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Abstract

This paper sets out a conceptual frame-

work for the open-ended arti�cial evolution

of complex behaviour in autonomous agents.

If recurrent dynamical neural networks (or

similar) are used as phenotypes, then a Ge-

netic Algorithm that employs variable length

genotypes, such as Inman Harvey's SAGA,

is capable of evolving arbitrary levels of be-

havioural complexity. Furthermore, with

simple restrictions on the encoding scheme

that governs how genotypes develop into

phenotypes, it may be guaranteed that if an

increase in �tness requires an increase in be-

havioural complexity, then it will evolve. In

order for this process to be practicable as a

design alternative, however, the time peri-

ods involved must be acceptable. The �nal

part of this paper looks at general ways in

which the encoding scheme may be modi-

�ed to speed up the process. Experiments

are reported in which di�erent categories

of scheme were tested against each other,

and conclusions are o�ered as to the most

promising type of encoding scheme for a vi-

able open-ended Evolutionary Robotics.

Introduction

Early work in Evolutionary Robotics has succeeded

in producing simple behaviours for autonomous

agents [2, 5, 9, 1]. It is becoming increasingly clear,

however, that there is an upper limit to the be-

havioural complexity that Genetic Algorithm (GA)

optimization techniques alone may achieve. If ar-

ti�cial evolution is ever to become a practicable

alternative to human ingenuity in the design and

creation of control architectures for autonomous

agents, then this limit has to be overcome. This

paper sets out what has to be done to ensure that

the evolutionary process underlying a viable ER is

limitless in terms of the behavioural complexity it

is capable of producing.

1 How to ensure that the arti�cial

evolution of complex behaviour is

possible

This section introduces a GA that employs vari-

able length genotypes to code for arbitrarily com-

plex phenotypes. If recurrent dynamical neural net-

works [11] or something similarly suitable are used

as phenotypes, then this makes it possible, at least

as far as the evolutionary process is concerned, to

produce arbitrarily complex behaviours. This has

major consequences for the way in which the evolu-

tionary search space is normally viewed and a dif-

ferent, more intuitive model is o�ered. The familiar

concept of the �tness landscape is then rede�ned in

terms of this new model.

1.1 A GA capable of evolving arbitrary lev-

els of complexity

According to conventional theories of how and why

GAs work (such as Holland's schema theorem[6]

or the building block hypothesis[3]) it is during

the transition from initially diverged to �nally con-

verged that the power of a GA is employed. Even

though with suitable mutation a GA will never com-

pletely converge (and we can never be sure that it

has reached a stage where it will not discover any

better solutions if left long enough), it is generally

recognised that there comes a point at which the



rate of both �tness-improvement and convergence

drops to zero, and that this is the point at which

optimization stops. In contrast, the type of open-

ended arti�cial evolution required by Evolutionary

Robotics must not stop (see Section 2). A GA based

on or requiring one-way change (such as popula-

tion convergence) contains a built in stopping point

where that one-way change goes to its limit. If we

are after an open-ended evolutionary process that is

truly limitless in terms of the behaviour complexity

it is capable of producing, therefore, we cannot rely

on traditional GA optimization techniques.

In [4], Inman Harvey o�ers a straight-forward

way of literally extending traditional GA models

for the purposes of open-ended arti�cial evolution.

He proposes a Species Adaptive Genetic Algorithm

(SAGA) which di�ers from a conventional GA in

two crucial respects. Firstly, the length of the geno-

type is under evolutionary control, thus ensuring

that there is no upper bound to the complexity

that can, in principle, be achieved by the algorithm.

And secondly, from the initial seeding of the pop-

ulation to the time at which the particular run is

terminated, the population displays a high degree

of phenotypic convergence. This is why the GA

is called Species Adaptive. It ensures the sort of

steady state process that can potentially, like evo-

lution in the real world, continue inde�nitely.

1.2 The search space is not a space

GAs search the set of all possible genotypes for in-

dividuals that correspond to phenotypes of high

�tness. Conventional GA optimization refers to

this set as `genotype space', normally interpreted

to mean the space of all possible permutations of

the �xed number of base units or parameters that

make up a genotype. Distances in such a space are

measured by the Hamming distance. The less alike

two genotypes are, the greater the minimum num-

ber of single point mutations that are required to

transform one into the other, and the further apart

they are in `genotype space'.

There are crucial di�erences, however, between

the set of all possible genotypes searched by a vari-

able dimensionality GA such as SAGA and that

searched by a conventional GA. The number of base

units or parameters that may be permuted is not

�xed, Hamming distance is meaningless between

two genotypes of di�erent lengths, and point mu-

tations alone are insu�cient to transform a geno-

type of one length into a genotype of another.

Clearly, this set can not be represented by a �xed-

dimensionality genotype space.

Instead of a Euclidean space, the set of possi-

ble genotypes searched by a variable dimensional-

ity GA is best represented by a graph or network

i.e. a set of interconnected nodes. Each node corre-

sponds to a possible genotype and each connection

corresponds to a single application of a genetic op-

erator. In order to make this more explicit, consider

a stripped down version of a variable dimensionality

GA involving two genetic operators: mutation and

a `change length' operator. Two genotypes may

then be de�ned to be maximally similar, though

not identical, if they di�er by a single genetic base

unit (bit, character, nucleic acid etc.). This is the

case if either they are the same length but di�er

by a single genetic base unit (the mutation oper-

ator) or one genotype contains exactly one more

genetic base unit than the other but in all other

respects they are identical (the `change length' op-

erator). A connection is de�ned to exist between

two nodes on the graph of all possible genotypes if

and only if their corresponding genotypes are max-

imally similar. The more similar two genotypes are

to each other, the shorter the direct path between

their corresponding nodes on the graph.

A GA that allows the arti�cial evolution of

arbitrary levels of behavioural complexity, then,

searches a graph of possible genotypes, rather than

the space of all possible genotypes, for individuals

that correspond to phenotypes of high �tness. The

connectivity of the graph, in terms of neighbour-

hood relationships, is no longer an intrinsic function

of the search space, but a function of the genetic op-

erators employed by the GA. In fact, whether the

graph does indeed contain a node for every possible

genotype is itself a function of the genetic operators,

since some genotypes may be unreachable. The ex-

act connectivity of the graph can have far-reaching

e�ects on the e�ciency of the evolutionary process,

with special operators such as translocation and in-

version providing `short cuts' between nodes that

would otherwise be many steps away from each

other. In order to keep the discussion tractable,

however, this paper is concerned only with the sim-

ple graph that results from the stripped down vari-

able dimensionality GA outlined above.

1.3 Elements of the �tness landscape

The search performed by a conventional GA is

guided by measures of phenotypic �tness, and a GA

capable of evolving arbitrary levels of complexity is

no di�erent. Although it is necessary to abandon

the idea of a Euclidean genotype space, we may

still retain the idea of a �tness landscape (and its

attendant explanatory power), by regarding the �t-

ness value of the phenotype corresponding to each

node on the graph of possible genotypes as an alti-

tude metric. Moving along a connection from one

node in the graph to another is deemed up-hill if the

second node corresponds to a phenotype of greater

�tness than that of the �rst, down-hill if the reverse

is the case, and horizontal if both nodes correspond

to phenotypes of the same �tness. Since the job of

the the GA behind open-ended Arti�cial Evolution

is to �nd areas of higher and higher �tness, it is the

broad character of the landscape, whether gentle



slopes or vertical cli�s, many local maxima or no

maxima at all, that has the single most profound

e�ect on the speed and e�ciency of the search.

Every �tness value is a function of the total pro-

cess that results in its assignment to a genotype,

from the encoding scheme under which a pheno-

type is developed to the nature of a �tness trial.

It is a mistake to regard the topography of the �t-

ness landscape, as overlaid on the graph of possible

genotypes, as a function of any one component of

this process. Changing the encoding scheme will

have just as drastic e�ects on the relative �tness

of individual nodes as altering the �tness test. For

any given selection criteria (such as a particularly

di�cult ER task, for instance) it may be possible to

shape the �tness landscape into something that the

evolutionary process �nds easy by the careful selec-

tion of an appropriate encoding scheme along with

other components of the �tness assignment process.

This issue is of overwhelming importance to the via-

bility and practicability of arti�cially evolving com-

plex behaviour. It is further discussed in section 3.

2 How to ensure that the arti�cial

evolution of complex behaviour is

inevitable

The evolutionary process behind a viable ER must

be such that if greater behavioural complexity is re-

quired in order for the �tness of the population to

improve then it will evolve. If this condition is not

ful�lled, then there is no guarantee that the evolu-

tionary process will not become `stuck', leaving us

with simple behaviours that are poorly adapted. In

fact, this condition is more general, since the aim

of ER is to produce autonomous agents that are

maximally adaptive to their environment, and not

necessarily maximally complex. We therefore re-

quire that if it is possible for the population to be

�tter, it will become �tter. If there is a global �t-

ness maximum in the �tness landscape, then we re-

quire that the evolutionary process eventually �nds

it, and where the �tness landscape is continually

changing, as might be the case in a coevolution-

ary scenario for instance [12], we require that the

population continues to adapt ad in�nitum.

This property of the evolutionary process, here

referred to as open-endedness, is logically equiva-

lent to the population never becoming `stuck' on a

local �tness maximum in the �tness landscape
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. It

may be guaranteed to pertain in one of two ways.

Either one sets up the GA so that if the popula-

tion comes to rest temporarily on a local �tness

maximum, a new and �tter region of the �tness

1

On the graph of possible genotypes, a local �tness max-

imum is constituted either by a single node or by a subnet-

work of inter-connected nodes that are all of the same cor-

responding �tness. It may be recognised by the fact that all

the nodes directly connected to it are of lower corresponding

�tness.

landscape will always be found, or one ensures that

the �tness landscape is such that there are no lo-

cal �tness maxima. Both of these approaches, here

called `multiple mutations' and `neutral networks'

respectively, are discussed below.

Although it is actually a trivial matter to demon-

strate how the evolutionary process may always �nd

its way to a �tter part of the space (if there is one)

given enough time... it is a far from trivial matter to

ensure that it does it quickly enough to safeguard

arti�cial evolution as a viable design alternative.

Any method of ensuring the open-endedness of the

process must, at least in principle, have the poten-

tial for massive future performance improvements.

If, using a certain method, it is a priori impossi-

ble to speed up the evolutionary process, then this

method must be rejected.

2.1 Multiple mutations

The �rst approach to guaranteeing open-endedness

considered in this paper places the emphasis

squarely on the underlying GA. To appreciate how

it works, we consider a population that is temporar-

ily `stuck' on a local �tness maximum, and look at

ways in which the GA could be guaranteed to pro-

duce a �tter individual.

In it's most basic form, the GA could guarantee

the eventual production of an individual of greater

�tness by introducing a single random genotype per

generation until one is found. This does indeed

guarantee open-endedness, but it constitutes noth-

ing more than the random search of the graph of

possible genotypes. It certainly does not provide

the power necessary to render open- ended arti�-

cial evolution a practicable proposition. The ques-

tion on which the viability of this approach rests,

then, is whether it is possible to alter the GA in

such a way that it escapes from local �tness max-

ima signi�cantly quicker than random search.

The answer is that it is not possible without some

foreknowledge of the �tness landscape. There are

many ways to bias the search that still guarantee

the open-endedness of the evolutionary process. For

example, we could introduce multiple single point

mutations at each o�spring event according to a

Poisson distribution, thus safeguarding the minute

possibility of a vastly mutated o�spring while bias-

ing the search towards the population average. But

in order for this method to out-perform totally ran-

dom search, the �tness landscape must be known to

be of a certain shape e.g. local maximamust always

be near to areas of higher �tness. We may con-

strain the shape of the �tness landscape by alter-

ing elements of the �tness value assignment process

(as outlined in section 1.3), and this might provide

us with the appropriate foreknowledge. However,

since it is an easy matter to constrain the �tness

landscape to such an extent that there are no �t-

ness maxima (see below), this sort of hybrid ap-



proach should not constitute the primary focus of

enquiry.

2.2 Neutral networks

The other way to guarantee that arti�cial evolution

is open-ended places the emphasis on the �tness as-

signment process. It ensures that there are no local

�tness maxima in the �tness landscape by placing

restrictions on the encoding scheme; an evolution-

ary process employing nothing much more compli-

cated than hill-climbing is thus guaranteed to be

open-ended. The restrictions may take many forms,

but for a simple example let us look at an encod-

ing scheme in which it is always possible to add

extra genetic material (in the form of extra bits,

characters etc) to the genotype without e�ecting

the phenotype, and it is always possible to switch

segments of the genotype `on' or `o�' by way of sin-

gle point mutations. These restrictions may seem

strange but they are in fact true of the encoding

scheme behind natural development. In order to

show that there are no local �tness maxima in the

resultant �tness landscape, consider a worst case

scenario - the genotype coding for a particular phe-

notype cannot undergo a normal single point mu-

tation anywhere along its length without su�ering

a loss in �tness. Extra genetic material that is `o�'

can always be added to the genotype without e�ect-

ing the phenotype, however, and this will eventually

lead, after a monkeys-typing-Shakespeare length of

time, to the evolution of a stretch of `junk dna'

that codes for a �tter phenotype (if there is one)

than that expressed by the current `on' stretch of

genotype. Since a single-point mutation can always

switch an `on' stretch of genotype to `o�' and an

`o�' stretch of genotype to `on', it is therefore pos-

sible that the `junk dna' is expressed while the rest

of the genome is switched `o�', thus producing a

�tter phenotype.

Under this encoding scheme, we can guarantee

that no node or set of nodes on the graph of all

possible genotypes constitutes a local �tness maxi-

mum. All nodes will connect to at least a few other

nodes of the same corresponding �tness thus form-

ing large neutral networks (the term here is adapted

from its use in [10]). In every neutral network there

will be one or more nodes that also has an up-hill

connection to a node in a neutral network of higher

�tness. It is possible, therefore, to �nd a path from

any node through the graph of possible genotypes

that monotonically increases
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, with respect to cor-

responding �tness, ad in�nitum.

If this approach is taken seriously then the major

part of the evolutionary process behind an open-

ended ER becomes a matter of searching neutral

networks for connections that lead up-hill on the �t-

2

monotonically increasing means never going down, not

always going up.

ness landscape, and not hill-climbing itself. There

are hills in the typical ER �tness landscape, but

consider what these represent. To travel up a �t-

ness hill on the graph of possible genotypes amounts

to a gradual altering of the parameters of the corre-

sponding phenotypes until a �tness plateau (which

is actually a neutral network) is reached. But this

gradual shifting of the parameters is unlikely to re-

sult in a change to the functionality of expressed

phenotypes. In other words, although changing the

parameters in this fashion may make phenotypes

better at amassing �tness points, it is unlikely to

change how they amass �tness points.

The slopes of ER �tness landscapes span the phe-

notypic space between a bad version of a control

strategy and a perfected version of that same con-

trol strategy. As an example, imagine a population

of control architectures that evolves from the situ-

ation in which a simple robot reacts slightly to one

of its whiskers, to the situation in which the robot

travels round a room e�ciently using its whiskers as

obstacle-detectors. The neutral networks or �tness

plateaus of ER �tness landscapes span the pheno-

typic space between di�erent or augmented control

strategies. Such a transition might involve the pre-

vious population of control architectures, that has

evolved to make the robot avoid obstacles using its

whiskers alone, evolving further to make use of the

robot's infra-red sensors instead or as well.

The point is that �tness slopes are relatively easy

to climb since directed search is possible (although

there may be problems caused by noise). Evo-

lutionary search from a perfected version of one

control strategy to a bad version of another (that

might well subsume the �rst), on the other hand, is

blind. There are no hills to climb. In our example,

the �ttest members of the population continue to

make the robot avoid obstacles using its whiskers

in exactly the same way until, eventually, a mu-

tant arises which also reacts slightly to infra-red as

well. Until this happens, the population is wander-

ing randomly on a neutral network.

The question on which the viability of this partic-

ular approach rests, then, is whether it is possible

to signi�cantly reduce the time spent by the evo-

lutionary process searching neutral networks from

the monkeys-typing-Shakespeare level. The answer

to this question is, unlike the previous approach,

that it may well be possible and Section 3 explores

how further restrictions on the encoding scheme can

improve performance signi�cantly. For although it

is true that search on neutral networks is blind, it

might be feasible to reduce the expected time of ar-

rival at an up-hill connection to an area of greater

�tness by many orders of magnitude.



2.3 How a simple GA would work in the

context of neutral networks

So far, no explanation has been given of how an

open-ended GA would work. This is because, in or-

der to give a satisfactory account, some knowledge

of the nature of the search space is required. There

is no point, for instance, in spending time explain-

ing and ensuring how an open-ended GA will never

settle on a local �tness maximum if there are no lo-

cal �tness maxima in the �tness landscape. Having

shown that the most promising way to think about

�tness landscapes for open-ended arti�cial evolu-

tion is in terms of inter-connected neutral networks,

we are now in a position to give an exposition of

what we require from a simple GA in order for it

to operate on such a landscape, and how we expect

one to meet these requirements. This will give a

general picture of the evolutionary process under-

lying an open-ended ER which we may use to point

the way forwards for performance improvements.

If the �tness landscape consists of neutral net-

works connected together by slopes, we certainly

require the GA behind open-ended arti�cial evolu-

tion to perform hill-climbing type search. This is

only half the story, however. It is important to re-

alize that as well as being connected to nodes of

equal corresponding �tness, every node on a neu-

tral network is connected to many that are of lower

corresponding �tness. The application of genetic

operators to a particular individual will result in a

genotype of lower corresponding �tness just as eas-

ily (usually much more easily) as one of equal corre-

sponding �tness. This means that the GAmust also

prevent the population from `falling o�' whichever

neutral network it happens to be on while continu-

ing the search.

If the rate at which genetic operators (such as

mutation or a `change length' operator) are applied

is kept low, the selection pressure in conjunction

with the constant renewal of the population will

ensure a high degree of genetic convergence. The

population will thus cluster together on the graph

of possible genotypes exploring a compact region

thoroughly. Since individuals of higher �tness pro-

duce a greater number of o�spring than individuals

of lower �tness, the area around their correspond-

ing nodes on the graph of possible genotypes will be

more densely populated, and thus better searched.

If this search results in the discovery of nodes with

even higher �tness, then these in turn will quickly

come to be the locus of rapid local population ex-

pansion, and the average �tness of the population

will increase. The GA is thus performing simple

hill-climbing type search.

If the �ttest member of the population is never re-

placed, then hill-climbing search is su�cient, also,

to stop the population from `falling o�' a neutral

network. We may either explicitly implement an

elitist policy in which the �ttest member of the pop-

ulation automatically goes through to the next gen-

eration (or is never replaced in the case of a steady-

state GA), or we may set the rate at which genetic

operators are applied to such a low rate that it is

extremely unlikely that a �t member of the popu-

lation will not go through to the next generation

unchanged. Unlikely, however, does not mean im-

possible, and over evolutionary time we may expect

the population to sometimes `fall of' the neutral

network
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. The best thing to do may be to adopt

a simple steady state GA policy in which elitism

comes for free. Such a policy is at the basis of the

experiments performed in the next section.

3 How to approach ensuring that the

arti�cial evolution of complex be-

haviour is viable

The last two sections have put forward several con-

ditions that must be ful�lled if ER is to be ca-

pable of producing arbitrary levels of behavioural

complexity. In order for ER to be viable as an al-

ternative to other design methodologies, however,

the monkeys-typing-Shakespeare levels of e�ciency

mentioned in section 2 are unacceptable. ER must

be able to produce satisfactory results within a rea-

sonable time period. This is by no means the only

matter on which the viability of an open-ended ER

rests (see [7] for issues involving real robots) but it

is certainly a necessary and pressing requirement.

If the conceptual framework outlined previously

in this paper is accepted, then it is clear that by

far the largest portion of the evolutionary e�ort is

spent on the process of searching neutral networks

for areas of higher �tness. We have already seen

in section 2.2 that it is restrictions on the encoding

scheme that ensures every node on the graph of pos-

sible genotypes lies on a neutral network in the �rst

place. This section goes further to investigate how

the encoding scheme may be used, in conjunction

with domain-speci�c heuristics, to alter the shape

and nature of neutral networks in ways that vastly

improve the performance of the entire evolutionary

process.

3.1 How the encoding scheme may be used

to favorably alter the �tness landscape

If a phenotypic property p exists such that phe-

notypes that are p are, on the whole, �tter than

phenotypes that are p0 (i.e. are not p), then we

may use the encoding scheme to apply this heuris-

tic in one of two ways. Either we bias the encod-

ing scheme so that there are lots of ways in which

genotypes may code for p phenotypes but only a

3

The biological analogue of this phenomena is known

as Muller's Ratchet (see [8]). This might be one area in

which arti�cial evolution may e�ortlessly improve on Natu-

ral Evolution.
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Figure 1: This �gure shows phenotypic templates that de-

�ne neutral networks on the graph of possible genotypes.

In both experiment 1 (top pair) and experiment 2 (bottom

pair), any phenotype matching the left hand template was

assigned a �tness of 1.0. Any phenotype also matching the

relevant right hand template was assigned a �tness of 2.0.

few ways in which a genotype may code for p0 phe-

notypes, or we restrict the encoding scheme so that

genotypes are incapable of coding for some or all

of the phenotypes that are p0. The �rst method

uniformly increases the proportion of nodes on the

graph of possible genotypes that code for p pheno-

types, and the second method uniformly decreases

the number of nodes on the graph of possible geno-

types that code for p0 phenotypes. Each method

has the e�ect of both increasing the relative fre-

quency of nodes that code for p and increasing the

likelihood of any particular node being connected

to a node that codes for p. If the evolutionary pro-

cess is searching a neutral network for connections

to a �tter area in the �tness landscape, therefore,

and the nodes that constitute that area code for

phenotypes whose characteristics include p, then we

expect both methods to improve the average time

taken for the evolutionary process to �nd that area.

Despite the fact that there are almost as many en-

coding schemes in use as there are ER researchers,

these are in fact the only two ways in which the en-

coding scheme may use heuristic knowledge to fa-

vorably alter the �tness landscape. As an example,

let us take symmetry as the p property of pheno-

types. This is highly relevant to ER since being able

to act and react equally to the left and right seems

an important constituent of adaptive behaviour.

Under a so-called direct encoding scheme, the pro-

portion of nodes on the graph of possible genotypes

that code for symmetrical phenotypes will be the

same as the proportion of all possible phenotypes

that are symmetrical i.e. practically zero. One way

in which we may remedy this situation is by in-

creasing the length or cardinality of the genotype

so that a single application of a genetic operator

(such as mutation) may not only cause the right

or the left of the phenotype to change, but may

also cause the right and the left of the phenotype

to change equally. This has the e�ect of increas-

ing the number of ways that a genotype may code

for a symmetrical phenotype and the bene�ts of bi-

ased encoding schemes, as outlined above, will ap-

ply. Another way in which the proportion of geno-

types that code for symmetrical phenotypes may be

increased is simply to make it impossible to encode

asymmetrical phenotypes. If this is done, then the

evolutionary search is wholly restricted to the space

of symmetrical phenotypes.

3.2 Testing di�erent categories of encod-

ing scheme against each other: exper-

imental setup

In order to test the relative neutral network search-

ing abilities of di�erent categories of encoding

scheme, simple experiments were devised and per-

formed. In all, four di�erent schemes were tested

against each other: a direct encoding scheme, a bi-

ased encoding scheme, a restricted encoding scheme

and a hybrid encoding scheme which was both bi-

ased and restricted. Two di�erent sets of experi-

ments were performed, the �rst involving all four

schemes, and the second involving only the biased

and the direct encoding scheme. In both experi-

ments, schemes were judged on the average time

taken by a GA to search a neutral network of a

particular �tness for nodes in a second �tter net-

work. Precise details of the neutral networks and

encoding schemes are given below.

Phenotypes consisted of the pattern of �lled

squares on an eight by eight grid. Their �tnesses

were assigned according to the templates shown in

�gure 1. As can be seen from the diagrams, in both

experiments the templates of �tness 2.0 are special

cases of the templates of �tness 1.0. This is analo-

gous to the type of incremental ER process in which
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Figure 2: The numbering system used to �ll in squares on

the phenotypic grid. On the right are two example geno-

type �elds from the biased encoding scheme, and their cor-

responding phenotypic e�ect



encoding scheme experiment 1 experiment 2

direct 175220 133700

biased 1054.1 1650600

restricted 2312.4

hybrid 404.5

Table 1: This shows the average number of evaluations for

each encoding scheme, taken over a series of 500 runs, that

the GA took to �nd the neutral network of �tness 2.

a particular control strategy, such as obstacle avoid-

ance using whiskers, is subsumed by another more

complex control strategy, such as obstacle avoid-

ance using infra-red sensors as well (see section 2.2).

Indeed, the way in which phenotypes blindly evolve

so that patterns that �t the left hand template sud-

denly come to �t the right hand template is anal-

ogous to how we would like the redundant connec-

tivity of an arti�cial neural network, for instance,

to blindly grow and evolve until it suddenly begins

to display some useful functionality.

The genotypes in the direct encoding scheme con-

sisted of a precise number n of 6-bit binary �elds

joined together to make a string, where n was un-

der genetic control. In order to decode a pheno-

type from a genotype, a decimal value is calculated

from the binary value of each �eld, and the relevant

square �lled in on the grid according to the special

numbering shown in �gure 2. Thus each phenotype

has as many squares �lled in as there are �elds on

the genotype.

The genotypes in the biased encoding scheme

consisted of a precise number n of 6-bit ternary

�elds, where n was under genetic control. Of the

three possible bit values, 0 represents 0, 1 represents

1, but 2 is a wild card character. Therefore each 6-

bit ternary �eld maps to 2

k

6-bit binary numbers,

where k is the number of 2s in the ternary �eld.

When decoding a ternary �eld, a square is �lled

in on the grid (according to the special numbering

shown in �gure 2) for every binary number that

matches. Two examples of decoded �elds are given

in �gure 2. It is important to note that although the

biased encoding scheme is capable of encoding any

phenotype, genotypes that code for a high degree

of symmetry and order will be much more common

than those that don't.

The genotypes in the restricted encoding scheme

consisted of a precise number n of 5-bit binary

�elds, where n was under genetic control. During

decoding, each �eld is treated as if it had an extra

bit of value 2 on the end, and decoded in the same

way as for the biased encoding scheme. This means

that for each �eld on the genotype a symmetrical

pair of squares is �lled in on the phenotype. All

phenotypes are vertically symmetrical.

The genotypes in the hybrid encoding scheme

consisted of a precise number n of 5-bit ternary

�elds, where n was under genetic control. During

decoding, each �eld is treated as if it had an extra

bit of value 2 on the end and decoded in exactly

the same way as if it were a six-bit ternary �eld

of the biased encoding scheme. This means that

many more squares may be �lled in on the pheno-

type than there are �elds on the genotype and that

all phenotypes are vertically symmetrical.

3.3 Testing di�erent categories of encod-

ing scheme against each other: exper-

imental results

In both experiments, the GA

4

was run 500 times for

each encoding scheme. On every run the population

was started from the same point on the �rst neu-

tral network, namely the node that corresponds to a

genotype of length 0 (which represents a blank grid

under every encoding scheme). On each run, the

number of �tness evaluations performed before the

GA found the second neutral network was counted.

A table of the average scores per encoding scheme

per �ve hundred runs per experiment is given in

Table 1. Because the distributions underlying the

numbers of evaluations taken approximate a Pois-

son distribution, the variances of the scores are of

the same order of magnitude as the means, and con-

ventional graphical representations are largely un-

informative. To produce Figures 3 and 4, the scores

from each set of �ve hundred runs were sorted in

order of magnitude and plots were made of rank

against value. This give a fairly good picture of the

abilities of each encoding scheme to perform neu-

tral network search. The shallower the gradient,

the better.

The �rst thing to say about these results is that

they prove quite conclusively that the choice of

an appropriate encoding scheme which exploits do-

main knowledge in a heuristic way, does indeed

signi�cantly speed up the neutral network search

space. Of the four encoding schemes tested in ex-

periment 1 only the direct encoding scheme does

not exploit the fact that the template for the sec-

ond neutral network is symmetrical. This makes

it two orders of magnitude worse than its nearest

rival. The hybrid encoding scheme, which exploits

the symmetry of the template in a dual way, seemed

to work the best.

In experiment 2, an asymmetrical template de-

�nes the neutral network of �tness 2. Only the

biased and the direct encoding schemes are capa-

ble of representing a phenotype of this type, and

the experiment was performed in order to test the

4

Population 100. Steady state. Tournament selec-

tion. Genetic operators included a mutation operator and

a `change length' operator capable of adding or subtracting

a random genotype �eld. These operators were applied at a

rate of one (of the two operators) applications per o�spring

event in the of ratio 4:1, respectively. Crossover was em-

ployed at all o�spring events.
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Figure 3: Results of experiment 1: the relative ability of

the four encoding schemes to perform neutral network search

on a symmetrical task. For each encoding scheme, the results

of all �ve hundred runs are displayed (see text).

biased scheme's ability to search for asymmetrical

phenotypes when it is biased in favour of symmet-

rical ones. As can be seen, the biased encoding

scheme performs an order of magnitude worse than

the direct encoding scheme on this task. This is not

surprising if one considers that increasing the pro-

portion of nodes code for symmetry on the graph

of possible genotypes decreases the proportion of

nodes that code for asymmetry.

3.4 The choice is restricted

No de�nite conclusions can be drawn from these

results as to which type of encoding scheme is the

most promising for a viable open-ended ER. Filling

in squares on a grid is not the same as evolving com-

plex behaviours for autonomous agents. The results

are, however, extremely suggestive. Even though

the performance di�erence between the hybrid en-

coding scheme and the biased encoding scheme

seem slight, it is nevertheless some sort of (biased)

restricted encoding scheme rather than a pure bi-

ased encoding scheme that is advocated here.

To appreciate why, consider how each type of

scheme would encode something that involved lots

of complex repeated structure such as a millipede,

for example. A hybrid restricted scheme would en-

code a single leg once on a genotype and reuse this

code 1000 times. Perhaps it would also code for

a small number of position dependent operators,

such that the front legs di�ered from the back legs

according to some spatial transformation (see [13]

for examples of this sort of thing occurring in na-

ture). A true biased encoding scheme, on the other

hand, must safeguard the possibility that any leg

may evolve independently to any other, since ev-

ery phenotype is potentially representable. Thus,

although it could code for the millipede in a similar

way to the hybrid restricted scheme (by repeating

the code for 1 leg 1000 times), it must also be able,

at least in principle, to code for each of the 1000 legs

individually. However it is done, this will involve a

longer or higher cardinality genotype resulting in

larger neutral networks with a lower frequency of

nodes connected to areas of greater �tness.

Many researchers will feel uneasy about the idea

of adopting encoding schemes that are unable to en-

code all possible phenotypes. They may feel that,

even if this does lead to performance increases, it

amounts to prejudging the problem and prevents

the evolution of unexpected solutions - precisely the

reason evolution is being used in the �rst place.

There is one further thing to be said, however, that

may quell these fears. An encoding scheme that is

biased for the evolution of certain traits, is biased

against the evolution of other traits. This is clear

from experiment 2. Therefore in order for a bi-

ased scheme to even come close to competing with

a hybrid restricted scheme at evolving complex phe-

notypes (such as in the millipede example above),

the level of bias would be such that the evolution of

a particular phenotype which the scheme is biased

against would take a totally impractical length of

time. In fact, as can be seen from experiment 2,

it would actually take many, many orders of mag-

nitude longer to evolve than if a simple direct en-

coding scheme was used. Thus, by removing the

possibility of representing such phenotypes, we are

actually losing very little.

4 Conclusions

The �rst part of this paper shows how the evolu-

tionary process underlying ER may be constrained

to ensure not only that the evolution of complex

behaviour is possible, but that if it is necessary

for the increased �tness of the population, it will

evolve. Section 1 showed how the correct choice of

GA leads to a view of genotype space as a graph

upon which arbitrary levels of complexity may be

biased
direct

Number of
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Figure 4: Results of experiment 2: the relative ability of

the biased and direct encoding schemes to perform neutral

network search on an asymmetrical task. For each encoding

scheme, the results of all �ve hundred runs are displayed (see

text).



encoded and searched for, and Section 2 showed

how suitable restrictions to the encoding scheme

result in the formation of neutral networks on this

graph, thus guaranteeing the open-endedness of the

evolutionary process.

Neither Section 1 or Section 2, took into account

the time constraints that underly the viability of ER

as a design alternative, however, and in Section 3

methods of using the encoding scheme to speed up

the evolutionary process were explored. All encod-

ing schemes were shown to belong to one of a set

of distinct categories, and experiments were per-

formed to test these categories against each other.

As a result, hybrid restricted encoding schemes

were advocated as the most powerful type of en-

coding scheme for evolving complex behaviour.

Although many ER researchers share the intu-

ition that the encoding scheme is, somehow, at the

root of the problem, there is very little consensus

or theory at the basis of this intuition. It is hoped

that with the aid of the conceptual framework laid

out in Sections 1 and 2 the conclusions resulting

from the experiments of Section 3 may be extended

to provide the basis for a viable open-ended ER.

Acknowledgements

I would like to thank Phil Husbands, Inman Harvey

and others at the School of Cognitive and Computer

Sciences for various crucial discussions. Thanks also

to the school of COGS itself for the bursary that

allows me to undertake this work.

References

[1] R.D. Beer and J.C. Gallagher. Evolving dy-

namic neural networks for adaptive behavior.

Adaptive Behavior, 1:91{122, 1992.

[2] D. Floreano and F. Mondada. Automatic cre-

ation of an autonomous agent: Genetic evo-

lution of a neural -network driven robot. In

D. Cli�, P. Husbands, J.A. Meyer, and S. Wil-

son, editors, From Animals to Animats, vol-

ume 3, 1994.

[3] D. E. Goldberg. Genetic Algorithms in Search,

Optimization and Machine Learning. Addison-

Wesley, Reading, Massachusetts, 1989.

[4] I. Harvey. Species adaptation genetic algo-

rithms: the basis for a continuing saga. In

F. J. Varela and P. Bourgine, editors, Toward

a Practice of Autonomous Systems: Proceed-

ings of the First European Conference on Ar-

ti�cial Life, pages 346{354, Cambridge, Mas-

sachusetts, 1992. M.I.T. Press / Bradford

Books.

[5] I. Harvey, P. Husbands, and D. Cli�. Seeing

the light: Arti�cial evolution, real vision. In

Proceedings of the Third International Con-

ference on Simulation of Adaptive Behavior,

1994.

[6] John Holland. Genetic algorithms and clas-

si�er systems: Foundations and future direc-

tions. In J. J. Grefenstette, editor, Genetic Al-

gorithms and their Applications: Proceedings

of the Second International Conference on Ge-

netic Algorithms, pages 82{89, Hillsdale, N.J.,

1987. Lawrence Erlbaum Associates.

[7] M.J. Mataric and D. Cli�. Challenges in evolv-

ing controllers for physical robots. Robot and

Autonomous Systems, forthcoming.

[8] Martin Nowak and Peter Schuster. Er-

ror thresholds of replication in �nite popula-

tions, mutation frequencies and the onset of

Muller's ratchet. Journal of Theoretical Biol-

ogy, 137:375{395, 1989.

[9] C.W. Reynolds. Evolution of corridor fol-

lowing behaviour in a noisy world. In

D. Cli�, P. Husbands, J.A. Meyer, and S. Wil-

son, editors, From Animals to Animats. MIT

Press/Bradford Books, 1994.

[10] P. Schuster. Arti�cial life and molecular evo-

lutionary biology. In Proceedings of the Euro-

pean Conference on Arti�cial Life, pages 3{19.

Springer-Verlag, 1995.

[11] H.T. Siegelmann and E.D. Sontag. On the

computational power of neural nets. Journal

of Computer and System Sciences, 1995.

[12] N. C. Stenseth and J. Maynard Smith. Coevo-

lution in ecosystems: Red queen evolution or

stasis? Evolution, 38:870{880, 1984.

[13] D.W. Thompson. On Growth and Form. Cam-

bride University Press, 1942.


