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Abstract

This paper presents experiments using Radial Basis Function (RBF) networks to tackle the unconstrained face recognition

problem using low resolution video information. Input representations that mimic the effects of receptive field functions

found at various stages of the human vision system were used with RBF networks that learnt to classify and generalise over

different views of each person to be recognised. In particular, Difference of Gaussian (DoG) filtering and Gabor wavelet

analysis are compared for face recognition from an image sequence. RBF techniques are shown to provide excellent levels

of performance where the view varies and we discuss how to relax constraints on data capture and improve preprocessing to

obtain an effective scheme for real-time, unconstrained face recognition.

1. Introduction

A face recognition system must be robust with respect to the immense variability of the human face and generalise over a

wide range of conditions to capture the essential similarities for each individual. It is only recently that work on biologically-

motivated, statistical approaches to face recognition has begun to deliver real solutions (Beymer & Poggio 1995, Brunelli

& Poggio 1993, Moghaddam & Pentland 1995, Pentland et al. 1994). One of the main problems that these approaches

tackle is dimensionality reduction to remove much of the redundant information in the original images. There are many

possibilities for such representations of the data, including principal component analysis, Gabor filters and various isodensity

map or feature extraction schemes. In particular, it seems that appropriate preprocessing of input representations for a face

recognition scheme can overcome the problems of lighting variation and multiple scales. Other sources of variation such as

face orientation, expression, occlusion etc. still remain.

In our work (Howell & Buxton 1995a, Howell & Buxton 1995c, Howell & Buxton 1996) we use an adaptive learning

component based on RBF networks to tackle the face recognition problem. We want our face recognition scheme to generalise

over a wide range of conditions to capture the essential similarities of a given face. The RBF network has been identified as

valuable model by a wide range of researchers (Bishop 1995, Girosi 1992, Moody & Darken 1988, Poggio & Girosi 1990).

Its main characteristics are first, its computational simplicity (only one layer involved in supervised training which gives

fast convergence), and second, its description by a well-developed mathematical theory (resulting in statistical robustness).

RBFs are good for practical vision applications as they provide a guaranteed, globally optimal solution via simple, linear

optimisation. In this paper we contrast the use of DoG filters and Gabor wavelet analysis as input representations for our

networks. More important, we also extend our work on static images to the time vaying case where we have to recognise an

individual in an image sequence. In general, this involves a greater degree of variability in scale, shift, pose, and expression

as we cannot pick and choose the views. We first consider training and testing on images from a seated subject where scale

and shift are quite constrained. Then we go on to consider the case where the subject is free to walk about and is tracked
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Figure 1. A complete Primary sequence for class carla, after segmentation but before preprocessing
(boxes indicate frames used for training with selection interval of 10).

(imperfectly). Training and testing in this unconstrained situation is much more problematic. We consider schemes to enforce

temporal consistency and to use the confidence measure delivered by the RBF networks.

2. Description of Problem

Initial research often requires restrictions on the variability of test data in order that fundamental principles can be inves-

tigated in isolation. However, this means that such applications are far removed from real-world environments, where data is

noisy and unpredictable. Besides a theoretical desire to remove constraints, there is a real commercial demand for a system

that can rapidly identify a person from a small group of users.

In this paper, we address the problem of recognising individuals from a small group (less than 100) in real-time from

low-resolution video image sequences. Face recognition is a computationally expensive process and to obtain such real-time

performance requires certain trade-offs. A police record application would require access to enormously large amounts of

data but accuracy would have priority over speed, as instantaneous recognition would not be the primary factor. To cope with

hundreds of thousands of individuals, views may be limited to face-on or profile only with the face at a specific region of the

image, allowing precise pin-pointing and measurement of feature points. We are considering a less constrained environment,

where people can move around freely, and so we need to recognise the person from the full range of views where the face is

visible.

In addition, the example police application would require extremely low error rate, and only very few (maybe even just

one) image of each individual would be available. We have opted for a lower accuracy method that is considerably faster,

and provides a reasonable discarding of low-confidence output. The use of image sequences means we have an enormous

abundance of data, and if the current image is ambiguous, it can be discarded and the next considered (see Figure 1). The

temporal coherence of human faces allows the matching of series of frames linked by movement information with the use of

‘time windows’ to combine information from several frames.

3. The RBF Network Model

The RBF network is a two-layer, hybrid learning network (Moody & Darken 1988, Moody & Darken 1989), with a

supervised layer from the hidden to the output units, and an unsupervised layer, from the input to the hidden units, where

individual radial Gaussian functions for each hidden unit simulate the effect of overlapping and locally tuned receptive fields.

Each function has an associated centre width value which defines the nature and scope of the unit’s receptive field response,
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Figure 2. A complete Secondary sequence for class steve, after segmentation but before pre
processing. As only frontview face detection has been implemented at this stage, some nonface
frames are included and profile views, although segmented, are incorrectly scaled.

giving an activation that is related to the relative proximity of the test data to the training data. This allows a direct measure

of confidence in the output of the network for a particular pattern, as very low (or no) output will occur if the pattern is more

than slightly different to those trained, allowing the removal of outliers.

The weights can be adjusted using the Widrow-Hoff (Widrow & Hoff 1960) delta learning rule, however, the single layer

of linear output units permits a matrix pseudo-inverse method (Poggio & Girosi 1990) for their exact calculation. The latter

approach allows training of the network in a small fraction of a second. In the test phase, 500 images are processed in around

two seconds, giving a single classification in around 4 ms, which is already adequate for real-time sequences.

4. Specification for Image Sequences

The image sequences used in the tests reported here are the result of collaboration with Stephen McKenna and Shaogang

Gong at Queen Mary and Westfield College (QMW), University of London, who are researching real-time face detection and

tracking (McKenna & Gong 1996). We have devised two types of sequences to simulate a (fairly) unconstrained environment,

termed ‘Primary’ and ‘Secondary’.

The intention is to train the network with a controlled set of data – the Primary image sequences – known to include the

types of variability which we want our trained system to be tolarant to (thus including 180� range of pose angles but a blank

background), and to test on totally unrelated data – the Secondary image sequences. This total separation of training and test

data is to allay any fears that the system is using spurious environmental details, such as lighting or background features, to

classify individuals. This problem can always appear in databases where test and training data are collected at the same time

and manner or arbitrarily selected from a central database.

The Primary image sequences are intended to provide suitable data to train the system for an on-line source of test images.

They consist of a person moving from one profile view to the other whilst sitting on a chair (to limit body movement) against a

plain, mid-grey background (to limit background effects). Eight Primary sequences have been collected so far, each featuring
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a different person. They range in length from 62 frames to 94 frames, 554 images in total.

The Secondary image sequences are intended to simulate an on-line source of test images, and are much more variable

than the Primary image sequences to simulate tracking in an unconstrained envirionment. They will consist of fairly long

sequences of one person moving around a room, allowed to move from side to side and stop and start movement against a

cluttered, changing background. Only one preliminary Secondary sequence has been collected so far; this has 169 frames.

A typical sequence of images from a motion-based head tracker such as Figure 1 illustrates that perfect registration of the

head and face can never be guaranteed, except by manual methods. Future developments of the face detection scheme can be

expected to discard any non-face frames, improving recognition, whilst maintaining temporal continuity.

5. Pre-processing of Segmented Data

Two main techniques are used for the preprocessing of the images: Difference of Gaussian (DoG) filtering and Gabor

wavelet analysis at a range of scales. One way of thinking about these input representations and mapping them onto our RBF

networks is to use the analogy with visual neurons. The receptive field of such a neuron is the area of the visual field (image)

where the stimulus can influence its response. For the different classes of these neurons, a receptive field function f(x; y)

can be defined. For example, retinal ganglion cells and lateral geniculate cells early in the visual processing have receptive

fields which can be implemented as DoG filters (Marr & Hildreth 1980). Later, the receptive fields of the simple cells in the

primary visual cortex are oriented and have characteristic spatial frequencies. Daugman (1988) proposed that these could

be modelled as complex 2-D Gabor filters. Petkov et al. (1993) successfully implemented a face recognition scheme based

on Gabor wavelet input representations to imitate the human vision system. Our earlier studies (Howell & Buxton 1995b)

showed that these later stages of processing make information more explicit for our face recognition task than the earlier

DoG filters.

In contrast to more deterministic methods using warping based on registration of features, eg. Craw et al. (1995), our

approach uses simpler preprocessing, but learns to discriminate using the RBF networks to overcome occlusion arising out

of head rotation.

The experiments presented here concentrate on two specific applications of these techniques:

DoG convolution with a scale factor of 0.4, with a reduced range of grey-levels, with thresholding to give zero-crossings

information. A 25�25 image gave 441 samples per image.

Gabor ‘A3’ sampling (described in Howell & Buxton (1995b)), with a full range of grey-levels. Four non-overlapping

scales were used with three orientations including sine and cosine components. A 25�25 image gave 510 coefficients

per image.

Images at set intervals were extracted from the Primary sequences in order to train the network, all the others were used

for testing. This Train/Test ratio is recorded below.

6. Results

To test the ability of the RBF network to classify test images after training with the Primary sequences, experiments were

done initially by dividing the Primary sequences into training and test groups (see Table 1).
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(a) Interval Train/Test Initial % % Discarded % After Discard

2 278/276 96 12 98

5 114/440 88 30 99

10 60/494 75 50 90

20 33/521 58 68 90

30 24/530 48 81 93

50 16/538 40 81 86

(b) Interval Train/Test Initial % % Discarded % After Discard

2 278/276 99 2 100

5 114/440 98 7 100

10 60/494 95 16 98

20 33/521 87 35 94

30 24/530 73 55 94

50 16/538 67 62 94

Table 1: Effect of selection interval and pre-processing methods using a standard RBF Network trained and tested on the

eight Primary sequences: (a) DoG (b) Gabor.

It can be seen that although the initial results tail off as the sampling interval increases, the confidence discard allows the

maintenance of a high standard of performance. In particular, that the network can still recognise 94% of the images with

a pose angle range of 180�, having been trained with only two for each class (at a sampling interval of 50), is a great

achievement.

The Secondary sequences are still in development, but encouraging results have been collected from preliminary experiments

(see Table 2) where the RBF network is trained with the Primary sequences and tested with a provisional Secondary sequence.

What is immediately apparent is that the Gabor preprocessing is essential for this inherently more variable data.

(a) Interval Train/Test Initial % % Discarded % After Discard

2 278/169 43 69 42

5 114/169 32 76 19

10 60/169 44 75 35

20 33/169 23 76 21

(b) Interval Train/Test Initial % % Discarded % After Discard

2 278/169 61 41 77

5 114/169 56 45 77

10 60/169 60 43 81

20 33/169 54 42 66

Table 2: Effect of pre-processing methods using a standard RBF Network trained on eight Primary sequences and tested with

a separate Secondary sequence: (a) DoG (b) Gabor.
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H H H H H H H H H H H H H H H H H H H

H H H H H H H H H H H H H H H H H H H

H H H H H H H H H H H H H H H H G G G

H . H H H H H H H . H H H . . . . G .

G H H G H H G H D G G G G G H H H F G

G . . . H . . . . G . . G . H H . . G

H H G G G G D G G G G G H H E H H H H

. H . . . . . . . . . . . H . H . H H

Figure 3. Typical output for a section of the Gabor preprocessed Secondary sequence containing
class steve (H). Top row of letters shows initial output, lower row output after discard of lowconfidence
values (‘.’ indicating such a discarded value).

7. Temporal Integration

An on-line source of data cannot be evaluated like a conventional database, as not all of the data is yet present, nor is it

known who will be present in the environment or for how long. If an assumption of temporal coherence is made, ie that one

person will not transform into another instantly, high-confidence information in a ‘time window’ can be utilised in periods of

low-confidence output to lend support to the current output (assuming it is the same classification, though conflicting output

could also be useful). In this envirionment, a running total of output values for a time window can be kept, and a expression

for the individual currently in view given. For this to work, fairly low (above random) success rates will suffice.

To illustrate this technique, consider Figure 3, which shows a section of the test Secondary sequence. Table 3 shows how use

of time windows to re-assess the output value can affect performance. Periods of correct output followed by random values

can be interpreted as all correct, using the last stable output as a type of memory. It can be seen that such techniques which

take advantage of temporal coherence can be used to improve performance.

Time Window Initial % % After Discard

1 66 86

3 72 86

5 68 89

10 68 100

Table 3: Results using varying time windows in ouput for the sequence shown in Figure 3.
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8. Performance with More Classes

It must be emphasised that this research is at a preliminary stage but that the technique shows promise for scaling up to large

databases. Although only a few individuals are shown in our image sequences, this type of network has been shown to work

well with larger numbers of classes. For example, the Olivetti Research Laboratory database of faces1 with 400 images of 40

people can be distinguished with a high level of performance (see Table 4).

Images per Person Train/Test Initial % % Discarded % After Discard

5 200/200 84 39 95

4 160/240 80 43 95

3 120/280 72 52 91

2 80/320 64 60 87

1 40/360 46 70 81

Table 4: Results for ORL Face Database, using Gabor preprocessing, averaged over two different selections.

9. Conclusion/Future Work

Several points can seen from the results:

1. The RBF network is shown to generalise well from samples in classifying faces (3-D complex shapes) in real-time

sequences.

2. Gabor preprocessing is shown to give a more generally useful input representation than the DoG preprocessing, espe-

cially for the more difficult Secondary sequence.

3. The confidence measure used in discarding uncertain classifications is shown to be important for handling sequences

especially where a small training set is used.

In conclusion, the locally-tuned linear Radial Basis Function (RBF) networks showed excellent performance in the simpler

face recognition task when trained and tested on images from Primary sequences. This is a promising result for the RBF

techniques considering the high degree of variability due to the varying views (mostly rotations) of a person’s face in these

data sets. The results so far from the Secondary sequences also show considerable promise, especially with the additional

use of temporal coherence to improve performance. In the these sequences, the face detection scheme (McKenna & Gong

1996) currently selects and rescales faces in near face-on views but does not discard the others. It is expected that further

development of this scheme will allow improvements in the reliable and consistent labelling of faces in unconstrained image

sequences. It is clear that the ability of the RBF networks to give a measure of confidence, which allows temporal integration

over image frames where the visual evidence is poor, is essential for this development.

Work is progressing together with colleagues at QMW in refining the face detection scheme and automated on-line learning

of new classes of individual. The next stage of development will integrate this refined on-line face detection and localisation

with the trained RBF networks to cope with real-time image sequences including the usual variations in illumination as well

as position, scale, view and facial expression. It is clear from the work of Bishop (1995) and others that using statistically

based techniques is the key to good performance. The RBF techniques are mathematically well-founded, which gives a clear

advantage in engineering a solution to our application problems.

1available via ftp for comparative tests, further information is at: http://www.cam-orl.co.uk/facedatabase.html
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