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Abstract

A novel neural model made up of two self-organizing map nets | one on

top of the other | is introduced and analysed experimentally. The model

makes an e�ective use of context information, and that enables it to per-

form sequence classi�cation and discrimination e�ciently. It was successfully

applied to a set of contrived sequences, and also to a real sequence | the

third voice of the sixteenth four-part fugue in G minor of the Well-Tempered

Clavier (vol. I) of J. S. Bach. The model has application in cognitive do-

mains which demand classifying either a set of sequences of vectors in time

or sub-sequences into a unique and large sequence of vectors in time.



1 Introduction

Several researchers have extended the self-organizing feature map model

(Kohonen, 1989) to classify sequential information. The problem involves

either classifying a set of sequences of vectors in time or recognizing sub-

sequences inside a large and unique sequence. The most recent approaches

are described below.

In windowed data approach, as in Kangas' (1994) model, the input vec-

tors are concatenated in a �xed-size window which slides in time. The size

of the memory to the past inputs is limited to the size of the window. The

approach has well-known de�ciencies (Elman, 1990). The most serious is

that the model becomes computationally expensive as wider windows are

required.

In time integral approach
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, as in Chappell and Taylor's (1993) model, the

activation of a unit is a combination of its current input and its former out-

puts decayed in time. Despite its biological plausibility, the approach su�ers

from loss of context. Sequences that slightly di�er in their initial elements

(e.g., abccc, baccc, and bbccc) would probably have the same classi�cation.

Another recent approach is James and Miikkulainen's (1995) model.

When a vector in the sequence is input, the output unit in the map which

wins the competition for that vector is disabled for further competition, and

its activation decays in time to indicate which vector in the sequence it is

representing. Each winning output unit represents just a single vector in

the input sequence, and so, the representation for the whole input sequence

is given by a sequence of winning output units in the map. This distributed

representation is more complicated because it has to take in consideration

not only the winning units but also their activations. For example, input se-

quences with the same elements but in di�erent order (e.g., abcd and dcba)

will have the same winning units, and so, one has to look at their activations

to verify which input sequence the map is representing. Another disadvan-

tage is that the model is unable to recognize sub-sequences inside a large

and unique input sequence.

The model introduced here follows the time integral approach. As Chap-

pell and Taylor's model, it is also biologically more plausible. Yet, the time

integrator is applied to the input units as opposed to the output units as

1

Also known as leaky integral approach.
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in their model. In the following sections, we shall describe the model, and

present two experiments. In the �rst one, the model is applied to a small

scale problem in order to analyse its behaviour. In the second, it is applied

to a large scale real example.

2 The model

The model is shown in �gure 1. It is made up of two self-organizing maps

(SOMs) | one on top of the other. The idea of having neural nets placed

in such a hierarchical way is not original. Gjerdingen (1991) has proposed

it before, although as far as we know, he has not explored it fully. Our ap-

proach di�ers from his in that we explore the idea using SOM nets, whereas

he proposed it for ART2 (Carpenter & Grossberg, 1987) nets.

V( t )

Λ(Ψ(i,t))

SOM

Bottom

SOM

Top

Time  Integrator

Time  Integrator

Map

Map

Figure 1: The model

The input to the model is a sequence in time of m-dimensional vectors,

S

1

= V(1);V(2); : : : ;V(t); : : : ;V(z), where the components of each vector

are non-negative real values. The sequence is presented to the input layer

of the bottom SOM, one vector at a time. The input layer has m units, one

for each component of the input vector V(t), and a time integrator. The

activation X(t) of the units in the input layer is given by
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X(t) = V(t) + �

1

X(t� 1) (1)

where �

1

2 (0; 1) is the decay rate. The winning unit i

�

in the map
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is the

unit which has the smallest distance 	(i

�

; t). For each output unit i, the

distance 	(i; t) between the input vector X(t) and the unit's weight vector

W

i

is given by

	(i; t) =

m

X

j=1
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j

(t)� w

ij

(t)]

2

(2)

Each output unit i in the neighbourhood N

�

of the winning unit i

�

has

its weightW

i

updated by

w

ij

(t+ 1) = w

ij

(t) + ��(i)[x

j

(t)� w

ij

(t)] (3)

where � 2 (0; 1) is the learning rate. �(i) is the neighbourhood interaction

function (Lo & Bavarian, 1991), a gaussian type function, and is given by

�(i) = �

1

+ �

2

e

�

�

3
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where �

1

, �

2

, and �

3

are constants which confer the shape to the function.

We have set �

1

, �

2

, and �

3

to be 0.1, 0.7, and 10 in our experiments. � is

the radius of the neighbourhood N

�

, and �(i; i

�

) is the distance in the map

between the unit i and the winning unit i

�

. The distance �(i

0

; i

00

) between

any two units i

0

and i

00

in the map is calculated according to the maximum

norm,
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(5)

where (l

0

; c

0

) and (l

00

; c

00

) are the coordinates of the units i

0

and i

00

respectively

in the map.

The neighbourhood interaction function has proved to be useful, indeed.

It provokes two main e�ects. First, it speeds up the training of the network

2

Also known as array, grid, or output layer.
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by reducing the number of epochs required. Second, it improves the quality

of the map by enforcing its topological order (Lo et al., 1991). In rough

terms, the neighbourhood interaction function avoids the existence of local

winning units. The values of the distances 	(i; t) increase orderly as the

values of the distances �(i; i

�

) increase.

The input to the top SOM is determined by the distances 	(i; t) of the

n units in the map of the bottom SOM. The input is thus a sequence in

time of n-dimensional vectors, S

2

= �(	(i; 1)); �(	(i; 2)); : : : ; �(	(i; t));

: : : ; �(	(i; z)), where �(	(i; t)) is a n-dimensional transfer function on a

n-dimensional space domain. We have used two di�erent kinds of transfer

function in our experiments. � can be de�ned as a gaussian type function

as

�(	(i; t)) = e

�

�[	(i;t)]

2

�

2

(6)

where � is a constant, and � is the radius of the gaussian. The advantage

of using such a function is that the contributions to the input of the top

SOM depend entirely upon the distances 	 of the units i, no matter how

close or far away they be from the winning unit i

�

. The disadvantage is that

the accuracy of the input delivered to the top SOM relies heavily upon the

quality of the classi�cations in the map of the bottom SOM. For instance,

it is di�cult to �nd a suitable radius � to the gaussian when, for each

vectorV(t), the distances of the winning units 	(i

�

; t) vary in a wide range.

Alternatively, � may be de�ned as

�(	(i; t)) =

(

1� ��(i; i

�

) if i 2 N

�

0 otherwise

(7)

where � is a constant, and N

�

is a neighbourhood of the winning unit.

The main advantage is that it is simple to use this type of function. Yet,

depending on the radius of the neighbourhood chosen, either pertinent infor-

mation can be discarded or non-pertinent information be included. We have

not considered the situation in which information given by units far away

from the neighbourhood N

�

is lost, for, as said before, the neighbourhood

interaction function avoided the existence of local winning units.

The sequence S

2

is then presented to the input layer of the top SOM,

one vector at a time. The input layer has n units, one for each component
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of the input vector �(	(i; t)), and a time integrator. The activation X(t) of

the units in the input layer is given by

X(t) = �(	(i; t)) + �

2

X(t� 1) (8)

where �

2

2 (0; 1) is the decay rate.

The dynamics of the top SOM is identical to that of the bottom SOM.

In all experiments, we have �rst trained the bottom SOM, and then, the

top SOM, for the sake of e�ciency. As the model presented has two SOMs,

it will be referenced as model II in the rest of the paper. To be better

evaluated, the performance of the model II is compared to that of the model

I. Model I has only one SOM. As the bottom SOM of the model II, model

I also has m input units, a time integrator applied on them, and the same

dynamics. Model I can be classi�ed as a single SOM which follows the time

integral approach. So, as pointed out before, model I su�ers from loss of

context.

3 First experiment

The �rst experiment was on mapping a set of sequences. The input data

consisted of a set of sixty six-bit binary sequences (e.g., 011101). The se-

quences were generated randomly. The sequence 001011 was chosen as a

reference. It is named referential sequence (S

r

). The referential sequence

has the largest number of similar sequences in the set, that means, sequences

which di�er slightly from the referential sequence in the order and values of

the bits.

The experiment aimed at verifying how accurate the classi�cation of

the referential sequence yielded by models I and II was. In other words,

we veri�ed the number of sequences in the set which were misclassi�ed by

models I and II as the referential sequence.

The two SOMs of model II and the SOM of model I were trained in two

phases | coarse-mapping and �ne-tuning. The initial learning rate was set

to 0.5, and the size of the neighbourhood was set to the size of the map

in the coarse-mapping phase. Both the learning rate and the radius of the

neighbourhood were reduced linearly to the values 0.01 and 1 respectively.

In the �ne-tuning phase, the learning rate was kept constant in 0.01, and
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the radius in 1. The coarse-mapping phase took 20%, and the �ne-tuning

phase took 80% of the total number of epochs. The initial weights were

given randomly, in the range between 0 and 0.1, to all SOMs.

Di�erent decay rates were tried. In the bottom SOM of model II, they

ranged from 0.4 to 0.7, and in the top SOM, from 0.7 to 0.95. In the model

I, the decay rate ranged from 0.7 to 0.95. The input layer of the model I

and of the bottom SOM of model II held two units. Bits 0's of the sequences

were represented as (1,0), whereas bits 1's were represented as (0,1).

Model I was tested with three di�erent map sizes, 9�9, 15�15, and

21�21, trained in 400, 700, and 1000 epochs respectively. In model II, the

map sizes were set to 6�6 (trained in 250 epochs) and 9�9 (trained in 400

epochs) to the bottom and top SOM respectively. The transfer function �

was given by equation 7, with N

�

= fi

�

g.

The best results of models I and II are displayed in the tables 1 and 2

respectively. A sequence S

a

is said to have the same classi�cation as that of

the referential sequence S

r

if the distance �(i

�

a

; i

�

r

) < 2, where i

�

a

and i

�

r

are

the (last) winning units of S

a

and S

r

.

Table 1: Results for model I (�rst experiment)

Map Size Decay Rate No. Miscl.

9�9 0.7 9

15�15 0.7/0.9 5

21�21 0.9 2

Table 2: Results for model II (�rst experiment)

Decay Rate Bottom SOM Decay Rate Top SOM No. Miscl.

0.4 0.7 1

0.5 0.75/0.8 1

0.6 0.8 1

As expected, model I su�ers from loss of context and misclassi�es several

sequences. It is di�cult for the model to distinguish variations in the �rst
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bits of a sequence because the contribution of these �rst bits to the classi�-

cation of the sequence is very low. For instance, let S

a

= 100000 and S

b

=

010000 be two sequences. Considering a decay rate of 0.8, the activations of

the two input units would be 3.362 and 0.328 after the entrance of the last

bit of S

a

. The activations would be 3.280 and 0.410 for S

b

. The di�erences

in the activations between S

a

and S

b

are not relevant, and probably the

sequences would be classi�ed as identical by model I.

The problem with model I is that the SOM sees just bits in its input. Yet,

its performance would be much improved if the input not only represented

bits, but also the context where they appeared. Di�erent input units would

then be activated depending upon the order that the bits were input. For

example, considering a representation that includes three bits at most, S

a

and S

b

would be represented by table 3. As the representation makes a

clear distinction between the beginnings of S

a

and S

b

, it helps model I to

distinguish between the two sequences as well.

Table 3: Context representation for two binary sequences

Seq. time: 1 time: 2 time: 3 time: 4 time: 5 time: 6

S

a

(1) (10) (100) (000) (000) (000)

S

b

(0) (01) (010) (100) (000) (000)

The idea of encoding context in the representation to distinguish vari-

ations in sequences is not original. Wickelphones (Wickelgren, 1969) and

Wickelfeatures (Rumelhart & McClelland, 1988) are examples of such a

representation. Model II also makes use of the representation, and that is

the reason why its performance is much superior than that of model I. The

top SOM of model II sees bits and over all, context in its input. As opposed

to Wickelphones and Wickelfeatures, the representations in the input layer

of the top SOM are not handmade beforehand, but instead, they are built

up by the bottom SOM. The advantage of this approach is twofold. First,

one does not need to worry about encoding context once the bottom SOM

is in charge of making an internal representation of context in its map. Sec-

ond, only the representations required by the application will be built up by

the bottom SOM reducing thus, the necessary number of units in the input

layer of the top SOM.

The size of context is the size of memory of past inputs, that means,
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the maximum number of past input bits that the bottom SOM may rec-

ognize. The size of context is directly dependent of the decay rate in the

bottom SOM. If the decay rate is very large, the size of the map ought to

be increased to recognize properly the large number of di�erent contexts

in the representations in the input layer. However, in most cases, a large

memory of the past inputs is not necessary. If the decay rate is very small,

the existence of the bottom SOM is unnecessary because it merely maps a

contextless input of single bits in its map.

We might illustrate these ideas in an example. The sequence S

a

= 001111

is presented to the input layer of the bottom SOM. A correspondent sequence

S

�

a

of winning units will be activated in the map. A second sequence S

b

=

101111 which di�ers from the �rst only in the �rst bit is now presented. A

correspondent sequence S

�

b

of winning units is also activated in the map.

By comparing the distances � (equation 5) between the winning units in S

�

a

and S

�

b

, we may trace the memory size for past inputs of the SOM.

Figure 2 displays the distances when using di�erent decay rates in the

SOM. Using a decay rate of 0.6, we verify that after entering with the third

bit, the SOM is still capable of distinguishing the di�erence in the �rst bit

between S

a

and S

b

. The size of the memory is then three bits. The memory

size is two bits for decay rates of 0.4 and 0.5. We have presented sequences

of up to three bits to the bottom SOM with decay rate of 0.6 to con�rm that

the SOM is able to classify them separately. The map is shown in �gure 3.

The decay rate of the bottom SOM also a�ects the outcomes of the

top SOM, for the input of the later depends upon the classi�cations made

by the former. We might verify this e�ect in the experiment. Despite the

identical number of misclassi�cations (table 2), the misclassi�ed sequence

changes when varying the decay rate of the bottom SOM. Reducing the de-

cay rate makes the memory size shorter. So, by reducing the decay rate, we

would expect that the di�erences between the misclassi�ed and the referen-

tial sequences would move more and more to the �rst bits. The experiment

has indeed shown this behaviour. For decay rates of 0.4, 0.5, and 0.6, the

misclassi�ed sequences were 101011, 001001, and 001010 respectively.
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Figure 2: Distances between the winning units of two binary sequences

4 Second experiment

The second experiment was on recognizing sub-sequences into a large and

unique input sequence. The input data consisted of a sequence of musical

intervals that corresponded to the third voice of the four-part fugue in G

minor of Bach (Bach, 1989). The theme of the fugue (�gure 4), a referential

sub-sequence, was divided into two parts | theme I and theme II. Several

perfect and modi�ed instances of theme I and II occur in the third voice of

the fugue.

The experiment pursued two aims. First, to verify whether models I

and II recognize all instances of theme I and II in the third voice of the

fugue. Second, to verify whether any other sub-sequence, which was not an

instance, was not misclassi�ed as theme I or II.

The training of the two SOMs of model II and the SOM of model I
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Figure 4: Theme of the fugue in G minor

was identical to that of the �rst experiment. They were trained in two

phases | coarse-mapping and �ne-tuning | with the same initial and �nal

learning rates and sizes of the neighbourhood used in the �rst experiment.

Again, in the coarse-mapping phase, the learning rate and the radius of

the neighbourhood were reduced linearly whereas in the �ne-tuning phase,

they were kept constant. The coarse-mapping phase took 20%, and the �ne-

tuning phase took 80% of the total number of epochs. The initial weights

were given randomly, in the range between 0 and 0.1, to all SOMs.

As in the �rst experiment, we have tested di�erent values for the decay

rate. In the bottom SOM of model II, they varied from 0.4 to 0.6, and in
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the top SOM, from 0.7 to 0.9. In model I, the decay rate ranged from 0.7

to 0.9. We present here only the results using decay rates of 0.5 and 0.85

respectively for the bottom and top SOM of model II, and 0.85 for the SOM

of model I.

The SOM of model I was tested with map size of 18�18, and was trained

in 850 epochs. In model II, the map sizes were set to 15�15 (trained in 700

epochs) and 18�18 (trained in 850 epochs) to the bottom and top SOMs

respectively. The transfer function � was a gaussian type function, given by

equation 6, with � and � set to 10 and 0.05.

The input layer of the model I and of the bottom SOM of model II held

�fteen units, one for each musical interval ranging from an octave down to

an octave up. The activation of these units was dependent of the rhythm

as well. We chose the small �gure in the fugue to be the time interval (TI).

Thus, all other �gures are multiple of TI. For example, if TI is an eighth

note, a quarter note lasts two TIs, a half note lasts four TIs, and so on. We

also de�ned a counter, time interval counter (TIC). It is the unit in which

the fugue is measured.

The fugue in G minor has 544 TICs, and TI is a sixteenth note. At

each TIC, either there is a rest, or a note is onset, or a note is sustained. If

there is a rest, none of the input units receives activation. If a note is onset,

as it makes up an interval, the unit corresponding to that interval receives

an activation of 1.0. If it is sustained, the unit which corresponds to the

interval receives 0.5.

A sub-sequence S

a

is said to have the same classi�cation as that of the

theme S

t

if the distance �(i

�

a

; i

�

t

) < 2, where i

�

a

and i

�

t

are the (last) winning

units of S

a

and S

t

. In fact, if S

a

is also an instance of the theme, when S

a

and S

t

have the same classi�cation, not only i

�

a

and i

�

t

are adjacent but the

winning units of S

a

converge TIC by TIC to the winning units of the theme

S

t

. The error of the instance S

a

is given then by calculating the sum of the

distances between each winning unit of S

a

and its corresponding in S

t

. The

mean error is given by the sum of the errors of each instance divided by the

number of instances.

Tables 4 and 5 display the classi�cations and misclassi�cations of both

models. One may verify in the table 4 that the mean errors of model I

are lower than those of model II. The reason is that, as expected, model II

takes into a better account the past context. As the previous context varies
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from instance to instance, model II takes more time to discard the previous

context of the instance to converge to the theme. One may also verify that

both models fail in recognizing three instances of theme II. In all of these

cases however, theme II either was preceded by a modi�ed theme I or was

not preceded by theme I at all. Once more, the di�erent previous context

was responsible for that failure.

Table 4: Classi�cations of model I and II (second experiment)

Theme No. Instances Model No. Failures Mean Error

I
4

I 1 36.25

II 0 63.00

II

6

I 3 24.67

II 3 25.50

Table 5: Misclassi�cations of model I and II (second experiment)

Theme Model No. Minor Miscl. No. Major Miscl.

I

I 4 1

II 0 0

II

I 3 4

II 2 0

The performance of model II is better appreciated in the results displayed

in table 5. The fugue is made up mostly by contiguous intervals (e.g., seconds

and thirds up and down) in di�erent orders and rhythms. It is worthwhile

to observe the fact that any sub-sequence which has either some intervals

of the theme in any order or rhythm, or all the intervals of the theme but

in a di�erent order or rhythm is not an instance of the theme, and so, must

not be classi�ed as such. The number of occurrences of this kind of sub-

sequences in the fugue is high, and so is the probability that any neural

model has of making misclassi�cations. Model II however, had only two

cases of minor misclassi�cation

3

. Model I su�ered from loss of context, and

seriously misclassi�ed �ve sub-sequences which contained intervals which

3

We consider a case of minor misclassi�cation when the model keeps on classifying as

theme the next few TICs which follow the theme.
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were also present in the theme.

5 Conclusion

A novel neural model made up of two self-organizing map networks | one

on top of the other | is presented. It has application in domains which de-

mand classifying either a set of sequences of vectors in time or sub-sequences

into a unique and large sequence of vectors in time. The model makes an

e�ective use of context information, and that enables it to perform sequence

classi�cation and discrimination e�ciently. Despite the good results, it is

still open to further research. In principle, the model could have any number

of self-organizing map nets | the more nets, the more similar and longer

the sequences of vectors in time which could be recognized.
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