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Abstract

This paper presents experiments using an adaptive learning compo-

nent based on Radial Basis Function (RBF) networks to tackle the uncon-

strained face recognition problem using low resolution video information.

Firstly, we performed preprocessing of face images to mimic the e�ects

of receptive �eld functions found at various stages of the human vision

system. These were then used as input representations to RBF networks

that learnt to classify and generalise over di�erent views for a standard

face recognition task. Two main types of preprocessing (Di�erence of

Gaussian �ltering and Gabor wavelet analysis) are compared. Secondly

we provide an alternative, `face unit' RBF network model that is suitable

for large-scale implementations by decomposition of the network, which

avoids the unmanagability of neural networks above a certain size. It uses

small, individual networks for each class and allows the addition of new

data to the database without complete re-training of the system. Finally,

we show the 2-D shift, scale and y-axis rotation invariance properties of

the standard RBF network. Quantitative and qualitative di�erences in

these schemes are described and conclusions drawn about the best ap-

proach for real applications to address the face recognition problem using

low resolution images.

Introduction

The human face poses several severe tests for any visual system: the high degree

of similarity between di�erent faces, the extent to which expressions and hair

can alter the face, and the large number of angles from which a face can be

viewed in common situations. A face recognition system must be robust with

respect to this variability and generalise over a wide range of conditions to
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capture the essential similarities for a given human face. It is only recently that

work on biologically-motivated, statistical approaches to face recognition has

begun to deliver real solutions. One of the main problems that these approaches

tackle is dimensionality reduction to remove much of the redundant information

in the original images. There are many possibilities for such representations

of the data, including principal component analysis, Gabor �lters and various

isodensity map or feature extraction schemes. A well known example is the

work of Turk & Pentland (1991), on the `eigenface' approach, which is widely

acknowledged to be useful for practical application. However, the need for

representations at a range of scales and orientations causes extra complexity

and updating the average eigenface (used for localisation) when new faces are

added to the dataset are problems for this scheme. These di�culties have been

overcome to some extent in later work by various researchers (Pentland et al.

1994, Petkov et al. 1993, Rao & Ballard 1995). In particular, it seems that

appropriate preprocessing of input representations for a face recognition scheme

can overcome the problems of lighting variation and multiple scales. Other

sources of variation such as face orientation, expression, occlusion etc. still

remain.

In our work we use an adaptive learning component based on RBF net-

works to tackle the unconstrained face recognition problem. We want our face

recognition scheme to generalise over a wide range of conditions to capture the

essential similarities of a given face. The RBF network has been identi�ed as

valuable model by a wide range of researchers (Moody & Darken 1988, Poggio

& Girosi 1990b, Girosi 1992, Musavi et al. 1992, Ahmad & Tresp 1993, Bishop

1995). Its main characteristics are �rst, its computational simplicity (only one

layer involved in supervised training which gives fast convergence), and second,

its description by a well-developed mathematical theory (resulting in statistical

robustness). RBFs are seen as ideal for practical vision applications by (Girosi

1992) as they are good at handling sparse, high-dimensional data (common in

images), and because they use approximation which is better than interpolation

for handling noisy, real-life data. RBF networks are claimed to be more accurate

than those based on Back-Propagation (BP), and they provide a guaranteed,

globally optimal solution via simple, linear optimisation. An RBF interpolat-

ing classi�er (Edelman et al. 1992), was e�ective and gave performance error

of only 5{9% on generalisation under changes of orientation, scale and lighting.

This compares favourably with other state of the art systems such as the Turk

& Pentland scheme. RBF techniques should be well suited to the face recog-

nition task and may �nd second-order (relative distance) di�erences that can

generalise well rather than �rst-order (absolute distance) information.

Cognitive studies of the way human faces are perceived (for example (Bruce

1988)) can contribute to the design of systems that automate this kind of visual

processing. There is support for having `face recognition units' (FRUs) for

recognising familiar faces (Bruce & Young 1986, Bruce 1988, Bruce et al. 1995).

This idea is partly captured by the standard RBF techniques described next

where the �rst layer of the network maps the inputs with a hidden unit devoted

to each view of the face to be classi�ed. The second layer is then trained to
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combine the views so that a single output unit corresponds to the individual

person. We have taken this idea further and have developed a `face unit' network

model, which allows rapid network training and classi�cation of examples of

views of the person to be recognised. These face units give high performance and

also alleviate the problem of adding new data to an existing trained network. We

are use the various views of the person to be recognised together with selected

confusable views of other people as the negative evidence for the network. Our

face units have just 2 outputs corresponding to `yes' or `no' decisions for the

individual. This is in contrast with Edelman et al. (1992) who did not use such

negative evidence in their study. We show that this system organisation allows

exible scaling up which could be exploited in real-life applications.

The RBF Network Model

The RBF network is a two-layer, hybrid learning network (Moody & Darken

1988, Moody & Darken 1989), with a supervised layer from the hidden to the

output units, and an unsupervised layer, from the input to the hidden units,

where individual radial Gaussian functions for each hidden unit simulate the

e�ect of overlapping and locally tuned receptive �elds. They use the vector

norm distance, ji�cj, equivalent to
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, between the N -dimensional

input vector i and hidden unit centre c (N being the number of input units).

The output value can be seen to approach a maximum when i becomes most

similar to c. The input vectors are unit-normalised.

Each hidden unit has an associated � (sigma) `width' value which de�nes

the nature and scope of the unit's receptive �eld response

1

. This gives an

activation that is related to the relative proximity of the test data to the training

data, allowing a direct measure of con�dence in the output of the network for a

particular pattern. In addition, if the pattern is more than slightly di�erent to

those trained, very low (or no) output will occur.

The output o for hidden unit h (for a pattern l) can be expressed as:
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]; (1)

the hidden layer output being unit-normalised, as suggested by (Hertz et al.

1991). For output unit i, the output is:

o

i
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X

h
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ih

o

h

(l): (2)

Whilst the weights w

ih

can be adjusted using the Widrow-Ho� (Widrow &

Ho� 1960) delta learning rule, the single layer of linear output units permits a

1

It is equivalent to the standard deviation of the width of the Gaussian response, so larger

values allow more points to be included.
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Figure 1: Entire 10-image range (rotating around the y-axis) for one person

before preprocessing

matrix pseudo-inverse method (Poggio & Girosi 1990a) for their exact calcula-

tion. The latter approach allows almost instantaneous `training' of the network,

regardless of size

2

. The RBF network's success in approximating non-linear

multidimensional functions is dependent on su�cient hidden units being used

and the suitability of the centres' distribution over the input vector space (Chen

et al. 1991).

`Face Unit' RBF Model

For the following tests, two types of network were used: a `standard' RBF

model and a `face unit' RBF model. The standard network is trained with all

possible classes from the data with a `winner-takes-all' output strategy, whilst

the `face unit' network produces a positive signal only for the particular person

it is trained to recognise. For each individual, a `face unit' RBF network can

be trained to discriminate between that person and others selected from the

data set, using `pro' and `anti' evidence for and against the individual. Details

can be found in Howell & Buxton (1995c). Although this second approach

increases complexity, the splitting of the training for individual classes into

separate networks gives a modular structure that can potentially support large

numbers of classes, since network size and training times for the `standard'

model quickly become impractical as the number of classes increases.

2

A network of 250 hidden units and 10 outputs, ie.2500 parameters, which required several

hours of Sparc 20 processing time for gradient descent can be computed in a small fraction of

a second.
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Form of Test Data

Lighting and location for the training and test face images in these initial studies

has been kept fairly constant to simplify the problem. For each individual to

be classi�ed, ten images of the head and shoulders were taken in ten di�erent

positions in 10

�

steps from face-on to pro�le of the left side (see Figure 1),

90

�

in all. This gave a data set of 100 8-bit grey-scale 384�287 images from ten

individuals.

A 100�100-pixel `window' was located manually in each image centred on

the tip of the person's nose, so that visible features on pro�les, for instance,

should be in roughly similar locations to face-on. This `window' region was sub-

sampled to a variety of resolutions for testing. Full details are given in Howell

& Buxton (1995a). The resolution of the images is represented as `n�n', a

resolution of 25�25 being used for the work reported here. The ratio of training

and test images used is represented as `train/test', eg `20/80', where 100 images

were in the data set and 20 were used for training and 80 for test. The `face

unit' network size is denoted by `p+ a', where p is the number of `pro' hidden

units, and a is the number of `anti' hidden units. Tests were made on a range of

network sizes from 1+1 to 6+12 (which are e�ectively 2/98 and 18/82 networks).

Pre-processing Methods

Although the RBF network was able to learn the dataset without preprocessing,

ie.on pure grey-level values (Howell & Buxton 1995b), the authors see prepro-

cessing of the images as a valid and important intermediate step, highlighting

relevant parts of the information, and adding an essential invariance to illumi-

nation (Marr & Hildreth 1980).

Two main techniques are used for the preprocessing of the images: Di�erence

of Gaussian (DoG) �ltering and Gabor wavelet analysis at a range of scales. One

way of thinking about these input representations and mapping them onto our

RBF networks is to use the analogy with visual neurons. The receptive �eld

of such a neuron is the area of the visual �eld (image) where the stimulus can

inuence its response. For the di�erent classes of these neurons, a receptive

�eld function f(x; y) can be de�ned. For example, retinal ganglion cells and

lateral geniculate cells early in the visual processing have receptive �elds which

can be implemented as Di�erence of Gaussian �lters (Marr & Hildreth 1980).

Later, the receptive �elds of the simple cells in the primary visual cortex are

oriented and have characteristic spatial frequencies. Daugman (1988) proposed

that these could be modelled as complex 2-D Gabor �lters. Petkov et al. (1993)

successfully implemented a face recognition scheme based on Gabor wavelet

input representations to imitate the human vision system. Our earlier studies

(see Howell & Buxton (1995b)) showed that these later stages of processing

make information more explicit for our face recognition task than the earlier

DoG �lters.
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(a) (b) (c) (d) (e)

Figure 2: Shift-varying data for the `face on' view of one individual: (a) top

left (b) top right (c) normal view (d) bottom left (e) bottom right

The experiments presented here concentrate on two speci�c applications of

these techniques:

� DoG convolution with a scale factor of 0.4, with a reduced range of grey-

levels. The sampled values were thresholded to give zero-crossings infor-

mation. A 25�25 image gave 21�21 convolved values, ie.441 samples per

image.

� Gabor `A3' sampling (for details, see Howell & Buxton (1995b)), with a

full range of grey-levels. Data was sampled at four non-overlapping scales

from 8�8 to 1�1 and three orientations (0

�

, 120

�

, 240

�

) with sine and

cosine components. A 25�25 image gave 510 coe�cients per image.

Generalization Over Views (y-axis Rotation) by the RBF

Network

Fixed selections of images used for training to keep the experiments as con-

strained as possible. Table 1 shows both the standard and face unit RBF net-

work models able to generalise very well over the di�erent views with either the

DoG or Gabor preprocessing method.

(a)

Pre-processing Initial % % Discarded % After Discard

DoG 88 28 100

Gabor 94 30 100

(b)

Pre-processing Initial % % Discarded % After Discard

DoG 92 35 95

Gabor 95 25 100

Table 1: E�ect of pre-processing methods on original dataset: (a) Standard

50/50 RBF Network (b) 6+12 Face Unit RBF Network
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(a) (b) (c) (d) (e)

Figure 3: Scale-varying data for the `face on' view of one individual: (a) +25%

(uses 111�111 window) (b) +12.5% (107�107) (c) normal view (100�100) (b)

{12.5% (94�94) (b) {25% (87�87)

Shift and Scale Invariance Properties of the RBF

Network

Two further data sets were created to test the RBF network's generalisation

abilities:

� A shift-varying data set with �ve copies of each image: one at the standard

sampling `window' position, and four others at the corners of a box where

all x,y positions were �10 pixels from the centre (see Figure 2).

� A scale-varying data set with �ve copies of each image: one at the standard

sampling `window' size, and four re-scaled at �12:5% and �25% of its

surface area, ranging from 87�87 to 111�111 (see Figure 3).

Inherent Invariance - Training with Original Images Only

These experiments used only the original from each group of �ve for training,

using all the varied ones (and the remainder of the original ones not used for

training) for testing. This gives a measure of the intrinsic invariance of the

network to shift and scale, ie.the invariance not developed during training by

exposure to examples of how the data varies.
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(a)

Network Pre- Initial % % After

processing % Discarded Discard

100/400 DoG 14 84 21

100/400 Gabor 35 82 47

50/450 DoG 22 82 56

50/450 Gabor 37 77 53

(b)

Network Pre- Initial % % After

processing % Discarded Discard

10+20 DoG 51 30 51

10+20 Gabor 57 38 52

6+12 DoG 54 32 53

6+12 Gabor 57 38 57

Table 2: E�ect of pre-processing methods on shift-varying dataset (the original

from each group of �ve used for training) (a) Standard RBF Networks (b) Face

Unit RBF Networks

(a)

Network Pre- Initial % % After

processing % Discarded Discard

100/400 DoG 58 63 78

100/400 Gabor 77 46 95

50/450 DoG 58 67 85

50/450 Gabor 75 52 94

(b)

Network Pre- Initial % % After

processing % Discarded Discard

10+20 DoG 69 40 69

10+20 Gabor 83 36 88

6+12 DoG 69 44 66

6+12 Gabor 80 42 88

Table 3: E�ect of pre-processing methods on scale-varying dataset (the origi-

nal from each group of �ve used for training) (a) Standard RBF Networks (b)

Face Unit RBF Networks

Some the increase in performance seen in Tables 2 and 3 going from 100/400

to 50/450 can be accounted for by the 50 original images which are not used

for training being used for testing. Since these will already be allowed for with

y-axis generalisation, they don't give a real increase in shift or scale invariance.
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Learnt Invariance - Training with Shift and Scale Varying

Images

These experiments again used a �xed selection of positions for training examples,

using all �ve versions of each original image. This gives the network information

about the shift and scale variance during training to help in learning this kind

of invariance.

(a)

Pre-processing Initial % % Discarded % After Discard

DoG 72 46 94

Gabor 85 35 98

(b)

Pre-processing Initial % % Discarded % After Discard

DoG 84 32 93

Gabor 90 24 97

Table 4: E�ect of pre-processing methods on shift-varying dataset (full groups

of �ve used for training) (a) Standard 250/250 RBF Network (b) 30+60 Face

Unit RBF Network

(a)

Pre-processing Initial % % Discarded % After Discard

DoG 83 34 98

Gabor 90 26 97

(b)

Pre-processing Initial % % Discarded % After Discard

DoG 91 24 97

Gabor 93 20 98

Table 5: E�ect of pre-processing methods on scale-varying dataset (full groups

of �ve used for training) (a) Standard 250/250 RBF Network (b) 30+60 Face

Unit RBF Network
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Observations

Several points can seen from the results:

� The RBF network is shown to be able to generalise well in a non-trivial

task classifying y-axis rotated faces (3-D complex shapes).

� Gabor preprocessing is shown to give a more generally useful input repre-

sentation than the DoG preprocessing.

� Not suprisingly, the multi-scale Gabor preprocessing is shown to give

greater scale invariance than the DoG preprocessing.

� The Gabor preprocessing is also shown not to fail catastrophically on the

tougher shift invariance tests, unlike the DoG preprocessing.

� The RBF network is shown to have an inherent scale invariance on these

tasks that does not need to be explicitly learnt from examples.

� In contrast, RBF networks do not have an inherent shift invariance, but

this can be learnt from appropriate training data.

� The `face unit' RBF network is shown to be superior to the standard

network in terms of lower discard proportions for a particular level of

generalisation performance.

Conclusion/Future Work

In summary, the locally-tuned linear Radial Basis Function (RBF) networks

showed themselves to perform well in the face recognition task. This is a

promising result for the RBF techniques considering the high degree of vari-

ability introduced by the varying views (y-axis rotation) of a person's face in

these data sets. By centering our sampled faces on the nose of the pro�le views,

we can regard the partial occlusion as simply missing features from the other

side of the face. This is in accord with known results from Ahmad & Tresp

(1993) who trained a variety of nets to recognise stationary hand gestures from

computer-generated 2-D views (polar coordinates) of �ngertips. They obtained

good generalisation for 3-D orientation and showed that RBF nets were able to

cope well even when much of the data was missing. Although their standard

test data was handled well by a BP net, it performed badly with missing fea-

tures and su�ered a serious falling o� in performance as more elements were

lost. They showed, however, that a Gaussian RBF net (of the kind we used in

our studies) could cope well, having a success rate of over 90% even with 50%

of the features missing. This behaviour is very useful for coping with occlusion

and other factors which lead to incomplete visual data.

We are now testing to see if the degree of view, scale and shift invariance

that can be learnt by the RBF nets is su�cient to cope with data isolated

from real-time video by a general purpose motion tracker. We are also studying
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invariance to facial expression and re�ning an automated `face-�nder' routine.

This is necessary for the next stage of development in which people are to be

identi�ed in natural image sequences with the usual variations in illumination

as well as position, scale, view and facial expression. The statistical nature of

the information successfully captured by RBF nets to do the classi�cation task

may also be e�ective for the face localisation task. It is clear from the work of

Turk & Pentland (1991) and Bishop (1995) and others using statistically based

techniques that this is the key to good performance and the RBF techniques

are mathematically well-founded, which gives a clear advantage in engineering

a solution to our application problems. Future work will tackle the full uncon-

strained recognition task by tracking faces in real-time and gathering enough

information to classify them accurately with good generalisation to other image

sequences containing familiar people.
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