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Abstract

The evolution of a population can be guided by adaptive traits that are acquired by members

of that population during their lifetime. This phenomenon, known as the Baldwin E�ect, can

speed the evolutionary process as traits that are initially acquired become genetically speci�ed

in later generations. This paper presents conditions under which this genetic assimilation can

take place. As well as the bene�ts that lifetime adaptation can give a population, there may

be a cost to be paid for that adaptive ability. It is the evolutionary trade-o� between these

costs and bene�ts that provides the selection pressure for acquired traits to become genetically

speci�ed. It is also noted that genotypic space, in which evolution operates, and phenotypic

space, on which adaptive processes (such as learning) operate, are, in general, of a funda-

mentally di�erent nature. For an acquired characteristic to become genetically speci�ed, then

these spaces must have the property of neighbourhood correlation which means that a small

distance between two individuals in phenotypic space implies that there is a small distance

between the same two individuals in genotypic space.

KEYWORDS: Baldwin E�ect, Genetic assimilation, Learning cost, Neighbourhood

correlation.
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1 Introduction

In 1896 J.M. Baldwin �rst identi�ed a `new factor' in evolutionary theory that has subsequently

become known as the Baldwin e�ect (Baldwin, 1896). Baldwin was working at a time when

there was still great debate between followers of the Darwinian and Lamarckian evolutionary

frameworks (for historical review see Simpson (1952)). He was addressing the problems associated

with �tting observable examples of apparent genetic speci�cation of acquired characteristics into

the Darwinian theory. That is, examples exist in nature in which traits that are �rst acquired

by members of a population during their lifetimes, through adaptive processes, have become

genetically �xed in subsequent generations

1

. The Lamarckian theory postulated a mechanism for

the direct inheritance of characteristics acquired by a parent to its o�spring through the transfer of

information from phenotype to genotype. However, the Darwinian (non-Lamarckian) framework

excludes such a mechanism and subsequent research into molecular biology has found no evidence

for it. Baldwin's answer to this was to extend the idea of natural selection to include what

he called organic selection which is a process whereby individuals could improve their chances

of survival by adapting during their lifetime. That is, an individual that increased its selective

advantage during its lifetime by learning a speci�c trait would pass on the learning ability to its

o�spring:

`The most plastic individuals will be preserved to do the advantageous things for

which their variations show them to be most �t, and the next generation will show an

emphasis of just this direction in its variations.' (Baldwin, 1896)

Baldwin then argues that these learnt traits can become genetically speci�ed as evolution then

comes to work on a population of learning individuals:

�
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The classic example of this is the existence of callosities on the rumps of ostrich foetuses (Waddington, 1942),

(Maynard Smith, 1993)
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`Congenital variations, on the one hand, are kept alive and made e�ective by their

use for adaptations in the life of the individual; and, on the other hand, adaptations

become congenital by further progress and re�nement of variation in the same lines of

function as those which their acquisition by the individual called into play. But there

is no need in either case to assume the Lamarkian [sic] factor.' (Baldwin, 1896)

At the time of Baldwin there was little known about the mechanics of evolution and so he

was unable to establish the mechanisms through which acquired traits become genetically spec-

i�ed, resorting to vague terms such as `re�nement of variation'. By the 1950's, researchers were

in a position to do so. Simpson (1952) suggested that a trait remained acquired until an ad-

vantageous mutation or set of mutations entered the gene pool that produced the same trait.

Waddington (1953a) argued that this meant that there was no connection between the acquisi-

tion and subsequent genetic assimilation
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of the trait, rendering the theory signifying very little.

Instead, Waddington put forward his own ideas on developmental canalization (Waddington,

1942). He postulated that the development of environmentally driven adaptations is likely to

become canalized by natural selection to produce the optimum response independent of the level

of environmental stimulus received by a particular individual. Once canalized, the response can

then be triggered by a variety of factors. That is, natural selection has provided itself with a

means by which the desired genetic e�ect is likely to occur. Waddington provided laboratory

support to his theories with examples of genetic assimilation occurring in populations of the fruit


y, Drosophila melanogaster, (Waddington, 1953b, 1956). However, as pointed out by Maynard

Smith (1993), the large variability in the assimilated phenotypes indicated that full canalization

had not taken place. Also, Waddington himself admits that in at least some of the experiments

the changes were due to single mutations and that it was statistically possible that the assimi-

lation was purely a chance e�ect with little connection between the environmental and genetic

changes. Maynard Smith points out that Waddington's experiments also deviate from his the-

ory in that the acquired characteristics were not adaptive to the stimulus that produced them.

Maynard Smith's interpretation of the events seems the most plausible. The di�erences between

individuals that are disguised by canalization are then exposed at times of environmental change,

giving natural selection a variation on which to act. Individuals that are more able to adapt to

their environment will then be selected for.

This paper attempts to investigate the conditions under which genetic assimilation takes place

through the use of a series of computer models. First of all, a framework is given which describes

the evolutionary circumstances under which the arguments, presented later on, are valid. The

assumptions that have been made during this work are outlined in this section. It then goes on

to outline the bene�ts that learning can give an evolving population but notes that there are

also various costs to be paid by an individual for that ability to adapt during its lifetime. The

evolutionary trade-o� between these costs and bene�ts provides selection pressure for evolution

to �rst exploit the bene�ts and then reduce the costs of lifetime adaptation such that acquired

characteristics appear in the population and are then assimilated into the gene pool. Next, a

property of the genotype to phenotype mapping, which has been named neighbourhood correlation,

is described and the implications of this property on the combination of learning and evolution

given. The cost of learning and neighbourhood correlation ideas are then applied to the Hinton and

Nowlan (1987) model of learning and evolution. An series of new experiments is then described

in which the ideas presented in this paper are more explicitly applicable.

2

The term genetic assimilation was coined by Waddington and is the one that will be used throughout this

paper to refer to the genetic speci�cation of acquired characteristics.
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2 Evolutionary Framework

This section describes the evolutionary framework in which this work sits. It is necessary since

there are several ways of combining learning with evolution in arti�cial systems that di�er in

details that are signi�cant to the arguments presented. In this paper, no distinction is made

between developmental adaptations, acquired characteristics and lifetime learning. Since it deals

with the arti�cial and abstract, all these terms come under the blanket term lifetime adaptation

and will be used interchangeably, with an arbitrary preference for the term `learning'.

We start by stating a few assumptions:

1. This paper assumes that the individuals in the population are learning the same task on

which evolution is operating. That is, learning operates on the same �tness measure that

is used to provide selection pressure for the evolutionary process. In arti�cial systems this

seems a sensible thing to do since the desired product of the evolutionary process is an

individual (or population of individuals) that performs a speci�c task. It may be that the

learning task is a subset of the entire behaviour of an individual, which is more often the case

in biological evolution. However, since it contributes to the overall �tness of an individual,

then the arguments presented here are still valid.

2. The assumption is also made that for every phenotype, there is a genotype that codes for

it. That is, if an individual is produced from a genotype which is then modi�ed by learning,

there exists a genotype that codes for that modi�ed phenotype. This assumption is impor-

tant for the arguments presented in section 3.3 but has nothing to do with a Lamarckian

inheritance.

3. Also, it is assumed that the existence of learning or adaptive traits in the population is under

genetic control; or, alternatively, there could exist the possibility of the learning mechanism

making no changes to the phenotype if the desired behaviour is being exhibited. The reason

for this is to provide a mechanism by which the learned traits can become assimilated, either

by being selected against or through redundancy. In arti�cial systems this could be done

by simply reducing the learning rates of a neural network to zero under genetic control or

through the provision of a learning scheme that does not change the phenotype once the

desired behaviour is reached, e.g. an error-minimisation based scheme.

Most of the arti�cial evolution literature that deals with the Baldwin e�ect is concerned with

the increase in performance that the combination of learning and evolution provides, e.g. (Hinton

& Nowlan, 1987), (Whitley, Scott Gordon, & Mathias, 1994). It is usual, therefore, to start an

evolutionary run from a population of individuals randomly distributed across genotype space as

is the norm in conventional genetic algorithm practice. Here, however, it is the mechanisms of

genetic assimilation that are under investigation. A simulation of environmental change is required

and so the population starts o� converged around a random point in genotype space. Evolution

then acts to move the population as a whole through genotype space towards an optimum.

One way that researchers have combined learning with evolution is to evolve the parameters of

a supervised learning scheme. The �tness of each individual is evaluated after the learning process

by applying a set of test data and scoring the individual on how well it performs. An example

of this involves the evolution of back-propagation neural networks as in (Chalmers, 1990). This

scheme has the property that it is the result of the learning process that is assessed for �tness. That

is, its �tness is awarded after the individual's `learning lifetime', or posthumously. In contrast,

another method is unsupervised learning. The individual learns and adapts during its lifetime and

is scored continually throughout this process. Its �nal �tness score is then the accumulation of

how well it performed the desired task from the moment it was `born' until the end of its lifetime

trial. There is no separation of the individual's lifetime into training and testing phases. The
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individual's ability to learn is also under evaluation in the �tness trial as well as its performance

in the given task after the learning process is complete. That is, the individual is under continual

assessment. This is more analogous to biological systems. In this work, the presence of genetic

assimilation in evolving populations using both assessment schemes is investigated through the

use of a cost of learning function (section 3.2).

In most arti�cial systems that combine learning and evolution, an individual is initially gen-

erated from its genotype; it is then modi�ed in some way by the learning process. Hopefully this

will lead to an increase in its performance at the desired task. We thus have a distinction between

its abilities at the beginning and end of its learning trial. If the unmodi�ed individual has its

�tness evaluated it will achieve a particular score. Let us call this the individual's innate �tness.

If the individual is evaluated after it has learnt it will receive a di�erent �tness. This is the score

that the individual would be awarded in the posthumously assessed learning scheme above but

it would receive rather less in the continually assessed scheme since it spent some time learning.

This distinction between di�erent scores is important to the arguments presented in section 3.2.

3 The Costs and Bene�ts of Learning

3.1 The Bene�ts of Learning

This section describes some of the bene�ts that learning can bestow on a population of evolving

individuals.

The �rst is Baldwin's idea of organic selection in which he noted that evolution was almost able

to `predict' the direction in which to go. Adaptive members of the population are able to `�nd'

new advantageous behaviours that less plastic individuals are unable to perform. This means that

these adaptive individuals gain the upper hand and are selected for. Thus evolution is guided by

the actions of the individuals on which it operates. Secondly, Ackley and Littman (1991) state

that the combination of learning and evolution increases the spatiotemporal bandwidth of the

environment that a system can adaptively respond to. This means that a learning individual has

the ability to cope with changes in the environment that are at a faster time scale than that on

which evolution operates; and also to adapt to varied local spatial environmental di�erences for

which evolution would have to specify a number of di�erent responses. That is, it is more bene�cial

for evolution to provide a general purpose adaptive mechanism to cope with local variation than

to provide several �xed behaviours to cover that variation.

Lastly, a learning mechanism may be able to provide an individual with behaviours that are

simply very hard to evolve. For example, in humans, it is very di�cult to imagine the English

language being genetically speci�ed at birth, even if the language were static and universal. It

is better for evolution to provide an innate tendency to acquire a structured language and let

learning sort out the details.

3.2 The Cost of Learning

The previous section outlined some of the bene�ts that learning can give an evolving individual.

It is probably less obvious that there are also evolutionary costs to be paid by an individual

for that ability to learn. Firstly, there are the increased energy costs that must be invested in

an adaptive mechanism over a genetically �xed one. This is true in both natural and arti�cial

systems. Assuming a learning mechanism is more complex than a �xed one, the ontogenetic

process of development as well as the energy expended during the lifetime in the learning process

itself will cost the individual energy that could be used in other pursuits. In the production of

an arti�cial system, the constraints on its performance are largely economic. We can break this

down into costs concerning the adequate provision of development time, CPU time, materials etc.
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Once again, assuming that an adaptive architecture is more complex than a �xed one, the costs

of programming and CPU times are factors to be taken into account when evaluating a system's

performance. These costs are the arti�cial analogue of biological energy costs.

Secondly, learning means the individual increases its �tness in some way. This implies that the

individual spends some period of its lifetime performing poorly. If we look upon the �nal �tness

score that an individual achieves in an extended lifetime as an accumulation of the acquisition

of small �tness increments, as is the case in of continually assessed learning, then during this

period the individual is not adding as signi�cantly as it might to its �tness, i.e. it is incurring a

time-wasting cost. It may also be actually reducing its �tness by performing tasks incorrectly and

accruing a `cost of getting it wrong' or incorrect behaviour cost. This may have little signi�cance,

such as a bird eating a bad-tasting berry, but conversely may cause the individual irreparable

damage, such as falling down a precipice (learning the hard way).

If the individual expends vast amounts of energy, takes a signi�cant proportion of its lifetime

or damages itself irrevocably whilst learning to perform a task to the pinnacle of perfection, it

may be better, in evolutionary terms, to adopt a less perfect, genetically �xed solution to the

problem. Since this behaviour is innate, a non-learning individual performs the given task right

from the start of its lifetime and therefore incurs no time-wasting cost. It expends no energy

adapting itself and its adequate performance ensures that, although it does not excel, it rarely

does badly, avoiding incorrect behaviour costs.

These costs are identical in biological and arti�cial systems as long as the individual is eval-

uated using the continual assessment scheme outlined in section 2. However, if the posthumous

assessment learning scheme is used where the process of learning is not under evolutionary eval-

uation then these costs are excluded and the individuals only receive the bene�ts of learning.

3.3 Cost / Bene�t Trade-o�

The inclusion of learning can both be bene�cial and detrimental to the �tnesses of individuals in

a population and therefore there is an evolutionary trade-o� as to whether it is adopted. Since

the assumption was made in section 2 that the existence of learning is under genetic control, then

evolution might select against it if the costs are too high.

We can use the idea of learning costs and bene�ts to follow the varying selection pressures for

and against learning that are present in an evolutionary sequence. If we assume that the bene�ts

outweigh the costs, these pressures can eventually lead to genetic assimilation. A population

is pictured as a cloud of individuals converged around a point in genotype space. At times

of evolutionary change, learning individuals that have the ability to reach an area of increased

�tness would have the selective advantage over others in the population who could not. Thus the

bene�ts of learning are exploited as these learning individuals take over the population. Once

the population is full of individuals that can learn, then the selective pressure turns to reducing

the cost of learning whilst maintaining the improved behaviour. The advantage then switches

to those individuals who are genetically closer to the improved behaviour since they incur less

learning cost in exhibiting that behaviour, subject to conditions that will be discussed later. Thus

we would expect there to be a high degree of learning at times of environmental change which

would then be reduced by the switch in selection pressure as evolution progresses. The learning

is replaced by genetic speci�cation, i.e. there is genetic assimilation.

Putting this more formally, we can say that a genotype, i, has an innate behaviour, I, (and

associated innate �tness, f(I)) that is then modi�ed by learning to behaviour J , then we can say

that the �tness of i, F (i), after learning is:

F (i) = f(I) +B(I; J) � C(I; J) (1)

where B(I; J) is the bene�t received by i in changing its behaviour from I to J , and C(I; J) is
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the total learning cost incurred by this change. Thus, for learning to be useful then B(I; J) must

be positive and greater than C(I; J), otherwise innate behaviour I would be selected for.

If there exists a genotype, j, that can express behaviour J innately (which we are assuming

there is (section 2)) then B(I; J) can be expressed as f(J)� f(I), the di�erence between the two

innate �tnesses, and equation 1 becomes:

F (i) = f(J) � C(I; J) (2)

Consider a population converged around i whose members can all learn behaviour J . Genetic

assimilation takes place when the population moves from around i to around j. For this to happen,

the population must be able to move along a path between i and j in genotype space for which

the associated phenotypes have an increasing �tness score as i gets closer to j. Assuming that

as the population approaches j, less learning of the behaviour J takes place, then the increasing

�tness scores will be due to the reduction in the cost of learning, i.e. the C(I; J) term in equation

2. Also, the movement through genotype space is due to selection pressure for those individuals

that are closer to j and so incur less cost of learning. Note, the path between i and j is not

necessarily a straight one or one made up of consecutive points but must exist with respect to the

genetic operators being used by evolution. This point will be expanded upon in section 4.

4 Neighbourhood Correlation

Many researchers talk about the idea that the combination of learning and evolution allows for

a localised search of genotype space. In most experiments that have been presented this is in

fact the case (Hinton & Nowlan, 1987). However, this idea does not generalize to all evolutionary

circumstances. It is true that when an individual learns it does search a subset of possible

individuals. However, whether or not this subset corresponds to genotypes that are localised

around that individual is totally dependant on the genotype to phenotype mapping and the

learning rule.

The point that needs to be kept in mind is that the spaces on which learning and evolution

operate are completely di�erent. For example, in the case of using a genetic algorithm to evolve

a learning neural network, using a binary genotype of length N , the genetic operators work on an

N-dimensional hypercube whereas the learning rule operates on a surface in a continuous space of

di�erent dimensionality. When learning and evolution are trying to maximise the same quantity

(i.e. �tness) then the values in the two spaces are the same for each individual but the relative

positions of the individuals in those spaces may di�er considerably.

For example, in �gure 1 genotypes a, b, c and d code for phenotypes A, B, C andD respectively.

Let's consider the relationships between a (and A) and the other three individuals. a is close to b

and A is close to B; a is close to c but A is some distance from C; a is some distance from d but

A is close to D. We can say that there is a correlation between the distances in the two spaces

between a and b but not between a and the others.

This brings us to an important idea. If all the points near a point, I, in phenotype space have

corresponding points in genotype space that are near i and vice versa, then we can say the spaces

have the property of neighbourhood correlation or have correlated neighbourhoods. If all the points

that are near I in phenotype space have corresponding genotypes that are some distance from i

and vice versa, then the spaces have uncorrelated neighbourhoods. The implications of this idea

tie in with what was said in section 3.3 about the movement of populations through genotype

space during genetic assimilation. If A is capable of learning B then genetic assimilation of B is

able to occur since a is close to b and there exists a path of increasing �tness between them in

both spaces. However, A could learn D in which case genetic assimilation is unlikely to occur.

This is because the path that the genotypes have to take, to get to d, goes through c (for the sake

6



A
B

D

C

a

d

b

c

Figure 1: A four dimensional hypercube and a surface in three dimensional space representing

genotypic and phenotype space, respectively.

of the argument). Since C is a less �t phenotype than A (e.g. by virtue of incurring a greater

learning cost), A will be selected for in preference to C. A may still be modi�ed to D by learning

if it is evolutionarily advantageous to do so but D will not become genetically assimilated. This

implies that if an individual's phenotype is modi�ed to one corresponding to a genotype that is

a large distance away in genotype space then learning can be detrimental to evolution. Thus, for

the Baldwin E�ect to work and genetic assimilation to take place, the genotypic and phenotypic

spaces need to have the property of neighbourhood correlation.

In the above discussion, the idea of distance in the two spaces has been used fairly loosely.

In genotype space the distance between two individuals depends on the genetic operators. For

example, if the genetic operator used on the space in �gure 1 consists of one and only one bit 
ip

per breeding operation, then a is closer to b than c is. If, however, there were exactly two bit 
ips

each breeding operation then c is close to b whilst a is an in�nite distance away.

The crossover and mutation operators that are usually used in genetic algorithms allow greater

freedom of movement around the genotype space than this. It is possible to get any string from

any other. However, because this is very improbable, there is still some sense of genotypes being

close together or far apart with respect to these operators.

Similarly, distance in phenotype space is de�ned in terms of the way the learning rule operates

on the phenotypic variables. There may be areas that, although they have similar values to their

variables, are not reachable from each other by the use of a particular learning rule.

It was mentioned in section 3.3 that a path of phenotypes with increasing �tness should exist

between two points in genotype space for genetic assimilation to take place. The reality is looser

than this statement implies since we are talking about the movement of a population under the

crossover and mutation operators. It is the centre of gravity of the population that will move

along an increasingly �t path rather than any speci�c individual.

5 Application of the Cost of Learning Theory to the Hinton

and Nowlan Model

In this section the ideas discussed above are applied to the model of learning and evolution

presented by Hinton and Nowlan (1987) who �rst showed the e�ectiveness of the combination of

learning and evolution in a computational framework. Their work will be referred to as HN.
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The experiment consists of a population of 1000 genotypes, 20 genes long. The genes can take

one of a possible 3 alleles: 0, 1 or ?, distributed with initial relative frequencies 0.25, 0.25 and

0.5, respectively. When translated to the phenotype, the genes specify the states of 20 conceptual

switches { a 0 corresponding to incorrectly set, a 1 to correctly set. The states of the switches

de�ned by a ? are determined through a sequence of 1000 learning trials. During each trial, all

the ?s are set to 0 or 1 with equal probability. If, on the ith trial, all the switches are set to 1

then the �tness of the genotype is calculated with the formula F = 1+19(1000� i)=1000. Both a

genotype specifying any 0s (which thus has no chance of reaching the target phenotype of all 1s)

or one that has failed to set all its switches after 1000 learning trials will receive the minimum

�tness of 1. One that consists of all 1s, therefore avoiding any learning trials, is awarded the

maximum �tness of 20. A standard G.A., applied without the learning trials, has no better than

a random chance of �nding the target solution of all 1s since, amongst the 2

20

possible genotypes

(assuming only 0 and 1 alleles), there exists only a single spike of increased �tness. With the

introduction of the trials, evolution is guided to the peak by the learning mechanism. That is,

the genotypes that just happen to be near the peak attain an increased �tness score by climbing

it during their lifetime.
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Figure 2: a) Graph showing the relative frequencies of the 0, 1 and ? alleles from a replication

of Hinton and Nowlan's experiment (average of 30 runs). b) Reproduction of Harvey's expected

�tness graph. F (q) is the expected �tness of a genotype with q ?s.

Belew (1989) analyzes HN in terms of four distinct evolutionary phases. During his phase 2

he hints at the idea of learning costs:

`Phase 2 continues the same basic trend, but begins to also apply pressure against

guessed alleles (?) in favor of genetically speci�ed correct ones (1). In terms of the

�tness function an individual is always better o� not having to guess, and so there is

a constant selective pressure against ?s.'

If we look at Harvey's graph of expected �tness (Harvey, 1993), reproduced in �gure 2b, then

the learning costs and bene�ts become more explicit. In the notation of equations 1 and 2, a

genotype consisting of all 1s that is therefore at the global optimum is referred to as j and the

single �tness peak, behaviour J . Its overall �tness, F (j), and its innate �tness f(J) are both equal

to 20. An individual, i, whose genotype is anything other than j will receive an innate �tness,

f(i), of 1. Individual i might be able to reach J during its lifetime by appropriately setting its ?s,

and therefore receives the bene�t of learning, B(I; J), but will receive a rather smaller �tness score

than f(j). This di�erence in �tness scores can be considered the cost attributed to the process of

learning and is shown as C(I; J) in �gure 2b. The shape of the graph was determined implicitly

by HN's �tness function and their use of �tness proportional selection. The cost of learning can
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be classi�ed in the terms used in section 3.2 as a time-wasting cost, i.e. i only receives a �tness

score once it has learnt J and is penalised by the number of trials it took to get there.

We can use the idea of learning costs and bene�ts to follow the varying selection pressures for

and against learning that are present in an evolutionary sequence. This analysis is very similar to

that presented by both Harvey (1993) and Belew (1989) but with the emphasis put on the cost of

learning ideas presented here. In the early stages of evolution, most genotypes will contain at least

one 0 and so no individuals will receive any selective advantage. This corresponds to the initial


at areas in the graphs in �gure 2a. The number of 0s in the population then falls as individuals

that contain only 1s and ?s start to take over the population. Individuals with 0s are strongly

selected against in favour of those that can learn the correct phenotype. Those genotypes that

contain only 1s and ?s receive a selective advantage that is proportional to the di�erence between

the bene�t they are receiving from learning and the cost they are incurring. At this stage in the

evolutionary run the bene�ts heavily outweigh the costs. On average, a learning individual will

have ten ?s and ten 1s. From �gure 2b we can see that B(I; J) and C(I; J), for these proportions,

are roughly nineteen and eleven, giving a learning individual eight times as many o�spring as a

non-learning one. The proportion of ?s in the population then starts to fall. An individual that

has only nine ?s will still receive a bene�t of nineteen but will only pay a cost of about eight whilst

still maintaining the optimal behaviour. The advantage then switches to those individuals who

have more �xed (correct) genes, (1s) since they incur less learning cost and learning is selected

against.

However, the proportion of ?s in the population never falls to zero; there is only partial genetic

assimilation. An explanation for this was put forward by Harvey (1993). He explains that the

`puzzle of the persistent question marks' is a result of genetic drift. That is, the selection pressure

to remove the last ?s, represented by the slope of the graph when q is close to zero, is not great

enough to overcome the forces of genetic drift. Putting this in terms of the cost of learning, we

can say that the number of ?s in the population does not fall to zero since the cost of learning the

last few is so small that there is not enough selective pressure to remove them against the forces

of genetic drift. That is, genetic drift is the mechanism by which the ?s are kept in the population

and its e�ects are great enough to overcome the selection pressure created by the costs of having

them there.

It is worth looking at which how well the HN model �ts into the evolutionary framework and

assumptions that have been made in section 2 so as to gauge the validity of the above analysis.

The model is both learning and evolving to maximise the number of set switches (1s) in the

phenotype and, therefore, evolution and learning are working on the same �tness measure. There

is a genotype that encodes for every phenotype and, through the control of ?s in the genotype,

there is a genetic mechanism for selecting for and against learning. The evolutionary runs are

started from a random population and not from a converged one. This is because HN were

trying to show the utility of learning in an evolutionary context and for their purposes a random

population was su�cient. At �rst, it appears that the learning scheme is posthumously assessed

{ an individual is awarded a �tness score at the end of its learning trials on which evolution acts.

However, through their use of a �tness function that is a function of the number of trials taken by

an individual to �nd the global optimum, the learning scheme is implicitly continually assessed.

An individual is penalised for the proportion of time it spends not at the global optimum.

We now look at the neighbourhood relationships, as de�ned in section 4, that the HN model

possesses. If we take a phenotype, P , and change it slightly to phenotype, Q, by 
ipping the

setting of one of its switches, then there will always be a genotype, q, that codes for Q, that

is only one allele change away from the genotype, p, that codes for P . That is, if we have two

close phenotypes we can say that there exists two close genotypes that code for them. Note, the

existence of ? alleles means that there may be many qs that code for Q or that p and q may be

the same, but the important point is that there is at least one q that is close to p and that a path
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exists, with respect to the genetic operators, that links p and q. The use of crossover with no

mutation in the HN model makes this point unclear and so a model is developed here that, it is

hoped, encapsulates all the points and arguments presented in this paper.

6 Experimental Setup

This section describes a series of experiments that were conducted to look at the issues raised in

this paper with regard to the circumstances under which genetic assimilation takes place. Evolu-

tionary runs were conducted with and without learning on two di�erent genotype to phenotype

mappings, one of which has the property of neighbourhood correlation whilst the other has un-

correlated neighbourhoods. The learning experiments were conducted �rst without and then with

a cost of learning.

6.1 Genotype to Phenotype Mappings

Two genotype to phenotype mappings were used to show the di�erent behaviours exhibited by

the combination of learning and evolution on landscapes that have correlated and uncorrelated

neighbourhoods. Both mappings take a genotype that is a binary string of length N and map it to

a phenotype that is also a binary string of length N . Thus both genotypic spaces and phenotypic

spaces are N -dimensional hypercubes. Learning and evolution are applied to maximise the number

of 1s in the phenotype.

In the �rst mapping, mapping 1, the phenotype is simply a copy of the genotype. This gives

a correlated neighbourhood relationship with respect to the genetic operators (see section 6.2).

Small changes in the phenotype correspond directly with small changes in the genotype.

The second mapping, mapping 2, has been designed to have maximally uncorrelated neigh-

bourhoods. What is desired here is a mapping such that, for small changes in the phenotype,

the corresponding genotype coding for the new phenotype must be as far away from the original

genotype as possible. This was achieved through the use of the following mapping: for genotype

of length N , where N is even, the phenotype is a copy of the genotype if there is an even number

of 1s in the genotype, or the inverse of the genotype if there is an odd number of 1s in the geno-

type. This gives the relation that for a given phenotype, P , all the genotypes q

i

that code for

the phenotypes, Q

i

, that are a Hamming distance of one away from P , are a Hamming distance

of (N � 1) away from p, the genotype that codes for P . Note, the inverse of this is also true {

small changes in genotype correspond to large changes in the phenotype. Also worth noting is

that the relationship is not true for movements greater than one bit 
ip in either space. This led

to a careful choice of genetic operator as described in section 6.2.

To get a better visualisation of mapping 2 we will look more closely at the case when N = 4,

though the experimental results presented in section 7 use the equivalent mapping for N = 20.

g! ph 00 01 11 10

00 0000 1110 0011 1101

01 1011 0101 1000 0110

11 1100 0010 1111 0001

10 0111 1001 0100 1010

Table 1: Genotype to phenotype mapping 2 used to create an uncorrelated neighbourhood relation-

ship. The row de�nes the �rst two bits of the genotype and the column the second two bits, giving

the phenotype in the corresponding cell.
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Table 1 shows mapping 2 in a Karnaugh map (Horowitz & Hill, 1989), which gives a good

indication of the neighbourhood relationships. The concatenation of the row and column head-

ings gives the four bit genotype and the phenotype it codes for can be read directly from the

corresponding cell. Karnaugh maps have the property that if you move a distance of one cell in

any direction (N, S, E, W), then the key that addresses the cells, in this case the genotype, only

changes by one bit. Thus, we can see that if a single bit is 
ipped in genotype space then there

is a movement of three bits (i.e. N � 1) in phenotypic space. That is, all the neighbours of a

particular genotype, p, in genotypic space code for phenotypes that are a Hamming distance of

three away from P .

6.2 Genetic Operator

A genetic operator was required that maintained the integrity of the neighbourhood relationships

in the genotype to phenotype mappings described above in section 6.1. To this end, asexual

reproduction was used with a single-point mutation operator. That is, an individual is selected

for breeding and copied to the child. One randomly chosen bit may be 
ipped in the genotype of

the child with a given probability. It is only possible, therefore, to have children that are either

genetically identical to their parent or di�ering by only one bit. This preserves the neighbourhood

relationships of the genotype to phenotype mappings.

6.3 Learning

As with the genetic operator, a learning algorithm was required that preserved the neighbourhood

relations of the genotype to phenotype mappings. A one bit steepest ascent algorithmwas chosen.

The innate �tness of the phenotype is calculated. The �tness of all the phenotypes that are a

Hamming distance of one away from the innate phenotype are then calculated and the highest

score achieved by either these learnt phenotypes or the innate phenotype is take as the �tness

score for that individual. If a learnt phenotype achieves a higher score than the innate one then

the individual is logged as having used learning. If the individual cannot better its score through

learning then it is logged as having not used learning. Note, since the goal is to maximise the

number of 1s in the phenotype and each individual is only allowed to 
ip one phenotypic bit at

a time, then it is only possible for an individual to improve its score by one during learning.

We can look at the e�ect this movement around phenotypic space has on the genotype needed

to code for a modi�ed phenotype. Under mapping 1, a phenotype, such as 0111, that can learn

the target string, 1111, through a one bit hill-climb, only has to have its genotype changed from

0111 to 1111 for the target to become assimilated. Table 2 shows what e�ect movement around

phenotypic space has on the genotype needed to code for a modi�ed phenotype under mapping 2.

If we have the phenotype, 0111, that is able to learn the target string, 1111, through a one

bit hill-climb, it can be seen that the genotype has to change from 1000 to 1111 for that learnt

behaviour to become assimilated. Under the one bit mutation operator this constitutes a large

movement in genotype space for a small movement in phenotype space. The neighbourhoods

under this mapping are maximally uncorrelated.

The cost of learning is simulated by subtracting a �xed penalty from the �tnesses of those

individuals who have been logged as learning. This di�erentiates between schemes where learning

is posthumously or continually assessed, as de�ned in section 2.

6.4 Experiment Overview

This section puts the above descriptions of the various components together to give an overall

view of the model. The model is designed to operate in six di�erent modes corresponding to

combinations of evolution with or without learning, on mappings with and without neighbourhood

11



ph! g 00 01 11 10

00 0000 1110 0011 1101

01 1011 0101 1000 0110

11 1100 0010 1111 0001

10 0111 1001 0100 1010

Table 2: Phenotype to genotype mapping 2 showing how movements around phenotypic space due

to learning correspond to changes in the genotypes that code for the changed phenotype. The row

de�nes the �rst two bits of the genotype and the column the second two bits, giving the phenotype

in the corresponding cell. Note, this is the same as the genotype to phenotype mapping shown in

table 1 except that movements are now in phenotypic space showing the corresponding movements

in genotypic space.

correlation and with or without a cost for learning (if learning is switched on). The results that

are presented in section 7 are from experiments in which the genotype length, N , is set to 20. The

genotype/phenotype mappings are calculated in exactly the same way as for N = 4 as described

in section 6.1.

A converged population of size 100 is generated by creating a random genotype of 20 bits long

and copying it to all the individuals. All the bits in all the genotypes are then mutated with a �xed

low probability of 0.05. This gives a population converged around a random point in genotype

space with an average Hamming distance from that point of 1. This was done to simulate the

situation where a population has converged on one trait and then, due to environmental change,

it has become favourable to exhibit a di�erent trait. The genotypes are coded into phenotypes

using one of the mappings described in section 6.1 and the �tnesses of the phenotypes evaluated.

Depending on which mode of operation the model is in, the �tness of a phenotype is evaluated in

di�erent ways. When operating evolution only, the �tness of an individual is simply the number

of 1s in its phenotype, i.e.

F (i) = N �H(I; T ) (3)

where F (i) is the �tness awarded to individual i, N is the genotype length and H(I; T ) is the

Hamming distance from i's phenotype, I, to the target phenotype, T , which consists of all 1s.

When the population is able to learn, the �tness of an individual is calculated using:

F (i) = N �H(I

0

; T ) (4)

where I

0

is the phenotype that is closest to the target out of I and all the other phenotypes, I

j

,

that can be reached by I through the learning process described in section 6.3.

When there is a cost to learning, the �tness of an individual is calculated using:

F (i) = N �H(I

0

; T )� c (5)

where c is the cost of learning, set at 0 if H(I

0

; T ) = H(I; T ), 0.5 otherwise, i.e. the individual

only gets penalised for learning if it needs to use it to increase its �tness.

Once the �tnesses of all the individuals in the population have been evaluated, they are bred

asexually to form the next generation using simple linear rank based selection and the one point

mutation operator described in section 6.2. The genotypes are picked to be mutated with a

probability of 0.1 such that evolution operates on a slower time scale than learning. This genetic

algorithm was run for 100 generations and various results were obtained that are presented in

section 7.
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7 Results

The results presented in this section are the mean of twenty runs of the model in each of its six

modes. Up to three variables are shown depending on their relevance to the discussion. The �rst,

average �tness, is calculated as the mean of the �tnesses of all the individuals in the population

each generation. These means are then averaged over the twenty runs and the standard deviations

calculated. The second variable gives an indication as to the proportion of individuals in the

population that used learning in achieving their �tness scores. The number of individuals that

have been tagged as having used learning, as described in section 6.3, is divided by the number

of individuals in the population each generation for each run. The graphs presented are then

the mean of these proportions over the twenty runs with the standard deviations shown. The

�nal variable is an indication of the convergence of the population. This is the average Hamming

distance from each genotype to a consensus genotype each of whose loci are �lled with the most

common of the alleles over the population at that locus. The mean convergence over the twenty

runs is shown with the standard deviation.

7.1 No learning

The �rst set of results are from evolutionary runs without learning, with �tness evaluated using

equation 3. It can be seen that evolution alone was able to �nd the global optimum fairly easily on

the mapping with neighbourhood correlation (�gure 3a). Notably, the population `unconverges'

quite a lot before reconverging on the global optimum (�gure 3b).
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Figure 3: Evolution without learning. a) Average �tness with correlated neighbourhoods. b) Con-

vergence with correlated neighbourhoods. c) Average �tness with uncorrelated neighbourhoods.

However, evolution has di�culty on the mapping with uncorrelated neighbourhood relations

(�gure 3c). This is to be expected since the task is hard with respect to the genetic operator.

7.2 Cost-Free Learning

Figure 4 shows the e�ect of the introduction of cost-free learning into a population evolving on

landscapes with neighbourhood correlation. This set of results corresponds to the situation where

learning is posthumously assessed, i.e. �tness is evaluated using equation 4 such that there is no

learning cost. Comparing �gure 4a with �gure 3a, the �rst point to notice is that the population

reaches the global optimum faster (i.e. in less generations) than evolution alone on the same

landscape. Learning is guiding evolution to the peak through the Baldwin E�ect. The second

point to notice is that the population is less converged than in �gure 3b. This is because not only

genotypes that have a 1 at every locus receive the maximum �tness score but also those that are
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Figure 4: Evolution and learning with correlated neighbourhoods but no cost of learning. a) Average

�tness, b) proportion of individuals using learning, c) convergence.

one bit 
ip away. This is because the latter are able to achieve the global optimum in phenotype

space by learning. In �gure 3a, b, evolution is working towards an optimum in genotype space

that consists of only one possible genotype, whereas, the introduction of learning has expanded

this optimum to one plus the number of genotypes that are a Hamming distance of one away in

genotype space. Thus evolution can support a less converged population since there is no selection

pressure between having N 1s and (N �1) 1s. In the case of N = 20, there are now 21 genotypes

that can achieve the highest �tness score. A good account of the expansion of optima that is

caused by the interaction of learning and evolution was presented by Whitley et al. (1994).

The third point to note is that the proportion of learning individuals falls slightly once the

population has converged around the optimum (�gure 4b). This to be expected since some

proportion of the genotypes that obtain the optimal �tness consist of all 1s and therefore do

not learn. At �rst sight it seems that the proportion of learning individuals falls too low. That

is, there is only one possible genotype that can achieve maximum score without learning whilst

there are twenty possible genotypes that can learn the optimal phenotype. One might, therefore,

expect the graph in �gure 4b to fall to around 0.95. However, this does not take into account those

individuals that are mutated from a Hamming distance of one away from all 1s to a Hamming

distance of two away. To a �rst approximation, the proportion of the population that we would

expect to have genotypes consisting of all 1s can be calculated thus:

Let A, B and C be the sets of genotypes that are a Hamming distance of 0, 1 and �2 away from

the genotype consisting of all 1s, respectively. We make the assumptions that the population is

converged aroundA and B, and, due to the linear rank selection, a negligible number of individuals

from C get selected for breeding. The expected proportion of genotypes selected from A and B

is a and b, respectively. After mutation, (with N = 20 and mutation rate = 0.1 (section 6.4)),

these proportions will have changed to:

a

0

= a�

a

10

+

b

10

�

1

20

(6)

b

0

= b+

a

10

�

b

10

�

1

20

�

b

10

�

19

20

(7)

Now, since we only select from A and B, whose members all get the same score, at steady

state we can say that the expected proportions are a

0

=(a

0

+ b

0

) and b

0

=(a

0

+ b

0

), i.e.:

a =

0:9a+ b=200

a+ 0:905b

(8)
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b =

0:9b+ a=10

a+ 0:905b

(9)

Solving these for a and b, we get a = 0:183 and b = 0:817. So, to a �rst approximation, we

would expect 0.183 of the population to have genotypes that consist of all 1s as an artefact of

the mutation operator and the selection process which corresponds to the experimental results.

There is no genetic assimilation.
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Figure 5: Evolution and learning with uncorrelated neighbourhoods but no cost of learning. a)

Average �tness, b) proportion of individuals using learning, c) convergence.

A population of learning individuals with no cost of learning, evolving using the mapping

with uncorrelated neighbourhoods, only does slightly better than evolution alone on the same

landscapes. The improvement in average �tness in �gure 5a over �gure 3c is due to all the

individuals in the population achieving a phenotype that is a Hamming distance of one closer to

the target that their genotypes, as indicated by �gure 5b. However, the learning behaviour is

unable to guide evolution to areas of increased �tness due to the genotype and phenotype spaces

having uncorrelated neighbourhoods.

7.3 Learning with Cost
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Figure 6: Evolution and learning with correlated neighbourhoods and a cost for learning. a)

Average �tness, b) proportion of individuals using learning, c) convergence.

Figure 6 shows the case when evolution and learning are operating in spaces with correlated

neighbourhoods where learning is penalised with a cost. This situation corresponds to the cir-

cumstance when learning is continually assessed and the �tness of each individual is evaluated
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using equation 5. The average �tness of the population (�gure 6a) reaches the optimal value

faster than evolution alone but slower than when there is no cost of learning. We can see why

by looking at �gure 6b. This shows the proportion of learning individuals in the population. In

the early stages of evolution, the population is full of learning individuals who are reaping the

bene�ts of learning but are also paying the cost of learning which is reducing their �tness score

by 0.5. As the population reaches on the global optimum, individuals that achieve the optimum

score without learning do not pay that cost. Noticeably the proportion of individuals that use

learning falls dramatically to 0.1 when the global optimum is reached. This indicates that 90%

of the population have genotypes that consist of all 1s compared with approximately 15% when

there was no cost for learning. The cost of learning has provided a selection pressure between

those individuals whose genotypes consist of all 1s and those that are a Hamming distance of

one away. The global optimum in genotype space is once again solely at 111...1 as it was for

evolution alone and does not include those genotypes that are a Hamming distance of one away

as in the case of cost-free learning. The 10% of the population that are not at the global optimum

are those whose parent consisted of all 1s (in the previous generation) but have been mutated by

the genetic operator and are now a Hamming distance of one away. The rank selection ensures

that a negligible number of these individuals get passed into the next generation. This interpre-

tation of the results in determining the position of the population in genotype space is supported

by the convergence data shown in �gure 6c. When the average �tness levels o� at the optimal

score, the convergence value falls to approximately 0.005. Assuming that the consensus genotype

consists of all 1s, there will be 0.1 of the population that di�er by a Hamming distance of one,

therefore having 1=20th of their genotype di�erent from the consensus. Thus, over the population

the deviation from the consensus is 0:1� 1=20 = 0:005.

The convergence data, together with the dramatic fall in the proportion of learning individuals

as the population reaches the global optimum, indicate that the learning that is still in the

population in �gure 4b (cost-free learning) has been genetically assimilated with the introduction

of a cost of learning.

20

16

12

8

4

0

0 20 40 60 80 100

    Av F -SD

    Av F +SD

    Av F

0 20 40 60 80 100

    Av l -SD

    Av l +SD

    Av l1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.16

0.12

0.08

0.04

0.00

0.20

0 20 40 60 80 100

    Conv -SD

    Conv +SD

    Conv

a) b) c)

Figure 7: Evolution and learning with uncorrelated neighbourhoods and a cost for learning. a)

Average �tness, b) proportion of individuals using learning, c) convergence.

Figure 7 shows the combination of learning and evolution on landscapes with uncorrelated

neighbourhoods where learning has been penalised with a cost. The introduction of a learning

cost has had little e�ect on the evolution of the population in this case, other than giving an

average �tness which is slightly lower in �gure 7a than �gure 5a. This is due to the fact that all

the individuals in the population are using learning but their �tnesses are being reduced by the

cost of learning.
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8 Conclusion

The arguments and experiments presented in this paper discuss two criteria that are necessary

for the genetic assimilation of acquired characteristics: the evolutionary cost of learning and the

existence of a neighbourhood correlation relationship between phenotypic space and genotypic

space.

For the genetic assimilation of a bene�cial acquired characteristic, there must be an evolu-

tionary cost to be paid for having that character adaptive over having it genetically speci�ed.

In systems where the learning is continually assessed, such as nature, there will always be the

implicit costs that were discussed in section 3.2, i.e. energy costs, incorrect behaviour costs and

time-wasting costs. Arti�cial evolution can also support systems where the learning is posthu-

mously assessed, in which there are no implicit learning costs and, therefore, genetic assimilation

does not take place. The cost of learning provides a selection pressure for evolution to genetically

assimilate the acquired characteristic. For learnt characteristics to be genetically assimilated un-

der posthumously assessed learning conditions, it would be necessary to impose an explicit cost

of learning.

The second criterion for genetic assimilation is that the genotypic space and phenotypic space

must have the property of neighbourhood correlation. In general, genotypic space and phenotypic

spaces look very di�erent. Assuming that for every phenotype there is a genotype that codes

for it and that evolution and learning are working to maximize the same variable (i.e. �tness),

each possible individual will occupy a point in both spaces. Neighbourhood correlation means

that if two individuals have phenotypes that are close together in phenotype space then this

implies that their genotypes are close together in genotype space. Genetic assimilation of a

learned phenotypic trait takes place when there exists a path of increasing �tness between the

genotype that encodes for the original innate trait and the genotype that encodes for the new

trait in genotypic space. The path's existence depends on the genetic operators that evolution

has available. The arguments put forward in this paper present a mechanism by which the �tness

can increase as the population moves closer to genetically specifying the learned trait, i.e. through

the reduction of the cost attributed to learning (assuming the closer an individual is to having a

trait genetically speci�ed, the less learning it has to do).

The experimental results support this view. Evolution with learning achieved the global

solution on landscapes that have the property of neighbourhood correlation in less generations

than evolution alone, even when learning was penalised with a cost i.e, the bene�ts of learning

where being exploited. Comparing �gures 4 and 6 we can see that when there is a cost to learning,

the population converges on the single genotype that can achieve the optimal score rather than

containing individuals that can achieve the score through learning. The level of learning that is

sustained when there is no cost of learning has been genetically assimilated.

Evolution with and without learning failed to �nd the optimum phenotype on the landscapes

with uncorrelated neighbourhood relations even though learning did improve the �tness scores

of individuals. There are no grounds to assume that the inclusion of learning in an evolutionary

framework will automatically guide evolution to the optimum, even if that learning algorithm is

particularly suited to the phenotypic landscape, as in this case. The nature of the genotype to

phenotype mapping is a major factor in determining the suitability of the combination of learning

and evolution.

In reality, the constraints placed on the combination of learning and evolution by the neigh-

bourhood correlation idea are less than the results presented in section 7 suggest. Most arti�cial

evolution systems use crossover and mutation for their genetic operators which allow a greater

freedom of movement around genotype space than the genetic operator applied here. An indi-

vidual's neighbourhood in genetic space is, therefore, larger. Also, a degree of neighbourhood

correlation can easily be added to a given genotype to phenotype mapping through the use of
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Gray coded variables. Since Gray codes are widely used in genetic algorithms already, this poses

little di�culty.

Returning to the debate talked about in section 1, it can be seen that the experiments pre-

sented here support Maynard Smith's assertion that environmental change uncovers di�erences in

genotypes that can then bring about selection pressure for those individuals who are more able to

adapt during their lifetime. That is, even if the whole population is able to learn the behaviour,

those that are closer to that behaviour because of the variation brought about by environmental

change, will incur less learning cost and therefore be selected for. Thus, the population moves

towards the new behaviour and it becomes genetically speci�ed. The unconverging and then

reconverging of the population in �gures 4c and 6c are a demonstration of this.

In conclusion, the cost of learning provides selection pressure for the genetic assimilation of

acquired characteristics; neighbourhood correlation provides a path through which it can take

place.
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