
PreparingStudentsforSoftwareEngineering

SteveM .Easterbrook

TheodorosN .Arvanitis

CSR P N um ber413

M arch 18,1996

ISSN 1350–3162

CognitiveScience

R esearch Papers



Preparing Students for Software Engineering

Steve M. Easterbrook

Software Research Lab.

NASA/WVU IV&V Facility

Fairmont, WV 2655

Email: steve@atlantis.ivv.nasa.gov

Theodoros N. Arvanitis

School of Cognitive & Computing Sciences

University of Sussex, Falmer, Brighton, BN1 9QH, UK

Email: theoa@cogs.susx.ac.uk

March 18, 1996

Abstract

This position paper

1

describes our work with a new course at Sussex University,

designed to bridge the gap between computer science and software engineering. We

argue that the way in which software engineering is introduced in most computer

science degrees makes it hard for students to internalise the lessons of good engi-

neering practice. In particular, programming is seen to be divorced from software

engineering. We describe a new course taught to �rst year undergraduates, once

they have learned to program. The course exposes students to the di�culties of

large scale software development, including integrating and modifying other peo-

ple's code. The course uses a trading game in which student buy and sell software

modules, making their own evaluations of cost and quality. An important innova-

tion is to force the students to be explicit about lessons learned, as an introduction

to process improvement. Early results are promising: the �rst cohort of students

are signi�cantly more motivated in their subsequent software engineering course.

1

This paper will appear at the Proceedings of the Third International Workshop on Software

Engineering Education (IWSEE3), Technische Universit�at Berlin, Germany, March 30th, 1996.

1



1 Introduction

There is an important gap in the training of computing professionals, between

software engineering and the practical aspects of \computer science", particularly

programming. Programming is normally taught right at the start of a computer sci-

ence degree. A typical introductory programming course will introduce students to

a particular programming language, showing them how to construct algorithms to

solve simple problems, and how to convert those algorithms into programs, through

proper use of the constructs available in the chosen programming language. At some

subsequent point in their careers, these students will be taught \software engineer-

ing". The typical software engineering course covers a broad range of material

including management and economic issues, as well as technical aspects, across

the entire software lifecycle. In our experience, the result is that programming

and software engineering come to be seen as separate activities, entirely divorced

from one another. The ideas taught in software engineering do not connect in any

meaningful way with the ideas taught in introductory programming. Students re-

main suspicious of software engineering principles, and happily abandon them when

developing software [1].

The result is that for many software developers, there is a gap between what

experience and good engineering practice suggests they should do, and what they

actually do. This slows the uptake of good engineering practice, not because the

developers are ignorant of the key lessons of software engineering, but because

they do not apply those lessons to themselves. These people have read the soft-

ware engineering books, and taken software engineering courses, but do not apply

the principles of software engineering in their own work unless they are forced to.

For example, it is common to �nd software developers taking shortcuts to meet a

project milestone. These shortcuts nearly always store up problems for the future.

However, the shortcuts are still taken, because deep down, the developers believe

that the prescribed methods and processes are dispensable. We observe the same

problem in student project work. Students are taught to document and comment

their programs, but do not bother in practice, because they do not appreciate the

value of good documentation.

We believe that the problem is due, in part, to the separation of the teaching

of programming (and computer science) from the teaching of software engineering.

This separation is endemic to the way we teach software engineering and com-

puter science courses. For example, the practical work on a software engineering

course is di�erent from a programming course: on the software engineering course,

the students might use some method to derive speci�cations for software they will

never write; on a programming course they get on and write programs. The mes-

sage is unfortunate: programming courses produce practical results, while software

engineering just slows things down.

The problems are compounded by the constraints imposed by university teach-

2



ing. The same constraints are present in industrial training courses. Firstly, both

university and industrial courses are too small for students to get to grips with the

problems of developing a large scale software systems. Hence the problems are bro-

ken down into self contained exercises. Secondly, there is a need to provide students

with 'doable' exercises, for which there is such a thing as a 'good' answer, and for

which it is possible for the students to do well, provided they put in the requisite

amount of e�ort. Thirdly, assignment deadlines tend to emphasise the importance

of keeping to schedule (i.e. handing in something that works) over the importance

of maintaining quality. Students do not get the chance to internalise the rationale

for good engineering practice. They do not get any �rst hand experience of the

added value of the techniques they are taught.

2 The Software Design Course

At Sussex, we have been experimenting with a new course structure to bridge

the gap between introductory programming and software engineering. We do this

through an intermediate course, taken immediately after introductory program-

ming, which exposes the students to the importance of disciplined programming. In-

stead of forcing students to learn and use a particular software engineering method,

we expose them to the problems of large-scale software development and mainte-

nance, while o�ering them a set of practical, low-level techniques that may help

them to get through the practical work. At this stage we do not worry whether stu-

dents use the techniques: we concentrate on making them think about the problems

they meet in developing large programs, and on getting them to talk about their

experiences. The intention is to provide the motivation for a subsequent software

engineering course.

The course represents part of a strategy of \bottom up" introduction of software

engineering topics. We build upon students' recent experiences with programming,

by concentrating on the design and implementation processes in the software life cy-

cle, together with basic material on testing and maintenance. Typically, these areas

are not covered intensively on advanced Software Engineering courses. For example,

our second-year Software Engineering course concentrates on requirements analysis

and speci�cation, testing and QA, and the management of software projects. The

new course provides the intermediate step, exposing students to the problems of

designing and implementing large programs, and encouraging the use of good pro-

gramming practices. In this way we equip students for the the broader Software

Engineering course.

3



2.1 Course Structure

This new intermediate course is called \software design". It is based on a practical

project, running throughout the course, which the students tackle in small teams.

The project is divided into three phases.

In the �rst phase, each team is given a speci�cation of a software module to

implement and test. Di�erent teams are given di�erent modules, but for each

module there will be more than one team implementing it. The speci�cations they

are given are reasonably detailed, but are incomplete, such that some necessary

functions are left out, and the descriptions of the interfaces between modules are

insu�ciently detailed. Students are encouraged to talk to other teams to ensure

their modules will be compatible. At the end of the �rst phase, teams trade modules

with one another, in order to obtain a complete set. For the trading, they use a toy

currency, and are free to negotiate prices, delivery dates, and contracts (including

technical support) as they see �t.

In the second phase each team integrates the set of modules they have purchased.

At the end of the second phase, the students once again trade, so that each team

buys an integrated package which must not contain any of their original code. This

rule acts as an anti-monopoly clause: if any team sells their module too widely at

the end of the �rst phase, they limit their choices at the end of the second phase.

In the �nal phase, each team must modify the purchased integrated system

according to a changed speci�cation released at the beginning of the �nal phase.

Also, during this phase each team is introduced to the idea of software evaluation

by evaluating the purchased integrated system in comparison with their original

one.

Throughout the course, the teams submit reports for grading. These reports

consist in equal parts of product documentation and reports on their process. Par-

ticular emphasis is placed on describing their strategies (for marketing, testing,

purchasing, etc.), and on reecting on what went well and what went badly. Time

is set aside throughout the course for students to make presentations to one an-

other, for marketing purposes. Also, throughout the project, each team submits

a weekly report (by �lling in a paper or web-based form). These submissions are

compulsory but not assessed. This allows the students to report their problems

and encourages them to critique the running of the trading game, and the course in

general. The course tutors use these forms to monitor the students' progress and

to identify particular learning di�culties.

2.2 Why a trading game?

The use of a trading game to teach software engineering is not new. In fact, the

basic structure is taken from a report of a programming course taught in the early

1970s [2]. The advantages of such an approach �tted our needs very well. It exposes

4



students to:

� reading and modifying other people's code;

� the problems of integrating software written by di�erent teams;

� experience of evaluating software prior to making a purchasing decision;

� the importance of setting \industry wide" standards to ensure compatibility;

� the role of documentation in maintaining software;

� the di�culties of working in a team.

However, we have added a few twists to the idea, which we feel have helped us

to achieve our goals for the course:

� The students are doomed to failure. From the initial speci�cation, which con-

tains many inconsistencies and omissions, to the revised speci�cation handed

out two weeks before the �nal deadline, it is impossible for the teams to

produce a complete solution. Many students are uncomfortable with this,

especially those used to completing exercises and getting good grades. We en-

courage them to think carefully about prioritisation, and to plan the amount

of e�ort they should put in.

� Oral presentation is given a high priority. Each team is given several sessions

in which to make presentations to their customer base. A �nal, assessed,

presentation requires each team to present what they have learned from the

course. For many of the students, this course is their �rst experience of

giving technical presentation, and we noticed a dramatic improvement in

presentation skills as the course progressed.

� More emphasis is placed on reporting the process than the product. Each

submitted report includes a process evaluation. Teams are awarded good

grades if they identify weaknesses in their processes, and can suggest pro-

cess improvements that address any di�culties they experienced. For their

�nal oral presentation, they are asked to imagine that their audience consists

of potential (software) employers, who want to know why the members of

the team would make better employees than people who have not taken the

course. These presentations act as a prelude to the �nal course debrie�ng

plenary, in which the students compile a list of lessons learned.

� We deliberately fostered an atmosphere in which students could be freely

critical about what they are being taught. They are encouraged to voice

criticism of the course structure and content, and of all aspects of the practical

5



work. At the very least, this allows them to let o� steam when they get

frustrated with the practical work. More importantly, it provides a route into

discussion about process improvement. Whenever they criticize the course,

we try to respond positively to their criticism, but also ask them to come up

with coping strategies, so that if they can't change the nature of the course,

they can at least cope better with the di�culties it presents.

2.3 Textbooks

During the development of the course, we searched for suitable textbooks. We

wanted to avoid both the encyclopedic approaches of the main software engineering

textbooks, and the restrictions of books that teach a particular method. What we

were after was a set of practical techniques that students who had just learned to

program could pick up and use. Furthermore, although we were concentrating on

low-level techniques to apply to programming, we did not want to tie ourselves

to any one programming language, nor did we want to teach the students a new

language for the course. In fact, we had students taking the course who had learned

to program in di�erent languages, and who were using their di�erent languages for

this course. We did, of course, keep such students separated when it came to trading

software!

In the end we gave up trying to �nd a suitable core text, and supported the

practical work with a series of lectures, with associated notes, covering an eclec-

tic set of techniques for the students to try out according to their needs. These

included: use of dataow diagrams and dependency graphs to represent designs;

use of procedural and data abstraction to improve modularity; commenting code

with pre- and post-conditions; proper use of exception handling; black and white

box testing; code walkthroughs and checklists for veri�cation; and debugging and

regression testing. In addition we provided introductory lectures on topics such as

measuring software quality, formal veri�cation, methods, and process modeling and

improvement.

3 Conclusions

The course is not without its problems. Many of the di�culties come from the

tension between the goals of modern, pragmatic university students (who want

to get good grades), and the pedagogical aims of the course (to experience the

di�culties of large scale software development and maintenance). By and large,

students expect assignments that can be completed in the time available, rather that

the impossible deadlines and uctuating requirements of a real software project.

Despite our best e�orts to prevent it, some students did succeed in completing very

impressive systems, by putting in unreasonably long hours. These students seem

6



to have gained less from the course than the others, and we hope to prevent this

happening in future years.

Even with these problems, the course has been a great success in preparing

students for software engineering. It has given them a wide range of experiences,

from teamwork and technical presentation, through to an appreciation of how hard

it is to modify other people's undocumented code. Most importantly, it has given

them practice in the key software engineering skill of learning from failures. The

majority of the students enjoyed the course, and rated it highly in terms of relevance

to themselves. This �rst set of students are currently taking their second year

software engineering course. They are proving to be far more motivated to learn

about software engineering that any previous cohort of students.

At the current time, we have taught the course once, in Spring 1995, and are

running it again in Spring 1996. It is too early to tell whether we have achieved our

long term goal: we will not be able to determine whether the students who took

the course really have taken the lessons to heart, until we observe whether they

willingly adopt some of the techniques in their own software projects.

Acknowledgments

We would like to thank the students at Sussex University who took part in the course

in 1995, and provided many helpful comments on the course. Also, thanks are due

to Amer Al-Rawas and Joe Wood, who helped us to design and run the course.

References

[1] D. L. Parnas, \Education for Computing Professionals" IEEE Computer, Pp.

17-22, Jan 1990.

[2] J. J. Horning and D.B. Wortman, \Software Hut: A Computer Program En-

gineering Project in the Form of a Game", IEEE Transactions on Software

Engineering, Vol. SE-3 No. 4, Pp. 325-330, July 1977.

7


