
Cellular Encoding for Interactive Evolutionary Robotics

Fr�ed�eric Gruau and Kameel Quatramaran

University of Sussex,

School of Cognitive and Computing Sciences,

Evolutionary and Adaptive SYstems Group (EASY)

Falmer, Brighton, BN1 9QH UK

http://www.cogs.susx.ac.uk/

and

Centrum Voor Wiskunde en Informatica

Department of Algorithms and Architecture

Kruislaan 413 SJ Amsterdam

gruau@cwi.nl, http://www.cwi.nl/~ gruau/gruau/gruau.html

Abstract

This work reports experiments in interactive evolutionary robotics. The goal is to evolve an Arti�cial

Neural Network (ANN) to control the locomotion of an 8-legged robot. The ANNs are encoded using

a cellular developmental process called cellular encoding. In a previous work similar experiments have

been carried on successfully on a simulated robot. They took however around 1,000,000 di�erent ANN

evaluations. In this work the �tness is determined on a real robot, and no more than a few hundreds

evaluations can be performed. Various ideas were implemented so as to decrease the required number of

evaluations from 1,000,000 to 200. First we used cell cloning and link typing. Second we did as many

things as possible interactively: interactive problem decomposition, interactive syntactic constraints,

interactive �tness. More precisely: 1- A modular design was chosen where a controller for an individual

leg, with a precise neuronal interface was developed. 2- Syntactic constraints were used to promoting

useful building blocs and impose an 8-fold symmetry. 3- We determine the �tness interactively by

hand. We can reward features that would otherwise be very di�cult to locate automatically. Interactive

evolutionary robotics turns out to be quite successful, in the �rst bug-free run a global locomotion

controller that is faster than a programmed controller could be evolved.

1 Introduction

1.1 The motivation for Interactive Evolutionary Algorithm

In [3] Dave Cli�, Inman Harvey and Phil Husbands from the university of Sussex lay down a chart for

the development of cognitive architectures, or control systems, for situated autonomous agent. They claim

that the design by hand of control systems capable of complex sensorimotor processing is likely to become

prohibitively di�cult as the complexity increases, and they advocate the use of Evolutionary Algorithm (EA)

to evolve recurrent dynamic neural networks as a potentially e�cient engineering method. Our goal is to try

to present a concrete proof of this claim by showing an example of big (> 16 units) control system generated

using EA. The di�erence between our work and what we call the \Sussex" approach is that we consider EAs

as only one element of the ANN design process. An engineering method is something which is used to help

problem solving, that may be combined with any additional symbolic knowledge one can have about a given

problem. We would never expect EAs to do everything from scratch. Our view is that EA should be used

1



2

interactively in the process of ANN design, but not as a magic wand that will solve all the problems. In

contrast with this point of view, Cli�, Harvey and Husband seem to rely more on EAs. In [3] they use a

direct coding of the ANN. They �nd ANN without particular regularities, although they acknowledge the

fact that a coding which could generate repeated structure would be more appropriate. The advantage of

the Sussex approach is that it is pure machine learning, without human intervention. In contrast, we use

EA interactively in the ANN design. This is similar to supervised machine learning.

1.2 How do we supervise the evolutionary algorithm?

The key element that enables us to help the EAs with symbolic knowledge is the way we encode ANNs.

What is coded is a developmental process: how a cell divides and divides again and generates a graph of

interconnected cells that �nally become an ANN. The development is coded on a tree. We help the EA by

providing syntactic constraints, a \grammar" which restrict the number of possible trees to those having

the right syntax. This is similar to program in C needing to satisfy the C-syntax. Syntactic constraints

impose a prior probability on the distribution of ANN. One advantage of our approach is that we are able to

study the structure of our ANN, identify some regularities, and help the emergence of them by choosing the

appropriate syntactic constraints. We don't want to use neurons in a sort of densely connected neural soup,

a sort of raw computational power which has to be shaped by evolutionary computation. Instead we want

a sparsely connected structure, with hierarchy and symmetries, where it is possible to analyse what's going

on just by looking at the architecture. We think one needs a lot of faith to believe that EAs can quickly

generate complex highly structured ANNs, from scratch. Perhaps nature has proven it is possible, but it

took a lot of time and a huge number of individuals. Our approach is to use symbolic knowledge whenever

it is easy and simple. By symbolic we mean things which can be expressed by syntactic constraints which

are formally BNF grammars. By easy we mean symmetries that anybody can perceive. We see symbols as a

general format that can de�ne the symmetries of the problem or decompose a problem into sub-problems, or

else provide building blocks. The discovery of such things is time-expensive to automate with evolutionary

computation, but easily perceived by the human eye. Any non-scienti�c person can point out the symmetries

of the 8-legged robot, and thus build the \symmetry format". We view Evolutionary Computation of ANN

as a \desing ampli�er" that can \ground" this symmetry format on the real world. This is may be another

way to address the well known symbol grounding problem.

1.3 The challenge of this work

It is possible to automate problem decomposition and symmetry detection. First of all we should say that

we still do automatic problem decomposition in this work, the EA automatically decomposes the problem of

generating 8 coupled oscillators, into the problem of generating a singleton, and putting together copies of it.

However we give some information about the decomposition, since we provide the number 8. In [6] we show

that the EA could alone decompose the 6-legged locomotion problem into the sub-problem of generating

a sub-ANN for controlling one leg and put together six copies of the sub-ANN. There we did not give the

number 6. We needed however a powerful IPSC860 32 processors parallel machine, and over 1,000,000

evaluation. We are now working with a real robot (see �gure 1), and each �tness evaluation takes a few

minutes, and is done by hand. The challenge of the paper was to solve the same problem with only a few

hundreds of evaluations. At the outset, this did not seem promising. Four ideas made it possible:

� We enhanced the developmental process by adding cellular cloning and link typing,

� Using syntactic constraints, We forced three cloning divisions at the root of the cellular code, so as to

be sure that an 8-fold symmetric network would develop.

� Each leg has two degrees of freedom, and two output units are needed to control them. We �rst evolved

a leg controller to reduce those two outputs to a single output commanding the forward stroke and the

return stroke. This way the problem is simpli�ed to the task of generating 8 coupled oscillators.

� We determined the �tness by hand. We visually monitored the EA so as to reward any potentially

interesting feature that would otherwise had been very di�cult to detect automatically. We steer the

EA starting from generating easy oscillatory behavior, and then evolving the leg coupling.



3

Figure 1: The OCT1 8-legged robot

The paper presents what is cellular encoding, cell cloning and link typing, how we use syntactic con-

straints, experiments done with only one leg, and then with all the legs. Automatically generated drawing

represent di�erent ANN that were found at di�erent stages of the evolution. We discuss the behavior of the

robot, and try to explain it based on an analysis on the architecture, whenever possible. The description

tries to render how it feels to breed robots.

2 Review of Cellular Encoding

Cellular encoding is a language for local graph transformations that controls the division of cells which grow

into an Arti�cial Neural Network (ANN) [5]. Other kind of developmental process have been proposed in

the literature, a good review can be found in [8]. Many schemes have been proposed with partly the goal of

modeling biological reality. Cellular encoding has been created with the sole purpose of computer problem

solving, and its e�ciency has been shown on a range of di�erent problem, a review can be found in [4]. We

explain the basic version of Cellular Encoding in this section. A cell has an input site and an output site and

can be linked to other cells with directed and ordered links. A cell or a link also possesses a list of internal

registers that represent local memory. The registers are initialized with a default value, and are duplicated

when a cell division occurs. The registers contain neuron attributes such as weights and the threshold value.

The graph transformations can be classi�ed into cell divisions and modi�cations of cell and link registers.

mother
1

2
1

2

1

2

1

2

1

2

SEQ PAR FULL CPO CPIMother cell

Figure 2: Illustration of main type of division: SEQ, PAR, FULL, CPO, CPI.

A cell division replaces one cell called the parent cell by two cells called child cells. A cell division

must specify how the two child cells will be linked. For practical purposes, we give a name to each graph

transformation; these names in turn are manipulated by the genetic algorithm. In the sequential division

denoted SEQ the �rst child cell inherits the input links, the second child cell inherits the output links and

the �rst child cell is connected to the second child cell. In the parallel division denoted PAR both child cells

inherit both the input and output links from the parent cell. Hence, each link is duplicated. The child

cells are not connected. In general, a particular cell division is speci�ed by indicating for each child cell

which link is inherited from the mother cell. The FULL division is the sequential and the parallel division



4

combined. All the links are duplicated, and the two child cells are interconnected with two links, one for each

directions. This division can generate completely connected sub-ANNs. The CPO division (CoPy Output)

is a sequential division, plus the output links are duplicated in both child cells. Similarly, the CPI division

(CoPy Input) is a sequential division, plus the input links are duplicated. Before describing the instructions

used to modify cell registers it is useful to describe how an ANN unit performs a computation. The default

value of the weights is 1, and the bias is 0. The default transfer function is the identity. Each neuron

computes the weighted sum of its inputs, applies the transfer function and obtain s and updates the activity

a using the equation a = a + (s � a)=� where � is the time constant of the neuron. See the �gures 7 11

and 13 for examples of neural networks. The ANNs computation is performed with integers; the activity is

coded using 12 bits so that 4096 corresponds to activity 1. The instruction SBIAS x sets the bias to x=4096.

The instruction DELTAT sets the time constant of the neuron. SACT sets the initial activity of the neuron.

The instruction STEP (resp LINEAR) sets the transfer function to the clipped linear function between �1

and +1 (resp to the identity function). The instruction PI sets the sigmoid to multiply all its input together.

The WEIGHT instruction is used to modify link registers. It has k integer parameters, each one specifying

a real number in oating point notation: the real is equal to the integer between -255 and 256 divided by

256. The parameters are used to set the k weights of the �rst input links. If a neuron happens to have more

than k input links, the weights of the supernumerary input links will be set by default to the value 256 (i.e.,

256

256

= 1).

The cellular code is a grammar-tree with nodes labeled by names of graph transformations. Each cell

carries a duplicate copy of the grammar tree and has an internal register called a reading head that points

to a particular position of the grammar tree. At each step of development, each cell executes the graph

transformation pointed to by its reading head and then advances the reading head to the left or to the right

subtree. After cells terminate development they lose their reading-heads and become neurons.

The order in which cells execute graph transformations is determined as follows: once a cell has executed

its graph transformation, it enters a First In First Out (FIFO) queue. The next cell to execute is the head

of the FIFO queue. If the cell divides, the child which reads the left subtree enters the FIFO queue �rst.

This order of execution tries to model what would happen if cells were active in parallel. It ensures that a

cell cannot be active twice while another cell has not been active at all. The WAIT instruction makes a cell

wait for a speci�ed number of steps, and makes it possible to also encode a particular order of execution.

We also used the control program symbol PROGN. The program symbol PROGN has an arbitrary number

of subtrees, and all the subtrees are executed one after the other, starting from the subtree number one.

Consider a control problem where the number of control variables is n and the number of sensors is p.

We want to solve this control problem using an ANN with p input units and n output units. There are

two possibilities to generate those i/o units. The �rst method is to impose the i/o units using appropriate

syntactic constraints. At the beginning of the development the initial graph of cells consists of p input units

connected to a reading cell which is connected to n output units. The input and output units do not read

any code, they are �xed during all the development. In e�ective these cells are pointers or place-holders

for the inputs and outputs. The initial reading cell reads at the root of the grammar tree. It will divide

according to what it reads and generate all the cells that will eventually generate the �nal decoded ANN.

The second method that we often prefer to use, is to have the EA �nd itself the right number of i/o units.

The development starts with a single cell connected to the input pointer cell and the output pointer cell.

At the end of the development, the input (resp. output) units are those which are connected to the input

(resp. output) pointer cell. We let the evolutionary algorithm �nd the right number of input and output

unit, by putting a term in the �tness to reward the network which have a correct number of i/o units. The

problem with the �rst method is that we can easily generate an ANN where all the output units output the

same signals, and all the inputs are just systematically summed in a weighted sum. The second method

works usually better, because the EA is forced to generate a speci�c cellular code for each i/o unit, that will

specify how it is to be connected to the rest of the ANN, and with which weights. To implement the second

method we will use the instruction BLOC which blocs the development of a cell until all its input neurons

are neurons, and the instruction TESTIO which compares the number of inputs to a speci�ed integer value,

and sets a ag accordingly. The ag is later used to compute the �tness.

Last, the instruction CYC is used to add a recurrent link to a unit, from the output site to the input site.

That unit can then perform other divisions, duplicate the recurrent link, and generates recurrent connections

everywhere.



5

3 Enhancement of Cellular Encoding

We had to enhance cellular encoding with cloning division, and the use of types. We also implemented

another way to obtain recurrent links. All these new elements are reported in this section.

The cloning operation is really easy to implement, it is done by encapsulating a division instruction into

a PROGN instruction. After the division, the two child cells only modify some registers and cut some links,

then they simply go to execute the next instruction of the PROGN, and since they both execute the same

instruction, it generates a highly symmetric ANN. Figure 3 represent a simple example of clone.

SEQ

PAR

PAR

PAR PAR

PAR PAR END END END END

END END END END

Initial Step 1 Step 2 Step 3

Figure 3: The cloning operation, the above ANN is developed from the code PROGN(SEQ)(PAR)(PAR)(END)

which contains three clone division. The development takes three steps, one for each clone.

The instruction that we are now presenting have a version for the input unit which ends by the letter

'I' and one for the output units which ends by the letter 'O'. We are now going to use another link register

called the type register, which will be initialized when a link is created between two child cells, and that is

later used to select links for cutting, reversing, or setting the weight. We also introduce two sets of generic

instruction one to select links, and another one to set link register.

The instructions beginning by `C' and continuing by the name of a register r are used to select links. This

instruction selects the links whose register is equal to the value of the argument. For example CTYPEI(1)

selects all the input links for which the type register is equal to 1. There is another register called NEW which

is a ag that is set each time a new link is created between two child cells, or a recurrent link is added.

CNEWO(1) selects all the newly created links, going out of the output site.

The instructions beginning by `S' and continuing by the name of a register are used to set the value of

a register, in some previously selected links. For example the sequence PROGN(CNEWI(1))(STYPEI(2)) sets

the type register of newly created links from the input site, to the value 2. In this work, we only use this

instruction for the weights, and for the type.

We also use the instruction RESTRICTI and RESTRICTO which has two arguments x and d

x

. It is used to

reduce a list of preselected links. Let say there are 10 input links whose type is 2. We can select the 5th and

the 6th using the sequence PROGN(CTYPEI (2))(RESTRICTI(5)(2)).

The type register together with the select and the set instructions can be used to encode the connections

from the neurons to the input and output pointer cell. Those connection are crucial, since they determine

which are the input and the output units. Using type registers, we can let each neuron individually encode

whether it is or it is not an input or an output unit. We assign two di�erent types, say 0 and 1, to the link

that links the ancestor cell to respectively the input pointer cell and the output pointer cell. We ensure that

each time a cell divide, the links get duplicated, so that at the near end of the development, all the cells are

connected to both the input and the output pointer cell. But then we ensure that each cell can potentially

cut the links whose type are 0 or 1. In other words, if a cell wants to be an input unit, it just does nothing,

but if it does not want, then it has to cut its input link of type 0.

Last, we use another instruction to add recurrent links. The instructions REVERSEI and REVERSEO dupli-

cates a previously selected link from cell a to cell b, and changes the direction of the duplicate, make it go

from cell b to cell a.



6

<nn>[0..8];

<axiom> ::= <nn>

<nn> ::= ( PAR(<nn>)(<nn>) )

| ( CPO(<nn>)(<nn>) )

| ( SEQ (<nn>)(<nn>) )

| ( <attribute> )

<attribute> ::=

(PROGN : set[0..4] of

(WEIGHT: list[8..8] of

(integer[-255..+255]))

(DELTAT(integer[1..+40]))

(SBIAS(integer[-4096..+4096]))

(STEP) )

Figure 4: Tutorial example of syntactic constraints

4 Syntactic Constraints

We used a BNF grammar as a general technique to specify both a subset of syntactically correct grammar-

trees and the underlying data structure. The default data structure is a tree. When the data structure is

not a tree, it can be list, set or integer. By using syntactic constraints on the trees produced by the

BNF grammar, a recursive nonterminal of the type tree can be associated with a range that speci�es a

lower and upper bound on the number of recursive rewritings. In our experiments, this is used to set a lower

bound m and an upper bound M on the number of neurons in the �nal neural network architecture. For the

list and set data structure we set a range for the number of elements in these structures. For the integer

data structure we set a lower bound and an upper bound of a random integer value. The list and set

data structures are described by a set of subtrees called the \elements." The list data structure is used

to store a vector of subtrees. Each of the subtrees is derived using one of the elements. Two subtrees may

be derived using the same element. The set data structure is like the list data structure, except that each

of the subtrees must be derived using a di�erent element. So for example, the rule

< A >::= (list[2::2]of(0)(1))

generates the trees ((0)(0)), ((0)(1)), ((1)(0)), ((1)(1). The rule

< A >::= (set[2::2]of(0)(1))

generates only the trees ((0)(1)) and ((1)(0)).

Figure 4 shows a simple example of syntactic constraints used to restrict the space of possible solutions.

The nonterminal <nn> is recursive. It can be rewritten recursively between 0 and 8 times. Each time is it

rewritten recursively, it generate a division and adds a new ANN unit. Thus the �nal number of ANN units

will be between 1 and 9. Note that in this particular case, the size of the ANN is proportional to the size of

the genome, therefore constraints of the grammar in �g. 4 which controls the size of genome result directly

in constraints on ANN growth which controls the ANN size.

The nonterminal <attribute> is used to implement a subset of four possible specializations of the ANN

units. The �rst 8 weights can be set to values between �1 and +1. The time constant can be set to a value

that ranges from 1 to 40, and the bias is set to a value between �1 and +1. The transfer function can be set to

the STEP function instead of the default transfer function. Since the lower bound on the set range is 0, there

can be 0 specializations generated, in which case the ANN unit will compute the sum of its inputs and apply

the identity function. Because the upper bound on the set is 4, all the 4 specializations can be generated.

In this case, the neuron will make a weighted sum, subtract the bias, apply the clipped linear function. If the

lower and the upper bound had been both 1, then exactly one and only one of the feature would be operator.

This can be used to select an instruction with a given probability. For example, the sequence PROGN: set

[1..1] of (WAIT) (WAIT) (WAIT) (CYC) generates a recurrent link with a probability of 0:25.



7

Crossover. Crossover must be implemented such that two cellular codes that are syntactically correct

produce an o�spring that is also syntactically correct (i.e. that can be parsed by the BNF grammar).

Each terminal of a grammar tree has a primary type. The primary label of a terminal is the name of the

nonterminal that generated it. Crossover with another tree may occur only if the two root symbols of the

subtrees being exchanged have the same primary label. This simple mechanism ensures the closure of the

crossover operator with respect to the syntactic constraints.

Crossover between two trees is the classic crossover used in Genetic Programming as advocated by

Koza [9], where two subtrees are exchanged. Crossover between two integers is disabled. Crossover between

two lists, or two sets is implemented like crossover between bit strings, since the underlying arrangement

of all these data structures is a string.

Mutation. To mutate one node of a tree labeled by a terminal t, we replace the subtree beginning at this

node by a single node labeled with the nonterminal parent of t. Then we rewrite the tree using the BNF

grammar. To mutate a list, set or array data structure, we randomly add or suppress an element. To

mutate an integer, we add a random value uniformly distributed between �max(2; (M � n)=8). M and m

are the upper and lower bounds of the speci�ed integer range.

Each time an o�spring is created, all the nodes are mutated with a small probability. For tree, list

and set nodes the mutation rate is 0.05, while for the integer node it is 0.5. Those probability may be

reset at run time of the EA.

5 The leg controller

5.1 The challenge

The leg does a power stroke when it pushes on the ground to pull the body forward, and the return

stroke when it lifts the leg and takes it forward. The challenge in this �rst experiment was to build a good

leg controller, one that does not drag the leg on the return stroke, and that starts to push on the ground

right at the beginning of the power stroke. The ANN had one single input. The input of 4096 on the input

unit must trigger the power stroke, and the input of 0 must trigger the return stroke That implies the right

scheduling of four di�erent actions: when exactly the neuron responsible for the lifting and the swinging lift

up and down, swing forward and backward.

5.2 General setting

The highlevel command of return stroke or power stroke was given by hand, by pushing on a button, during

the genetic run, so as to be able to reproduce the movement whenever and as many times as desired. The

EA used 20 individuals, the �tness was given according to a set of features: the highest and the lowest leg

position had to be correct, the movement of the leg must start exactly when the signal is received, there

must not be dragging of the leg on the return stroke, so the leg must �rst be lifted and then brought forward.

Second the leg must rest on the oor at once on the power stroke, therefore the leg must be �rst put on

the oor and then moved backward. Each of these features determined a range of �tness, the ranges where

chosen in such a way that for all the features that were checked, the intersection of the ranges was not empty.

The �tness was then adjusted according to a subjective judgement. The ranges evolved during the run, so as

to �t the evolution. The EA was run around 30 generations. Fitness evaluation is much quicker than with

the complete locomotion controller, because we have to watch the leg moving for only a very short period of

time to be able to assess the performance, That is how we did up to six hundred evaluations.

5.3 Syntactic constraints used for the leg controller

We now comment on the syntactic constraints used in this run, which are described in �gure 5.2. We did not

used link typing or clone instructions for the leg controller, the ideas to use them came to us when we began

to tackle the problem of evolving the whole locomotion controller. The non terminal <nn> generates one

neuron, each time it is rewritten, since it can be rewritten between 6 and 20 times, the number of neurons

will be between 7 and 21. The division instructions are classic, except for the SHARI1 where the input



8

<nn>[6..20];

begin

<axiom> ::= (LABEL

(SEQ (WAIT) (PAR

(<nn>)

(PROGN

(PAR)

(PAR(PAR(PAR(WAIT)(WAIT))(WAIT))(PAR(WAIT)(PAR(WAIT)(PAR(WAIT)(WAIT)))) ) ) ) ) )

<nn> ::= (SEQ(<nn>)(<nn>))

| (PAR(<nn>)(<nn>))

| (SHARI1(<nn>)(<nn>))

| (CPI(<nn>)(<nn>))

| (CPO(<nn>)(<nn>))

| (FULL(<nn>)(<nn>))

| (<tunit>)

| (<sunit>)

<tunit> ::= (PROGN (STEP)

(PROGN : set[1..3] of

( DELTAT (integer[1..40]))

( WEIGHT: list[8..8] of ( integer[-256..+256]) )

( SBIAS (integer[-4096..+4096])) ) )

<sunit> ::= (PROGN

(LINEAR)

(PROGN : set[2..2] of

( WEIGHT: list[8..8] of ( integer[-1024..+1024]) )

( SBIAS (integer[-4096..+4096])) ) )

Figure 5: Syntactic constraints used for the leg controller

links are shared between the two child cells, the �rst child gets the �rst input, and the second child gets the

other inputs. The ANN begins by generating 14 fake output units using parallel division (one clone and 7

normal). Those units reproduce the input signal. In this way, we can compare the movement on the leg

whose controller is evolved, with the raw signal that moves the 7 other legs. The non-terminal <nn> is

rewritten between 6 and 20 times, and �nally the neuron specializes either as a temporal unit (non-terminal

<t-unit> ) or as a spatial unit (non-terminal <s-unit>.) The temporal units have a threshold sigmoid and

a time constant that is genetically determined. They are used to introduce a delay in a signal, and the

spatial units have a linear sigmoid, and a bias that is genetically determined. They are used to translate

and multiply a signal by genetically speci�ed constants. Those two types of units are the building blocks

needed to generate a �xed length sequence of signals of di�erent intensities and duration. The duration is

controlled by the temporal units, and the intensity by the spatial units.

5.4 Explanation of the solutions

Figure 7 presents the leg controller found by the Evolutionary Algorithm, together with four di�erent settings

of the activities inside the ANN, and the corresponding leg positions. Figure 6 shows its genetic code after

some hand-made obvious simpli�cations, such as merging a tree of PROGNs.. Neuron e controls the lift,

neuron f controls the swing and neuron a is the input neuron. While the ANN is completely feed-forward,

yet it can generate a short sequence of di�erent leg commands. Because we use neurons with time constants,

di�erent events can happen at di�erent time steps. In Step 1, the input to the ANN is 0, and the leg is

forward down, the input is then changed to 4096 to initiate the power stroke. Step 2, we are in the middle



9

SEQ (PROGN(STEP) (DELTAT(1))) (CPI (SEQ (PROGN(LINEAR)(WEIGHT(-693 )

(-1024 )(360 )(-252 )(-300 )(-984 )(-849 )(610 ))(SBIAS(3497 )))

(CPO (PROGN(STEP)(SACT(3458 ))) (PROGN(STEP)(DELTAT(39 ))) ) ) (PAR

(PROGN(LINEAR)(WEIGHT(-693 )(-1024 )(360 )(-252 )(-300 )(-984 )(-706 )

(796 ))(SBIAS(1864 ))) (PROGN(LINEAR)(WEIGHT(-914 )(40 )(736 )(-622 )

(-1024 )(-984 )(-706 )(610 ))(SBIAS(-2321 ))) ) )

Figure 6: The genetic code of the Champion leg controller

up

forward
down

middle
up

a

b

c

d

middle
middle
down

backward
down

fbias

tau
1

-693

e

down
middle
down

backward
down

forward
2 3

4

1

e

-5000 -9000

3000

Step 1

a

0

d

e f

4096

-7000

a

e ff

Step 3 Step 4

e

b b

cc

d d

c

3500

2000

f

0

-305

1300

4000

a

b

1864

-202

4096

4224

-12000 4800

4096

Step 2

39

lift swing

-1024

-914
3

40

-693

tau

tau

3497

bias
-2321

bias

360 736

b

a

c

d

-9000 9000

4224

4096

3500

0

Figure 7: The leg controller, and four di�erent settings of the activities inside the ANN, together with the

corresponding leg positions. The default values are not represented. The default weight is 256, the default

bias is 0, and the default time constant is 3. The diagonal line means the linear sigmoid, the stair case means

the step function sigmoid.

of the power stroke, neuron e receives an even more negative input, this has no e�ect, since it was already

over negative, the leg just stays on the ground. On the other hand, neuron f is brought to negative value,

so the leg goes backward relative to the body, and since the leg is on the ground, the body moves forward.

Step 3, the power stroke is �nished, we now initiate the return stroke the input is set to 0. Step 4, we are

in the middle of the return stroke, neuron a is 0, but neuron c had not yet time to increase its activities,

because of the time constants. Therefore, neuron e is positive, and the leg is up in the middle. When the

return stroke terminates, we are back to step 1. Neuron c being positive force the neuron e to become again

negative, and the leg is back on the ground. Initially we wanted to terminate the return stroke with the

leg up, and to bring it down on the power stroke, the controller evolved in another way, and we thought

it would be acceptable. We realized later, that it is actually much better this way, because the robot has

always his leg on the ground, except when it is in the middle of a return stroke. So it does not loose balance

often. There is another unexpected interesting feature of this controller. We put a security on the robot

driver, so that at each time step the leg cannot move more than a small amount, this was to avoid warming

of the servo motors. The evolutionary algorithm used this feature. It generates extreme binary leg position.

Nevertheless, the leg moves continuously, because it cannot move more that the predetermined upper bound.

Believe it or not, that was totally unexpected.



10

<axiom>::=(LABEL(SEQ

(SEQ

(PAR(<command>)(<command>))

(PROGN

(WAIT(4)) (CTYPEI(-1)) (RESTRICTI(0)(1)) (STYPEI(0)) (CTYPEI(-1))

(STYPEI(1)) (CTYPEO(-1)) (STYPEO(0))

(<evolved>) ) )

(PROGN

(BLOC)

(TESTIO8)

(SHARI (JMP12) (SHARI (JMP12) (SHARI (JMP12) (SHARI (JMP12) (PROGN (SWITCH) (SHARI (JMP12)

(PROGN (SWITCH) (SHARI (JMP12) (PROGN (SWITCH) (SHARI (JMP12) (JMP12)

(1) )) (1) )) (1) )) (1) ) (1) ) (1) ) (1) ) ) ))

Figure 8: Syntactic constraint specifying the general structure

6 The locomotion controller

6.1 The Challenge

We have previously evolved ANN for a simulated 6-legged robot, see [6]. We had a powerful parallel machine,

an IPSC860 with up to 32 processors. We needed 1,000,000 of ANNs to �nd an ANN solution to the problem.

In this study, one ANN takes a few minutes to assess the �tness, because the �tness is manually given, and

it takes some time to see how interesting the controller is. One time we even spent an hour trying to �gure

out whether the robot was turning or going straight, because of the noise that was not clear. The challenge

of this study was to help the EA so as to be able to more e�ciently search the genetic space and solve the

problem with only a few hundreds of evaluations instead of one million.

6.2 General setting

There are some settings which were constant over the successful run 2, and run 4, and we report them

here. The way we give the �tness was highly subjective, and changed during the run depending on how

we felt the population had converged or not. We realized that the role of the �tness is not only to reward

good individuals, but also to control genetic diversity. Since there is a bit of noise when two individuals

are compared, the selective pressure can be controlled by the �tness. The rewarding must be done very

cautiously, otherwise newly �t individual will quickly dominate the population. We do not want genetic

convergence to happen too quicly. We are quite happy to see a new good performing phenotype, and are

inclined to give it a good rank, to be sure that it is kept for a while. However, if we see that same guy

reappear again and again, we may kill it to avoid dominence. We followed some general guidelines. The

�tness was a sum of three terms varying between 0.01 and 0.03: The �rst term rewards oscillations, and

discourages too slow or too quick oscillations. The second term rewards the number of legs which oscillate,

the third term rewards the correct phase between the di�erent leg oscillators, and the correct coupling. We

were very afraid to give big �tnesses, and wanted to put �tnesses di�erence in the range of the noise that

exists when a Boltzmann tournament takes place. So our �tness seldom went above 0.1 .

We started with a population of 32 individuals so as to be able to sample building blocks, and reduce

it to 16 after 5 generations. At the same time as we reduced the population, we lowered all the mutation

rates (set list and tree) to 0.01 except the integer mutation rate which was increased to 0.4, the idea was to

assume that the EA had gotten the right architecture, and to concentrate the genetic search on the weights.

The weights were mutated almost one time out of two. The selective pressure was also augmented: the

number of individual participating in Boltzmann tournament was increased from 3 to 5. Those tournaments

are used to delete individuals or to select mates. We no longer wanted genetic diversity, but rather genetic

convergence of the architecture, similar to tuning an already working solution. We got the idea to use genetic

convergence from the SAGA paradigm of Inman Harvey [7]. It is possible to give a �tness �1, the e�ect is

that the individual is immediately thrown to the garbage, and not counted. We threw away the motionless



11

SHARI

(d)

(f)

SHARI

(c)

JMP
12

JMP
12

JMP
12

JMP
12

JMP
12

JMP
12

JMP
12

JMP
12

JMP
12

2

5 6 7 8

3 41

(a)

10

0

(g)

<Axiom>

(b)

BLOC

<command>

<evolved>

(e)

Figure 9: What the Syntactic constraint specifying the general structure do: The initial situation is (a), with

the two pointer cells represented by a square, and the ancestor cell by a circle. (b) The general structure

is speci�ed after the three �rst divisions, two input units will execute a genetic tree generated by the non-

terminal <command>, which is not used anyway. The central cell will develop the core of the controller,

the bottom cell waits for the core to develop, then in un-blocs, check that it has exactly 8 neighbor, (it is

the case here, but it could not, and then makes 7 SHARI division in (d) and (e), The last four divisions are

interleaved with SWITCH operator, so as to set the leg numbers as is indicated in (g). Finally the 8 child

cells make a JMP 12, where 12 is just the number of the tree where the cellular code that encodes a leg

controller has been stored.

individuals, and those who had not the right number of input/output units. As a results, to generate the

�rst 32 individual in the initial population, we go over one hundred evalutations.

6.3 Syntactic constraints used in all the runs

The �rst part of the syntax remains the same in the di�erent run. It is represented in �gure 8. It just

speci�es some �xed cellular code that is always to be part of any individuals. This codes a general structure

which is developed in �gure 9. We now details the execution of the code. First it sets the type of the links

to the output pointer cell to 0 and develops an ANN with two input units typed 0 and 1. It then generates a

cell which will execute the beginning of the evolved code, (<evolved>), and another cell blocked by the BLOC

instruction. The input cells are not used. The blocked cell waits that all its neighbors are neurons, then it

unblocks and executes the TESTIO instruction which has the e�ect to check the number of inputs, here it

test whether it is equal to 8, and set a ag accordingly. This ag will be used in the �tness evaluation, to

throw away those ANNs which does not have exactly 8 outputs units. The unblocked cell then goes on to

execute the cellular code that develop the previously evolved leg controller at the right place. For this it

used an ad-hoc division called 'SHARI' and also the 'SWITCH' operator which is used to assign number to

the output units that match a logical numbering of the legs. This order is speci�ed in �gure 10 (g).



12

7 Log of the experimental runs

We did only �ve run, and we are proud of it. That is a proof that the method works well, it doesn't need

weeks of parameter tuning. That's useful because one run is about two days of work. So we report the �ve

runs, even if only one of them was really success-full, and the other were merely used to debug our syntactic

constraints.

7.1 Analysis of run 0 and run 1

The �rst two runs were done with only seven legs, because a plastic gear on the eighth leg had burned, the

robot had stubbornly tried to run into an obstacle for 30 seconds. As a result, ANNs were evolved that

could made the robot walk with only seven legs. Run 0 brought an approximative solution to the problem.

But after hours of breeding we input accidentally a �tness of 23, which had the e�ect to stop the EA, the

success predicate being that the �tness is greater than 1. Run 1 also gave a not so bad quadripod, as far as

we can remember, but we realized there was a bug in the way we used the link types which were not used

at all. Instead of selecting a link and then setting the type we were �rst setting and then selecting, which

amounts to a null operation. We had simply exchanged the two alleles. When we found out the bug, we

were really surprised that we got a solution without types, but we think that's an interesting feature of EAs,

even if your program is bugged, the EA will take care of it!.

7.2 Syntactic Constraints used in the second run

The syntactic constraints used for the second run are reported in 10. The core of the controller is developed

by the cell executing the non-terminal <evolved>. This cell makes clones, and then generates a sub-ANN.

The non-terminal <clone> is rewritten exactly 3 times, and generates exactly 3 clones, therefore an ANN

with an 8-fold symmetries will be generated. The non-terminal <nn> is rewritten between 1 and 6 times,

and generates a sub-ANN having between one and seven units. Because of the preceding 3 clones, this

sub-ANN will be duplicated 8 times, however, one of those 8 sub-ANNs can potentially more than one leg.

The clone division and the normal cell division are speci�ed in a similar way. The general type of the

division is to be chosen between FULL, PAR, SEQ, CPI and CPO. Right after dividing, the two cells execute

a di�erent sequence of cutting operators generated with the <op> non-terminal. It is possible to adjust the

probability of cutting link by �rst specifying how often we want to cut, and then how much links of a given

type we want to cut, using the non-terminal <restrict>. We tune this probability so as to obtain ANNs

not too densely connected. The second child sets the type of the newly created link between the two child

cells, if there are some, using the non-terminal <settype>. When a cell stops to divide, it sets all its neuron

attributes, the cellular code is generated by the non-terminal <unit>. First we reverse some links or/and

add a recurrent link. We choose a particular the \amount of recurrence" by setting the probability with

which recurrent links are created. <unit> then generates a time constant, some weights, a threshold, an

initial activity, and �nally the sigmoid type. The PI unit makes the product of its input. We use the PI

unit with a small probability, because it is highly non-linear, and we do not want to introduce too much

non-linearity.

7.3 Analysis of the second run

The wavewalk gait is when the robot moves one leg at a time, the quadripod gait is when the robot moves

the legs four by four. For the second genetic run, we implemented a mechanism to store nice individuals,

and be able to print them and �lm them afterwards. We now describe a selection of the di�erent champions

that were found during the second genetic run. They are shown in �gure 11. At generation 0, the ANNs are

a bit messy, densely connected. About 75 percents of the ANNs do not have the correct number of outputs,

that is 8 outputs, they are directly eliminated. For this reason, the generation 0 takes quite more time than

the other generations. Later the individuals have most of the time the right number of outputs. Among

those who have the correct number of outputs, most of the ANN do not even make the robot move, also a lot

of them make random movement, this is when a threshold unit is connected directly to the servos, its input

is near to 0, therefore its output oscillates between 0 and 4096 due to the 1 percent of random noise that is

added to the net input. Some ANNs produce a short sequence on one leg before the motionless state. They



13

<clone> [3..3];

<nn> [1..6];

<evolved> ::= <clone>

<coef2> ::= (SWEIGHTO: list[16..16] of (integer[0..+512]))

<clone>::= (PROGN (FULL(<opi>)(<opo>)) (<clone>) | (PROGN (PAR(<opi>)(<opo>)) (<clone>))

| (PROGN (SEQ(<opi>)(<opo>)) (<clone>)) | (PROGN (CPI(<opi>)(<opo>)) (<clone>))

| PROGN (CPO(<opi>)(<opo>)) (<clone>)) | (<nn>)

<nn> ::= (FULL ( PROGN(<opi>)(<nn>)) (PROGN(<opo>)(<nn>)) )

| (PAR ( PROGN(<opi>)(<nn>)) (PROGN(<opo>)(<nn>)) )

| (SEQ ( PROGN(<opi>)(<nn>)) (PROGN(<opo>)(<nn>)) )

| (CPI ( PROGN(<opi>)(<nn>)) (PROGN(<opo>)(<nn>)) )

| (CPO ( PROGN(<opi>)(<nn>)) (PROGN(<opo>)(<nn>)) )

| (<unit>)

<opo> ::= (PROGN (<op>) ( <settype> ) (WAIT (integer[2..4])) )

<opi> ::= (PROGN(<op>)(WAIT (integer[0..2])))

<op> ::= (PROGN

( PROGN: set[0..7] of

(PROGN(CTYPEI (0) )(<cuti>)) (PROGN(CTYPEI (1) )(<cuti>))

(PROGN(CTYPEI (2) )(<cuti>)) (PROGN(CTYPEI (3) )(<cuti>))

(PROGN(CTYPEI (4) )(<cuti>)) (PROGN(CTYPEI (5) )(<cuti>))

(PROGN(CTYPEI (6) )(<cuti>)) (PROGN(CTYPEI (7) )(<cuti>)) )

( PROGN: set[0..7] of

(PROGN(CTYPEO (0) )(<cuto>)) (PROGN(CTYPEO (1) )(<cuto>))

(PROGN(CTYPEO (2) )(<cuto>)) (PROGN(CTYPEO (3) )(<cuto>))

(PROGN(CTYPEO (4) )(<cuto>)) (PROGN(CTYPEO (5) )(<cuto>))

(PROGN(CTYPEO (6) )(<cuto>)) (PROGN(CTYPEO (7) )(<cuto>)) ) )

<cuti> ::= (PROGN (<restricti>)(RMI))

<cuto> ::= (PROGN (<restricto>)(RMO))

<unit> ::= (PROGN

( PROGN : set[0..2] of

( WAIT ) (WAIT ) ( <cyc> ) ( PROGN: list[0..7] of (<reverse> ) ) )

(PROGN ( DELTAT (integer[1..40]))( <weight> )

( SBIAS (integer[-4096..+4096])) ( SACT (integer[-4096..+4096])) ) (<type>) )

<reverse> ::= (PROGN (CTYPEI(integer[1..7])) (<restricti>) (REVERSEI) )

<command> ::= (PROGN

(WAIT(200))(DELTAT(1)) (SBIAS(0)) (PROGN(CTYPEO (0) )(<coef2>))

(PROGN(CTYPEO (1) )(<coef2>)) (LINEAR) )

<weight> ::= (PROGN

(PROGN(CTYPEI (2) )(<coef>)) (PROGN(CTYPEI (3) )(<coef>))

(PROGN(CTYPEI (4) )(<coef>)) (PROGN(CTYPEI (5) )(<coef>))

(PROGN(CTYPEI (6) )(<coef>)) (PROGN(CTYPEI (7) )(<coef>)) )

<coef> ::= (SWEIGHT: list[7..7] of (integer[-4096..+4096]))

(SWEIGHT: list[7..7] of (integer[-256..+256]))

<restricti> ::= (RESTRICTI(integer[0..2])(integer[1..10]))

<restricto> ::= (RESTRICTO(integer[0..2])(integer[1..10]))

<type> ::= (LINEAR)| (LINEAR)|(LINEAR)|(LINEAR)|(LINEAR)|(STEP)|(STEP)|(STEP)|(STEP)|(STEP)

(PROGN(DELTAT(1))(PI))

<cyc> ::= (PROGN (RESETNEW) (CYC) (<settype>) )

<settype> ::= (PROGN (CNEWI)

(PROGN : set[1..1] of

(STYPEI(2)) (STYPEI(3)) (STYPEI(4))(STYPEI(5))(STYPEI(6)) (STYPEI(7))))

Figure 10: Syntactic constraints for the second run



14

generation 8

generation 10 generation 11 generation 12

generation 7

generation 0 generation 3 generation 4

generation 6

Figure 11: Champions of the second run



15

get a �tness like 0.001. One of them produced an oscillation on four legs. During the next two generations,

we concentrated on evolving oscillations on as many legs as possible, giving �tnesses between 0.01 and 0.02,

depending on how many legs were oscillating, and how good was the period and the duration of respectively

the return stroke and the power stroke. At generation 3, we started to have individuals with a little bit of

coordination between the legs. We watched an embryo of wavewalk which very soon vanished because the

leg went out of synchrony. The coupling was to weak. The ANN is represented in �gure 11 on the second

picture, you can see that it is very sparsely connected. The next ANN at generation 4 generated an embryo

of quadripod. Four legs were moved forward, then four other legs, then the 8 legs were moved backward.

At generation 6 we got an ANN made of four completely separated sub-ANNs each one was controlling two

legs, due to a di�erent initial setting of the activities, the di�erence of phase was correct at the beginning,

and we obtained perfect quadripod, but after 2 minutes, the movement decreased in amplitude, four legs

come to a complete stop, and then the four other legs. Generation 7 gave an almost good quadripod, the

phase between the two pairs of four legs was not yet correct. The ANN is probably a mutation of the guy

at generation 3, because the architecture is very similar. Generation 8 gave a slow but safe quadripod walk.

The coupling between the four sub-ANNs is strong enough to keep the delay in the phase of the oscillators.

Only the frequency needs to be improved, because that's really too slow. Generation 10 produced a correct

and fast quadripod, but not the fastest possible. Generation 11 produced a guy which walked a little bit

faster, due to an adjustment of the phase between the two pairs of four legs. The frequency did not improve.

Furthermore there was no coupling between the legs. Generation 12 did not improve, We show it because

it has a funny feature. The input neuron was not used in all our experiment, it was to control the speed

of the robot, but we could not yet go that far. However its activity was set to 2000, and what happen at

generation 12 was that an ANN was produced that used this neuron to di�erentiate the phase between the

two pairs of sub-ANNs that were controlling the two pairs of four legs.

Except at generation 0 where we always have a great variety of architectures, you can see that the general

organization of the ANN remain similar throughout the whole run. It has 8 sub-ANNs, four of them control

8 legs, one for two contiguous legs, and can potentially ensure that two contiguous leg on one side are out

of phase. The four other ANN are in-between, some times they are not used at all, as is the case in the

champion of generation 11 and 12. The 8 Sub-ANNs taken separately have some recurrent links. However, if

each Sub-Ann is modeled as one neuron, the architecture becomes feed-forward. The Sub-Anns that control

the rear legs send information to all the other Sub-Anns. They are the two master oscillators which impose

the rhythm. The other sub-ANNs, although they could suposedly run independently, have their phase

locked by the master oscillators.. We realized that in this run, it was not possible to mutate the general

architecture. without destroying the whole genetic code, because that would imply replacing a division by

another. We think it explains the fact that the general architecture did not change. So we decided to change

the syntactic constraints in the next run so as to make the mutation of the general architecture possible,

and more thoroughly explore the space of general architectures.

7.4 Analysis of the third run

The third run lasted only 5 hours, because of a typing mistake in the �rst generation. We typed a high �tness

on the keyboard, for a bad individual who kept reproducing all the time during the next three generation.

Being unable to locate it and kill it, we had to kill the whole population, a bit like the story of the mad cow

disease which recently happened in England.

7.5 Syntactic Constraints used in the fourth run

Our motivation to do another run was to enable mutation of the general structure. We also realized that

they were still bugs in the syntactic constraints and we �xed them. The new syntactic constraints are shown

in �gure 12. To enable mutation of the general structure, instead of implementing <clone> as a recursive

non-terminal, we put three occurrences of it, and use it in a non-recursive way. In this way, it is possible

to mutate any of them, without having to regenerate the others. Second, we used only the FULL division

for the general structure, and force the EA to entirely determine type by type, which link are inherited and

which are not. This can be mutated independently, and may result in making possible \ soft mutation" that

modify a small part of the division. Whereas if we mutate a division from CPI to PAR, for example, all the



16

<evolved> ::= ( PROGN(<clone>)(<clone>)(<clone>)(<nn>))

<clone>::= (FULL(<opi>)(<opo>))

<opo> ::= (PROGN (<op>) (<settype>) (WAIT (integer[0..4])) )

<opi> ::= (PROGN(<op>)(WAIT (integer[14..18])))

<op> ::= (PROGN

( PROGN: set[0..4] of

(PROGN: list[1..2] of (PROGN(CTYPEI (2) )(<cuti>)) )

(PROGN: list[1..2] of (PROGN(CTYPEI (3) )(<cuti>)) )

(PROGN: list[1..2] of (PROGN(CTYPEI (4) )(<cuti>)) )

(PROGN: list[1..2] of (PROGN(CTYPEI (5) )(<cuti>)) ) )

( PROGN: set[0..4] of

(PROGN: list[1..2] of (PROGN(CTYPEO (2) )(<cuto>)) )

(PROGN: list[1..2] of (PROGN(CTYPEO (3) )(<cuto>)) )

(PROGN: list[1..2] of (PROGN(CTYPEO (4) )(<cuto>)) )

(PROGN: list[1..2] of (PROGN(CTYPEO (5) )(<cuto>)) ) ) )

<unit> ::= (PROGN

(PROGN : set[0..2] of

(WAIT)(WAIT )(<cyc>)( PROGN: list[0..7] of (<reverse> )))

(PROGN

(DELTAT (integer[1..40])) ( <weight> ) ( SBIAS (integer[-4096..+4096]))

(SACT (integer[-4096..+4096])))

(<input1>)(<input2>) (<output>) (<type>) (END) )

<restricti> ::= (RESTRICTI(integer[0..2])(integer[1..32])) (WAIT)

<restricto> ::= (RESTRICTO(integer[0..2])(integer[1..32])) (WAIT)

<type> ::= (LINEAR)(LINEAR)(LINEAR) (LINEAR) (LINEAR)

(STEP)(STEP) (STEP) (STEP) (STEP) (PROGN(DELTAT(1))(PI))

<cyc> ::= (PROGN (RESETNEW) (CYC) (<settype>) )

<settype> ::= (PROGN

(PROGN : set[1..1] of

(PROGN (CNEWI)(STYPEI(2))(CNEWO)(STYPEO(2)))

(PROGN (CNEWI)(STYPEI(3))(CNEWO)(STYPEO(3)))

(PROGN (CNEWI)(STYPEI(4))(CNEWO)(STYPEO(4)))

(PROGN (CNEWI)(STYPEI(5))(CNEWO)(STYPEO(5))) ) )

<input1> ::= (PROGN : set[1..1] of (WAIT)(PROGN(CTYPEI(0))(RMI))(PROGN (CTYPEI(0))(RMI)))

<input2> ::= (PROGN : set[1..1] of (WAIT)(PROGN(CTYPEI(1))(RMI))(PROGN(CTYPEI(1))(RMI)))

<output> ::= (PROGN : set[1..1] of (WAIT)(PROGN(CTYPEO(0))(RMO))(PROGN (CTYPEO(0))(RMO)))

Figure 12: Syntactic constraints used during the fourth run, we report only the non-terminal that are

rewritten in a di�erent way, compared to the previous run.

division has to be re-generated from scratch. (We remind the reader that now the division is also genetically

determined using link types and cutting links selectively after the division). The goal of using only FULL

was also to augment the probability of coupling between two sub-ANNs. Using only FULL augments the

density of connections, so we augmented the probability of cutting links to keep the density at the same level.

Also we made a distinction between cutting links that were created during the development, and cutting the

link to the output unit which is now done at the end of the development, by the non-terminal <output>,

we felt it was better to encode individually for each neuron if the neuron is an input or an output unit.

Those two modi�cations resulted in producing ANNs whose number of input was always a multiple of 8, and

each of the sub ANN is now forced to control one and exactly one leg, unlike the preceding run. The last

modi�cation we did were to ensure that all the newly created link got a type. When a cell divides, the �rst

child cell waits 14 extra time steps before dividing again. It make sure that the second child cell has time to

set the types of the newly created links. Then each time a link is reversed or a recurrent link is added, we

also make sure that the type is set, where we had forgotten in the previous constraints.



17

generation 0

generation 7generation 6generation 5

generation 3generation 2generation 2

generation 1

Figure 13: Champions of the fourth run



18

LABEL(SEQ(SEQ(PAR(PROGN(WAIT(200 ))(DELTAT(1 ))(SBIAS(0 ))(PROGN(CTYPEO(0 ))

(SWEIGHTO(318 )(319 )(128 )(148 )(485 )(228 )(154 )(49 )(333 )(7 )(357 )(327 )

(314 )(444 )(171 )(448 )))(PROGN(CTYPEO(1 ))(SWEIGHTO(268 )(185 )(424 )(113 )

(54 )(357 )(316 )(110 )(259 )(102 )(90 )(43 )(299 )(367 )(477 )(78 )))(LINEAR)

)(PROGN(WAIT(200 ))(DELTAT(1 ))(SBIAS(0 ))(PROGN(CTYPEO(0 ))(SWEIGHTO(453 )

(461 )(82 )(56 )(283 )(111 )(385 )(43 )(409 )(312 )(391 )(210 )(491 )(347 )

(171 )(238 )))(PROGN(CTYPEO(1 ))(SWEIGHTO(67 )(403 )(483 )(458 )(104 )(219 )

(505 )(323 )(234 )(94 )(291 )(330 )(154 )(198 )(355 )(324 )))(LINEAR)))

(PROGN(WAIT(4 ))(CTYPEI(-1 ))(RESTRICTI(0 )(1 ))(STYPEI(0 ))(CTYPEI(-1 ))

(STYPEI(1 ))(CTYPEO(-1 ))(STYPEO(0 ))(FULL(PROGN(PROGN(PROGN(PROGN(PROGN

(CTYPEI(2 ))(PROGN(RESTRICTI(2 )(18 ))(RMI)))(PROGN(CTYPEI(2 ))(PROGN(WAIT)

(RMI))))(PROGN(PROGN(CTYPEI(4 ))(PROGN(WAIT)(RMI)))))(PROGN(PROGN(PROGN

(CTYPEO(3 ))(PROGN(WAIT)(RMO)))(PROGN(CTYPEO(3 ))(PROGN(RESTRICTO(0 )(17 ))

(RMO))))(PROGN(PROGN(CTYPEO(5 ))(PROGN(WAIT)(RMO))))))(WAIT(18 )))(PROGN

(PROGN(PROGN(PROGN(PROGN(CTYPEI(3 ))(PROGN(WAIT)(RMI))))(PROGN(PROGN

(CTYPEI(5 ))(PROGN(WAIT)(RMI)))(PROGN(CTYPEI(5 ))(PROGN(WAIT)(RMI)))))(PROGN)

)(PROGN(PROGN(PROGN(CNEWI)(STYPEI(2 ))(CNEWO)(STYPEO(2 )))))(WAIT(2 ))))

(FULL(PROGN(PROGN(PROGN(PROGN(PROGN(CTYPEI(5 ))(PROGN(RESTRICTI(2 )(16 ))

(RMI)))(PROGN(CTYPEI(5 ))(PROGN(WAIT)(RMI)))))(PROGN))(WAIT(14 )))(PROGN(

PROGN(PROGN(PROGN(PROGN(CTYPEI(2 ))(PROGN(RESTRICTI(1 )(3 ))(RMI)))(PROGN(

CTYPEI(2 ))(PROGN(WAIT)(RMI))))(PROGN(PROGN(CTYPEI(3 ))(PROGN(RESTRICTI(1 )

(31 ))(RMI)))(PROGN(CTYPEI(3 ))(PROGN(WAIT)(RMI))))(PROGN(PROGN(CTYPEI(4 ))

(PROGN(RESTRICTI(2 )(12 ))(RMI)))(PROGN(CTYPEI(4 ))(PROGN(WAIT)(RMI))))

(PROGN(PROGN(CTYPEI(5 ))(PROGN(WAIT)(RMI)))))(PROGN(PROGN(PROGN(CTYPEO(2 ))

(PROGN(WAIT)(RMO))))(PROGN(PROGN(CTYPEO(3 ))(PROGN(WAIT)(RMO)))(PROGN(CTYPEO(3

))(PROGN(WAIT)(RMO))))(PROGN(PROGN(CTYPEO(4 ))(PROGN(WAIT)(RMO)))(PROGN

(CTYPEO(4 ))(PROGN(RESTRICTO(0 )(9 ))(RMO))))(PROGN(PROGN(CTYPEO(5 ))(PROGN

(RESTRICTO(0 )(15 ))(RMO)))(PROGN(CTYPEO(5 ))(PROGN(RESTRICTO(1 )(21 ))

(RMO))))))(PROGN(PROGN(PROGN(CNEWI)(STYPEI(2 ))(CNEWO)(STYPEO(2 )))))

(WAIT(0 ))))(FULL(PROGN(PROGN(PROGN(PROGN(PROGN(CTYPEI(5 ))(PROGN(WAIT)

(RMI)))(PROGN(CTYPEI(5 ))(PROGN(WAIT)(RMI)))))(PROGN))(WAIT(16 )))(PROGN(

PROGN(PROGN(PROGN(PROGN(CTYPEI(2 ))(PROGN(WAIT)(RMI))))(PROGN(PROGN(CTYPEI(3 )

)(PROGN(WAIT)(RMI)))(PROGN(CTYPEI(3 ))(PROGN(RESTRICTI(2 )(6 ))(RMI))))

(PROGN(PROGN(CTYPEI(5 ))(PROGN(RESTRICTI(0 )(2 ))(RMI)))(PROGN(CTYPEI(5 ))

(PROGN(RESTRICTI(2 )(7 ))(RMI)))))(PROGN(PROGN(PROGN(CTYPEO(2 ))(PROGN

(RESTRICTO(1 )(2 ))(RMO))))(PROGN(PROGN(CTYPEO(3 ))(PROGN(RESTRICTO(2 )(9 ))

(RMO))))(PROGN(PROGN(CTYPEO(5 ))(PROGN(RESTRICTO(0 )(12 ))(RMO)))(PROGN(

CTYPEO(5 ))(PROGN(WAIT)(RMO))))))(PROGN(PROGN(PROGN(CNEWI)(STYPEI(4 ))(CNEWO)

(STYPEO(4 )))))(WAIT(2 ))))(CPO(PROGN(PROGN(PROGN(PROGN)(PROGN(PROGN(PROGN(

CTYPEO(2 ))(PROGN(WAIT)(RMO))))(PROGN(PROGN(CTYPEO(3 ))(PROGN(WAIT)(RMO))))

(PROGN(PROGN(CTYPEO(4 ))(PROGN(WAIT)(RMO)))(PROGN(CTYPEO(4 ))(PROGN(RESTRICTO

(0 )(6 ))(RMO))))(PROGN(PROGN(CTYPEO(5 ))(PROGN(WAIT)(RMO))))))(WAIT(18 )))

(PROGN(PROGN(PROGN(PROGN(CNEWI)(STYPEI(4 ))(CNEWO)(STYPEO(4 )))))(PROGN(PROGN

(WAIT))(PROGN(DELTAT(4 ))(PROGN(PROGN(CTYPEI(2 ))(SWEIGHT(254 )(212 )(170 )

(-63 )(-181 )(158 )(122 )))(PROGN(CTYPEI(3 ))(SWEIGHT(242 )(73 )(103 )(56 )

(9 )(226 )(48 )))(PROGN(CTYPEI(4 ))(SWEIGHT(4003 )(1411 )(-3628 )(3953 )

(1248 )(-1062 )(1202 )))(PROGN(CTYPEI(5 ))(SWEIGHT(-2642 )(-1926 )(2968 )

(-4094 )(-217 )(-577 )(-2340 ))))(SBIAS(1896 ))(SACT(989 )))(PROGN(PROGN

(CTYPEI(0 ))(RMI)))(PROGN(WAIT))(PROGN(PROGN(CTYPEO(0 ))(RMO)))(LINEAR)(END)

)))(PROGN(PROGN(PROGN(PROGN(PROGN(PROGN(CTYPEI(2 ))(PROGN(WAIT)(RMI))))

(PROGN(PROGN(CTYPEI(3 ))(PROGN(RESTRICTI(2 )(24 ))(RMI))))(PROGN(PROGN

(CTYPEI(4 ))(PROGN(WAIT)(RMI)))(PROGN(CTYPEI(4 ))(PROGN(WAIT)(RMI)))))(PROGN

(PROGN(PROGN(CTYPEO(2 ))(PROGN(RESTRICTO(1 )(24 ))(RMO))))(PROGN(PROGN(CTYPEO(

4 ))(PROGN(RESTRICTO(2 )(20 ))(RMO))))(PROGN(PROGN(CTYPEO(5 ))(PROGN(WAIT)

(RMO)))(PROGN(CTYPEO(5 ))(PROGN(RESTRICTO(2 )(9 ))(RMO))))))(PROGN(PROGN

(PROGN(CNEWI)(STYPEI(5 ))(CNEWO)(STYPEO(5 )))))(WAIT(3 )))(PROGN(PROGN(PROGN

(PROGN(CNEWI)(STYPEI(3 ))(CNEWO)(STYPEO(3 )))))(PROGN(PROGN)(PROGN(DELTAT

(27 ))(PROGN(PROGN(CTYPEI(2 ))(SWEIGHT(-3469 )(-1379 )(-3329 )(-2945 )(296 )

(-1376 )(-4096 )))(PROGN(CTYPEI(3 ))(SWEIGHT(196)(3165)(-1501 )(-3442)

(2994 )(-2912 )(1369 )))(PROGN(CTYPEI(4 ))(SWEIGHT(2875 )(-575 )(3329 )(-770 )

(-402 )(-793 )(3496 )))(PROGN(CTYPEI(5 ))(SWEIGHT(-118 )(-179 )(-25 )(-220 )

(110 )(-240 )(170 ))))(SBIAS(-1697 ))(SACT(-1746 )))(PROGN(WAIT))(PROGN(WAIT))

(PROGN(WAIT))(LINEAR)(END)))))))(PROGN(BLOC)(TESTIO8)(SHARI(JMP12)(SHARI

(JMP12)(SHARI(JMP12)(SHARI(JMP12)(PROGN(SWITCH)(SHARI(JMP12)(PROGN(SWITCH)

(SHARI(JMP12)(PROGN(SWITCH)(SHARI(JMP12)(JMP12)(1 )))(1 )))(1 )))(1 ))(1 ))(1 ))(1 ))))

Figure 14: The genetic code of the Champion



19

step 209step 179step 149

step 269 step 299 step 329 step 361

step 239

step 119step 89step 59step 29

Figure 15: Steps of the development of the Champion



20

7.6 Analysis of the fourth run

A selection of the champions of this run are reported in �gure 13. We deleted systematicaly ANNs that do

not have the right number of inputs, or produced no movement at all, as in the second run. We represent at

generation 0 a guy which produced oscillation on one leg. At generation one, we had an individual that has

a correct oscillation on all the legs. That guy has a quite simple 16 neuron controller made of 8 oscillator

neurons with a recurrent connection, and 8 neurons that implement a weak coupling. The oscillators loose

synchronisation. In generation 1, we had an ANN that produced oscillation, and coupling between the two

sides but not within one side. That means that the two front legs for example, or the two right legs are

synchronous, but not the left front leg with the left rear leg. Generation 2 produced a fun individual which

moved the two front legs two times quicker than the other 6 legs. You can see �gure 13 fourth picture, that

the ANN that controls the two front legs is much more sparsely connected than the one which controls the

other 6 legs. Generation 2 produced another champion: a slow but correct quadripod gait. The genotype

is probably a mutation of the second guy at generation 1, because the architectures are very similar. There

is one sub-ANN for each leg, as is speci�ed by the syntactic constraints, the sub-ANNs within one side are

coupled, but the two sides are independent, as is clearly shown in the picture. Generation 3 produced a

funny gait, with four pair of two coupled oscillators, inside each pair, one oscillator has the double frequency

of the other, due to the coupling. The �gure clearly shows the structure of the ANN. Generation 5 produced

a quadripod gait, not too slow, but there there still lacks some coupling between the ANNs controlling the

legs of one side. There are diagonal connections between the four groups, which implement coupling between

the two sides, but there are no connections from top to bottom. At generation 6 we had a nice ANN with

all the connection needed for coupling, but the frequency on the right side was slightly greater than on the

left side, as a result the robot was constantly turning right. We would have thought that a higher frequency

result in turning in the opposite direction, but the reverse is true at least for those particular frequencies

which were almost similar. We got a number of individuals which were always turning right. Generation 7,

we �nally got success, a perfect quadripod, smooth and fast. We had the robot run for 20 minutes to check

the phase lock.

8 Comparison of the Interactively Evolved Solution with the hand-

coded solution

8.1 performance

We now want to compare this solution with the hand-coded solution. The hand-coded program is a wavewalk

that has been done with a loop and a C program, by Koichi Ide, an engineer in Applied AI systems. In

wavewalk, only one leg at a time is up. The evolved solution naturally produced a quadripod gait, where

four legs are on the ground and four legs in the air. First we just look at the speed. The champion evolved

robot does 7,5 cm/seconds. Whereas in all the previous run we could not do better than 15 cm/seconds. The

period of leg update is 50 ms, The period of leg update in Koichi's controller was set to 64 ms, (4 cycles),

and the speed is is 5cm/seconds , if the periode of the leg was 50 ms, we assume that the robot woud do 6.4

cm per seconds, so our solution walks faster with the same rythme on the leg impulses.

We used some constraints on the leg movement. The legs had been restricted to move between -96 and

+96 to avoid clutch, and they cannot move by more than 40 to avoid motor warming up. There are no such

constraints in Koichi's controller. It can be said that in Koichi's controller, the beta angle which control

whether the leg is backward or forward, sometimes makes an increase of 96 in a single time step, so the

genetic controller is more smooth.

8.2 Analysis of the Solution

The genetic code of our best solution found in run 4 is shown in �gure 14, and steps of its development

are shown in �gure 15. The genetic code is huge compared to the genetic code needed for one leg, that is

shown in �gure 6. This is because we need a lot of elementary cutting instruction, for each cell division, and

also we go systematically through all the type to set the weights. By watching carefully the ANN, we found

that it was only using LINEAR sigmoids, those are sigmoids which merely compute the identity. Puzzled



21

by this fact we looked into the matter and remembered that when the net input is greater than 1,000,000

(resp. lower than -1,000,000) it is clipped to 1,000,000 (reps. -1,000,000). This is used to avoid computation

artefact that could arise if the integer became too high. What the ANN does is that is that it exploits this

fact by using big weights, and the identity function like a clipped linear sigmoid. Pure identity would always

produce either a divergence to plus in�nity, or a vanishing of the movement.

9 Conclusion

In this work we succeeded to evolve an ANN for controlling an 8-legged robot. Experiments were done

without a simulator, and the �tness was determined interactively by hand. We believe that generating an

ANN for locomotion controller is not a trivial task, because it needs at least 16 hidden units, unlike most

applications that can be found in the literature. To be able to solve this problem in only 200 evaluations,

four features were used.

� Using cell cloning and link typing.

� Interactive syntactic constraints.

� Interative problem decomposition.

� Interactive �tness.

Cell cloning generates highly symmetric ANNs. Link typing makes it possible to encode di�erent type

of cell division, and to genetically optimize the cell division itself. Syntactic constraints specify that there

are exactly a three fold symmetry that exploit the fact that 8 legs are used, the problem would have been a

little more di�cult if only 6 legs were used. The hand given �tness allow us to reward behavior that would

have been quite di�cult to detect automatically.

Interactive operation of the Evolutionary Algorithm (EA) appears faster and easier than hand-programing

the robot. It takes a few trial and errors if we are to generate the ANNs by hand. It is quite easy to say that

the development must begin with three clone division, it is more di�cult to say how exactly the division

must be done. What's hand speci�ed in our work is only the fact that there is a symmetry, not the precise

architecture. The EA alone is able to decompose the problem of locomotion into the subproblem of generating

an oscillator, and then makes 8 copies of the oscillator, and combine them with additional links so as to

provide the adequate coupling. Other researchers have tried to evolved ANNs for legged-locomotion, but

they all give more information than we do. In the work of Beer and Gallagher [2] the precise Beer architecture

is given. This 6-legged architecture described by Beer in [1] has the shape of the number 8, in which all the

sub-ANN controlling adjacent legs are connected, the controller of the legs that are symmetric between the

two sides are also connected.

In the work of Lewis, Fagg and Solidum [10] not only is the general architecture given but also the precise

wiring of all the neurons. This work is the �rst historic work where the �tness was given interactively by

hand, and they also used a decomposition into sub-problem by hand. But the way it is done leaves the EA

with only the task of �nding four real values. They �rst generate a leg oscillator using 2 neurons, they only

have to �nd 4 weights to obtain a correct rotation. Then they build the Beer archtitecture by connectiong

6 copies of this 2 neurons oscillator, with some precise links, and weight sharing between similar links. As a

result, they once more have only four weights to genetically optimize.

We did not try to generate an ANN by hand, that could produce an e�cient quadripod gait. I estimate

the time needed to produce one to a few hours, one day for somebody who is not trained to think in

terms of recurrent ANNs. We have not proved that the EA is a more e�cient technique than direct hand

programming, since it took two days. But, �rst, it is more fun to breed a robot during two days, than to

try to understand the dynamic going on inside a recurrent ANN of a few dozens of neurons. Second, I could

have asked my girlfriend to do the breeding, which would have reduced the \scienti�c time" down to less

than what's needed to program the robot. Third, if we had have 10 robots to give the �tnesses then the time

would have been reduced to two hours. This is a direction which we think is most interesting. The natural

parallelism when using di�erent robots is quite easily extendible. If you want to add a processor, you just

need a bigger room to put your robot inside.



22

May be the most unexpected thing out of this work, is that the breeding is worth its pain. We are not

sure that an automatic �tness evaluation that would have just measured the distance walked by the robot

would had been successful, even in one week of simulation. There are some precise facts that support this

view. First, right at the initial generation, we often got an individual which was just randomly moving its

legs, but still managed to get forward quite a bit, using this trick. This is because the random signal has

to go through the leg controller and the leg is up when it goes forward and down when it go backward.

Using automatic �tness, the guy would have just dominate all the population right at generation 1, and all

potentially interesting building blocks would have been lost. With interactive �tness we just systematically

eradicate this noisy and useless individual. When we say noisy, it really do much more noise than all the

others, because it moves all the time by the maximum allowable distance. So after a while, we push the kill

button as soon as we hear the noise, kill, kill, kill, that gives an (un-healthy?) feeling of power. Second,

there are some very nice features which do not result at all in making the robot go forward. We are pretty

happy if we see at generation 1, a guy which move periodically a leg in the air, because that means that

somewhere there is an oscillatory sub-structure that we would like to see spreading. Typically, we spend the

�rst generations tracking oscillatory behavior, and tuning the frequency, we then rewards individuals who

get the signal on all the height legs, and last, we evolve coupling between the legs, with the right phase delay.

That's a pretty simple strategy to implement when breeding on line, but that would be di�cult to program.

In short, we developed in this work a new paradigm for using Evolutionary Computation in an interactive

way. Syntactic Constraints provide a prior probability (machine learning terminology) on the distribution

of ANNs. Modular decomposition allow to replace one big problem by two simpler problems, Interactive

�tness evaluation can steer the EA towards the solution.

Our future direction will be to evolve a locomotion controller with three command neurons: one for

forward/backward, one for right/left and one for the walking speed. In order to do that, we need to enhance

our method so has to be able to optimize di�erent �tnesses with di�erent populations, and then build one

behavior out of two behavior separately evolved. In the case of turning, or speed controling things can be

stated more precisely. We thing that turning as well as varying speed is only a matter of being able to govern

the frequency of the oscillators. Typically we would like to evolve separately an oscillator whose frequency

can be tuned using an input neuron, and then recombining it with the locomotion controller evolved in this

paper. The way how to successfully operate recombination is still an open subject of research.

Acknowledgment

This paper reports on work partially done by Dominique Quatravaux in full�llment of the master's thesis

requirements under supervision of Michel Cosnard and Fr�ed�eric Gruau, on Fr�ed�eric Gruau's project at CWI

in Amsterdam.

Since Dominique declined to be coauthor, it is proper to carefully delineate his contributions. He

developed the gnu C compiler for the robot processor, and the protocol to handle the serial line, that

is, to control the robot from the host computer. The programs can be downloaded from URL page

http://www.cwi.nl/ gruau/gruau/gruau.html, together with user information, bugs and tips.

Dominique performed about half of the experiments (the leg controler, run0 and run1 of the locomotion

controller) and developed the approach to �rst evolve a leg controler with a well de�ned interface. He can

be reached at (quatrava@clipper.ens.fr). To represent Dominique's involvement we added the name of his

workstations as co-author.

Phil Husbands acted as a remote adviser, and we thank him for letting us use their OCT1 robot. Paul

Vitanyi and the Algorithmics and Complexity (AA1) Group at CWI hosted the whole research, providing

a modern computer environement and tools. We are grateful to Paul for his constructice and positive

comments. F. Gruau was suppported by a postdoctoral TMR grant from the European communitywithin the

Evolutionary Adaptive SYstems group at the COGS department in Sussex University. We also acknowledge

help from the pole Rhone Alpes de Science Cognitive who supplied money to buy a prometheus Robot in

the frame of a joint project with prof. Demongeot. We prefered to use the OCT1 Robot because it turned

out we had the choice and the OCT1 Robot was 10 time more expensive, more reliable and faster. We did

however use replacement part from the prometeus robot, namely the power supply. Applied AI system did a

good job in sending us replacement part for the OCT1 robot, together with advices. We thank Ann Gri�th



23

and Koichi Ide.

References

[1] Randall Beer. Intelligence as adaptive behavior. Academic Press, 1990.

[2] Randall Beer and John Gallagher. Evolving dynamical neural networks for adaptive behavior. Adaptive

Behavior, 1:92{122, 1992.

[3] Dave Cli�, Inman Harvey, and Phil Husbands. Exploration in evolutionary robotics. Adaptive Behavior,

1:73{110, 1993.

[4] F.Gruau. Arti�cial cellular development in optimization and compilation. In Sanchez and Tomassini,

editors, Towards Evolvable Hardware. Springer Verlag, LNCS, 1996.

[5] F. Gruau. Neural Network Synthesis using Cellular Encoding and the Genetic Algorithm. PhD Thesis,

Ecole Normale Sup�erieure de Lyon, 1994. ftp: lip.ens-lyon.fr pub/Rapports/PhD/PhD94-01-E.ps.Z

(english) PhD94-01-F.ps.Z (french).

[6] F. Gruau. Automatic de�nition of modular neural networks. Adaptive Behavior V3N2, pages 151{183,

1995.

[7] Inman Harvey. Species adaptation genetic algorithm: a basis for continuing saga. Cogs csrp 221, The

Evolutionary Robotics Lab, 1995. http://www.cogs.susx.ac.uk/lab/adapt/easy csrps.html.

[8] J.Kodjabachian and J. Meyer. Development, learning and evolution in animates. In PerAc'94. IEEE

computer society press, 1994. anonymous ftp at ftp.ens.fr, pub/reports/biologie/PerAc94.ps.Z.

[9] John R. Koza. Genetic programming: A paradigm for genetically breeding computer population of

computer programs to solve problems. MIT press, 1992.

[10] Lewis, Fagg, and Solidum. Genetic programming aprroach to the construction of a neural network

for control of a walking robot. In Proceedings of the IEEE International Conference on Robotics and

Automation, Nice, France, 1993. http://www.usc.edu/dept/robotics/brochure/rodney.html.


