where ν0 is the resonance frequency. In practice the real part may not be a pure absorption mode

spectrum, but may contain some dispersion mode components and vice versa. This is because the

phase of the FID and its resulting Fourier transform depend on the settings of the NMR experiment.

In order to produce a spectrum in pure absorption mode, it may be necessary to carry out phase

correction after Fourier transformation [Gadian, 1995].

The phase correction makes use of both real and imaginary parts of a spectrum. A phase
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change of θ corresponds to a manipulation of each data point according to the following equations:

r2 =�i1sinθ+ r1cosθ (2.4)

i2 = r1sinθ+ i1cosθ (2.5)

Where r2 and i2 correspond to the real and imaginary components of each point of the spectrum

following phase correction and r1 and i1 correspond to the points prior to correction [Gadian,

1995]. The phase can be constant over the spectrum or it may depend linearly or polynomially on

the offset frequency. Zeroth order correction, where a constant phase correction is applied, and

first order correction, where a phase adjustment that is linearly related to the frequency is often

necessary [Hennel and Klinowski, 1993].

2.4 Type of Information Available from in vivo Magnetic Resonance Spectroscopy

MRS provides information on the types of metabolites in the tissue. It also provides a means of

measuring these metabolites. In addition to giving information about the concentrations of specific

metabolites, MRS provides information about the intracellular environment of the metabolites. For

example 31P spectroscopy gives information about intracellular pH and the binding of Mg+ ions

to ATP. In this, MRS has a significant advantage over other methods of chemical analysis when

this information is normally lost because the tissue must be destroyed.

The nuclei which have the widest applicability for clinical MRS are 1H, 13C and 31P. The 1H

nucleus is found in a vast number of biologically important molecules, and is the most sensitive

stable nucleus. In vivo studies using the 1H nucleus are handicapped, however, by the very narrow

range of chemical shifts encountered (covering about 8 ppm, so that the magnetic field homo-

geneity is critical) and by the large number of metabolites which give many overlapping peaks

and produce very complex spectra. In addition to the large number of resonances, many tissues

have a high water content. While the existence of a large concentration of water in tissue is a very

great advantage for MRI, it has the disadvantage for 1H MRS in that weaker signals from other

compounds within a sample can be overshadowed by the large peak representing water. Various

methods have been developed to deal with this problem. These include methods of modifying

the data acquisition process so that the influence of the water signal is reduced and also methods

involving subsequent processing [Cady, 1990].

31P spectra of living tissues and organs are comparatively simple compared with those of 1H,

as the number of metabolites containing this nucleus are fewer, and also because they occur in

only a few molecular configurations, unlike the 1H spectrum. However, this nucleus has proved

one of the most important in the MRS investigation of living systems. This importance can be

largely attributed to the presence of the nucleus in such metabolites as PCr, ATP and Pi, which are

important in energy metabolism [Cady, 1990].

The 13C isotope nucleus has a much lower sensitivity than those of either 1H or 31P. However,

it has also proved useful for MRS studies of living tissues. One advantage of 13C is the fact that it is

possible to obtain 13C enriched compounds which can be used for “tracer” studies of the chemical

pathways utilised by a particular metabolite. Another advantage is that the chemical shift range in

which resonances are observed (about 200 ppm) is large compared with 1H spectra (8 ppm) and
31P (40 ppm). For a review of in vivo 13C spectroscopy in humans see [Beckmann, 1992].

For full details of the biochemical information available from MRS see, for example, [Andrew

et al., 1990] [Cady, 1990] [Gadian, 1982] [de Certaines et al., 1992].
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2.5 Clinical Applications of MR Spectroscopy

MRS was first developed in the 1940’s and it has become a well established and important tool

in analytical chemistry where it is used, for example, for elucidating chemical structures of com-

pounds. The potential of MRS for biology was also appreciated around this time, but experiments

were limited in scope by the relatively poor quality of the instrumentation that was then available.

With the development of high-field superconducting magnets in the late 1960’s together with the

emergence of Fourier transform NMR, the scope of NMR was revolutionised and it became pos-

sible to use MRS to study proteins and other biological molecules. This led to the realisation that

NMR might have extensive applications in the study of the metabolism of living systems [Gadian,

1995].

The clinical applications of MR spectroscopy have been slow to develop compared with MRI.

This is partly because of the low signal-to-noise ratio, relatively poor spatial resolution and longer

acquisition times caused by the low sensitivity of the technique, but also because MRS is more

technically demanding than MRI and requires higher magnetic fields. Another reason is the fact

the instrument manufacturers have been uncertain about the economic rewards of MRS and in-

vestment in this area has been much smaller than in MRI, resulting in slower development of tools

for clinical investigation. This is particularly true for tools for classification and interpretation of

spectra. Notwithstanding these problems, there is growing evidence that MRS provides unique

clinical information which in some cases directly assists clinical diagnosis and choice of therapy.

A brief résumé of some of the most promising applications is given below.

One of the main areas in which MRS shows great potential as a clinical tool is in the diagnosis

and treatment of cancer. Both 31P and 1H spectra show different metabolite patterns according

to the type of tumours [Howells et al., 1992b] [Howells et al., 1993a]. It has been shown that

MRS can be successfully used to discriminate between different types of human brain tumours and

between normal tissue and tumours with 99% success compared with 77% pre-operative diagnosis

for the same patients which was based on all the available clinical information including CT, MRI

and angiography MRI [Preul et al., 1994] [Hagberg et al., 1995]. MRS has also been shown to

be useful in the diagnosis and grading of prostate cancer [Heerschap et al., 1996]. For a review

of studies of human tumours by MRS see [Negendank, 1992]. Investigators studying response to

therapy (for example radiotherapy and chemotherapy) in animals have found that the 31P spectrum

changes in response to therapy often before there is a noticeable decrease in tumour size [Leach,

1992] [Weiner, 1994].

Another example of a potential application of MRS is in the treatment of epilepsy. MRS is

already used in some centres to help identify the focus of seizures before brain surgery. Current

EEG and other scanning methods do not provide accurate localisation information in the majority

of cases, but it has been shown that 31P and 1H provide additional information that may avoid the

use of invasive depth electrodes [Weiner, 1994].

MRS may also be useful for the evaluation of metabolic myopathies. 31P MRS is already used

at a number of centres to determine the presence of metabolic myopathies from elevated inorganic

phosphate peaks in resting muscle [Weiner, 1994].

Another possible useful application of 1H MRS is in the prediction of outcome within the

first few months of life for new-born babies with hypoxic-ischaemic encephalopathy [Peden et al.,

1993].

Examples of other diseases where in vivo MRS has potential clinical application are AIDS,

Alzheimer’s disease, stroke and MS. Several comprehensive reviews have been written on the

potential application of MRS in clinical medicine, for example [Ross and Michaelis, 1994] [Bot-
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tomley, 1989] [Weiner, 1988] [Vine, 1990].

2.6 Spectral Analysis

2.6.1 Problems Associated with in vivo Spectral Analysis

One of the great advantages of MRS for medical applications is that it allows us to obtain in-

formation about the metabolic composition of living tissues in situ. However, the fact that these

signals are obtained in situ presents considerable difficulties, both with acquiring the signals and

extracting the relevant information. The fact that it is impossible to control all the conditions of an

examination carried out in vivo means that the signal may contain unwanted artefacts, for example

those due to the movement of the patient, which effectively changes the sample which contributes

to the MR signal. Another problem is that while it may be possible to focus on a specific region

it is often not possible to focus on a specific tissue. Because the size of smallest region that can at

present be examined effectively by human in vivo MRS is approximately 2 cubic centimetres it is

likely that signal from any region will include other signals in addition to those from the required

tissue, for example signals from neurons and blood cells [Bock, 1994].

Some of the problems with spectral analysis affect experiments carried out both in vivo and

in vitro. One such problem occurs when the number of metabolites that can be observed is large.

This leads to a crowded spectrum with many possibly overlapping peaks. If these peaks are too

close together, it may be difficult both to identify and to subsequently quantify them. This problem

may be particularly severe for 1H spectra where the ppm range is relatively narrow (8 ppm).

Another problem is due to the fact that MRS is “not exceptionally sensitive” [Spisni, 1992].

The sensitivity, which can be expressed in terms of the signal-to-noise ratio of the spectrum, is

dependent on several factors. These include the strength of the applied field B0, the design and

performance of the NMR instruments and the time taken to accumulate the data. One of the main

factors that accounts for the low sensitivity of NMR is that the interaction between the nuclei and

the magnetic field is weak, that is the amount of energy absorbed is low. This means that the

amount of energy released is also low leading to a weak signal. Different nuclei have different

sensitivities. Also the abundance of a certain nuclear isotope may be low, e.g. 13C which has a

natural abundance of only 1.1%.

Because of the limitations imposed on acquiring a signal from a living subject, the signal-

to-noise ratio is generally lower for data acquired in vivo. The signal-to-noise ratio depends on

the strength of the magnetic field and the high magnetic fields used for in vitro studies are not

permissible for living subjects. Also, the low signal-to-noise ratio cannot be improved using aver-

aging techniques because of the short experimental times required for patient comfort. While it is

possible to enhance the signal- to-noise ratio using apodisation, this will result in line broadening

and so more peak overlap. Lines tend to be broader in any case due to the magnetic field inhomo-

geneity caused by the heterogeneous nature of the sample which may also cause distortions in the

lineshapes.

Baseline distortion is another problem which may affect quantification of in vivo data. One

factor which can alter the shape of the baseline is the presence of metabolites with large peaks

which have broad ‘humps’ which spread either side of these peaks. The effect of these humps

is to ‘push up’ the contributions of other metabolites in the spectrum. This is a problem which

particularly affects kidney, liver and tumour 31P spectra, where a broad hump of signals from

immobile phosphates underlies the spectrum [Andrew et al., 1990]. Another cause of baseline

distortions are a side-effect of chemical shift imaging when a few datapoints at the beginning of
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the FID are lost due to the delay between the pulse and the commencement of acquisition. This

has the effect of dephasing the spectrum, causing ‘wiggles’ in the baseline. In theory it should be

possible to use first order phase corrections, to remove these wiggles but in practice this is often

not possible [Wang, 1992] [Saeed and Menon, 1993].

Another factor which will affect spectral analysis methods is that while in principle, MRS

spectra should have Lorentzian peaks, the peaks observed from spectra obtained in vivo are often

not of this ideal shape (equation 2.3). This may be due to magnetic field inhomogeneity, magnetic

susceptibility and other problems. Even when the peaks are Lorentzian, their wings stretch to

infinity and even taking into account a total wingspan of � 3.2 times the width at the half height,

only 90% of the peak area will be accounted for.

In addition to the problems outlined above, it is also necessary to take operator dependent fac-

tors into account. For example, the method of phase correction of the spectrum directly influences

the shapes and heights of the peaks, and will affect any subsequent analysis of the spectrum. It is

thus important to make sure that the spectrum is correctly phased. Since interactive methods of

phasing vary according to the judgement of the operator, this is best achieved using an automated

procedure.

2.6.2 Methods of Spectral Analysis

Semi-automated Methods

Spectral analysis is usually carried out by first identifying and then measuring the peaks represent-

ing metabolites of interest in individual data. Since absolute quantification is often not possible for

data acquired in vivo, the measurements are usually of relative concentrations. Metabolite concen-

trations are obtained from frequency domain data by identifying and selecting the peaks and then

measuring these peaks. While software is available on most spectrometers for spectral analysis,

the process is normally an interactive one. Most software for spectral analysis requires interaction

by the user at least three times; firstly for phase adjustment, then for selecting the peaks that the

analyst thinks are important and thirdly for flattening the baseline to facilitate integration of the

areas under the peaks.

There are a number of methods available for measurement of peak areas, including printing the

spectrum on paper, cutting out the peaks and weighing them. If the peaks are all the same width

and shape, relative concentrations may be deduced from peak heights. Since this is not usually

the case, curve fitting methods are normally used. These involve the fitting of analytical curves

(normally Lorentzian or Gaussian) to the peaks by least squares methods.

Automated Methods

Several alternative approaches have been taken to support the full automation of MR spectral

analysis. One common approach is to find ways of quantifying the metabolites of interest directly

from the FID signal. This is generally done by fitting a specific model function to the original

signal. These methods may use prior knowledge of the data, for example expected resonance

frequencies, or interpolation parameters. The output will be numeric values for the parameters

of interest. See [Wang, 1992] [de Beer and van Ormondt, 1992] [van Dijk et al., 1992] [Diop

et al., 1992] [Joliot et al., 1991] for a full description of these methods. Another approach is

to fit the entire Fourier transformed spectrum (as opposed to individual peaks) to a model. For

example Provencher [Provencher, 1993] has developed a method, the LC method, by which an in

vivo spectrum is analysed as a combination of model spectra of metabolite solutions in vitro.
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Several other interesting methods have been proposed for spectral quantification, which have

yet to prove their worth. Example are the use of wavelets for quantifying overlapping resonances

in the time domain data [Serrai et al., 1995], and PCA for quantifying individual peaks [Stoyanova

et al., 1995].

The Pattern Recognition Approach

The disadvantages of spectral analysis based on interactive peak quantification are obvious. Firstly

such measurements may not be accurate, owing to problems such as baseline distortions and over-

lapping peaks which make quantification very difficult. In addition they require subjective judge-

ments by the operator, and the results from different operators may be very different. In addition

they are very time-consuming. Fully automated methods are clearly desirable and the newer meth-

ods such as time-domain fitting can overcome some of the problems. However most of these still

require that the metabolites of interest are specified in advance, and thus only information from a

specified part of the spectrum is used.

The methods that have so far been discussed for spectral analysis have the specific purpose

of quantifying metabolites. An alternative approach is to treat spectral quantification as a process

of extracting measurements that are directly related to differences between spectra, rather than

differences between metabolites. This approach uses the whole spectrum without assigning prior

importance to any peaks or ppm regions of the spectra and considers groups of spectra simulta-

neously rather than individually. This approach is complementary rather than an alternative to

the other approaches as it has a different aim. It is sometimes referred to as ‘the pattern recogni-

tion approach’, as the aim is to find patterns in the data based on the spectral datapoints, rather

than measured metabolite ratios. In fact pattern recognition methods can be applied to any mea-

surements including peak intensities, but feature extraction, that is the identification of the most

suitable measurements for classification is a major part of the pattern recognition process.

Since the aim of this thesis is to develop automated methods that use information from the

whole spectrum which use no preconceptions about position or importance of metabolites in the

spectrum this approach is particularly suited to the purpose of this thesis. The methods that were

used, and the results of applying these to the data that was studied are described in detail in the

following chapters.



Chapter 3

Analysis of in vivo Magnetic Resonance Spectra

Using Pattern Recognition

3.1 Introduction

‘An important part of scientific activity consists in gathering data which are mostly

the result of measurements. In fact, modern analytical chemical and physical measur-

ing methods provide an ever increasing amount of information. In medicine, clinical

examination and complementary investigation, e.g. biochemical analyses, result in a

large amount of data which allow the investigator to draw as complete as possible a

picture of the physiological (normal or abnormal) state of the patient. Whereas the

assembling and storing of data has steadily increased since the availability of modern

computer data-acquisition methods, proper target-interpretation of these data has

received poor attention so far, resulting in a rather poor utilisation of the available

information [Coomans and Broeckaert, 1986].

Although the passage quoted above was published in 1986, it could have been written about clin-

ical MRS in 1996! Recent advances in technology for acquiring and processing MR signals in

vivo have made it possible to obtain important information about the physiological composition of

living tissue. However, while much effort is being applied to the development of improved tech-

niques for the acquisition and processing of MRS data and subsequent measurements of metabolite

concentrations, relatively little effort has been applied to the development of methods for the in-

terpretation of these measurements once they have been acquired. Because of this, the potential

information available from the spectrum is often not fully utilised.

MRS provides a means of non-invasively observing the biochemistry of living tissue in situ.

The two main advantages of MRS for clinical medicine compared with most other methods of

chemical analysis are:

� Because the signals carry information on a large number of compounds, MRS provides a

means of investigating the metabolic composition and processes of living tissues [Gadian,

1995].

� Because NMR is non-invasive, MRS signals can be acquired from living tissue without

changing the nature of the tissue and without harming the patient.
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These advantages make MRS an extremely useful tool both for clinical medicine and for study-

ing disease. However associated with these advantages are problems that can make it difficult to

obtain and extract relevant information from MRS data. It is not possible to control all the condi-

tions of an examination carried out in vivo. The tissue being examined will not be homogeneous

and the signal may contain unwanted artefacts. These factors together with a low signal-to-noise

ratio may make identification and measurement of the metabolites that are present in the tissue

very difficult. The fact that MRS signals carry information on a large number of metabolites

presents the non-trivial problem of how to extract and utilise this information, i.e. how do we use

the data to build up a picture of the metabolic composition of the tissue?

In this chapter, I discuss some of the ways that pattern recognition analysis might be used to

help overcome some of these problems, by providing methods for target interpretation of MRS

which make the best use of the available information and which answer the type of questions that

will need answering if MRS is to play a useful role in clinical medicine and also by providing

alternative methods for extracting features from the spectra.

3.2 The Advantages of Pattern Recognition Analysis for MRS

The term pattern recognition encompasses a wide range of techniques for analysing and interpret-

ing complex data [Duda and Hart, 1973] [Fukunaga, 1990] [McLachlan, 1992] [Coomans and

Broeckaert, 1986]. The aim of pattern recognition is to find patterns in data which can be used

to discriminate between subgroups of the data and to identify important distinguishing factors.

Many computer-based pattern recognition applications are directed at finding ways of automating

processes that humans do naturally, such as understanding language, or interpreting visual scenes.

However pattern recognition techniques also provide a means of extracting relevant information

from complex data that humans find difficult to interpret. In this case the emphasis is on helping

the human analysts than rather than on replacing them. Pattern recognition techniques are widely

used and are very applicable to analytical chemistry, where large amounts of data are often in-

volved. They are particularly useful for spectral application where the number of measurements

obtainable from a single sample may be very large. This includes the analysis and interpretation of

non-medical MRS data, where reported applications of pattern recognition analysis include help-

ing to elucidate the structure of chemical molecules, and classifying samples according to their

MR spectra, for example [Kowalski and Reilly, 1971] [Kormos and Waugh, 1983].

There are a number of reasons why the pattern recognition approach is very appropriate for

the analysis of medical MRS data.

� PR is a multivariate approach which uses not only the information contained in each sin-

gle variable or measurement, but also information drawn from the relations between the

variables [Coomans and Broeckaert, 1986]. MRS data often contains information on many

metabolites and the multivariate approach provides a means of exploring the relationships

between these metabolites.

� Pattern recognition provides methods for discriminating between samples of different classes

and for assigning a sample to a particular class. These methods will often include estima-

tions of the probability of a certain sample belonging to a certain class.

� Pattern recognition techniques facilitate the presentation of multi-dimensional data in a form

that can be easily viewed, e.g. simplified two-dimensional displays. These displays can be

used to investigate unknown groupings or to find the best patterns to separate the groups.
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Alternatively they may be used to show how typical or atypical a spectrum may be compared

with others in the group.

� Pattern recognition is a computer-based approach, which can deal with a large amount of

data and is well suited to the analysis of large and complex data files. Automated methods

are desirable, not only because they are far less time consuming, but also because they offer

an objective and unbiased method of analysis.

� Pattern recognition, because it is concerned with finding the best patterns to discriminate

between classes of data, can provide alternative methods for quantifying spectra using fea-

tures other than explicit peak measurements. This can be very useful for spectra acquired in

vivo, for which traditional methods of quantification may be problematic.

3.3 Pattern Recognition: Basic Approaches and Definition of Related Terms

Pattern recognition is a very large subject which draws together methods from various related

disciplines. This section gives a brief summary of the different approaches of pattern recognition,

and definitions of related terminology.

There are three different approaches to pattern recognition [Schalkoff, 1992]. Historically,

the two main approaches are the statistical (or decision theoretic) and the syntactic (or structural)

approaches. More recently there has been a wide interest in the third approach of using neural

networks for the ‘black box’ implementation of pattern recognition algorithms. These three ap-

proaches are not mutually exclusive, for example some neural classifiers, e.g. probabilistic neural

networks, are designed to implement more traditional statistical algorithms [Masters, 1995]. All

three approaches have the same aims, that is to describe the important features in the data and to

provide methods for discriminating between different types or classes of data.

3.3.1 The Statistical Approach

The statistical pattern recognition approach is based on the statistical study of measurements made

on the data to be classified. A set of characteristic measurements, denoted features, are extracted

from the input data. These features, which may be a subset or combination of the original mea-

surements, are expressed as a vector X = (x1; : : : ;xn) in the n dimensional feature space Rn. The

problem of assigning a feature vector to a particular class is tackled by estimating density functions

in the n dimensional space, and dividing the space into regions of categories or classes [Schalkoff,

1992] [Miclet, 1986]. Ideally different class populations will occupy different regions in the fea-

ture space allowing classification methods to allocate test observations based on their location in

the space [Aeberhard et al., 1994].

3.3.2 The Structural Approach

The structural pattern recognition approach provides methods for describing the data in a manner

related to its structure. Rather than representing the features as ‘meaningless’ numbers, as does

statistical PR, it attempts to provide structural descriptions in which intrinsic characteristics of the

features (for example the shape) are taken into account. Rules are formulated to compare these

structural descriptions and to characterise similar structures by summarising their structural prop-

erties [Miclet, 1986]. Structural pattern recognition is often called syntactic pattern recognition

since the structures of the patterns are often related to the syntax of a formally defined language.

Syntactic PR draws on the vast body of knowledge that has been acquired in the study of both
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natural language and programming languages. As in language theory, patterns are described as

sentences which are analysed by parsing. Typically syntactic PR approaches formulate hierarchi-

cal descriptions of complex patterns built up from simpler sub-patterns [Schalkoff, 1992].

3.3.3 The Neural Approach

The neural pattern recognition approach uses artificial neural systems termed neural networks

for classifying data. Neural networks are computer-based systems which model the way that

biological neural systems manipulate information. Neural networks have the ability to handle

large amounts of data, and to form rules and discover patterns within them. The basic design is

very simple: a neural network consists of a number of ‘nodes’ which emulate the neurons. Each

node receives a number of inputs. The feature vector provides the input to the first layer of units.

For subsequent layers, the inputs come from the outputs of units in the preceding layer, which are

modified by weighted connections. The output of a unit is determined by the sum of its inputs and

a threshold function. The weights are iteratively adjusted using a learning algorithm to optimise

the output of the network according to some cost function. Typically a network will consist of two

or three internal layers (hidden layers) [Bishop, 1995].

3.3.4 Multivariate Analysis

The methods used for statistical pattern recognition form a subset of methods used for multivariate

data analysis which is the application of statistical techniques to multivariate data. While some

multivariate techniques are extensions of univariate statistical techniques, for example multiple

regression methods, or multiple analysis of variance, the majority of multivariate techniques have

been developed to deal with the special problems of dealing with multidimensional data, and thus

may be very appropriate for pattern recognition problems. Many of these methods are devoted to

combining or reducing the variables while keeping the basic structure of the data intact (reduction

of dimensionality) [Krzanowski, 1988] [Everitt and Dunn, 1991].

3.3.5 Chemometrics

‘Chemometrics’, a term coined in 1972, can be defined as ‘the chemical discipline that uses math-

ematical, statistical and other methods employing formal logic to design or select optimal mea-

surement procedures and experiments, and to provide maximum relevant information by analysing

chemical data’ [Massart et al., 1988]. Chemometrics encompasses a large number of methods for

pattern recognition analysis and signal processing of chemical data, many of which are very ap-

propriate for spectral data, including MRS data. All of the methods that have been adopted in

this thesis can be described as chemometric techniques. Massart et al. give a thorough description

of virtually all of the currently known techniques appropriate for pattern recognition analysis of

spectra in their excellent textbook on the subject [Massart et al., 1988].

3.4 Approach Used in this Research

The decision to use statistical pattern recognition analysis was taken at a fairly early stage of this

research. Both the statistical or neural approaches are appropriate for classifying numerical data

such as spectra. The structural approach could prove useful in identifying differences between

classes of spectra that are based on the shapes of the peaks, and this approach was considered at an

early stage of this work when a method of describing shape was required. However this was not
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pursued when it became apparent that the wavelet transform (see section 3.5.3) provided a quick

and successful method for condensing spectral shape information.

The two main reasons for choosing the statistical rather than the neural approach were:

� Statistical pattern recognition methods are based on firm theoretical foundations. Many

of the techniques have been developed and tested over a long period of time. By contrast

artificial neural networks have only recently been applied to data analysis problems. It seems

that most classification problems can be handled equally well by statistical techniques as by

neural networks, and therefore there is no advantage in using them.

� In general neural network classifiers take much longer to train than do classical methods of

discriminant analysis. This was an important consideration given that the main task of this

research was to select the best features for discrimination from a large number of potential

features.

Both the statistical and neural approaches have been used for previous PR studies of MRS data.

Use of neural networks for classifying medical MRS data is described, for example by [Howells

et al., 1992a], [Anthony et al., 1994] and [El-Deredy and Branston, 1994] and for identification of

important spectral features by [Friesen et al., 1995] and [El-Deredy et al., 1995].

The following section discusses methods of statistical pattern recognition that may be suitable

for describing and classifying medical MRS data. This section includes reference to examples of

reported studies applied to medical MRS data. While most of the methods that are described are

standard statistical PR techniques that may be applied to all types of data, a few are particularly

useful for chemical data such as spectra. While details of the former, for example discriminant

analysis and PCA, will be found in any text book on statistical PR, details of the latter, for example

variance weighting, or SELECT, are generally only to be found in the literature on chemical PR

or chemometrics.

3.5 Statistical PR: Appropriate Methods for Analysis of MRS Data

The fundamental idea of pattern recognition is that when a sample is characterised by a number

of measurements, these measurements form a pattern. This pattern can be used to answer three

questions [Massart et al., 1988]:

� how to classify an object in one of two or more known classes on the basis of its pattern

� how to detect groups of samples with similar patterns and

� how to display multidimensional data in a lower and preferably two-dimensional space with-

out significant loss of information.

Methods for answering the first question are generally grouped together under the general heading

of discriminant analysis or ‘supervised pattern recognition’. These classification methods rely

on having some data of known class available to ‘train’ the system, that is to find the best ways

of partitioning the feature space into class regions, and to develop rules for assigning new cases

to a specific class. In order to test the system it is usual to set aside some of the data whose

class is known during the development of the system and then to use this ‘test set’ to evaluate

the performance of the classification rules. There are a number of methods for evaluating the
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discriminant rules, depending on how the test set is chosen. If there are a large number of samples

it is usual to divide them into two groups and use one for training and the other for testing. If,

however there are only a few samples of known class it may be necessary to use what is known as

the ‘leave one out’ method for assessing the success of the discriminant rules. This method entails

using all the cases except one as the training set, and then using the excluded case as the test set,

repeating this process until the whole set has been tested.

The problem of how to detect groups of samples with similar patterns is tackled using cluster

analysis or ‘unsupervised pattern recognition’. In this case the class structure of the data will be

unknown, and there will therefore be no data of known class available to train the system. Instead,

the system will try to detect natural groupings or clusters in the data.

For the third question the main problem is how to reduce the dimensionality while keeping the

basic structure of the data intact. If the number of variables representing the data can be reduced

to two or three, display techniques such as two and three dimensional scatter plots can be used to

allow the observer to discern the class structure and grouping within the data. Such displays can

be used to assist the analyst for classifying new data and also for finding clusters within the data.

Indeed, sophisticated computer classification and clustering methods may be unnecessary for data

consisting of two or three variables since groupings can normally be discerned by eye.

Reduction of dimensionality is a key problem in pattern recognition, particularly in applica-

tions where the number of variables is high compared with the number of samples, as is often the

case with medical MRS data. Most classification methods depend on a certain ratio of samples

to variables; normally the number of variables should be no more than one third the number of

samples [Kowalski and Wold, 1982]. One of the recurring problems encountered in applying sta-

tistical techniques to pattern recognition problems is due to ‘the curse of dimensionality’ [Bellman,

1957]. Procedures that are analytically or computationally manageable in low-dimensional spaces

can become completely impractical in a space of 50 or 100 dimensions [Duda and Hart, 1973]. In

this research, reduction of dimensionality, that is how to extract a small number of variables from

the vector of spectral datapoints, was a major concern.

This section is structured as follows: the first part on discriminant analysis discusses methods

for the classification of data, the second part discusses clustering methods for detecting groups of

samples with similar patterns, and the third discusses methods for addressing the key question of

reduction of dimensionality of the data.

3.5.1 Discriminant Analysis

The major role of discriminant analysis is to define criteria (classification rules or decision rules)

for classifying test objects into one of the training classes. If the objects are represented by vec-

tors in n-dimensional space, i.e. (X = (x1; : : : ;xn)), each object can be thought of a point in this

n-dimensional space. Geometrically the formulation of a classification rule corresponds to an ex-

plicit or implicit construction of a boundary surface between the training classes so that the classes

become as well separated as possible. In this way the pattern space is divided into as many regions

as there are training classes in the training set [Coomans and Broeckaert, 1986].

The construction of such a boundary can be found by optimisation, by starting with a bound-

ary chosen at random and iteratively shifting it until the boundary which best separates the classes

is found. This procedure is often referred to as the ‘linear learning machine’. In this technique

each object is classified into one class with no measure of doubt. This is unsatisfactory for many

applications and most statistical discriminant methods use probability theory to estimate the possi-

bility of an object belonging to a certain class. These are called probabilistic or Bayesian methods
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of discriminant analysis. Using probabilistic methods boundaries are constructed by estimating

density functions in the n-dimensional space, and then deriving a rule for allocating each object to

a certain class. If the true probability density functions of all the classes are known, the optimal

decision rule for classifying an unknown object X is to allocate it to class i if

P(X jgi)P(gi) > P(X jg j)P(g j) f or all j 6= i (3.1)

where P(gi) is the probability of an object belonging to group i and P(X jgi) is the probability of

getting a set of measurements X given that that object belongs to group i. This rule is optimal if the

true probability density functions of all the classes are known. However in practice the densities

P(X jgi) will be unknown and must be estimated from the training data.

The above rule is derived using Bayes rule ( 3.2) which provides a method for estimating

the probability that a sample with feature vector X belongs to group i.e. P(gijX). This is the

probability that we really need, but which is much more difficult to to find by standard methods of

estimation than P(X jgi).

P(gijX) =

P(X jgi)P(gi)

∑g
i=1 P(X jgi)P(gi)

(3.2)

where g is the number of groups [James, 1985] [Fukunaga, 1990].

Parametric methods of density estimation model the classes using assumptions about the un-

derlying probability densities of the data set (usually assuming a multivariate normal distribution).

The training samples are used to estimate the parameters in these models. Examples of paramet-

ric classification methods are quadratic and linear discriminant analysis. Nonparametric methods

make no such assumptions. Instead the test objects are classified on the basis of the training sam-

ples in the neighbourhood of the object in the feature space. Examples of nonparametric classifiers

are the K- nearest neighbour and potential methods [Aeberhard et al., 1994].

The advantage of parametric methods is that the required calculations are simplified and need

relatively little processing time. Nonparametric methods rely on densely populated feature spaces

for reliable classification and require a large number of samples. Apart from the fact that it is ex-

tremely difficult to obtain an accurate density estimation in high-dimensional feature space, non-

parametric methods are normally much more time-consuming than parametric methods of density

estimation, particularly when there are a large number of variables. However, it is important to

be aware that the use of a simple parametric model, such as the multivariate model may give

misleading results if the assumption about the distributions are invalid.

Parametric Discriminant Analysis

The most widely used statistical classification method is linear discriminant analysis (LDA). In

this method the decision as to whether an object should be allocated to a particular class is made

on the basis of its discriminant score or scores.

A discriminant score, which is a weighted linear combination of the original variables is cal-

culated using a discriminant function

D(X) = w0 +w1x1 +w2x2 : : :+wnxn (3.3)

Where the w’s are constants (or weights) which, for the two class case, are found by maximizing

∑n
j=1 w j(xk j �xl j)

2

∑n
j=1 ∑n

j0=1 w jw j0 c j j0
(3.4)
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where xk j is the mean of variable x j for class k and c j j0 is an element of the pooled or average

variance-covariance matrix [Massart et al., 1988]. This has the effect of minimizing the within-

class variance and maximizing the between-class variance, thus minimizing differences within the

groups and maximizing differences between groups. The discriminant function can be used as a

classification rule for allocating an individual to a particular group. Each individual is assigned a

discriminant ‘score’ which is the weighted combination of its values of the discriminating variables

given by equation 3.4. The decision as to whether the particular individual comes from one group

or another is based on measuring the distance between its particular score and the centroids of the

two different groups, and comparing the probabilities of its membership of each class. If the prior

probabilities, P(gi), i.e. the probability of an object belonging to group i, are known these can be

incorporated into the discriminant rule. For example these probabilities might be approximated

from knowledge of the relative sizes of the classes. When little is known about the relative sizes it

is usual to assume they are equal.

The linear discriminant rule is often referred to as Fisher’s discriminant rule [Fisher, 1936].

This rule is optimal if the populations come from a multivariate normal distribution and have

equal covariance matrices. However Fisher derived the method without directly assuming that the

probability density functions were normal and it therefore can be expected to perform reasonably

well even when the assumption of normality is not wholly justified as is often the case [Everitt

and Dunn, 1991]. When there are more than two classes it is possible to determine several com-

binations of the original variables (called canonical variates) for separating the groups. The first

discriminant function, as in the two group case, has the largest ratio of between class variance to

within class variance; the second, which is uncorrelated with the first will have the next largest

ratio etc. In general if there are k groups, k�1 functions may be computed [Norusis, 1994]. Since

the assumptions of normality and equal covariance only influence the discriminant boundaries but

not the discriminant function, these functions can be useful for displaying the data.

Quadratic discriminant analysis uses the same principles to derive the discriminant rule as

LDA. However no assumption is made as to the equality of the covariance matrices of the different

groups. Since this assumption has the effect of simplifying the decision rule and reducing the

number of parameters to be estimated, QDA is a more complicated procedure than LDA. When

the covariance matrices are taken to be unequal, the discriminant functions include a quadratic

term, meaning that the subsequent decision boundaries are quadratic, rather than linear as for

LDA. Quadratic and linear discriminant analysis are well-known standard techniques, which are

described in most books on multivariate analysis or statistical pattern recognition, e.g. [Fukunaga,

1990], [McLachlan, 1992], [Everitt and Dunn, 1991].

Linear discriminant analysis is a popular technique, which is applicable to many types of data

and which is provided by all the standard multivariate software packages. It is popular because it is

a computationally simple technique which is relatively robust to departures from the assumptions

of normality and equal covariance matrices for the different classes. LDA has been extensively

used and discussed in the literature on statistical PR. A comprehensive discussion and comparison

of LDA with other classical discriminant techniques for classifying a data set of patients with head

injuries, is given in the seminal paper by [Titterington et al., 1981] and the discussion that follows

the paper. This paper shows along with others such as [Aeberhard et al., 1994] and [Sjostrom and

Kowalski, 1979] that in general, LDA performs well in comparison with other techniques. This

has also been shown to be true for MRS data. [Nikulin et al., 1995] state that in their extensive ex-

perience of classifying spectra obtained from various biopsies, that if the pre-processing is carried

out correctly, “accurate classification then follows even with simple classifiers such as LDA”.

In analytical chemistry, linear discriminant analysis has been used both to classify unknown

samples and to identify important characteristic chemical features of groups of data. Its use for the
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chemical analysis of MR spectra was reported as early as 1971 when Kowalski and Reilly used

LDA to develop a classification rule to distinguish between ethyl, n-propyl and iso-propyl groups

from a training set of 1H spectra [Kowalski and Reilly, 1971]. In this study the whole spectrum

rather than selected frequencies was used and the spectra were pre-processed using autocorrelation

methods before classification. LDA has been used by a number of groups applying PR techniques

to medical MRS data, obtained both in vitro and in vivo. [Preul et al., 1994] and [Hagberg et

al., 1995] used LDA to classify glial brain tumours on the basis of metabolite measurements i.e.

peak measurements from 1H spectra obtained in vivo. In both studies the tumours were divided

into three grades on the basis of biopsy data and good separation was obtained between the three

groups. A group from the Institute of Biodiagnostics in Winnipeg have used LDA in a number of

studies using MRS data of various biopsies. They have shown that the technique can be used to

successfully classify 1H spectra of various diseases including thyroid neoplasms [Somorjai et al.,

1995b], cervical dysplasia [Nikulin et al., 1995] [Friesen et al., 1995], human brain neoplasms

[Nikulin et al., 1995], and colorectal cancers [Somorjai et al., 1995a].

Nonparametric Discriminant Analysis

The nearest neighbour method The nearest neighbour method is one of the simplest nonpara-

metric method of classification. In this method the decision for assigning an object to a particular

class is made by comparing its measurement vector with each of the vectors of the training set.

The distance (generally the Euclidean distance) between the object’s vector and each vector in

the training set is computed and the lowest of these is selected. In a more sophisticated version

of this, called the k-nearest neighbour method, the k nearest samples are selected and the object

is allocated to the class to which the majority of the k samples belong. Although this method is

mathematically simple, the computational cost of calculating the distance of every vector in the

training set can be very large [Duda and Hart, 1973].

Kernel Methods Kernel methods (also called potential methods) of density estimation are non-

parametric decision methods. They differ from the parametric methods of density estimation in

that the conditional probability densities are not assumed to come from a known parametric fam-

ily [Silverman, 1986]. Instead the shape of the probability distribution function of a given class

is estimated on the basis of measurements of the training objects and by means of direct density

estimation [Coomans and Broeckaert, 1986]. The density function is estimated using kernel func-

tion K which satisfies the condition
R

K(x)dx = 1. Usually (but not always) K will be a symmetric

probability density function such as the normal density. The kernel estimator with density K is

defined by

f̃ (x) =
1

mh

m

∑
i=1

K(

x�Xi

h
) (3.5)

where h is the window width, m is the number of samples and X1 : : :Xm are the values for each

sample [Silverman, 1986]. K acts as the shape parameter and h is a smoothing parameter. For

most applications K is fixed while h is specified as a function of the data [McLachlan, 1992].

The advantage of these methods, as with any nonparametric method are that no assumptions are

made about the probability density functions. They should therefore perform better if the data

does not come from the distribution that has been assumed by the parametric methods. The dis-

advantage is that a large number of calculations may be needed to estimate the density functions

for high-dimensional data. Also the choice of the smoothing parameter h can strongly affect the

performance of the classifier.

To my knowledge, kernel methods of density estimation have not been used for classifying

medical MRS data, probably because they need a densely populated feature space to estimate the

probability distributions, thus requiring a large number of samples. The use of kernel methods of
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density estimation in chemistry has not been widely reported. [Coomans and Broeckaert, 1986]

give a very comprehensive review of medical and chemical applications of these methods. The

nonparametric methods in general need a much larger sample-to-variable ratio and are not practical

for most application of medical spectral data analysis where this ratio is generally low. However,

if spectroscopy becomes more widely used as a diagnostic tool and more data is acquired, it may

be found that these methods are useful.

Other Supervised Learning Techniques

There are a number of other supervised learning techniques suitable for classifying chemical data,

for example classification and regression trees (CART) [Breiman et al., 1984]. In this method

the data are split into two parts based on the value of variable x1, which minimises interclass

variance and maximises between class variance. After splitting on one variable the separate parts

are then split again. Variable x2 may be used to split one part, and perhaps x3 or x2 or even

x1 again may be used to split the other part. Another class of techniques particularly suitable

for classifying chemical data are the so called ‘modelling’ techniques such as SIMCA in which

a model is developed for each class, independently from other classes in the training set using

principal components. For a description of these and other methods see [Massart et al., 1988].

3.5.2 Cluster Analysis

Cluster analysis is the generic term for a large group of unsupervised learning techniques which

attempt to identify natural groupings in a data set. The simplest approach to discovering distinct

groups or clusters is by examination of scatterplots. If there are only a few variables this can be

done by plotting two or three of these at time to see whether there are any obvious groupings.

Otherwise the first two or three principal components or the results from multidimensional scaling

may be plotted (see section 3.5.3).

The most widely used strategy for computer-based cluster analysis is hierarchical clustering.

Hierarchical clustering can be agglomerative or divisive. Agglomerative clustering proceeds se-

quentially from the stage in which each object is considered to be a single member cluster to

the final stage in which there is a single group containing all n objects and divisive clustering

starts with the whole group and successively splits this group into a number of clusters [Schalkoff,

1992]. The results can be displayed as a dendrogram. There are a large variety of clustering

methods which differ depending on which criteria are used for defining inter-group distance or

similarity. For details of these methods see for example [Krzanowski, 1988] or [Everitt and Dunn,

1991].

Cluster analysis can prove very useful in exploratory data analysis. However it can pose prob-

lems, one being that different methods may provide completely different clustering in the same

set of data. Also, while it may be easy to find clusters in data it may not easy to give meaning to

the groupings. It is important to be aware that clustering techniques will generate a set of clusters

even when applied to random, unclustered data. Other methods for discrimination are normally

preferable when the groupings are already known [Krzanowski, 1988].

Cluster analysis works well when the groups are very well separated and may therefore be a

useful method for initially checking the data. For example ‘rogue’ data which have been entered

into the analysis by mistake, or alternatively pre-processed incorrectly may be detected using this

method. For example, it proved very useful in this research for detecting two samples which had

erroneously been labelled with the wrong acquisition time.

Gartland et al [Gartland et al., 1991] applied cluster analysis to 1H urinanalysis data from a
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variety of induced toxic states in rats. Hierarchical cluster analysis was used as a preliminary

method of analysing the intensities of 16 metabolites obtained from these spectra. The cluster

dendrogram showed that some of the different toxins formed a discrete cluster.

Howells and co-workers have used cluster analysis to categorise 1H spectra obtained from per-

chloric acid extracts of normal and tumorous tissue in rats [Howells et al., 1992a] [Howells et al.,

1992b]. The spectral datapoints were processed using a specially developed digitisation technique

(see section 3.5.3) and principal component analysis was used to reduce the dimensionality of the

data further. The dendrogram showed a partial separation of the samples into groups representing

the different tissue types. In another study by the same group similar techniques were employed to

cluster a set of in vivo 31P animal data. The resulting dendrogram showed that most of the groups

formed distinct clusters [Howells et al., 1993a]. Cluster analysis was also used by [Hagberg et al.,

1995], but LDA gave better separation between the groups than the clustering algorithms.

3.5.3 Reduction of Dimensionality

Many applications of pattern recognition in chemistry (including spectroscopic applications) in-

volve a large number of variables and often the first problem to be dealt with is how to reduce

these in some way. The main reasons for this are as follows:

� to facilitate visualisation of the data, and to allow the analyst to discern class structure and

groupings within the data,

� to reduce the number of variables for classification, either in order to reduce the ratio of

variables to samples, or to reduce the computational complexity of estimating the density

functions.

� to find salient features in the data, that is to find the best features or combinations of features

to represent (and possibly explain) differences between different classes of data.

The process of reducing the number of variables, while keeping the basic structure of the data

intact, is often called feature extraction. Dimensionality can be reduced by selecting appropriate

subsets of the available variables or by combining the variables in some way. Methods for re-

duction of dimensionality fall into two categories. In the first category are methods which aim to

describe the data more succinctly, that is to express the data as concisely as possible with mini-

mum loss of information. These methods do not rely on prior knowledge of class membership of

the subjects but attempt to sift out irrelevant information by transforming the original into a new

set of variables with the hope that a proportion of the new variables can be discarded with little

loss of information. Examples of such methods are PCA or the wavelet transform. The second

category of methods attempt to reduce the number of variables by selecting the best set of features

for discrimination. In this case knowledge of the class membership of the data will be used. Often

a combination of the two types of methods may be used to find the best discriminating features.

Reducing the dimensionality for Data Visualisation

“A complete analysis of multidimensional data requires the application of an array

of statistical tools – parametric, nonparametric and graphical. Parametric analysis is

the most powerful, nonparametric is the most flexible and graphical analysis provides

the vehicle for discovering the unexpected” [Scott, 1992].

Pattern recognition techniques provide ways of extracting relevant information from complex

data that humans find difficult to interpret. The previous two sections discussed how this can be
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done using computer-based methods for discriminating between different classes or for finding

groupings and clusters in data. These methods are needed if the data has many variables, since

it is very difficult for the human analyst to visualise and interpret high-dimensional data. How-

ever, if the dimensionality can be reduced to two or three variables it may be possible to discern

natural groupings in the data by eye, after plotting these values on a scatterplot. We can also see

whether these groups are linearly separable, that is whether a straight line or, in the case of three

dimensional data, a surface can be ‘drawn’ between them, or alternatively if any other (non-linear)

decision boundaries might be constructed

Apart from being very useful in identifying meaningful groupings, reduction of dimensionality

for data display allows preliminary exploration of the data before further analysis. Scatterplots are

useful for finding unknown groupings of the data and also for detecting outliers, which if not

eliminated might affect the subsequent analysis. They are also useful for showing the results

from a classification or cluster analysis. For example by displaying the scores obtained from

discriminant analysis on a scatterplot the typicality of each individual sample compared with the

others can be demonstrated and may aid the user in a decision.

Reduction of variables for display can be achieved either by selecting two or three of the

original variables, or by ‘projecting’ the high dimensional data into a lower dimensional space.

Methods for variable selection and projection are discussed in the next section.

There are a number of alternatives to two and three dimensional scatterplots where more than

three variables are represented in some way on the same plot. Examples of such methods are Cher-

noff faces, Andrews plots and weather vane plots. Details of these and other display techniques

are given in [Tufte, 1983] and [Everitt and Dunn, 1991]

Reducing the Dimensionality for Classification: Feature Extraction

Developing a system for classification can be described as a two stage process:

� extraction of features which can be used to describe the data

� developing a classification algorithm for the features, i.e. the discriminant functions.

These two stages may overlap considerably and the process will normally be an iterative one,

since the choice of features will depend on the success of the classification algorithm and vice-

versa. Feature extraction and classification is a process by which the original data are successively

refined and reduced until the optimum number of features is selected for classification. The first

stage of this process is to extract measurements from the data. These may be the original data, or

they may be processed or transformed in some way, for example to remove artefacts or noise or

to make them more amenable to the extraction of relevant features. The second stage consists of

selecting the subset or combination of these features which give best discrimination. The ultimate

stage consists of developing a rule for classifying the data. This can be thought of as an extension

of the feature extraction stage; the ‘features’ from this stage are the values from the resulting

discriminant rule. In the case of LDA the number of features extracted from this last stage will be

the same as the number of discriminant functions used.

Feature extraction for classification is concerned with finding the best patterns to discriminate

and classify data. In the case of MR spectra this means choosing appropriate features to represent

the spectra, and then finding which combination or subset of these features provides the best

discrimination.
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Broadly speaking, features are any extractable measurements that can be used for classifica-

tion; their choice may involve pre-processing the data very little, for ‘low-level’ features, or may

necessitate a large amount of pre-processing for ‘high-level’ features. This choice will involve a

trade-off between the computational feasibility of using low-level features compared with the in-

evitable loss of information involved with the extra processing for higher level features [Schalkoff,

1992].

The terms feature extraction and selection are somewhat ambiguous and are often used syn-

onymously, especially in literature on statistical pattern recognition e.g. [Fukunaga, 1990]. In this

thesis the term feature extraction is used to describe the whole process of extracting suitable mea-

surements from the ‘raw’ data through to developing the discriminant rule. Feature selection is

used to describe the process of selecting which subset of measurements to use in the classification

algorithm and feature reduction is used to describe reduction of features by combining the original

variables into a smaller set of new variables. Another somewhat ambiguous term is pre-processing.

In this thesis this term is used for any processing of the Fourier transformed datapoints prior to

extraction of measurements from the spectrum.

While the number of initial features may be very large, the underlying dimensionality of the

data, that is the intrinsic dimensionality [Fukunaga, 1990], may be quite small. Thus it is generally

possible to partition the feature space into subspaces of signal and noise. The goal of feature

extraction is to eliminate a significant number of dimensions so as to encourage a parsimonious

representation of the underlying structure [Scott, 1992]. The following section describes methods

that can be used to give this parsimonious representation. This section is in two parts: the first part

describes methods which reduce the variables by combining the originals into a smaller number

of new ones, the second part discusses methods for selecting a subset of features for classification.

Before discussing these methods it should be pointed out that there are two potential problems

which have to be considered when there are a large number of variables to choose from and the

number of samples is relatively small. The first problem is that it will always be possible to

construct a boundary that will completely separate the classes in the training set if the number of

samples is equal to or less than the number of variables. This boundary, however, may completely

fail to separate the test set. This problem is known as over-fitting. Another related problem which

may lead to poor classifier performance of new data, and also incorrect assumptions about the

power of discrimination of the selected variables is selection bias. Selection bias occurs when the

subset of variables is not chosen independently of the data used to test the discriminant rule. Ideally

the discriminant rule should be developed completely independently of the test data. However, in

practice the number of samples is often not large enough to do this and methods such as leave-one-

out must be used for validation. Selection bias is a problem because the variables that are chosen

to separate one particular sample set of data may not be the best ones for discriminating between

the groups in the population as a whole.

Selection bias is often ignored in the literature on pattern recognition. It is covered in detail in

[Miller, 1990]. Since its effects are easy to overlook and may only be discovered when attempting

to classify new datasets, it is important to be aware of this problem.

Feature Reduction

In this section methods are discussed in which the feature reduction is achieved by combining the

original variables into a number of new ones. With the exception of SELECT, all of these methods

are ‘unsupervised’ in that the combination is carried out without using information of the class of

the samples. The first method discussed in this section, principal components analysis (PCA), is

very widely used as a dimensionality reducing technique, both for data display and classification.

The second, factor analysis, which is similar to PCA in some respects, is a useful technique for
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reducing dimensionality when the data can be explained by a small number of underlying factors.

The third method, the wavelet transform, has proved to be an extremely successful method of

compressing many types of data and is a useful method for feature extraction for ‘peaky’ data such

as spectra. The fourth method SELECT is a combination of feature selection and feature reduction,

the aim being to provide uncorrelated features for classification. Finally I discuss two methods,

non-linear mapping, and projection pursuit that may be useful for reducing the dimensionality for

data display.

Principal Component Analysis (PCA) One of the most simple and commonly used statistical

method for reduction of dimensionality is principal component analysis (PCA). PCA operates by

transforming the original variables into a new set of uncorrelated variables called principal com-

ponents (PC’s). These new variables are linear combinations of the originals derived in decreasing

order of importance so, for example, the first PC accounts for as much as possible of the variation

in the original data. If the original variables are highly correlated (effectively ‘saying the same

thing’) the first few PC’s will account for most of the variation and the remaining PC’s can be

discarded with little loss of information. Ideally the first few components will be intuitively mean-

ingful, will help us understand the data better, and will be useful in subsequent analyses where we

can operate with a smaller number of variables. In practice it is not always easy to give ‘labels’ to

the components and their main use is to reduce the dimensionality of the data in order to simplify

later analyses [Chatfield and Collins, 1980] [Massart et al., 1988] [Howells et al., 1992b]. Essen-

tially PCA uses the covariance matrix derived from the co-ordinate system of the original data, x,

to construct a new co-ordinate system z. The axes of the new co-ordinate system are orthogonal

and lie along the directions of maximum variance in the original data. Both z and x have dimension

n. The components of z can be expressed as

zn = wn1x1 +wn2x2 : : :+wnNxn (3.6)

where wn1 are constants. The nth component of z, zn is called the nth principal component.

The principal components are calculated using the covariance matrix, i.e.

z = Atx (3.7)

where At is the transpose of A, which is composed of the eigenvectors, wn1 of the sample co-

variance matrix, S. The magnitude of the nth largest eigenvalue, λn reflects its relative contribution

to the variance of z. It is common to calculate the principal components after the original variables

have been standardised to have unit variance which is equivalent to using the correlation matrix,

rather than the covariance matrix in equation 3.7.

Normally it is possible to compute n principal components from n variables. However, if

some of the original variables are linearly dependent, or if the number of variables exceeds the

number of samples (i.e. the covariance matrix has rank less than n) some of the eigenvalues (and

therefore the PC’s) will be zero. For most applications, those which express a certain percentage

of the variation, for example 90%, will be chosen and the rest discarded. When the original

variables are highly linearly correlated with one another it may be possible to discard most of the

principal components with very little loss of information. However if the original variables are

nearly uncorrelated the PCA will simply find components that are close to the original variables,

but arranged in decreasing order of variance and nothing will have been gained.

PCA is sometimes called an unsupervised pattern recognition method since the derivation of

the components uses no prior knowledge of the class of the samples. It has the advantage over

other methods of feature extraction based on class differences, for example correlation methods,

in that the components can be selected purely on the basis of the variation they explain again using
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no class knowledge. This means that no selection bias will be introduced if the test set is used in

the feature selection process, as will normally be the case when the leave-one-out method is used.

However, a disadvantage of selecting the PC’s on the basis of the variance they explain is that

they may not necessarily provide the best features for classification. It is quite common in practice

to find that the vector which is most highly correlated with class is one corresponding to one of

the smaller eigenvalues [Miller, 1990]. Another disadvantage of this technique is that it is sample

dependent and can be unstable if there are a large number of variables compared with samples.

Subsequently the inclusion of one or two extra samples may completely change the composition

of the PC’s. [Chatfield and Collins, 1980] gives a comprehensive discussion of the benefits and

drawbacks of PCA.

As mentioned above the goal of feature extraction is to eliminate a significant number of

dimensions by partitioning the feature space into subspaces of signal and noise. With PCA the

hope is that most of the variance in the data set will be explained by the signal and little by the

noise. If this is the case, the partitioning can be achieved by selecting the PC’s which account for

most of this variance.

PCA is a useful method for reducing the dimensionality for both data display and classification,

and is a very widely used method of dimensionality reduction. It is suitable for spectral data

because it often works well when the underlying dimensionality of a large feature space is small.

However it is only appropriate if the underlying relationships between the variables are linear, and

most of the variance in the data is accounted for by the signal rather than the noise.

PCA has been widely reported for reducing the dimensionality of MRS data and the use of

this method has been reported by a number of groups using PR methods to analyse medical MRS

data. These studies have used PCA either for reducing the dimensionality for display, as a pre-

processing step before further analysis, or for investigating biochemical features of the data. How-

ells and co-workers use PCA as a preprocessing technique to reduce the dimensionality of the

original data set. This group developed an automated technique whereby they extract values from

the spectra by splitting the spectra into a number of equal intervals, and recording the highest

value from each interval. In [Howells et al., 1992b] the original 16,000 datapoints were reduced to

180 variables by the digitisation procedure and PCA was then used to further reduce the number

of features to 15 PC’s. These 15 PC’s, which accounted for 95% of the variation in the data set,

were used as input to a neural network classifier and clustering program with good results. This

technique was also used in more recent studies, for example [Howells et al., 1993b].

Somorjai also used PCA to reduce the dimensionality of the original data set. In a study using

spectra obtained in vitro of thyroid neoplasms the spectra were first divided into two sub regions

of 170 and 400 points respectively and then PCA was applied directly to the datapoints from these

sub-regions. Ten PC’s which accounted for 97% of the variance for the date set were retained and

successfully used to discriminate between spectra from normal and cancerous tissue.

Other groups report using PCA as a dimensionality reducing technique for data display, most

notably the group including Nicholson, Lindon et al, who have applied PR techniques to a number

of studies of MRS data of body fluids, for example a study of 1H spectra of urine from rats

[Gartland et al., 1991]. In this study the rats were exposed to a number of different toxins. The

aim was to characterise the spectra according to the biochemical effects from the different toxins.

The original feature vector consisted of signal intensities for 17 metabolites and this was reduced

to two or three features using PCA. The data analysis was then extended to obtaining spectra taken

at three time points after exposure to the toxins. The PC’s from the two sets of data were then used

to display and categorise the spectra. In another study by the same group [Holmes et al., 1994]

PCA analysis was used to classify 1H spectra of human urine. In this study, ‘descriptors’ were
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automatically extracted from each spectrum by segmenting it into consecutive non-overlapped

regions and integrating the signal intensity in each region.

In another reported study [Confort-Gouny et al., 1993] used PCA to investigate correlations

between different metabolite measurements from 1H spectra of various brain diseases.

Factor Analysis Factor analysis is concerned with whether the covariance or correlations be-

tween a set of variables X = [x1; ::::xn] can be ‘explained’ in terms of a smaller number of unob-

servable latent variables or factors f1; : : : fk where k < n. The factor model is given by

x1 = λ11 f1 +λ12 f2+ : : :+λ1k fk +u1

x2 = λ21 f1 +λ22 f2+ : : :+λ2k fk +u2

:

:

xn = λn1 f1 +λn2 f2+ : : :+λnk fk +un

(3.8)

where the λs are the weights or factor loadings and u j is the residual variation specific to the jth

variable. There are a number of methods for determining and choosing the required number of

factors. The techniques for finding the factors are somewhat complicated and the interested reader

is referred to [Malinowski and Howery, 1980].

PCA and factor analysis are often confused and one technique is often applied erroneously

when the other is more appropriate. It is therefore important to appreciate the different aims of the

two techniques. The vital difference is that PC’s are the optimal entities for expressing variance in

the data while factors are appropriate when trying to explain covariance in a multivariate system.

The object of PCA is to find a lower-dimensional representation that accounts for the variance

of the features. The object of factor analysis is to find a lower-dimensional representation that

accounts for the correlations among the features [Duda and Hart, 1973]. Although factor analysis

has been much criticised in the literature by theoretical statisticians [Chatfield and Collins, 1980]

[Everitt and Dunn, 1991] it can be very useful in fields where combinations of variables can be

expressed as meaningful attributes of the data [Malinowski and Howery, 1980]. Factor analysis is

useful for exploratory data analysis, in particular for helping the analyst understand the underlying

nature of the data better. If the identification of factors is successful, it can be used as a dimen-

sionality reduction technique for both data display and classification but, unlike the other methods

discussed in this chapter the expertise of a biochemist will be required in order to make best use

of this technique.

Factor Analysis can be very useful technique in analytical chemistry for uncovering hidden

characteristics of chemical mixtures. For example it has been used successfully for MRS data to

predict the shifts of simple solutes in solution. [Malinowski and Howery, 1980] give an extensive

review of the applications of factor analysis in analytical chemistry. Howells et al. have used factor

analysis to help interpret 1H MRS spectra of extracts of tumours and normal tissue from rats. They

used an approach called target factor analysis which allows for physically significant models of

the data to be developed and factors to be tested individually. Using this technique it was possible

to determine which metabolites had the greatest influence in the data and were responsible for the

separation into groups [Howells et al., 1992b].

The Discrete Wavelet Transform Wavelet theory is a relatively new branch of mathematics which

has rapidly found applications in a number of wide-ranging disciplines including physics, numer-

ical analysis, signal processing, probability and statistics. The usefulness of the wavelet transform
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is due to the fact that it can be used to approximate functions/signals according to scale resolution

using a set of basis functions called wavelets. Wavelets allow a representation of the original func-

tion in which both scale and spatial information are retained. Many functions can be approximated

very closely using only a small number of wavelet coefficients. The wavelet transform may also

be used to represent economically, localised features of interest in a signal, which makes it an ideal

candidate for extraction of features for classifying spectra. The wavelet transform is not strictly

a method of statistical pattern recognition, rather it is a pre-processing method which allows the

data to be expressed more succinctly. However, since this is the aim of feature extraction it is

appropriate to include it in this section.

The use of the wavelet transform for feature extraction can be described in a number of ways.

It can be used as a filtering technique for removing the high frequency components from the data,

or used as a method for representing shape information in a succinct way. Alternatively, it has

excellent data compression properties.

The Discrete Wavelet Transform (DWT) transforms a data vector of length n into another

vector of length n wavelet coefficients using a set of n orthogonal basis functions called wavelets.

Each wavelet coefficient is calculated by taking the dot product of the data vector with one of

the basis functions. The set of basis function is derived from a single function (often called the

‘mother wavelet’) by a series of dilations and translations. The DWT is similar to the Fourier

transform in some respects but, unlike the sine and cosine basis functions of the Fourier transform,

wavelets are localised in space as well as in scale.

In order to discuss the advantages of the DWT it is useful to compare it with the windowed

or short time Fourier transform, since this has been one of the most popular classical techniques

for pre-processing data with localised features [Daubechies, 1992]. The Fourier transform is a

good method for representing data where the small scale (i.e. high frequency) features represent

the detail or noise originating in the signal or function, and the large scale (low frequency) fea-

tures represent the basic shapes. However it has the disadvantage that the frequency information

obtained from a Fourier transform is global, because its basis functions are sine and cosine func-

tions. This is not satisfactory when localised features are required. This problem may be partially

overcome by using short-time or windowed Fourier transforms whereby the signal to be anal-

ysed is multiplied with a window function before computing its Fourier transform. However this

method has the problem that a window of fixed size in the original domain is accompanied by a

fixed sized window in the Fourier domain. What is really needed is a long window to analyse large

scale components and a narrow one to detect the small scale features [Wunsch and Laine, 1995].

This is exactly what is provided by the wavelet transform.

The set of basis functions is obtained from the mother wavelet gbasic(t) by dilations controlled

by the variable a, and translations controlled by the variable b, according to the equation

ga;b(t) =
1
p

a
gbasic(

t�b

a
) (3.9)

A function g said to be a wavelet if it satisfies the following admissibility condition needed to

obtain the inverse of the wavelet transform

Z

jĝ(ω)j

2 dω
jωj

< ∞ (3.10)

where ĝ(ω) denotes the Fourier transform of g(t).
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Also the function should have finite energy i.e.

Z

jg(t)j2dt < ∞ (3.11)

and ĝbasic(ω) = 0 f or ω < 0 (3.12)

[Bos and Vrielink, 1994]

There are many types of wavelet transform, and the discussion in this chapter is limited to

those in which the set of basis functions is orthonormal. The wavelet transform of a signal, f (x)

at scale 2 j is defined by the dot product:

w2 j
;b =

n

∑
i=1

f (i)g2 j
;b(i) (3.13)

[Mallat and Zhong, 1992] where w2 j
;b is the wavelet coefficient at scale j and position b. The

wavelet transform can described in a number of ways. An elegant way is Mallat’s multi-resolution

analysis [Mallat, 1989]. This describes a wavelet transform as a process of representing a function

at different levels of approximation. The first level approximates the function very generally by

projecting it onto a space spanned by two basis functions of large scale, the second level will be a

little less general (using 4 basis functions) and so on. The last level will completely represent the

signal and the inverse transform of this representation will yield the original signal. Mathematical

details are given in [Mallat, 1989] [Daubechies, 1992]. The DWT can thus be used to partition the

feature vector into a sequence of subspaces, each subspace representing a different scale level.

The DWT algorithm operates by transforming the original feature vector into a new vector

which is filled sequentially with the wavelet coefficients of the different scales. Each scale cor-

responds to a different dilation of the mother wavelet. Furthermore, within a scale, each wavelet

corresponds to a different translation of the mother wavelet. The lower numbered coefficients rep-

resent the large scale (low frequency) features in the original feature vector and the higher num-

bered coefficients represent small scale features. Thus for a vector of length 2 j the coefficients are

ordered into j scale levels – each scale level representing the data vector at a certain resolution.

Scale level 1 is represented by wavelet coefficients 1 and 2. Scale level i, where i = 2 : : : j, is

represented by wavelet coefficients numbered from 2i�1
+ 1 to 2i. From this it can be seen that

the number of coefficients which represent a scale level increase by a factor of two as the scale of

the features decreases. This has the desired effect of adapting the window size to the scale of the

features. This means that the number of coefficients used to represent high frequency information

is substantially more than those representing low scale information. If these represent just noise

these can be discarded with little loss of information. Unlike sines and cosines which define a

unique Fourier transform there is not one single unique set of wavelets: in fact, there are infinitely

many possible sets. The exact choice of mother wavelet involves a trade-off between their degree

of smoothness and their degree of localisation. A popular series of wavelets is the Daubechies

series which we have used for this study [Press et al., 1992]. Figure 3.1 shows some of 512 basis

functions used in this study, derived from the Daubechies 20 mother wavelet [Press et al., 1992].

So far, reported applications of the wavelet transform for feature extraction for classification

have been relatively few. Wunsch et al. [Wunsch and Laine, 1995] used the wavelet transform to

extract useful features (which they call wavelet descriptors) for classifying handwritten characters,

making use of the fact that shapes that ‘look alike’ often have similar low frequency components.

In this study, the wavelet transform provided a good alternative to using the windowed Fourier

transform for extracting features for classification. The two feature extraction techniques were

compared using a neural network classifier on over 600 samples of hand printed characters. The

results showed that the wavelet descriptors provided better classification results than the Fourier

descriptors. [Saito, 1994] discusses the use of the wavelet transform for localised feature extraction
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Figure 3.1. Some of the Daubechies 20 wavelets used in this study. The left hand column shows

the wavelets from four different scales. The right hand column shows a collection of wavelets

which together represent scale level 4. In both columns, the number to the left of the wavelet

indicates the number of the wavelet.



34 Chapter 3. Analysis of in vivo Magnetic Resonance Spectra Using Pattern Recognition

from geophysical data. The first (and as far as I know the only) reported use of the DWT for

classifying spectral data is by [Bos and Vrielink, 1994], who used wavelets to classify IR spectra

of different compounds. In common with MR spectra, the relevant information in the IR spectra

is contained in the position and shape of the absorption peaks. This study showed that the wavelet

transform, due to its localisation both in position and scale, can extract this information in a concise

form and thus can be used to extract the salient feature from an IR spectrum effectively.

Comparison of DWT with PCA Although the algorithms for computing these transform are fun-

damentally different, they can both be used to achieve the same aim, that is to partition the feature

space into subspaces of signal and noise. Both transforms operate by combining the n features

into n new features. However, whereas the PC’s are uncorrelated the wavelet coefficients are not.

Another major differences between PCA and the wavelet transform is that the first few wavelet

coefficients, i.e. the low frequency components represent the variation within the sample, whereas

the first few PC’s will represent the variation between the samples.

SELECT SELECT is a method of feature extraction proposed by Kowalski [Kowalski and Ben-

der, 1976]. Although its use has not been widely reported in the literature, it is very suitable for

spectral data and provides an alternative to PCA which incorporates knowledge of class differ-

ences. As in PCA the original variables are combined to provide new features which are orthog-

onal to each other. However, unlike PCA these new features retain some of their original identity

and are thus easier to relate back to the original data. The procedure begins by selecting the most

important discriminatory feature using an appropriate feature selection method and making this

the first new feature. The remaining features are then de-correlated with the one that has been

selected and the process is repeated until the required number of new features have been obtained.

In common with PCA the feature vectors are rotated in the pattern space. However, in this case the

new features are selected on the basis of the differences between the classes, rather on the amount

of variation that they express. In this method the first component is just the best discriminatory

variable – chosen by a feature selection method such as weighted variance – the second feature is

a linear combination of this feature and the second ‘best’ feature, the third feature is a combina-

tion of the first, second and third selected features and so on. [Kowalski and Bender, 1976] and

[Sjostrom and Kowalski, 1979] compared SELECT with PCA as a method of feature selection on

a number of data sets, including a set of 13C spectra of exo- and endo-substituted norbonanes and

found the two methods gave comparable results. The advantage of SELECT over PCA is that the

features may be more easily related back to the original measurements.

Projection Pursuit is a method first suggested by Friedman and Tukey [Friedman and Tukey,

1974] which seeks to linearly project the data onto subspaces which produce the most ‘interesting’

configurations of the data set. Principal components analysis can be thought of as a projection

pursuit method for which the interesting configurations are those with high variances. For many

applications PCA gives excellent results; however high variance is not the only relevant criterion

of the genuine importance of structure displayed in a projection of the data. Projection pursuit uses

other criteria of importance and then uses a numerical optimisation technique to find the projection

of the most interest [Silverman, 1986] [Glover and Hopke, 1992].

Non-linear mapping Non-linear mapping (NLM), also called multi-dimensional scaling, is a

dimensionality reducing technique in which the criterion is to minimise the differences between

the inter-point distances in the higher dimensional space and inter-point distances in the new lower

dimensional space [Massart et al., 1988]. If the original distances between objects are denoted by

di j (for objects i and j) and the new distances (in a two dimensional space) by d�

i j, one searches

for those d�

i j for which the differences with the di j are as small as possible. Many algorithms have

been proposed for multidimensional scaling. Several of these are based on the minimisation of the
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so-called mapping error E [Massart et al., 1988] where

E = ∑
i< j

(di j �d�

i j)
2

di j

(3.14)

Non-linear mapping methods can be used to help determine the underlying dimensionality of

the data but are generally used to find the best two or three dimensional representations for data

display. Non-linear mapping was applied by [Gartland et al., 1991]. In this study of 1H spectra of

urine from rats PCA provided consistently better results than NLM in terms of discrimination of

toxicity types. The same group have more recently used this technique in a study of MRS data of

human urine [Holmes et al., 1994].

Feature Selection Methods

Feature selection is concerned with choosing the best variables to use in the discriminant function

algorithm. This has the advantage over feature reduction methods such as PCA in that the original

identity of the variables is maintained, which is important if we are trying to determine the dif-

ferences between groups. However, most of the traditional methods of feature selection assume a

small number of variables and may not be of much help for data such as spectra which have a very

large number of variables.

Apart from the fact that feature selection reduces the number of variables for classification

it has another advantage in that it can be used to reduce the number of measurements needed in

the original experiment, which can be an important consideration. Once important features for

discrimination are found the original experiment may be adapted so that just these features are

measured.

Methods for subset selection When the number of variables is not too large, standard subset

selection techniques may be used. Finding the best subset of m variables out of n may be carried

out by evaluating a criterion of class separability for all possible combinations of the m variables.

However, since calculation of
�

n
m

�

combinations becomes prohibitively expensive for even fairly

small values of n and m, it is necessary to use procedures which avoid exhaustive search. Examples

of such procedures are backward and forward stepwise selections and branch and bound. Details

of these methods are found in [Fukunaga, 1990]. Most statistical software packages incorporate

subset selection techniques into the discriminant programs, and often the criteria of separability

will be the same, or closely related to those used for determining the discriminant function.

Methods for selecting individual variables If there are large numbers of variables it is generally

preferable to preselect a few of the variables prior to subset selection. This will be the case when

using spectral datapoints as the measurements since many of these represent noise, rather than

natural features of the data. Good features must satisfy the following criteria: intraclass variance

must be small which means that features derived from different samples of the same pattern class

should be close and interclass separation should be large, i.e. features derived from samples of

different classes should differ significantly [Wunsch and Laine, 1995].

Features whose means differ widely between classes but who have small intraclass variance

can be selected using this equation

x̄K j � x̄L j
q

s2
K j + s2

L j

(3.15)

where x̄K j is the mean of variable, x j for class K and s2
K j is the variance for the same variable of

this class [Massart et al., 1988].



36 Chapter 3. Analysis of in vivo Magnetic Resonance Spectra Using Pattern Recognition

Another method called variance weighting permits weight to be given to the variables on

the basis of their power to discriminate between the training sets. These weights are measures

of between class variance to within class variance for the groups. For two classes K and L the

weights are obtained by using the equation

w j =

nK �nL

n2 ∑nk

k=1 ∑nl

l=1(xk j�xl j)
2

nK

n ∑nK

k=1 ∑nK

k0

=1
(xk j �xk0 j)

2
+

nL

n ∑nL

l=1 ∑nL

l0

=1
(xl j �xl0 j)

2
(3.16)

[Massart et al., 1988]

Another possible strategy for selecting individual variables, suggested by [Massart et al., 1988]

is to perform a cluster analysis of the variables over all the samples to see if a grouping of the

variables indicating some sort of similarity in behaviour over the data set can be found. If it can

and if the variables cluster into a small number of groups, then one variable can be selected from

each group.

Correlation Methods If there are only two classes, or if the classes can be ordered, a simple

method of finding which variables vary most with the class of the objects is to calculate correlation

coefficients. The most commonly used measure of correlation is Pearson’s correlation coefficient

– also known as the product-moment coefficient.

r =
∑i=n

i=1(xi �xi)(yi�yi)
q

f∑i=n
i=1(xi�xi)

2 ∑i=n
i=1(yi�yi)

2
g

(3.17)

x and y are the two variables and x and y are their respective means. This coefficient gives a mea-

sure of association between numerical variables. Since class is a qualitative rather than a numerical

variable it is first necessary to assign an appropriate numerical value to each class (for example 0

and 1 if there are two classes). Pearson coefficients are appropriate if there are only two classes,

or one can be sure that the classes are equally spaced, since the variables must represent measure-

ments from an equal interval scale. Otherwise Spearman coefficients are more appropriate.

Spearman coefficients give a measure of association of variables that can be ranked. This

coefficient is calculated by replacing xi and yi in the above equation by their rank ordering. If the

xi and yi are replaced by the first n integers then equation 3.17 becomes

r = 1�
6∑i=n

i=1 d2
i

n3
�n

(3.18)

where di is the difference in ranks between xi and yi for individual i. Note that a correction for

ties is necessary if ties occur in one or both of the series of ranks. Full details of this and other

measures of correlation are given in [Krzanowski, 1988] [Siegel and Castellan, 1988].

The above correlation coefficients always take values between -1 and +1, with +1 or -1 repre-

senting a perfect linear association (positive or negative respectively) and 0 none. Both methods

measure linear association between variables and thus do not account for non-linear relationships.

However, this limitation of the technique does not apply to investigating the relationship between

class and other variables when there are only two classes.

Tests for significance of Pearson’s correlations are based on the assumption that both vari-

ables are normally distributed, whereas the tests for significance for Spearman’s correlation use

no such assumptions. Because of this the Spearman methods is often called nonparametric cor-

relation. Since a high absolute value of the correlation coefficient indicates a strong association
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between the variable and the class of the object these coefficients may be used to select variables

for discrimination.

Apart from calculating these coefficients between individual variables with class, it is very

useful to calculate a correlation matrix for the complete set of variables, prior to choosing which

feature extraction methods to use. This is very useful both as an exploratory tool and also to

investigate whether methods that depend on the correlations between variables, for example PCA

might be appropriate. One of the features of in vivo MR spectra is that the peaks are relatively

broad, thus the number of values representing a peak may be spread over a number of datapoints

and these values will be highly correlated with one another. The same applies to datapoints from

coupled peaks (see chapter 2). Thus a strategy would be to choose one datapoint, for example

the central datapoint or that most highly correlated with the class from each highly intercorrelated

region. This strategy was used in this research and is discussed in more detail in the next chapter.

The correlation coefficient is often used to select wavelengths for calibration of infrared spec-

tra. [Wu et al., 1995] compared the use of correlation coefficients with the two feature selection

methods described by equations 3.15 and 3.16 for selecting wavelengths for classifying near-

infrared spectra of drug tablets. This study found that similar features were selected by all three

methods. To my knowledge neither correlation methods, nor any of the other feature selection

methods mentioned in this section, have been used for selecting variables for medical MRS data

analysis.

3.6 Previous Work

The need for a multivariate approach to spectra analysis is now widely acknowledged by re-

searchers studying medical MRS data and studies by several groups, for example Howells et al.

Nicholson et al. and Somorjai et al. have demonstrated the usefulness of the pattern recognition

approach, both for helping build up a metabolic profile of the tissue, and also for discovering

the best way of discriminating between different classes of spectra. However, these methods are

currently used by only a few centres analysing medical MRS data, and most analysts still use

semi-manual methods for obtaining measurements from the spectra, and univariate methods for

subsequent interpretation.

At present there are only a few research groups specialising in statistical pattern recognition

analysis of medical MRS data. The major ‘players in the field’ seem to be: Howells and co-

workers who have applied many of the chemometric techniques mentioned in this chapter to both

in vivo and in vitro data, using neural networks and cluster analysis for classification, Lindon,

Nicholson et al. who specialise in PR for classifying spectra of body fluids, with particular em-

phasis on data display methods, and the Winnipeg group (Somorjai and co-workers), who have

developed a ‘computerised consensus diagnosis’ method which uses a number of different tech-

niques to classify biopsy data. Reference to these studies are made in the relevant sections.

Most of the reported studies using statistical PR are concerned with data that has been acquired

in vitro. For example Nicholson et al. have carried out studies on body fluids such as urine and

cerebrospinal fluids. Others have carried out studies of biopsy data, the Winnipeg group have used

PR techniques to analyse biopsies of thyroid neoplasms, cervical dysplasia and brain tumours for

example. Howells and co-workers have applied PR analysis to biopsies of rat tumours.

However, there is an increasing interest in using PR analysis of in vivo data especially for clas-

sifying tumours. Several recent studies have demonstrated good results classifying proton brain

tumours, using statistical techniques, for example [Preul et al., 1994] [Hagberg et al., 1995]. These

studies, however, are based on using values that are extracted after editing the spectra individually
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and quantifying the peaks semi-manually.

Each of the three groups mentioned above have developed techniques for automatically ex-

tracting values from the spectrum (see section 3.5.3). However, as far as I am aware, Howells

et al. are the only group to have applied an automated feature extraction technique to vivo data

[Howells et al., 1993b].

The previous work shows that either linear discriminant analysis, neural networks or data

display techniques, can be used successfully to automatically classify MR spectra obtained in

vitro for tissues displaying different types of pathology. A few studies show that this approach may

also prove successful for classifying in vivo data. However, as yet no fully automated technique

has been developed for this task. More powerful techniques for extracting features automatically

from the spectrum are therefore required. Investigating such methods is the main purpose of this

research.

3.7 PR Methods Used in this Research

This research extends previous work on in vivo MRS data by exploring methods for fully automat-

ing discrimination between spectra of different tissue types or classes. While studies using PR

techniques have been used for exploring relationships between features of spectral data, and also

for classifying MRS data, none have been explicitly aimed at exploring methods for fully auto-

mated feature extraction for classification, using no prior knowledge of the relative importance of

the resonance frequencies.

In this research the method of choice for discrimination was linear discriminant analysis. There

were two main reasons for this. The first was driven by necessity since the sample to variable ratio

of the test data made many of the other methods in this chapter impracticable. The second was

that it is generally preferable to try the simplest approach first, only going on to more sophisticated

methods if this doesn’t work. This approach was taken both for feature extraction and classifica-

tion. A potential problem of using more complicated techniques is that they may obscure the

results making subsequent interpretation much more difficult. Another problem is that the more

parameters that need to be estimated the more the analysis will depend on the test data and also

possibly the subjective judgements of the operator.

The approach taken for feature extraction was to select features purely on the basis of their

power to discriminate between different types of spectra, using no prior knowledge of biochem-

istry. These features were chosen using a combination of data display and statistical techniques.

First the spectra were plotted and examined individually for obvious differences between the

classes. Secondly a ‘mean spectrum’ for each class was created and displayed on the same plot, in

order to identify which regions or datapoints in the spectrum might provide the best discrimination.

On the basis of this preliminary investigation three types of features were selected

1 peak heights

2 spectral datapoints

3 wavelet coefficients

A combination of feature reduction and feature selection methods were then used to reduce

the dimensionality of the resulting feature vectors. These included PCA for feature reduction, and

correlation methods for selecting individual features. The methodology used is described in detail

in the next chapter.
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3.8 Summary

This chapter gives a review of the statistical pattern recognition methods that may be useful for

the analysis of clinical MRS data, and introduces the methods that were used in this research. In

the first section the two other approaches to pattern recognition analysis, that is the neural and

structural approaches, and some basic terminology, are discussed briefly. The main part of the

chapter is devoted to providing the motivation for using PR methods for analysing MRS data

together with a description of some of the methods that may be appropriate for describing and

classifying MRS data.

Spectral data can be described either by explicit peak measurements, or by other features such

as spectral shapes, or linear combinations of the spectral datapoints. Most of the methods de-

scribed here are appropriate for either choice of features. However, since the aim of this research

is to extract features for classification using the whole spectrum as the initial feature set, more

attention was paid to methods for feature extraction which can cope with a large number of data-

points compared with the number of samples. While some of the methods that were discussed are

general methods applicable to most types of data, also included are methods particularly suitable

for spectroscopic data, such as factor analysis, the DWT and SELECT.

The final part of this chapter gives a report of the ‘state of the art’ of PR analysis of MRS data.

This section does not provide a comprehensive literature review since it seemed more appropriate

to refer to relevant reported studies within the sections on the methods instead of adding them at a

separate section at the end. Rather, its purpose is to put this work in context with previous studies.

As noted at the beginning of the chapter, while much effort is being applied to the development

of improved techniques for the acquisition and processing of MRS data, relatively little effort has

been applied to the development of methods for the interpretation of medical spectra. This is re-

flected in the relatively small number of reports of PR analysis of MR spectra which is particularly

true for in vivo data. Since it is as a tool for vivo analysis that spectroscopy really comes into its

own I hope that this research, which develops a prototype system for automatically classifying in

vivo spectra may in some way to help to redress this imbalance.
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Developing an Automated System to Classify Spectra

4.1 Introduction

The previous chapters have been devoted to developing the background and presenting the moti-

vation for the work carried out in this research. The purpose of the remainder of this thesis is to

demonstrate how some of the methods discussed in the previous chapters can be used to develop

a prototype system for classifying in vivo MRS data.

The main purpose of this chapter is to discuss in detail the practical problems that are involved

in designing a system for automatically classifying MRS data, together with the methods that can

be used to for solving these problems. These methods were developed and tested using two sets

of in vivo data: a set of 13C spectra from human volunteers and a set of 31P spectra obtained from

rats. However, since the aim of this study is to develop general methods that can be used to classify

different types and classes of in vivo spectra, only brief reference is made to these particular data

sets in this chapter.

A Pattern Recognition system will normally involve three stages:

� acquisition and pre-processing of the data,

� extraction of features which can be used to describe the data and

� description and classification based on these features.

These stages will normally overlap considerably, particularly the feature extraction and classi-

fication stages. The development of a pattern recognition system is normally an iterative process:

the data acquisition and feature extraction processes will be modified according to the results ob-

tained from the classifier. In turn the design of the classifier will depend on the type of data and

features that are extracted.

This chapter discusses the methods that were developed for each of these stages. Particular at-

tention is paid to the pre-processing and feature extraction stages because they require specialised

methods particular to the type of data, and also because they present the greatest challenge for

automatically classifying in vivo spectra.
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While the main emphasis is on providing methods for automated feature extraction, I also

bear in mind the ultimate goal which is to provide a system which will facilitate the use of MRS

as a clinical tool. The most basic requirements of such a system is that it will take as input an

FID signal or spectrum and produce as output a classification for the signal, together with the

probability of the subject belonging to that particular class.

However, because the system is intended to be used as a clinical aid, it is also important that

it should also provide as much information as possible as to how any decisions were reached. The

output of the system should include not only the results of the classification, but also, if possible,

the reasons why a subject has been assigned to a particular class. It is unlikely that a classifier will

be acceptable to a clinician unless it does so. Thus, although the main priority is to find features

that provide the best discrimination, it may be the case that methods which provides slightly less

good discrimination may be desirable if these features can be more easily related back to the

biochemical nature of the data, particularly if the system is to be used to help in the understanding

of the disease process in the tissues being examined. The feature extraction methods investigated

in this thesis provide ways of finding the important discriminatory features which do not require

any prior knowledge of the biochemical nature of the data, and therefore have the advantage of

providing an alternative ‘view’ of the data from that obtained by the more traditional methods of

spectral analysis.

Another important issue to be considered when designing a system to be used to facilitate

the interpretation of MRS data is how to present the results of the analysis in a format that is

accessible to the clinician. While the development of a user-friendly interface is beyond the scope

of this thesis, the issue of how the results may best be presented should be taken into account

when considering which methods to use for feature extraction and classification. For example, if

the data can be reduced to two or three variables which show good separation of the classes on a

scatterplot, it may not be necessary to develop a computer-based classification rule if it is possible

to classify the spectra by eye.

The following two chapters are structured as follows: this chapter discusses in detail the devel-

opment of a general prototype system for classifying MRS data and considers the practical issues

that are likely to be encountered at each stage in its development. Chapter 5 then shows how these

methods were applied and used to classify successfully two particular sets of in vivo data.

4.2 Acquisition and Pre-Processing of the Data

While it is beyond the scope of this thesis to attempt to compensate for unsatisfactory data, it is

important to be aware of any problems that might affect the outcome of a pattern classifier. The

quality of the data is always of the utmost importance; the term ‘garbage in garbage out’ is just

as relevant for pattern recognition analysis as for any other type of information processing. It is

therefore important to ensure that the data is acquired in a consistent manner. This means that the

instrumental variables should vary as little as possible between acquisitions, that all the parameters

should be the same, and that adjustments to the signal, such as shimming, should be carried out

consistently. If the data are acquired using different MR systems, great care will need to be taken

to ascertain that the two are compatible; if not the patterns found in the data may be related to the

different systems, rather than to natural differences between the groups.
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4.2.1 Spectral Processing

The spectrum is obtained from the FID signal by Fourier transformation. A certain amount of pre-

processing will be necessary before pattern recognition analysis can be performed. The normal

steps for spectral processing are [Gadian, 1982]:

1. store the accumulated free induction decay on magnetic disc or tape

2. remove a possible dc component

3. manipulate the free induction decay by applying an exponential multiplication

4. if desired, zero fill

5. Fourier transform the FID

6. perform the phase correction

7. display and plot the spectrum.

Two further steps are required in order to make the spectra compatible for pattern recognition

analysis.

1. align the peaks in the spectrum.

2. normalise (i.e. scale) the spectral datapoints.

An explanation of how these procedures may be carried out is given below.

Processing Prior to Fourier Transformation

As discussed in Chapter 2, there are a number of procedures that are routinely carried out before

Fourier transformation in order to enhance the quality of the spectrum. The first procedure is

the removal of a possible dc component in the FID, in order to eliminate a possible peak at zero

frequency. This procedure is carried out by selecting a number of points at the end of the FID

where the NMR signal is small, and subtracting the mean value of these points from each point

in the FID. The number of points to be summed will depend on the signal. In this thesis, the

calculation was based on the last quarter of the points in the FID. The algorithm used is as follows:

1. Let the FID signal be represented as a data vector of length n, i.e. X = [x1 : : :xn] (n is

divisible by 4)

2. Sum the last 1
4 values of this vector, i.e [x 3n

4 +1 + � � �+xn]

3. divide this sum by n
4

to obtain the mean m of these values

4. subtract m from each value in the vector to provide the adjusted FID X 0

= [x1�m; : : : ;xn�m]

The quality of the spectrum is ultimately determined by the signal and noise that are ac-

quired and subsequently stored within the computer. However the signal-to-noise ratio of the

spectrum can be considerably improved by means of appropriate manipulation of the data prior to

Fourier transformation. The most commonly used procedure for doing this is apodisation which
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entails multiplying the signal point by point by a decaying exponential function, known as a line-

broadening filter. This multiplication has the effect of eliminating noise by preferentially lending

more weight to the initial part of the free induction decay, where the signal-to-noise ratio is high,

than to the latter part where the ratio is much lower [Gadian, 1982]. While the signal-to-noise ratio

is considerably enhanced, apodisation does have the effect of increasing the linewidth, and there-

fore decreasing the spectral resolution. This is particularly undesirable when the peaks are close

together or overlapping. The optimal signal-to-noise ratio in the spectrum is achieved when the

decaying exponential has the same time constant as the free induction decay (T�

2) [Gadian, 1995].

The time constant can be determined by the linewidth which is defined as the width of the peak

halfway between the baseline and its maximum value. However this can be difficult to measure

with spectra obtained in vivo, which do not have a clearly defined baseline or peaks, and which

also may have peaks of different widths. In practice an estimation is often made of the value of

this time constant.

In general, pattern recognition methods for analysing magnetic resonance spectroscopy data

will be more tolerant to the presence of noise than more traditional methods of spectral analysis

since they combine information from the whole spectrum rather than from just a few peaks. Thus

it might be desirable to choose a lower line broadening factor than is normally used for spectral

analysis. The approach used in this research was to choose the line broadening factor that max-

imises measurable differences between spectra from different classes. Details of how this method

was applied are given in chapter 5.

Zero-filling involves adding an array of n zeros to the end of each free induction decay of n

data points. This has the effect of doubling the number of points in the transformed spectrum. It is

possible to zero fill many times. Zero filling will not result in a genuine improvement in the quality

of the spectrum, but will be equivalent to interpolating between the genuine points [Gadian, 1982]

[Sanders and Hunter, 1993].

Processing after Fourier transformation

Phase correction The aim of phase correction, as mentioned in chapter 2, is to ensure that all

the signals in the real part of the transformed spectrum are in the absorption mode. Normally the

spectrum is phased interactively by the operator who will adjust knobs on the spectrometer until

the spectrum seems to have the correct appearance. Apart from being very time consuming this

means that the results will be operator dependent. It is desirable to have a fully automated method

for phasing the spectra.

In this thesis an algorithm proposed by [Chen and Kan, 1988] was used to phase the spectra.

The phase correction makes use of both real and imaginary parts of a spectrum denoted Fr(ωk)

and Fi(ωk) respectively, where ωk is the off-resonance frequency for point k. If correctly phased Fr

should contain the absorption mode while Fi should contain the dispersion mode only. In order to

ensure that this is the case the following combinations are performed to force then into the correct

modes:

F 00

r (ωk) = Fr(ωk) �cos(ωk � t0+φ0)�Fi(ωk) � sin(ωk � t0+φ0) (4.1)

F 00

i (ωk) = Fr(ωk) � sin(ωk � t0 +φ0)+Fi(ωk) �cos(ωk � t0+φ0) (4.2)

where the double primes denote the final correct mode φ0 is the zeroth order correction and t0 is the

first order correction. The algorithm for performing these correction entails iteratively adjusting

the parameter φ0 until the maximum ratio between the highest and lowest values in the spectrum is

obtained. The procedure is then repeated if required for t0. Full details of this algorithm are given

in [Chen and Kan, 1988] This algorithm was found to work very successfully on the data studied

in this thesis, where only a zeroth order phase correction was found to be necessary.
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It is possible to avoiding the problem of incorrect phasing by using the ‘absolute’ (or magni-

tude) spectrum

q

Fr(ωk)
2
+Fi(ωk)

2 (4.3)

However, the magnitude spectrum has broader lines than the absorption mode spectrum and

therefore increases peak overlap in crowded spectra [de Certaines et al., 1992]. Values from the

absolute spectra were investigated in this research but did not give nearly such good classification

results as features extracted from the phased absorption mode spectrum. This contrasts with in

vitro studies carried out by Somorjai and co-workers who report equally good results using ei-

ther the phased or magnitude spectrum for classifying biopsy data [Dolenko and Somorjai, 1995]

[Somorjai et al., 1995a].

Peak Alignment

A problem that must be addressed in order to make the spectra compatible for pattern recognition

analysis is the fact that resonance frequencies, and thus peaks, may have different positions in each

data vector, due to instrumental factors. This is normally rectified by selecting one peak which

is clearly identifiable in each spectrum and using this peak to align the others. This alignment is

carried out by finding this peak (i.e. the point with the highest value within the region that this

peak appears) and making sure that it has subsequently the same position in each spectrum. This

can be done automatically by choosing a suitable value for the new index of this point, finding

the index of the highest value in each spectrum and changing this to the new index. In order to

do this, it is necessary to discard some of the points at either end of the spectrum, but this is not

usually a problem as the range of resonance frequencies in the original spectrum will normally

extend beyond the peaks of interest.

For spectra which have clearly identifiable peaks, which do not shift position in the spectrum

due to pH or other factors, alignment may be relatively easy. It is not so straightforward, however,

when some of the peaks may shift relative to the others due to pH differences as is often the case

for 31P data acquired in vivo. Another problem which may be encountered is that many of the

peaks will be very close together or be combinations of overlapping peaks. In this case it can be

difficult to find a single point which can be used to align all the spectra. It is important to take

account of pH and other factors when deciding which peak should be the reference for alignment.

The approach used in this thesis was to first ascertain which of the peaks were least affected

by shifts due to pH and then to examine the spectra carefully in order to determine which peak

seemed to be most clearly identifiable. This peak was then used to align the spectra. The term

‘peak’ is used in this context to mean the datapoints with the highest value within a predefined

sub-region of the spectrum.

The algorithm used to align the peaks in the spectra for peak alignment in this research was as

follows:

1. ascertain, by visual inspection, the index, j, of the reference peak in a typical spectrum,

2. ascertain, again by visual inspection of each spectrum, the range of positions, [ j�m; j+m],

at which this peak occurs for the data set, i.e. how many points (m) either side of the index

j to search.

3. decide on the number of datapoints, l1 and l2 to be retained after peak alignment either side

of this peak. The index for this peak in the new vector will thus be l1 +1
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On the basis of these decisions each spectrum can be aligned automatically using the following

steps

1. find the point with the highest value in the range [x j�m;x j+m]

2. set the index of this point to l1 +1,

3. shorten the data vector by removing the points to be discarded at either end of the original

data vector.

After alignment, each spectrum can then be inspected visually to ascertain that all the main

peaks appeared in the same positions in each spectrum.

To give an example of how the algorithm operates, consider a spectrum which has 1024 data-

points. After the initial investigation a clearly identifiable peak has been observed to always occur

within 15 points either side of position 400 in the vector of spectral datapoints. This peak is se-

lected as the reference peak, and the decision is taken to retain 100 points from the original data

vector to the left of this point (i.e. the lower indexed points) and 411 to the right of it, so the new

vector will have 512 points. The algorithm for automated alignment would then be as follows:

� find the datapoint with highest value in the region of the vector of spectral datapoints indexed

from 385 to 415.

� create a new vector with this point at position 101 and adjust the indices of all the other

points in the spectrum accordingly,

� discard all points whose new indices are < 1 or > 512.

This peak alignment procedure turned out to be one of the most time-consuming procedures

for the 31P data set – see next chapter for details – since it needed several iterations for the pro-

cedure to find a suitable subregion and peak. This involved examining each individual spectrum

several times. While it was possible to fully automate the alignment process, using the procedure

described above, for the data sets examined in this research, this may not always be possible for

other data sets. For example, the shifts between the individual spectra may be too large to ensure

that the peak chosen for alignment is always the highest within a specified region. If this is the

case it will be necessary to first shift the spectra before alignment, possibly by selecting another

region of the spectrum for an initial alignment. Another problem which might occur is that there

may be no clearly identifiable single peak. In this case the solution will depend on the particular

set of spectra, but will probably necessitate the use of a more complicated peak finding algorithm

than that outlined above.

Normalisation

It is necessary to normalise the spectra prior to analysis since intensity differences between dif-

ferent spectra may be caused by instrumental variables such as the fit of the coil rather than dif-

ferences in absolute values of concentrations. When spectra are acquired in vitro it is normal to

introduce a reference substance, of which the exact quantity is known, to the sample. The spec-

tra can then be scaled using the intensity of the peak that represents this reference. However, it

is not usually feasible to have such a reference when data are acquired in vivo. In this case the

methods of normalisation are used that will allow for the comparison of differences in the relative

proportions of the intensities rather than absolute differences.

Two of the most commonly used standard procedures for normalising vectors are:
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� to sum the values in the data vector and then divide each value by this sum

� to sum the squares of the values in the data vector and divide by the square root of this sum.

The first procedure is equivalent to numerically integrating the spectrum and dividing each point

by this integral, the second normalises the data vector to unit length. In this work, the second

method was used, because the value of the divisor, and therefore the magnitude of the elements

of the first method, will be affected by the number of spectral datapoints with negative values. In

some spectra, for example those of 13C, some of the spectral datapoints will have negative values

due to coupling effects. In principle if there are large numbers of negative values, the integral and

thus the divisor could be zero. Indeed if there are a large number of points with a negative value

the spectrum can be turned upside down by this procedure!

4.3 Feature Extraction

4.3.1 Requirements

Feature extraction is concerned with finding the best patterns to discriminate and classify the

data. In the case of MRS spectra this means choosing appropriate measurements to represent the

spectra, and then finding which combination or subset of these measurements provides the best

discrimination.

If classification is the main aim, the feature extraction process will involve finding the repre-

sentation of the data which gives maximum discrimination, and therefore the best classification

results for the test set. However, for many applications, including this one, part of the purpose of

the feature extraction process will be to identify the biochemical differences between the classes.

For this purpose it will be necessary to be able to relate these features back to the original data.

It is thus important to try and find features which not only give good discrimination, but are also

meaningful. For this reason it may be desirable to pre-process the spectra as little as possible.

In addition to these requirements, the number of features that may be used is limited to the

number of samples in the training set due to the dangers of over-fitting that were discussed in

Chapter 3. Most authors, for example [Massart et al., 1988] [Kowalski and Wold, 1982], suggest

that for linear discriminant analysis the number of variables should be ideally be no more than the

number of samples divided by 3.

The feature extraction process is generally the most challenging part of the pattern recognition

process, since the methods used will be dependent on the particular type of data. This may mean

having to develop methods from scratch for this stage, rather than being able to apply standard

methods as we can for the processing and classification stages. While there are standard methods

available for processing the magnetic resonance spectra, and classification methods which can

be applied to a wide range of types of data, there are only a small number of standard methods

available for feature extraction, and some of these are only appropriate for data in which the

number of variables is relatively few.

The approach to feature extraction taken in this thesis is to regard the whole spectrum, that is

the complete set of spectral datapoints, as the initial set of features or variables, and to successively

reduce the number of variables to the optimal number for classifying the spectra.

This is not as difficult as it may first appear, since many of the variables, for example those

representing data points in the region of a peak, will be highly correlated with one another. It

may be thus possible to select one or two variables from the peak regions or alternatively combine
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them in some way. Also many of the variables will be in regions where there are no peaks and will

therefore hold no discriminatory information. The feature extraction process will involve finding

the best way of discarding the redundant variables and of combining, or selecting a subset of those

remaining, in order to best represent features for discrimination.

There are a number of factors that need to be taken into account when considering spectral

data. Apart from the fact that datapoints in any peak region will be highly correlated with one

another, these datapoints may also be highly correlated with points from other peak regions, either

because they represent the same metabolites as do coupled peaks, or because the metabolites

themselves are highly related. Many classification methods, including LDA, perform better with

uncorrelated variables and this must be borne in mind when choosing features.

Another factor to be considered is that, even after peak alignment, datapoints representing a

certain chemical shift are likely to occur at slightly different positions in different spectra. This

may be an effect of the digitisation process, or it may be caused by phase differences. It may

also be the effect of pH differences (either inter- or extra-cellular) in the tissue being examined.

Because in vivo spectra have wider peaks (and thus the datapoints representing a certain metabolite

are spread over a number of datapoints) the shifts may not affect the values of the variables as much

as those acquired in vitro. It should be noted however, that although the shifts caused by pH may

cause problems in alignment of datapoints, they do provide important information not provided by

data acquired in vitro.

4.3.2 Strategy

The strategy that was developed for feature extraction was to use a combination of statistical and

display methods for preliminary investigation in order to get an idea of the best discriminatory

features. Once potential features were identified, the next step was to investigate methods for

representing these features as numerical values. In some cases this required extra processing of

the spectral datapoints before extraction. The extracted features were then input as variables into

the statistical package SPSS [SPSS Inc., 1987], and a correlation matrix was created in order to

investigate the relationships between the set of variables. On the basis of this investigation features

were either selected without further processing or combined using PCA and entered into the linear

discriminant program for the final feature extraction stage.

These steps can be summarised as:

� preliminary investigation of spectra using data display methods to identify potential features

� pre-processing spectra in order to represent the salient features in the spectra

� extraction of features i.e. variables for statistical analysis

� calculation of correlation coefficients in order to investigate relationships between the vari-

ables

� calculation of principal components

� selection of best subset or combinations of the features for discrimination.

The following sections describe the methods that were used in this thesis at each of these

stages.
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4.3.3 Preliminary Investigations

Both data display and statistical methods, or a combination of the two, may be used to find dif-

ferences between classes of spectra. Methods of data display have the advantage that they give

an idea not only of where the differences lie, but also of how these differences might be best rep-

resented. If there are large differences between different groups of spectra these may have been

identified during the initial investigation when each spectrum was plotted after peak alignment and

phasing. This initial inspection is also important for identifying poor quality data, or outliers, that

is spectra which are very different from the rest of their group.

Less obvious differences between the classes may be investigated by creating a ‘mean spec-

trum’ for each class, and then comparing these by plotting them on the same graph. This can

be achieved by calculating the mean values of each datapoint in the spectrum (which had been

processed as described above) for each class. The differences, and thus the important regions for

discrimination should be discernible on visual inspection of these plots. In order to see how well

the groups are separated, the datapoints with the greatest difference in means for different groups

can be plotted two at a time on a scatterplot. A lack of any discernible differences between the

mean spectra will suggest that it will probably not be possible to discriminate between the groups

successfully, since it will indicate that the spectra do not differ significantly between the different

groups. However, this will not always be the case. If, for example, the data is bimodal the means

of datapoints for different classes which are well separated may possibly be the same. However,

there was no reason to suspect that the data investigated for this study had such a distribution. This

was confirmed at a later stage in the analyses (see section 4.3.6) by examination of plots of the

principal components and other extracted features

Since ideal features for classification will have different means between the classes but small

interclass variance it is also useful to calculate and plot the variances for each datapoint for each

class.

4.3.4 Extraction of Salient Features from the Spectrum

The decision that must be taken at this stage is how best to represent the spectra in order to select

a set of numerical variables for further statistical analysis. This stage will depend very much on

the results of the initial investigation. The choice of which features to use for describing and

classifying data normally involves a trade-off between the computational feasibility of using low-

level data, against the possible added error and information loss incurred in extra pre-processing

for higher-level features. MRS data are normally described by measurements of intensities at

known resonances, obtained either by measuring the peaks in the Fourier transformed spectrum

or by a time-domain fitting method. These measurements are usually obtained by semi-automated

means and need considerable processing of the data, as well as subjective judgements by a highly

trained operator. In addition the measurements may not always be accurate due to problems such

as baseline distortion and overlapping peaks.

Fully automated methods are desirable, not only because they allow for a fully automated

system, but also because they remove user-bias, and enable information from the whole spectrum

to be utilised. Some of the methods used currently for spectral analysis, in particular some of the

time-domain fitting methods, may be, or have the potential to be fully automated. However most

current methods are based on measurements of a limited number of frequencies which are chosen

on the basis of prior knowledge of the biochemical nature of the data, and therefore do not utilise

information from the whole spectrum. In this work I chose to investigate fully automated methods

for extracting features from in vivo magnetic resonance spectroscopy data which make no prior

assumptions about the relative positions and importance of the peaks, but select features purely on
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the basis of their power to discriminate between classes.

There are a number of choices at this stage ranging from using the complete set of spectral dat-

apoints to using a few selected peak heights. Approaches used in previous studies, which include,

for example, selecting regions of the spectra and either averaging the values of the datapoints in

this region or selecting the point with the highest value are reported in Chapter 3 (section 3.5.3).

Since feature extraction is one of the key topics of this research, I decided to use a more ‘intelli-

gent’ approach which involves selecting features purely on the basis of their discriminatory power,

only discarding features or datapoints at this stage if it seemed that they were not necessary for

discrimination.

Three types of spectral features were investigated in this research. These features were chosen

on the basis of the preliminary investigations:

1. peak heights

2. spectral datapoints

3. wavelet coefficients

Peak heights may be a reasonable choice of feature if their mean values differ between classes

and they are clearly identifiable. These can be extracted using the average spectrum for the whole

group as a template for the peak positions, and then automatically extracting the value of the

datapoints at these positions from each individual spectrum. The algorithm is as follows:

1. Plot the means of each datapoint for the training data.

2. Using this mean spectrum as a template to identify the position of the peaks – this can

be done either by visual inspection, or automatically using a peak finding algorithm, for

example [Abbott, 1994].

3. List the indices of these peaks

4. Using this list, for each spectrum in the data set, select the highest value within two points

either side of each indexed point.

5. For each spectrum save these values. This list of values will constitute the feature vector,

i.e. the set of variables to be used for further statistical analysis.

The second method is to select a block (or alternatively several blocks) of contiguous dat-

apoints from each spectrum as the feature vector. These points may be either from the whole

spectrum, the region of the spectrum which included all the observable peaks, or alternatively

datapoints may be selected from certain regions which, on the basis of initial inspection of the

individual or mean spectra, appear to hold the most discriminatory information.

The third method requires further processing of the spectrum by carrying out a wavelet trans-

formation on a set (or sets) of contiguous datapoints. In order to carry out this transformation, it

is necessary to select 2n datapoints since the DWT algorithm requires that the length of the data

vector is a power of two. The following section discusses the reasons for using this transform and

the steps involved in this procedure.
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4.3.5 The Discrete Wavelet Transform for Pre-Processing the Spectra

The preliminary investigations of both data sets examined in this study indicated that it may be

possible to classify spectra using patterns based on spectral shapes, either of individual peaks or of

combinations of peaks. This could be useful when the peaks are difficult to identify and quantify,

and could be particularly useful for those spectra with overlapping peaks. It was thus decided to

see whether a method based on modelling these shapes might be used to classify these sets of data.

Since no biochemical knowledge was being utilised in this analysis, a method of feature ex-

traction was needed which would make no prior assumptions about the positions of the peaks, but

any features would need to be implicitly related to their shape and relative heights. It was thus

necessary to find a way of compactly representing these shapes in a succinct way. The discrete

wavelet transform provides an excellent way of representing important features, and is also very

good for data compression. It thus seemed a good choice for this study. The wavelet transform has

been successfully used to extract features for classification of infrared spectra [Bos and Vrielink,

1994] but I believe this is the first reported study of its use for classifying MR spectra.

The wavelet transform can be used to transform a data vector of length n, where n is a power of

two, into another vector of length n wavelet coefficients using a set of n orthogonal basis functions

called wavelets. Each wavelet coefficient is calculated by taking the dot product of the data vector

with one of the basis functions. These basis function are derived from a single function, the

‘mother wavelet’, by a series of dilations and translations.

As mentioned in Chapter 3, there are an infinite number of potential functions which satisfy

the conditions to be a mother wavelet, but in practice only a few are used. A popular class of

wavelets, which was used in this thesis, is the Daubechies series [Daubechies, 1992]. A particular

set of wavelets will be specified by a set of numbers called wavelet filter coefficients. The most

simple (and most localised) member of the Daubechies series, which is often called Daub4, has

only four coefficients. By contrast Daub20, which has 20 coefficients is much smoother, but less

localised. These difference are demonstrated in Figure 4.1 which shows a single basis function

derived from each of the wavelet families Daub4 and Daub20. The plots of these basis functions

were created by carrying out an inverse DWT (using Daub4 and Daub20 filter coefficients) of a

data vector in which all the coefficients save coefficient number 11 (which had value 1) were set to

0. In this study, I have only used the Daubechies 20 wavelets, and did not attempt to fit the mother

wavelet to the problem. This is because I wished to investigate the use of wavelets as a general

tool. Both the Daub4 and Daub20 wavelets were investigated at an initial stage. The Daub20

wavelets provided slightly better classification results for this initial study, but the differences did

not appear to be critical.

The program used for carrying out a wavelet transform of the spectral datapoints was based on

the discrete wavelet transform (DWT) algorithm presented in [Press et al., 1992] which uses the

Daubechies wavelet filter coefficients. The algorithm consists of applying a wavelet coefficient

matrix (derived from the wavelet filter coefficients) hierarchically, first to the full data vector of

length n and then to the “smooth” vector of length n
2 , then to the “smooth-smooth” vector of length

n
4

and so on until only two ”smooth- � � � -smooth” components remain. This procedure, which is

described more fully in [Press et al., 1992] is a composition of orthogonal linear operations and

the whole DWT is itself an orthogonal linear operator.

The resulting vector of wavelet coefficients is divided into components of different smoothness

or scale ranges. The first two wavelet coefficients (coefficients 1 and 2) in this vector represent

the fully smoothed data vector, which is in effect little more than the mean value of the spectrum.

The next two coefficients (3 and 4) represent slightly lower scale features in the data, and the last
n
2

coefficients represent the very low scale (or high frequency) information in the original data
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Daub4

Daub20

Figure 4.1. Basis functions from the same position and scale range (corresponding to coefficient

number 11) from the Daub4 and the Daub20 families. Note how the Daub20 is much smoother,

but less localised than the corresponding Daub4 wavelet

vector. For many types of data these coefficients may represent mostly noise in the original data

vector and it is often possible to discard these coefficients with little loss of information.

Thus the algorithm presents the wavelet coefficients as a vector filled sequentially with the

coefficients of the different scales. Each scale corresponds to a different dilation of the mother

wavelet. The lower numbered coefficients represent the large scale features in the spectra and

the higher numbered coefficients represent small scale features. For a vector of length 2 j, the

coefficients are ordered into j scale levels. Scale level 1 is represented by wavelet coefficients

1 and 2. Scale level i, where i = 2 : : : j, is represented by wavelet coefficients numbered from

2i�1
+1 to 2i. Within a scale, each coefficient corresponds to a different translation of the (dilated)

mother wavelet. Thus the shape of the most of the wavelets within a scale range will be the same

but their position will be different. This means that a coefficient at a certain position within a scale

level will represent features at that relative position in the original data vector. This localisation

property means that it is possible to relate the wavelet coefficients to features in the original data.

For example, features in the centre of the original data vector will be represented by the wavelet

coefficients at the centre of each scale level. For example coefficient with index 48 ( i.e. 26
�25

+
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26
�25

2 ) will represent a central feature at scale level 6. The shapes of the wavelets corresponding

to the coefficients at either end of a scale range will have slightly different shapes from the others

due to a wrap-around effect.

Transformation of a data vector using code written in C to implement the algorithm in [Press

et al., 1992] takes approximately 0.12 seconds of CPU time on a sun SPARCserver 4/690MP. The

steps used to carry out a DWT of the spectral datapoints are as follows:

1. Select a set of contiguous datapoints, whose number is a power of two, from the spectrum,

to provide a data vector of length 2n

2. carry out a DWT of this vector to produce a vector of 2n wavelet coefficients.

The values of this vector were then entered as variables for statistical analysis. Note that this

vector is the same size as the original vector of spectral datapoints. However, it is to be hoped

that it will be possible to discard many of these wavelet coefficients while retaining the important

discriminatory information. This process is described in the next section.

4.3.6 Feature Selection and Reduction

This stage is concerned with reducing the number of features that have been extracted from the

spectrum to a number suitable for the discriminant program. Since ideally the maximum number

of variables used for the discriminant function should be no more than the number of sample

divided by three, this may mean having to reduce the number of variables quite dramatically.

Three methods were used to reduce the number of variables before input to the discriminant

program. The first was to select the individual variables that were most highly correlated with the

class of the spectrum. The second method was to carry out a PCA of some or all of the variables

and then to discard the PC’s which accounted for less than a certain percentage of the variance

in the data. The third, which was used for the variables representing wavelet coefficients, was

to select coefficients from certain scale levels of the wavelet transformed data. For the data sets

studied in this thesis a combination of these methods was generally used. For example, scale levels

of wavelet coefficients were first selected using the correlation coefficients and then a PCA was

applied to the reduced set of wavelet coefficients. Once the number of variables had been reduced

sufficiently, a linear discriminant program was used to find the best subset of these variables.

Section 4.4 discusses how this procedure was applied.

Feature Selection Using the Correlation Matrix

The object of this stage was to investigate the discriminatory power of individual variables in the

feature vector, and to determine which features should be selected, either for direct entry into the

discriminant program, or alternatively for further feature reduction using PCA.

If spectral datapoints, or wavelet coefficients, are used as the features it is likely that the num-

ber of variables will considerably exceed the number of spectra in the data set. However, some

of these variables may represent regions of the spectra where there is either no signal, or no dis-

criminatory information. In addition many of the variables may represent essentially the same

information. For example, as the spectral peaks are relatively broad in in vivo MR spectra, the

number of variables representing a particular metabolite will normally be spread over a number

of datapoints. Thus the datapoints from the peak region will represent essentially the same in-

formation. This is also the case for datapoints which represent coupled peaks. Thus the intrinsic
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dimensionality of the feature space will normally be much lower than the number of features rep-

resenting the spectrum, and in principle it should be possible to discard many of them with no

loss of discriminatory information. The task of the feature selection process is be to filter out such

‘redundant’ features and to keep only those that will contribute to the classification.

The Problem of Selection Bias Before describing the methods that were used for selecting fea-

tures, it is worth discussing a potential problem that needs to be taken into account when consider-

ing which features to select for the discriminant program. This was the problem of selection bias

which was discussed in Chapter 3.

The advantages of using individual variables in the discriminant program is that the features

will retain more of their original identity, and can therefore be more easily related back to the

original data. The disadvantage of this approach is that such methods may involve selection bias.

Selection bias occurs when the subset of variables is not chosen independently of the data used to

test the discriminant rule. With data sets which have a large number of samples, this problem can

be avoided by splitting the samples into two groups, one of which is used to select the variables

and to develop the discriminant rule and the other to test this rule. However, for most studies using

medical MRS data the sample sizes are too small to do this and a method such as the leave-one-out

procedure must be used for testing the rule. In this case the same set of data will be used both to

select the features and to test the discriminant rule. This may lead to an over-optimistic evaluation

of the classification rule.

While it is very important to be aware of the possibilities and effects of selection bias, it is

not necessarily a major problem. It is often possible to check, for example by consulting with

those with an expert knowledge of the biochemistry of the spectra, whether or not the features

that have been identified can be related to known biochemical differences. Also, if the highly

correlated variables can be related to peak regions in the spectra, it is reasonable to suppose that

these correlations do not occur by chance. However, if a highly correlated datapoint appears

in a region where there are no peaks, one should be suspicious that this correlation occurs by

chance. Although only coefficients which had a significance of p < 0:01 were selected, this did

not guarantee that these correlations did not occur by chance, particularly when the number of

variables was large (e.g. 512), since p< 0:01 just means that the probability of a certain correlation

occurring by chance is 1 in 100.

Strategy Three methods for feature selection were discussed in Chapter 3. A comparative study

[Wu et al., 1995] of these methods showed that similar features were selected by all three methods

when they were used for classifying infrared spectra. A preliminary comparison of these methods

using the 13C data set analysed in this research confirmed these findings.

In this thesis, features were selected using correlation coefficients. While it appeared that other

methods might be equally successful in finding discriminatory variables, the method based on

correlation coefficients offers the advantage that it facilitates the investigation of the relationships

between all the variables in the data set in addition to those between the spectral features and class.

The SPSS program that was used to calculate the correlations is particularly helpful in this respect

as it clearly identifies the correlation coefficients with significance levels of p<0.01. Thus, even

when the correlation matrix is very large it is still possible to investigate the important correlations

between variables relatively easily. A limitation of the SPSS correlation procedure is that the

number of variables that can be used in the program is 200. Thus in some cases it was necessary

to split the vector of spectra features into two or three sub-vectors and repeat the procedure several

times.

The strategy used in this thesis was first to assign an appropriate numerical value to each class.
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Correlation coefficients can only be used when the variables can be ranked; when there were

more than two classes which could not be ranked, each pair of classes was examined in turn. A

correlation matrix was created for all the variables and this was examined in order to identify those

that were significantly correlated with the class of the spectrum. For many of the pairs of classes

examined in this research it was found that a number of variables had high correlations with the

class of the spectrum. This was the case for each of the three types of features used to represent

the spectra.

Different procedures were adopted according to the type of the feature. These are described in

the following three sections.

Selecting Spectral Datapoints The correlation matrix for the variables representing the sets of

contiguous spectral datapoints showed that a number of these variables were highly correlated

with the class of the spectrum. The variables showing the highest correlations with class were

typically in groups of five or six adjacent values. When the positions of these datapoints were

related back to the spectrum it was found that they coincided with the positions of the peaks in

the spectra, as would be expected. In addition many of the datapoints in these regions were very

highly correlated with one another which confirmed that they were from regions representing the

same biochemical information (i.e. the peaks in the spectrum). This was also found to be the case

for the variables which represented coupled peaks.

Once the variables which were most affected by the class of the spectrum had been identified,

it was necessary to choose which of these should be selected for further analysis. This was carried

out by first identifying groups of variables (i.e contiguous blocks of variables) which had high

correlation coefficients with class number. From each of these regions the variable that was most

highly correlated with class was then selected. The value of this variable was then extracted from

each feature vector and entered into the discrimination program. For the purpose of selection a

region was defined to be a group of at least three variables. Variables were not selected from

regions smaller than this due to the possibility that the correlations may have occurred by chance.

After selecting the features and creating the new feature vector, the correlation coefficients

between the newly selected variables were examined. If it was found that any pairs of the retained

features had correlation coefficients greater than 0:85 in absolute value, one of these features,

i.e. the one with the lowest absolute correlation with class, was discarded. This value was chosen

because the correlation coefficients of datapoints representing known coupled peaks were observed

to have correlation coefficients of at least 0:85.

The steps for selecting the spectral datapoints for further analysis can be summarised as fol-

lows:

1. Assign a numerical value for each class and add the class value to each feature vector. N.B

this is only appropriate if classes can be ranked - see Section 3.53.

2. Calculate a correlation matrix for all the variables in the feature vector,

3. Identify those variables which have a significant correlation (p < 0:01) with the class of the

spectrum

4. If more than two contiguous variables have significant correlations with class, and also

with each other, select from this group the variable with the highest absolute correlation

coefficient

5. Examine the correlations of the selected datapoints with one another. Discard those with

correlation coefficients with absolute value higher than 0.85.
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Since correlation coefficients can only be used when the variables can be ranked It should be

noted that the calculation of correlation coefficients with class which have been arbitrarily assigned

a numerical variable is only appropriate if the

Selecting Peak heights For the features representing peak heights many of the redundant data-

points will have already been discarded when selecting the peak intensities. However, if there are

a large number of peaks it may still be necessary to reduce these in number for the discriminant

program. A similar procedure to that described above for finding the datapoint features which

vary most with class was used for selecting the peak height variables. However, in this case it was

not necessary to select variables from peak regions since this had already been carried out when

extracting the peak intensities.

Selecting Wavelet coefficients As explained in Section 4.3.5, the wavelet coefficients are ordered

in scale levels. The first few wavelet coefficients in the data vector will represent the large scale

features and the higher indexed coefficients will represent very small scale high frequency features.

Preliminary examinations of the correlation matrices for wavelet coefficients indicated that very

few of the coefficients from the last two scale levels were significantly correlated with the class of

the spectrum. It was therefore decided to discard the coefficients representing the small scale in-

formation i.e. the last two scale levels which are represented by wavelet coefficients indexed from
n
4
+1 : : :n (e.g. reduce from 512 to 128). It should be noted that discarding all the coefficients from

a whole scale level if only a few correlate highly may not always be the best strategy. However,

these coefficients were found to give the best results for this study – see Chapter 5.

If the differences between the spectra are subtle, it is possible that some of the higher indexed

wavelet coefficients, representing small scale information, may represent features important for

discrimination. If the number of samples for data sets examined in this thesis had been larger I

would have liked to examine the possibility of using such such small scale features in the discrim-

inant program. However, the potential problem of selection bias precluded such an investigation.

It was found that the wavelet coefficients representing the first few scale levels provided suc-

cessful classification results for most of the data sets examined in this study.

The steps for selecting the wavelet coefficients can be summarised as follows:

1. Given a vector of wavelet coefficients of length n save the first n
4

wavelet coefficients

2. Calculate the correlation coefficients of these wavelet coefficients with the class of the sam-

ples.

3. Identify which scale levels contain wavelet coefficients which have correlations of signifi-

cance greater than p < 0:01 with class.

4. Discard all the coefficients from any scale levels which have no, or only a few significant

correlations. (N.B. this number will depend on the scale level, since each level will be

represented by a different number of wavelet coefficients).

5. The wavelet coefficients not discarded by this process will be the variables of the new feature

vector.

Feature Reduction Using Principal Components

The object of this stage was to see if the dimensionality of the feature set could be reduced using

PCA. PCA, a very widely used statistical method for feature reduction, transforms the original
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variables into a new set of uncorrelated variables called principal components. These new variables

are linear combinations of the originals derived in decreasing order of importance so, for example,

the first component accounts for as much as possible of the variation in the original data. If the

original variables are highly correlated, the first few components will account for most of the

variation, and can be used in place of the original variables with little loss of information. It can

be used as an alternative to the feature selection methods described above, or it can be used to

further reduce the features already selected.

There are a number of advantages of using PCA rather than selecting individual variables. The

first is that PCA provides features (the PC’s) that are uncorrelated. This is particularly useful for

data sets which have a small number of samples, when the number of variables that can be used is

very small. This is because a number of uncorrelated variables should, in principle, provide more

information than the same number of highly correlated variables. It has the advantage over other

methods of feature selection based on class differences in that the components can be selected

purely on the basis of the variation they explain again using no class knowledge. This means that

no selection bias will be introduced if the test set is used in the feature selection process, as will

normally be the case when the leave-one-out method is used.

However, a disadvantage of selecting the PC’s on the basis of the variance they explain is that

they may not necessarily provide the best features for classification. It is quite common in practice

to find that the vector which is most highly correlated with class is one corresponding to one of the

smaller PC’s [Miller, 1990]. Another disadvantage of this technique is that it is sample dependent

and can be unstable if there are a large number of variables compared with samples. Subsequently

the inclusion of one or two extra samples may completely change the composition of the PC’s.

In this research PCA was only applied directly to the whole feature vector when the number

of variables did not exceed the sample size. Otherwise it was applied to a subset of the variables.

Although it is possible to use PCA with a larger number of variables, I preferred not to do this due

to the instability problem mentioned above. Instead the feature selection methods described above

were used to first preselect a subset of the available variables before carrying out a PCA. This

proved necessary for the feature vectors of datapoints and wavelet coefficients, where the number

of features considerably exceeded the sample size. For these two types of features the number of

features was reduced to a number less than the total number of spectra in the data sets and then a

PCA was carried out of these variables. In the case of peak heights there were far fewer original

variables so it was reasonable to carry out a PCA directly of these.

The correlation matrix was used to calculate the PC’s. Once the PC’s had been determined,

only those which explained a certain percentage of the variance – in most cases 90% – were

selected for further analysis, the remainder were discarded. The number of PC’s that explained

this proportion of variance depended on the particular data sets. However, in all cases this number

was much smaller than the number of variables used in the PCA. The steps for carrying out a PCA

were as follows:

1. Select a subset of the variables using one of the techniques described above,

2. Carry out a PCA of these variables (using SPSS)

3. Save those PC’s which explain 90% of the variance in the data set.

Full details of how PCA was used in this study are given in the next chapter.

Although the main purpose of using PCA in this research was to reduce the number of variables

for discrimination, there were two additional reasons why it was useful to carry out this analysis.
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Firstly, display of the first two or three principal components for each subject on a scatterplot

may be useful for indicating which methods of classification may or may not be successful. For

example a compact class next to a disperse one will indicate that LDA is not appropriate but

that KNN classification may be [Massart et al., 1988]. The plot should also show if the data is

multimodal, which, although unlikely to be the case for this type of data would mean that LDA

and also most of the methods that have been described for feature selection will be inappropriate.

For the data sets studied here scatterplots of the first few PC’s did not indicate that LDA would be

inappropriate, however, it provided a useful check.

Another reason for carrying out a PCA is that if the data can be reduced to two or three

variables which show good separation of the classes on a scatterplot, it may not be necessary to

develop a computer-based classification rule if it is possible to classify the spectra by eye. This

plot may be perfectly acceptable to a clinician who wishes to ascertain the relative typicality of a

spectrum relative to others in a particular class.

Further Investigations

Once variables have been selected, or reduced, using the methods described above it is useful to

investigate how well the classes may be separated on the basis of these variables by plotting the

values of two or three of these at a time on a scatterplot. It is also useful to carry out a cluster

analysis of selected features in order to see whether there are any obvious clusterings of the data.

For example ‘rogue’ data which have been entered into the analysis by mistake, or alternatively

pre-processed incorrectly may be detected using this method. Such an investigation proved very

useful in this research for detecting two samples which had erroneously been labelled with the

wrong acquisition time.

Other variables such as the sex of the subject, the age, or indeed any other data that might

be available, may be added to the feature vector and included in the correlation matrix. This

can be very useful for preliminary screening of the data and sometimes surprising factors may be

uncovered by examining the correlation coefficients for these variables. Two such factors were

discovered in the process of analysing the 13C data in this study. The first was that certain parame-

ters of the MR experiment had been changed half way through the data collection process, without

my knowledge! This was discovered when it was observed that the height of one of the peaks was

affected, (that is it had a higher correlation than would normally be expected) by the date of data

acquisition. Since this could have affected the subsequent analysis it was very useful to discover

this fact. The second surprise, arguably less useful, was that one of the small peaks was highly

correlated with the sex of the subject and could be used to predict the sex of the subject with an

88% success rate (see next chapter for details).

4.4 Classification and Description

This stage involves developing a classification algorithm to classify the spectra. The two require-

ments of this stage are

� to develop a rule for assigning a spectrum of an unknown category to a particular class

� to identify the features in the spectrum that provide the best discrimination

Linear discriminant analysis produces a linear function from the variables of known cases

which can be used to predict the class of cases whose class membership is unknown. The dis-

criminant functions, like principal components, are a linear combination of the original variables.
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However, instead of being calculated to express the maximum amount of variation in the data, they

are calculated so as to make the separation between the populations as large as possible. The func-

tions are calculated to minimize differences within a group and maximize them between groups.

Chapter 3 (section 3.5.1) gives details of these calculations.

Once the functions have been calculated they can be used to assign unknown individuals to

a particular class. Each individual is assigned a discriminant score which is the weighted com-

bination of its values of the discriminating variables. The decision as to whether the particular

individual comes from one group or another is based on measuring the distance between its partic-

ular score and the centroids (means) of the two different groups, and comparing the probabilities

of its membership of each class. This is equivalent to constructing linear decision boundaries

between the groups.

A ‘training’ set of individuals of known class is used to develop the discriminant function and a

‘test’ set of individuals of unknown class can be used to evaluate how well the functions perform.

In this research the ‘leave one out’ method was used to assess the success of the discriminant

functions. This method entails using all the cases (i.e. all subjects), except one, as the training set,

and then using the excluded case as the test set. This process is then repeated until each case has

been used as the test set.

While there are a large number of methods for classifying data, some of which are discussed

in the previous chapter, only linear discriminant analysis was investigated in this research. There

were a number of reasons for this. The first was that LDA is a method which has been shown to

perform successfully for a wide range of data, including MRS data (see Chapter 3, section 3.5.1).

Although this method is optimum when the variables are normally distributed with equal covari-

ance matrices it has been shown to be relatively robust to departures from these assumptions. The

second reason was that the sample-to-variable ratio of the test data meant that most of the other

methods would be impracticable. For example, nonparametric methods such as nearest neighbour

classification, or nonparametric discriminant analysis rely on densely populated feature spaces and

thus need a reasonably large number of samples. Another reason is that it is generally preferable

to try the simplest approach first, only going on to more sophisticated methods if this does not

work. Since was possible to classify successfully both sets of data studied in this research using

LDA, there was no need to try more complicated methods for the purpose of this study, of which

the foremost aim was to investigate methods of automated feature extraction. A potential problem

with the more complicated techniques is that the more parameters that need to be estimated the

more the analysis will depend on the training data and also possibly the subjective judgements of

the operator.

Another reason for choosing LDA was that it is very quick to run and therefore provides a

good methods for investigating different sets of features. For example carrying out a discriminant

analysis of 6 variables for 75 cases for three classes of spectra, using the leave-one-out method

for the test set (which involved running the program 75 times) took approximately 40 seconds of

CPU time.

LDA can be used both to develop the classification rule and to select the best subset of the

available variables for discrimination. Most statistical software packages, including SPSS, include

methods for subset selection included in the discriminant program. However, this option was not

used in this research as it was reasonably straightforward to find the best subset of variables by

trial and error, using the correlation coefficients as a guide to which variables would provide the

best combinations for discrimination.

The discriminant analysis program first determines the linear decision boundaries and the de-

cision rule using the procedure described in Chapter 3. The boundaries and rules are developed
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using the training set of cases whose class is known. A score is then assigned to each spectrum

of unknown class and this spectrum is assigned to a particular class on the basis of this decision

rule. Then the probability of that spectrum belonging to each class is estimated using equation 3.2.

Details of the SPSS program DISCRIM are given in the manual [Norusis, 1994]. This program

provides:

� the coefficients of the discriminant functions

� the classification results for each case (subject) together with the estimated probabilities of

the case belonging to each class

� the correlation coefficients of the linear discriminant function with each variable included

in the analysis

� the percentage of correctly classified cases for both the test and the training sets.

The steps for carrying out LDA were as follows:

1. Select a subset of the variables (on the basis of their correlation with the class of the subject)

and carry out a LDA of the whole data set,

2. Note the classification results, and also which of the variables which are most highly corre-

lated with the discriminant function (or functions when there are more than two classes)

3. Drop the variable which is least correlated with the discriminant function and repeat the

analysis.

4. If the results are improved or unchanged, add another variable and repeat

5. If not, replace that variable and remove the next least correlated variable

6. Continue this process until the classification results show no change and all the variables

have been added

7. Reduce the number of variables to approximately the number of spectra in the smallest class

divided by 3 by dropping those which have the lowest correlation with the discriminant

function.

This part was used to develop the discriminant rule. The following steps were used to test this

rule:

1. Using the selected variables carry out LDA on all but one of the cases, using the remaining

case as the test set

2. Repeat until each case has been tested.

4.5 Implementation

All the procedures for transforming and processing the spectra were implemented in the program-

ming language C++. This is an object-oriented programming (OOP) language which facilitates

modular software design by allowing the programmer to structure the programs in terms of classes
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which define ‘objects’. Each class acts as a template for an object, and all the procedures (methods)

and variables (called instance variables) that are needed to manipulate the object are ‘contained’

within the class. Thus each class is composed of a constructor which enables the object to be cre-

ated, a list of instance variables and a set of methods for manipulating these variables. In addition

OOP provides a mechanism called ‘inheritance’. This allows ‘child’ classes to be designed which

inherit all the methods, and variables of the parent class, and to which new specialised methods

can be added.

The main class of the program was the class ‘Spectrum’. The variables for this class included

an array to store the datapoint objects, together with variables such as the number of datapoints,

reference frequency of the spectrum and index of highest peak. Methods were defined for each data

manipulation procedure, and included those for phase adjustment, normalising the spectrum and

aligning the peaks. Methods were also included for carrying out the DWT and extracting the values

for statistical analysis, and outputting these into a file in a suitable format for SPSS. Using the

inheritance mechanism two specialised classes ratSpectrum and CarbonSpectrum, defined extra

variables and methods that were needed for the two different types of spectrum, for example for

the extraction of the different types of variables for statistical analysis.

In addition to the spectrum classes, two other classes were defined. The class FID defined

procedures for Fourier transforming and processing the FID’s. The structure of the FID class was

similar to the Spectrum class. Each object of the class being defined by an array of datapoints.

The datapoint objects for both the Spectrum and FID classes were defined by the class DataPoint.

The main variables for this class were the real and imaginary values of each point. The methods

of the class provided procedures for manipulating these values.

The code for implementing the DWT and Fourier transform (the fast Fourier transform) was

based on the algorithms described in [Press et al., 1992]. The code for phase-adjustment was

an implementation of the algorithm described in [Chen and Kan, 1988]. Software (written in C)

for extracting the FID’s from the 13C and 31P datafiles were provided by Hammersmith and St

George’s Hospitals respectively. This code was adapted to provide methods for constructing the

FID and Spectrum objects used in the program.

The statistical package SPSS was used for the statistical analysis, i.e. PCA, calculation of cor-

relation coefficients and LDA. The programs CORR and NONPAR CORR were used to calculate

Pearson and Spearman coefficients respectively. The program FACTOR was used to calculate

the principal components. The program DISCRIM was used for LDA. A specialised macro was

written, using the macro facility of the SPSS language, in order to implement the leave-one-out

procedure for testing the LDA program.

Plots of the spectra were created using the Xgraph program and scatterplots were produced

using the Xgobi package. Xgobi is a particularly useful program which facilitates the investigation

of relationships between variables by allowing three dimensional plots which can be rotated. It

also provides a method for displaying one-dimensional data in the form of a ‘dot plot’. This is a

device which randomly spreads the points out along a second axis for display purposes only. Most

of the procedures used to develop the system could be carried out reasonably quickly. Once the

system had been developed it would take only a few seconds to process a single spectrum, carry

out a wavelet transform and assign a classification to that spectrum.

4.6 Summary

This chapter describes the development of a classification system for magnetic resonance spectra

in which all the processing, i.e. filtering, phasing, peak alignment feature extraction and classifi-
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cation, is fully automated. The methods that were used are discussed in detail, together with the

issues and problems that needed be dealt with at each stage of the development.

The main aim was to investigate methods that can be used to reliably and automatically classify

MRS data, using features that are extracted automatically using the whole spectrum, rather than

the selected metabolite resonances which are normally used to describe MRS data. Methods are

suggested for selection of features purely on the basis of their power to discriminate between

different types of spectra, using no prior knowledge of biochemistry.

Three types of features are suggested: peak heights, spectral datapoints and wavelet coeffi-

cients. Which type of feature is appropriate will depend on the particular set of data. Once the

features have been chosen and extracted from the spectra, correlation coefficients can be used to

select which features to use for the discriminant program, or for further feature reduction using

PCA.

Because pre-processing of the spectra and extraction of discriminatory features require meth-

ods specific to the particular type of data, the chapter concentrates most on these two stages. This

necessitated finding features which could represent the discriminatory information and which can

be extracted automatically.

A summary of the steps that need to be carried out at each of the stages in the development is

given below.

Stage 1 Spectral Processing

1. Pre-process FID by zero filling line broadening and removing dc component

2. Fourier transform FID to produce a Spectrum

3. Phase adjust

4. Inspect each spectrum

5. Align the peaks and reduce spectrum to region containing peaks

6. Normalise each spectrum

Stage 2 Feature Extraction

1. Plot mean spectra and identify differences

2. Carry out wavelet transform (optional)

3. Extract variables from spectra

4. Investigate correlations between variables

5. Calculate principal components of selected variables (optional)

6. Select subsets of variables

7. Select a subset of the extracted features using LDA

Stage 3 Classification
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1. Carry out a LDA using these values and test the resulting discriminant rule using the leave-

one-out procedure.

The system was developed and tested using two sets of data, and therefore the methods that

were used, particularly those for feature extraction, were influenced by the nature of these data

sets. However, because the aim of this research was not to classify one particular set of data but to

investigate general methods which can be used to discriminate between different types and classes

of in vivo spectra, very little reference is made to the particular data sets in this chapter. Instead

this discussion is left to the next chapter where the results of applying these methods to the two

sets of data is described in detail.
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Results

The previous chapter discussed the development of a prototype system to classify MRS data. Its

main purpose was to discuss in detail the practical problems that are involved in designing a system

for automatically classifying MRS data, together with the methods that can be used to for solving

these problems. The aim of this chapter is to describe in detail how the methodology described in

the previous two chapters was applied to the two sets of in vivo data:

� a set of 75 13C spectra obtained in vivo from healthy human volunteers of adipose tissue in

the leg

� a set of 55 31P spectra obtained in vivo from tumorous and normal tissues in rats.

The two specific aims of the work described in this chapter were:

1. to see whether it was possible to design a fully automated system for classifying these

spectra and

2. to develop and test methods for automatically extracting features which could be used to

discriminate between the different classes of spectra.

The initial investigation and development of the system was carried out using the 13C data set.

This data was very suitable for a preliminary study as the signal-to-noise ratio was relatively high

and because it had already been ascertained that it was possible to discriminate between the the

two main groups reasonably well by visually inspecting the spectra.

The second set was more challenging, in that the signal-to-noise ratio was much lower, and

also because it was not easy to discriminate between the different groups by visual inspection of

the individual spectra. None the less good results were obtained for both sets of data. These results

have been previously reported in [Tate et al., 1995] [Tate et al., 1996a] [Tate et al., 1996b].

5.1 The Diet Study

This data set was acquired at Hammersmith Hospital as part of a study to examine how the types

of fat stored in the body are affected by diet. 75 spectra were analysed. The volunteers were all
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normal and healthy and were classified as being either vegan (class 1, n=33), vegetarian (class

2, n=8) or omnivore (class 3, n=34), according to their stated dietary group. Vegetarians were

categorised as those who ate no animal flesh (including no fish), and vegans as those who ate no

animal products, for example eggs, cheese or milk. [Thomas et al., 1995].

The aim of the analysis carried out in this thesis was the development of a system to classify

the spectra according to the dietary group of the subject.

5.1.1 Data

The data consisted of a set of unlocalised coupled 13C spectra obtained on a Picker prototype

MRS system operating at a field of 1.5T using an 8 cm surface coil positioned on the human thigh.

The coupled spectra were acquired using a 90� pulse at a TR of 30 seconds such that the peaks

were fully relaxed. There were 512 points with a dwell time of 100µs per point. This set of data

was obtained at Hammersmith Hospital and had already been Fourier transformed when it was

received. No apodisation, line broadening or resolution enhancing filters had been employed prior

to Fourier transformation. The spectra had been zero filled to 4096 points.

The analysis for this set of spectra was carried out in two stages since initially only half the

data (set 1) was available as the other half (set 2) had not yet been acquired. The first set of data

was used for all the initial investigations and also for selecting which peak height features to use

in the discriminant program. Since the classification results were very similar for both data sets

this section describes the results of the analysis for the whole data set.

5.1.2 Spectral Processing

Since this set of data had already been Fourier transformed and zero filled, and because no apodi-

sation appeared to be necessary, the first procedure to be carried out was to adjust the phase of the

spectra. All spectra were adjusted automatically for zero order phase prior to pattern recognition

analysis using the algorithm described in [Chen and Kan, 1988].

Further processing was carried out to make the spectra compatible for PR analysis, using

the methods that were described in Chapter 4. Initial inspection to the spectra showed that each

spectrum had one peak that was considerably larger than the others and this was selected for the

peak alignment algorithm. This was achieved using the algorithm described in Chapter 4, by

finding the index of the highest point in each spectrum and then retaining 511 points upfield of

this peak and 512 points downfield thus reducing the number of points to 1024. There was no

need in this case to find the spectral region for this peak since it was always the highest point in

the spectrum (shown as peak 18 in Figure 5.1 below).

The resulting vector was normalised to unit length to compensate for arbitrary (vertical) scaling

differences. A visual inspection was carried out to check that the same peaks were aligned together.

This was found to be the case for each spectrum in the study (to within approximately 0.6 ppm),

since the largest peak always occurred in the same position relative to the other peaks.

5.1.3 Extraction of Features from the Spectra

Initial Investigation

In order to get some idea of how the spectra from the three classes differed, and to help identify

the discriminatory features, a mean spectrum was created for each of the three classes: vegan,
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Figure 5.1. Mean 13C spectrum of adipose tissue identifying the 26 peak variables.

vegetarian and omnivore. This was achieved by calculating for each class the mean values of each

datapoint in the spectra (which had been processed as described above). A mean spectrum was

also created for the complete set of 75 spectra showing that 26 peaks could be clearly identified.

These peaks were labelled 1 to 26. Figure 5.1 shows these peaks on the mean spectrum.

The mean spectra for each of the three classes (which all showed these 26 peaks) were then

examined by plotting them on the same graph. This plot showed that significant differences could

be observed by eye between each of the groups; the main variations between the groups could be

observed in the intensities of peaks 3, 4, 5 and 6. Figure 5.2 plots these mean spectra in the region

that includes these four peaks, showing that the means of the intensities of these peaks are higher

for the vegans than the other two groups.

Lesser differences could be observed in the other peaks and for most peaks the mean spectrum

for vegetarians lay between those of the other two extreme classes. The results of this initial

inspection suggested that the groups could be distinguished on the basis of peak heights. It was

thus decided to extract the values of each of these 26 peak heights from each spectrum in order to

see whether they might provide features for classification.

Extraction of Peak Heights

The peak heights were automatically extracted from each individual spectrum of the study using

the average spectrum for the whole group as a template for the peak positions. Twenty-six peaks

were identified and labelled p1 to p26 corresponding to the peak numbers in the labelled spectrum

in Figure 5.1. The index of the datapoint representing each peak, i.e. the highest value in each

peak region, was first identified and then the 26 values were automatically extracted from each

spectrum using these indices. The identification of the 26 peaks was initially carried out by visual
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Figure 5.2. Overlay plot of the mean spectra for the three classes (vegan, vegetarian and

omnivore) showing the region that includes peaks 3–6.

inspection, but the process was subsequently automated using a peak finding algorithm [Abbott,

1994]. To account for slight differences in the positions of the peaks the program selected the

maximum value within two points on either side of the indexed point. Once these values were

extracted a scatterplot was produced of the variables p5 and p6 for each individual. This scatterplot

(Figure 5.3) indicates that a good separation between the two main groups might be obtained the

using either or both of these variables.

Pre-Processing the Spectra Using the Discrete Wavelet Transform

The initial investigation also suggested that it might be possible to classify the spectra using pat-

terns based on spectral shapes, either of individual peaks or of combinations of peaks. It was thus

decided to see whether the DWT might be used as a method of processing the spectra in order to

represent these shapes succinctly.

In order to see whether wavelets might be successfully used as features for classification, 512

points were extracted from each (scaled and normalized) spectrum by selecting 1024 points from

the region �10 to 140 ppm, and taking every other point (note that this did not result in a loss

of information since this zero-filling had been applied to the FID’s). These 512 datapoints were

then transformed into a set of 512 wavelet coefficients, numbered from 1 to 512 by convolving

the basis functions with the spectrum using the wavelet transform algorithm described in [Press et

al., 1992]. As discussed in Chapter 3, this algorithm presents the wavelet coefficients as a vector

filled sequentially with the coefficients of the different scales. For this vector of length 512 (i.e.

29) the coefficients are ordered into 9 scale levels – each scale level representing the data vector

at a certain resolution. Scale level 1 is represented by wavelet coefficients 1 and 2. Scale level i,
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Figure 5.3. Scatterplot showing the value of p5 and p6 for each individual. � represent the

vegans, + the vegetarians and � the omnivores.

where i = 2 : : :9, is represented by wavelet coefficients numbered from 2i�1
+1 to 2i.

Figure 5.4 shows a typical spectrum and its wavelet transform. Coefficient numbers are shown

in powers of two to mark the different scale levels. This figure shows that wavelet coefficients

256-512 have very small values compared with the higher indexed coefficients. It also shows that

the coefficient with the largest intensities tend to be positioned towards the right-hand side of each

scale range. This is because the region with the highest energy in the spectrum, i.e peaks 12–26,

appear at the right-hand side of each spectrum.

5.1.4 Feature Selection and Reduction

The peak variables (1–26) and wavelet coefficients (1–512) together with the class (1, 2 or 3), sex

(labelled 1 for male and 2 for female) and data set number (1 or 2) of each individual were entered

into the SPSS package which was used for all subsequent statistical analyses. [SPSS Inc., 1987].

The following sections describe the methods that were used to reduce the number of variables for

the discriminant program for the two types of features: peak heights and wavelet coefficients.
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Figure 5.4. A typical spectrum and its wavelet transform; the boxed area of the spectrum shows

the region that was transformed, and the marked wavelet coefficients (numbers 3 to 64) indicate

those used for classification.

Peak heights

Correlation coefficients were calculated for all the variables, including the sex, class and set num-

ber of the spectra. The correlation matrix showed that the peak variables p3 to p6 were most

highly correlated with subject class. These correlation coefficients, which had values of �0:65,

�0:75, �0:72 and �0:76 respectively, were all negative indicating that the heights of the peaks 3

to 6 decrease with class. This confirmed the results of the preliminary observations of the mean

spectra which showed that the intensities of the peaks 3–5 were higher for the vegans (class 1)

than the vegetarians (class 2), which in turn were higher than those of the omnivores (class 3).

Some of the other peak variables were also significantly correlated with class, but the absolute

correlations were all below 0.5, except for those of p18 and p20 which were 0:53 and �0:53

respectively. Most of the correlations were negative, with the exceptions of p14, p18, p21 and

p24 to p26. Some of the pairs of peak variables were very highly correlated with one another

(some with absolute values as high as 0:9). These included p3 with p5 and p4 with p6 (Figure 5.1).

Some of the other peak variables were also highly correlated with one another, which indicated

that it might be possible to reduce the number of variables representing the peaks considerably

using PCA.
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Pearson correlation coefficients were used for this analysis since these were more appropri-

ate for all the variables except class, and it had been ascertained that the Spearman and Pearson

correlation coefficients for the peak variables with class had very similar values.

It was interesting that the very small peak (p1) at the low field of the spectrum had a significant

(p<0.01) correlation of �0:64 with sex, i.e. the height of peak 1 is higher for males than for

females. The origin of this peak is unclear, but appears to be related to muscle. Thus subjects with

relatively low fat content generally showed relatively higher intensity for this peak.

Another interesting result was that (p1) had a significant correlation (0.7) with the data set

number. I subsequently discovered that this was due to a slight change in the acquisition time of

the spectra. Fortunately this did not appear to affect the intensities of any of the other peaks, but

this peak was subsequently dropped from the analysis. This peak was also not included in the

region chosen for the wavelet analysis.

On the basis of these correlation coefficients p5 and p6 were selected as individual variables

for the discriminant program. p3 and p4 were excluded, because of their high correlations (> 0:85)

with p5 and p6 respectively.

Since many of the variables were highly correlated, this data set seemed a good candidate

for PCA. Principal components were calculated using all the 25 peak variables. In order to see

whether the spectra could be classified using the more complex region of the spectra which did not

include p5 and p6 PC’s were also calculated using p14 to p26. The principal components which

accounted for 90% of the variance (the first 9 for the whole spectrum and the first 5 for p14 to p26

were then selected for entry into the discriminant program.

5.1.5 Classification Results

The main purpose of the original study of this data set had been to investigate differences between

the two extreme dietary groups, omnivore and vegan. Because of this, and also because of their

small number, the vegetarians were initially excluded from discriminant analysis. Using the leave-

one-out method for obtaining the training set and the procedure described in Chapter 4 for finding

the best discrimination variables, 93% of the unknown cases were classified correctly (5 wrong

out of 67). The best discriminating variables were found to be p5 and p6; the best discriminant

functions being a linear combination of these two variables. P3 and p4 could equally well have

been used as the discriminating variables, since they represent coupled peaks.

The discriminant analysis was then repeated using the principal components for the 25 peak

variables. When the first five components (which accounted for 80% of the variance) were used

as the variables in the discriminant program, 89% of the cases were correctly classified (7 wrong).

The same results were achieved using the 5 principal components which had been calculated

using just the second half of the spectrum, which showed that the spectra could be classified quite

successfully using the peaks less highly correlated with class.

When discriminant analysis was carried out on all three groups, there were a larger number

of misclassifications. This may have been due to the fact that the differences in diet between the

vegetarians and the other two groups is not so clear-cut, and but also may be due to the fact that

the number of vegetarians was much smaller. The results from linear discriminant analysis using

peak heights as the variables are summarized in Tables 5.1 and 5.2.

Using LDA it was also possible to classify the spectra according to the sex of the individual.

When p1 alone was used as the discriminating variable 88% of the cases were correctly classified.
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Table 5.1. Classification results using peak heights as the variables in the discriminant analysis

program.

Actual Class Total Cases Percent of Cases Assigned to Each Class

Vegan Omnivore

Vegan 33 87.9% (29) 12.1% (4)

Omnivore 34 2.9% (1) 97.1% (33)

Percentage of groups correctly classified: 93%

Table 5.2. Classification results using peak heights when vegetarians were included.

Actual Class Total Cases Percent of Cases Assigned to Each Class

Vegan Vegetarian Omnivore

Vegan 33 75.8% (25) 18.2% (6) 6.1% (2)

Vegetarian 8 12.5% (1) 75.0% (6) 12.5% (1)

Omnivore 34 0.0% (0) 29.4% (10) 70.6% (24)

Percentage of groups correctly classified: 73%

Wavelet coefficients

The correlation matrix showed significant correlations (p<0.01) between some of the wavelet co-

efficients and class. The greatest correlations were shown by coefficients 35 (�0:67), 37 (�0:67),

38 (0:73) and 39 (�0:71). These coefficients, because they occur at the beginning of the scale level

indexed by 33� 64, represent the low field region of the transformed spectrum containing peaks

3� 6 as would be expected. Significant correlations were also found for the wavelet coefficients

related to the more complex region of the spectrum (e.g. coefficient 59 (�0:63) near the end of this

scale level). This is an encouraging result since it corresponds to an area of the spectrum where the

peaks are not easily resolved. The most highly correlated coefficients, i.e. those with correlations

greater than 0.5 in absolute value, were nearly all in the range 3 to 64, indicating that it might be

possible to use a combination of these 62 wavelet coefficients to discriminate between the spectra.

Many of these 62 wavelet coefficients were also highly inter-correlated, both within and be-

tween the scale levels. It was therefore decided to apply PCA to these coefficients in an attempt

to further reduce the dimensionality. Although the first two principal components accounted for

only 40% of the variance in the data, the second principal component was highly correlated with

class (0:8). Analysis of this second principal component revealed that it was significantly corre-

lated with the wavelet coefficients associated with the low field region of the spectrum. Figure 5.5,

which shows the values of this principal component for each case shows that very good separation

can be obtained between the two main classes on the basis of this one principal component.

The first 18 principal components which accounted for 90% of the variance in the data were

input as the variables to the discriminant program. 4 out of the 67 cases from the two main groups

were misclassified, a success rate of 94%. When the vegetarians were included, 15 out of the 75

cases were misclassified which represented a success rate of 80%. The results are summarized in

Tables 5.3 and 5.4 and demonstrate an improvement over those when peak heights had been used

as the variables.
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Figure 5.5. Dotplot showing principal component 2 of the wavelet coefficients. This component

was highly correlated with dietary class. � represents the vegans, + the vegetarians and � the

omnivores.

Table 5.3. Classification results using linear discriminant analysis employing wavelet coefficients.

Actual Class Total Cases Percent of Cases Assigned to Each Class

Vegan Omnivore

Vegan 33 90.9% (30) 9.1% (3)

Omnivore 34 2.9% (1) 97.1% (33)

Percentage of groups correctly classified: 94.0%

It should be noted that at a preliminary stage of the study the wavelet coefficients numbered

from 65 –128 were included in the principal component analysis and discriminant analysis proce-

dure described above. However, the results obtained using coefficients 3– 64 gave better results

which justified excluding the higher numbered wavelet coefficients from the subsequent analysis.

5.1.6 Discussion

The results obtained from this set of data show that using linear discriminant analysis it was pos-

sible to separate the two main dietary groups successfully, either using peak heights or wavelet

coefficients. It was possible to do this using a fully automated procedure for all the processing and

analysis of the spectra.

The results using peak heights showed that it was possible to classify successfully this set of

spectra using either two selected datapoints or the first five principal components of all 26 peak

values. The spectra could also be classified using only peaks 12–26, a fact which indicates that
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Table 5.4. Classification results using linear discriminant analysis employing wavelet coefficients

when the vegetarians were included.

Actual Class Total Cases Percent of Cases Assigned to Each Class

Vegan Vegetarian Omnivore

Vegan 33 84.8% (28) 9.1% (3) 6.1% (2)

Vegetarian 8 25.0% (2) 50.0% (4) 25.0% (2)

Omnivore 34 2.9% (1) 14.7% (5) 82.4% (28)

Percentage of groups correctly classified: 80.0%

these methods may be useful for analysing more complex spectra. The expert analyst can usually

determine the dietary group of the subject by standard methods on the basis of peaks p3 to p6.

However, this is not normally possible when these peaks are excluded.

The results using the wavelet transform showed that the spectra could be classified completely

automatically with no need for the locating any peaks. These results suggest that the wavelet

transform might prove a useful tool for classifying groups of spectra that can be discriminated on

the basis of line-shape or spectral pattern. It may also prove useful for classifying spectra with

rolling baselines. A feature of the DWT is that the mean level is represented by the first two

wavelet coefficients. While these coefficients contain large scale information about the spectra,

they may not be necessary for classification, as was indicated in this study. These results also

showed that PCA could be used to reduce the number of variables for discrimination successfully,

especially when it was used in combination with the wavelet transform. These two techniques can

be used to achieve the same objective but the fact that they do so in completely different ways

means that they can be used in combination very effectively. An advantage of using both of these

methods is that the coefficients can be chosen without using knowledge of the class of the spectra

thus removing the possibility of selection bias.

The next section discusses how similar techniques were applied to a set of 31P spectra. These

spectra provided more of a challenge than the 13C data since the SNR was much lower, and also

because the peaks were less clearly defined and less easy to identify. Another problem was that

the number of samples was much small – on average there were only 10 samples in each class.

Nonetheless good results were obtained for this set of data when the classes were examined in

pairs.

5.2 Study of 31P Spectra from Normal and Cancerous Tissues in Rats

5.3 Data

Three tumour types were studied: Morris hepatoma 7777 (fast-growing, poorly differentiated)

and Morris hepatoma 9618a (slow-growing, well differentiated) were grown in female Buffalo

rats; Walker 256 carcinosarcomas were grown in female Wistar rats; and GH3 prolactinomas ware

grown in female Wistar-Furth rats. In all cases, tumours were implanted subcutaneously into the

flank, and generally grew to a size suitable for spectroscopy within 2–3 weeks. The animals used

for studies on normal tissues were male Wistar rats.

Spectra from two classes of normal tissue (10 livers and 10 brains) and four tumours (10

h9618a hepatomas, 13 Walker carcinomas, 4 h7777 hepatomas and 8 GH3 prolactinomas) were
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obtained from anaesthetised rats (i.p. Sagatal) in a SISCO 4.7T spectrometer using ISIS localisa-

tion (volumes 0.22–1.0cm3, chosen after examination of 1H images) with a 25mm surface coil.

5.3.1 Spectral Processing

The FID’s were processed by removing the dc offset (calculated as described in Chapter 4) and

filtered using an initial line-broadening factor of 30 Hz (which was later reduced to 10 kHz – see

section 5.3.3). The number of points, which was initially 4096 was reduced to 1024 since the

apodisation had the effect of cancelling out any signal that might have been present in this region.

After Fourier transformation each spectrum was automatically phased and then normalised by

summing the squares of all the values in the spectrum and dividing each value by the square root

of this sum. The peaks were then aligned using the highest datapoint (i.e. peak) in the region

indexed from 760 to 860 in the data vector The new index for this peak was 461 and the number of

datapoints was simultaneously reduced to 512, which covered the region containing all the main

peaks. This peak was chosen for alignment because a) this is known to be one of the peaks least

affected by pH shift, and b) the initial investigation of the spectra revealed this to be the most

clearly identifiable peak in the study.

5.3.2 Extraction of Features from the Spectra

Initial Investigation

A mean spectrum was created for each class. As with the 13C spectra there appeared to be a

number of clearly identifiable peaks. Figure 5.6 shows the mean spectrum for the largest group,

the Walker’s carcinomas. However, although there were a number of clearly identifiable peaks the

positions of these peaks appeared to shift in position for the different groups. Also there appeared

to be a number of less clearly identifiable peaks on the sides of some of the main peaks. For this

reason, it did not seem to be appropriate to use peak intensities to represent the spectra. Instead,

a different approach was taken and the 512 datapoints were entered into the SPSS package for

further statistical analysis.

The initial stage of the statistical analysis of the spectra was carried out using these 512 values.

The second stage of this analysis involved an investigation of the region of the spectrum which

is known to be affected by the metabolic changes that occur in cancer, the PME region. This

region which contains the lipid metabolite peaks (peaks A–C in Figure 5.7 shown below) was of

particular interest to the biochemists who acquired the data. The analysis of this region involved

further processing the data by extracting the 32 datapoints indexed from ppm 7.6–5.73 from each

spectrum, normalising these 32 points as above, and transforming them using a wavelet transform.

The 512 datapoints and the 32 wavelet coefficients, together with the class number for each

tissue type (numbered from 1 to 6) were then entered into the SPSS program for further statistical

analysis.

5.3.3 Feature Selection and Reduction

Datapoints

Each pair of tissue types was analysed in turn, and correlation coefficients were calculated between

tissue type and each of the 512 spectrum values.
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Figure 5.6. Mean spectrum for the spectra of Walker’s carcinoma.

For each pair, some spectrum values had a highly significant correlation with spectrum class

(p<0.01). These were typically in groups of five or six adjacent values, and coincided with the

positions of the peaks in the spectra, as would be expected. To see whether a lower line broadening

factor might be more effective for this analysis the spectral processing steps were repeated three

times for each FID using a line-broadening factor of 5, 10 and 20 Hz. For each different factor

512 datapoints were extracted as before and the correlation matrix were examined. It was found

that a factor of 10 Hz produced the the highest set of correlations of the datapoint variables with

class. On the basis of these results the datapoints which had been obtained using the factor of 10

Hz were retained and used for all further analysis. The wavelet coefficients were also recalculated

using these spectra.

The value with the highest correlation (with tissue type) from each of the groups of highly

correlated values was selected and entered into the discriminant program.

Figure 5.7 shows the location of these values on a typical spectrum (whose noisy appearance

is due to the low line-broadening factor, chosen for optimal discrimination) and Table 5.5 shows

the location and correlation value of the most highly correlated datapoint in each region for each

pair of tissue types. As can be seen from Figure 5.7, most of the significantly correlated values

correspond to peaks in the spectrum labelled as follows: A, B, C (PME), D, E (unassigned), F(Pi),

G(PCr), H(γATP), I,J(αNTP), K(NAD) and L(βNTP). Some of the values, however occurred in the

region of the shoulder of a peak [Tate et al., 1996a]. There is no entry in Table 5.5 for liver/brain

correlations since these can be easily distinguished
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Class Correlation of class with peaks

A B C D E F G H I J K L

h9618a & GH3 .82 .7 .82 .74 .6

h9618a & Walker .65 .88 .6 .68 .56 .71

h9618a & h7777 .77 .75 .7

GH3 & Walker .6

liver & hepatomas .74 .71 .7 .78 .67 .81 .65

liver & all tumours .64 .58 .64 .64 .56

brain & all tumours .71 .71 .68 .86

Table 5.5. Table showing absolute correlation coefficients between class and value of datapoint at

each of the peaks A to L shown on Figure 5.7. Note, only highly significant correlations

(p<0.01) are shown.
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Figure 5.7. In vivo 31P rat spectrum of Walker carcinoma showing regions highly correlated with

class, assigned as follows: A, B, C (PME), D, E (unassigned), F(Pi), G(PCr), H(γATP),

I,J(αNTP), K(NAD) and L(βNTP).

5.3.4 Classification Results

Table 5.6 summarises the results from discriminant analysis when the leave-one-out method was

used to create the test set. Despite the small number of values that could be used in the program,

at least 86% of the spectra were assigned correctly for each pair of tissue types. The method used

for selecting variables was a form of peak selection. However, unlike the usual method of peak

identification and selection, this method used the differences between groups of spectra to identify

the important datapoints. I have included the results of the pair h9618a & h7777 hepatomas for

completeness although I are aware that their discrimination could be by chance, due to the small

number of h7777 hepatomas.
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Class No. correct Peaks used

h9618a & GH3 20/20 (100%) D H I

h9618a & Walker 22/23 (96%) D I L

h9618a & h7777 13/14 (93%) D G L

GH3 & Walker 18/21 (86%) H K

liver & tumours 41/45 (91%) B E J

liver & hepatomas 24/24 (100%) E A

brain & tumours 45/45 (100%) B C G

Table 5.6. Classification results when highly correlated datapoint values (from the labelled peak

regions) were used in the discriminant program

Class No. correct

h9618a & GH3 19/20 (95%)

h9618a & Walker 21/23 (91%)

h9618a & h7777 13/14 (93%)

GH3 & Walker 15/21 (71%)

liver & tumours 43/45 (96%)

liver & hepatomas 20/24 (83%)

brain & tumours 40/45 (89%)

Table 5.7. Classification results when wavelet coefficients from the PME region of the spectra

were used in the discriminant program

Wavelet Coefficients

For this analysis, 32 points from the PME region (peaks A–C, ppm 7.6–5.73) were selected and

wavelet transformed. Since there were only 32 = 25 coefficients representing 5 scale levels only

half the coefficients, i.e. the last 16 coefficients numbered from 17-32 were discarded for this

analysis. Correlation coefficients were calculated for each of the remaining 16 wavelet coefficients

with spectrum class. For most pairs of tissue types a few wavelet coefficients were significantly

correlated with class. These were selected for use in the discrimination program. Table 5.7 shows

the results. Apart from GH3 & Walker, very good results were obtained (at least 83% correct) for

each pair of tissue types, showing that they can be discriminated using only the PME region on

the basis of peak shape. Examination of this region by eye showed at least three clear peaks in

many of the spectra, but their positions shifted quite considerably from spectrum to spectrum (by

as much as 0.2 ppm), perhaps because of differences in pH or in Mg2+ content. An advantage of

wavelet transformation is that the wavelet coefficients may not be so dependent on these positions

as the original datapoints. This is particularly the case with the first few wavelet coefficients which

represent large scale features in the transformed region of the spectrum. I found that I needed to

use only the first two wavelet coefficients to discriminate successfully between h9618a & Walker

and h9618a & GH3, indicating discrimination was unaffected by exact location of the peaks.

5.3.5 Discussion

In this study the data set was split into pairs of classes and each pair was analysed separately. It

was possible to discriminate between the pairs of tissue types with a success rate of at least 86%

and regions of importance, consisting of a few data points, could be clearly identified - a fact I

found surprising. This meant that it was possible to pinpoint the exact regions in the spectra which

were important for discrimination.
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The wavelet transform has the advantage that it encodes information concerned with the shape

of spectra. Highly correlated wavelet coefficients from the PME region from some pairs of tissue

types produced better results than the original datapoints from the same region. This suggests that

the ability of the wavelet transformation to discriminate on the basis of peak shape has allowed it

to distinguish groups of spectra in which the components of the combined PME peak differ, even

though the spectroscopic method used was incapable of resolving them.

These results suggest that lipid precursor signals contain important information for automated

cancer diagnosis, with only minimal pre-processing. It also indicated which other region in the

spectra might be important for such diagnosis. If the discrimination achieved in this study could

be repeated on patients, it could have a clinical application for non-invasive diagnosis or grading

of tumours. At present, diagnosis and grading are decided upon mainly by subjective (and labour-

intensive) histological examinations of biopsies. If the same information could be obtained from

MRS it would obviate the necessity of a biopsy, an important consideration if the tumour is in

an inaccessible location, e.g. the brain. The fact that it was possible to discriminate between one

tumour type and another was very encouraging, not only because this would be useful in its own

right, but also because it indicates that it may be feasible to extend these methods to discriminate

between more than two groups. For this to be possible, however, we would need much larger data

sets.

5.4 Summary

This chapter describes how the methods described in Chapter 4 were used to classify two sets

of in vivo data; 13C spectra of subcutaneous fat from a group of 75 subjects of three classes,

vegan, vegetarian and omnivore and 31P spectra of 3 classes of normal and 4 classes of tumourous

tissue in rats. With the 13C data it was possible to assign 93% of the subjects to their correct

class using either peak heights or principal components of the wavelet coefficients as the extracted

measurements when the vegetarians were excluded from the analysis and 75% (for peak heights)

or 80% (wavelet coefficients) correctly when they were included. For the analysis of the 31P data

the classes were considered in pairs, due to the small number of subjects in each group. Here

classification rates of between 83% and 100% were achieved depending on which pair of classes

were being discriminated. I consider these results very encouraging. While ideally I would have

liked success rates of 100% this was not likely to be achievable with either sets of data. For the

vegan study the diets of the groups vary widely and the subjects were categorised by their stated

diets, which may not have been quite the same as their actual diets. For example one of the vegans

(a subject who was consistently misclassified) had admitted to eating chocolate! For the 31P study

the number of variables that could be used in the discriminant functions were restricted to only

two or three, depending on which class pairs were being analysed. Thus it was possible to use

only part of the potentially useful information.

For both data sets these results showed that it was possible to successfully classify most of the

spectra, and they demonstrated that fully automated feature extraction was feasible, even when the

small size of the data sets meant that very few features could be used in the discriminant program.

In addition it was found that, since these data sets could be classified using peak intensities or

datapoints which required no further processing, the features could be related back to the original

data very easily.

The results of this study also showed that both the DWT and PCA provided very effective

methods for reducing the dimensionality of the feature space. Used together they provide a pow-

erful combination.
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Discussion

This thesis describes the investigation of pattern recognition techniques for the analysis of MRS

data and develops a fully automated prototype system for classifying in vivo spectra. The motiva-

tion for the project and relevant theory and background are given in Chapters 1–3. Chapters 4 and

5 then discuss the development of the system and the results of applying this system to two sets

of data. The purpose of this final chapter is to sum up the achievements of the work described in

this thesis, to discuss its limitations and to offer suggestions as to how the results from the system

might be presented.

This chapter is divided as follows:

� Original content

� Discussion of the limitations of the system

� Presentation of Results

� Final Words

6.1 Original Content

The main aim of this research was to investigate and develop automated methods for the analy-

sis and interpretation of in vivo MRS data for clinical applications. This involved developing a

prototype system for discriminating between different classes of spectra.

The prototype system was developed using two sets of in vivo data. The methods that were

used to implement this system were described in detail in Chapter 4. Chapter 5 then presented the

results of applying these methods to the two data sets, and showed that for most groups of spectra

very good classification results were obtained. Using linear discriminant analysis it was possible

to classify at least 93% of the individuals from the two main groups of 13C spectra correctly using

either peak heights or principal components of the wavelet transformed data. It was also possible

to classify correctly many of the data from obtained from the 31P study using either datapoints

from the spectrum or wavelet coefficients from a selected region of the spectrum. Good results

were obtained for the 31P study despite the fact that the average number of spectra in each class
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was only ten, meaning that a maximum of three variables could be used in the linear discriminant

program.

These results are very encouraging for two main reasons. Firstly, they show that it is possible

to produce a system to classify these data in which all the stages including filtering, phasing,

peak alignment, feature extraction and classification is fully automated. To my knowledge this

is the first time a classification system has been developed to classify in vivo data in which no

manual intervention is required for pre–processing the spectra. Secondly, it showed that the spectra

could be classified using information from the whole spectrum, without the need for identifying or

explicitly quantifying the peaks. This confirms the results of a number of other studies of in vitro

data, for example [Howells et al., 1992b] [Somorjai et al., 1995b].

This thesis extends previous studies by carrying out a thorough investigation of methods for

extracting features from in vivo spectra which use no prior knowledge of biochemistry. A number

of methods are investigated for extracting salient features from the spectra including principal

component analysis, wavelet analysis and correlation methods. The fact that these methods could

be successfully used to classify the two sets of data studied here indicates that they may be more

widely applicable to other data sets.

A somewhat surprising result was that it was possible to classify the spectra from both data

sets using features that required very little processing of the data, i.e. peak heights and spectral

datapoints. These advantage of using such features is that they can be easily related back to the

original spectrum and can thus pinpoint the exact regions of the spectra that are important for

discrimination.

In this study it was possible to discriminate between the spectra using features that can be

related directly back to the peaks in the spectra, and thus to specific metabolites. Whether or not

this will be possible with spectra acquired under less ideal conditions still remains to be seen. In

this case it may be necessary to use more powerful techniques such as the DWT and PCA for

preprocessing and feature extraction. This study showed that the DWT proves to be a useful tool

for classifying both sets of spectra. Unfortunately was not possible to investigate properly the use

of PCA for the 31P data sets as the numbers in each class were too small. However, this method

could be used to reduce considerably the number of features in the 13C data set. Particularly

good classification results were obtained when the PCA and the DWT were combined. This is

because, while both methods allow the data to be expressed more succinctly they do so in different

ways. The first few PC’s represent the variation between the samples whereas the first few wavelet

coefficients will represent the variation within the sample. The two methods can thus be combined

very advantageously.

The results using the wavelet transform showed that the spectra could be classified completely

automatically with no need for the identification or quantification of peaks. These results suggest

that the wavelet transform might prove a useful tool for classifying groups of spectra that can be

discriminated on the basis of line-shape or spectral pattern.

In order to assess the real worth of these techniques as a general tool for clinical MRS, it will

be necessary to see how successful they are when applied to other sets of data.

6.2 Limitations of the System

This study, as is common with many studies of medical data, was limited by lack of data. Ideally

I would have liked to have had much larger datasets, with the order of hundreds rather than tens

of subjects in each category. I would also have liked to have other data sets on which to test the
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methods that were developed.

The small numbers of data restricted this study in a number of ways. Firstly, it ruled out

the possibility of investigating other classification methods such as non–parametric discriminant

analysis. While LDA produced reasonable classification results for the two sets of data in this

study, other methods may prove to be more suitable for a real system.

Secondly the small number of samples severely restricted the number of variables that could

be used in the discriminant program. Most authors advise that, in order to avoid the problem of

overfitting, the number of variables that are used in the discriminant program should be should be

no more than one third the number of samples in the smallest class [Massart et al., 1988] [Kowalski

and Wold, 1982]. This meant that for the 31P study a maximum of three variables could be used

in the program and therefore all the potential information could not be fully utilised. The small

numbers of data also meant that it was not possible to fully investigate the use of PCA for feature

reduction. This is because PCA can be unstable if there is a large number of variables compared

with the number of samples.

A potential problem of using correlation methods for selecting features is that it introduces the

possibility of selection bias. When the sample size is small it is necessary to use the test set both

for selecting the variables and for testing the classification rule. Selection bias was not a major

worry for the 13C data, because the number of samples was relatively large and it was possible to

select features using only half the data (set 1). Selection bias could also be prevented by choosing

the wavelet coefficients on the basis of scale levels and the PC’s on the basis of the variance that

they explained.

Selection bias was a worry for the 31P data set because with this data it was necessary to use

the test set to select the features. Although features were only selected if it appeared that there was

a good biochemical reason for doing so, i.e. if they corresponded to peak regions in the spectra,

which were known to be related to biochemical differences between spectra, any conclusions

drawn from this study would need to be confirmed using more data.

Another limitation of the work described in this thesis is that it does not address the problem of

how the classification results should be presented. For a system that will be used for real clinical

applications this will be an important consideration. The following section provides a few ideas

of how the results of the system might be presented.

6.3 Presentation of Results

Although the development of a classification system for a particular set of data may be a very

useful exercise in its own right, the main purpose of this study was not specifically to investigate

biochemical differences between different classes of spectra, but to provide methods which will

help with the interpretation of MRS data in order that they can be used as a clinical tool. The

decision to investigate pattern recognition methods of analysis and to develop a prototype classifi-

cation system was taken because most clinical applications will require reliable categorisation of

spectra into distinct groups according to the disease state or stage of the tissue being examined.

Thus it is important to consider how a classification system might actually be used in practice

to help the decision making process of the clinician, and to consider what the output from the

system should be. This means considering what sort of information should be provided, and how

the results of the analysis should be presented in a format that is accessible to the clinician.

The most basic requirement for the system are that it will take an FID signal (or spectrum)
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as input and produces as output a classification for the signal, together with the probability of the

individual belonging to a particular class.

However, because the system is intended to be used as a clinical aid, it is also important that it

should also provide as much information as possible as to how any decisions were reached. Thus,

the system should provide not only the results of the classification, but should also provide reasons

why a subject has been assigned to a particular class.

Since the decision to assign a certain individual to a particular class will be determined by its

linear discriminant score or scores, it would be useful to give the value of this score and show

how this can be compared with the scores of individuals whose class is known. A plot of these

scores will show how the discriminant score of the subject compares with others of the same class,

and can show how typical or atypical the score is for that class. If there are only two classes, and

thus only one discriminant function, this can be achieved by using a one–dimensional dot plot, or

alternatively a histogram. If there are more than two classes, a scatterplot can be used.

The linear discriminant functions, and therefore the discriminant scores, will very much de-

pend on the variables that have been selected for use in the discriminant program. If these features

can be related to meaningful factors in the spectrum, such as relative levels of certain metabolites,

it may be useful to output the values of these features. A method of presenting results commonly

used in clinical chemistry is to present such results in a table. One row of the table includes the

mean values of all metabolites measured and the other row contains the values for the sample. An-

other method would be to display the values of the features, together with those of a representative

sample of the training data two at a time on a scatterplot.

What constitutes meaningful features will depend very much on the particular application and

will most probably need to be determined by those with an expert knowledge of the biochemistry

of the spectra. The closer these features are to the actual peaks in the spectra, the easier it will

be to give them biochemical meaning. When the features are peak intensities, or datapoints, bio-

chemical interpretation will normally be possible by assigning the peak or ppm region to a known

metabolite. When the features are wavelet coefficients however, such assignment will be more

difficult. Although the index of the wavelet coefficients will give an idea of the scales and position

of the features in the spectrum that they represent, it may be more difficult to relate the wavelet

coefficients back to individual metabolites. It may be even more difficult to interpret principal

components. Although in some cases it may be possible to ascribe some physical meaning to

individual principal components, this can only be hoped for rather than expected.

Suggested output for the classification system at each of the three stages in the system are as

follows.

Stage 1 Spectral Processing

� A plot of the spectrum to check for major errors in data acquisition or processing (for ex-

ample incorrect peak alignment).

� A plot of the spectrum on a overlay plot with mean spectra for the classes to see how the

spectrum compares. It may be possible at this stage to see which group it belongs to.

Stage 2 Feature Extraction

� Scatterplots of the features to be used in the discriminant program.

� A table of values of these features



82 Chapter 6. Discussion

Stage 2 Classification

� The classification for the spectrum, together with the probabilities that the spectrum belong

to a certain class

� A 1–dimensional dot plot or 2–dimensional scatterplot of the discriminant scores of the

spectrum together with those of the training data.

6.4 Conclusions

This research has developed a novel and useful technique for analysing MRS data. The main

objective of this thesis was to develop automated methods for analysing and interpreting in vivo

MRS data. The approach used was somewhat different to most previous studies for automated

analysis, in that the aim was to provide qualitative, rather than quantitative, information, that is

to identify the type of tissue from which the spectrum was derived. The standard approach is to

identify the metabolites and then to look for differences. In this thesis I have shown that it is

possible to directly classify tissue samples without first evaluating the metabolite concentrations.

Metabolite measurements require prior knowledge of their significance and can also be difficult to

obtain. This thesis has demonstrated that a statistical approach to identifying significant features

is sufficient.

A major by-product of this approach is we can derive quantitative information about the

metabolite concentrations. Additionally, the identification of these discriminatory features may

provide important clues for subsequent biochemical analysis [Tate et al., 1996a].

This approach is novel and useful because the information is suitable for direct use by clini-

cians. It is hoped that this research will form a suitable basis for direct clinical application of MRS

and will help facilitate its use as a clinical tool.
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