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Abstract. We describe a comparison between Simulated Annealing

(SA), Dispatch Rules (DR), and a Coevolutionary Distributed Genetic

Algorithm (DGA) solving a random sample of integrated planning

and scheduling (IPS) problems. We found that for a wide range of

optimization criteria the DGA consistently outperformed SA and DR.

The DGA finds 8-9 unique high quality solutions per run, whereas

the other techniques find one. On average, each DGA solution is 10-

15% better than SA solutions and 30-35% better than DR solutions.

1. Introduction

This paper describes a comparison of SA, DR, and a Coevolutionary DGA

applied to a highly generalized class of job-shop scheduling problems.

These problems involve the simultaneous optimization of a number of

flexible manufacturing plans. The application of Coevolutionary GAs to

this class of problems has been investigated in [Husbands P and Mill F,

1991, Husbands P, 1993]. Prior to that Khoshnevis and Chen used DR to

solve problems from a restricted subset of the class [Khoshnevis B and

Chen Q, 1990]. Recently Palmer applied SA to a range of industrial

problems of this sort [Palmer G, 1994]. To date the relative performance of

all three approaches has not been measured. In his Ph.D. thesis Palmer

[Palmer G, 1994] detailed algorithms for generating random IPS problems.

He used these to compare his SA method with Khoshnevis and Chen’s

approach on sets of 100 industrially realistic problems.

A comparison of the results obtained with a coevolutionary DGA with

those in Palmer's thesis is reported here. His problem generation

algorithms have been reimplemented, as have his evaluation criteria:

makespan, mean flow time, total tardiness and proportion of tardy jobs.

The coevolutionary approach was found to significantly outperform the

two other techniques on all these measures. This work involved adapting

an earlier ‘ecosystems’ model of integrated production for use with a new

set of problems and cost functions. This turned out to be relatively

straightforward, supporting the claim that the coevolutionary model is

very general [Husbands P, 1993].
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Section 2 explains IPS more fully, followed by an overview of each

technique used in this study. Problem, cost function and implementation

details are then given before the results of the comparison are presented.

2. Integrated Manufacturing Planning and Scheduling

The traditional academic view of job-shop scheduling (JSS) is shown in

Figure 1 [French S, 1982; Zweben M and Fox M, 1994]. A number of fixed

plans, one for each component to be manufactured, are interleaved by a

scheduler so as to minimize some criteria such as total schedule length.
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A problem that would often be more useful to solve is that illustrated in

Figure 2. Here the intention is to optimize the individual manufacturing

plans in parallel, taking into account the numerous interactions between

them resulting from the shared use of resources. This is a much harder

and far more general problem than the traditional JSS problem.

In many manufacturing environments there are a vast number of legal

component plans. These vary in the number of manufacturing operations,

the ordering of the operations, the machines used, the tool used for an

operation and orientation of the work-piece (setup) given the machine and

tool choices. All these choices are subject to constraints on the ordering of

operations, and technological dependencies between operations.

Optimizing a single process plan is an NP-hard problem [Husbands P and

Mill F, 1991]. Optimizing several in parallel requires a powerful search

technique. It is this class IPS with which we are concerned.

3. Approaches to Integrated Planning and Scheduling.

Section 3 reviews the three approaches to IPS investigated in this study.

3.1 Simulated Annealing

SA is a stochastic search technique fully described in the literature [Aarts

E and Korst J, 1989; Kirkpatrick S, Gelatt C D, Vecchi M P, 1983]. By

sometimes allowing temporary jumps to worse solutions using the

Boltzman  distribution the technique tends to avoid local minima.

Fig 1: Traditional Scheduling Fig 2: Emergent Scheduling



In order to apply SA to a problem it is necessary to have a solution

representation and a set of operators to move from the current solution to

new candidate solutions. Palmer chose to represent solutions to the IPS

problem as digraphs [Palmer G, 1994]. Such a graph is shown in Fig 3

and the schedule it represents is shown in Figure 4. The solid arrows

represent ordering constraints between operations and the shaded arrows

represent particular linearisations of the process plans which are

combined in parallel to form the overall schedule.

Figure 4: Gantt Chart of Schedule

He implemented three plan change

operations. Each of these respected

problem ordering and operation-

machine combination constraints:

reverse the order of two sequential

operations on a machine; reverse

the order of two sequential

operations within a job; change the machine performing an operation.

Each move was generated by one randomly chosen operator from the set

above. The annealing schedule reduced the temperature by 10% every 10N

moves, or after N moves without any improvement since the last drop in

temperature, whichever came first. N is the number of problem variables.

3.2 Khoshnevis and Chen's Dispatching Rules Approach

Dispatching (priority) rules are a popular heuristic used in constructing

schedules in classical JSS problems [French S, 1982]. Typically used

within simple constructive search algorithms to choose the next operation

to process, the most common are: SPT, Shortest Processing Time; FCFS,

First Come First Served; MWKR, Most Work Remaining; LWKR, Least

Work Remaining; MOPNR, Most Operations Remaining; RDM, Random.

[Khoshnevis B and Chen Q, 1990] use a dispatching rule based on slack

time (the difference between time remaining to due date and anticipated

total process time). Whenever a machine becomes available, the job chosen

to be processed next is the one with least slack time (LST). Their approach

allows process plan flexibility in the order of operations within a job and

Figure 4: Digraph  Representation of Schedule 
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the machine chosen for each operation. In order to decide between

candidate operation-machine combinations in the next job to be processed,

they use the SI (Shortest Imminent processing time) rule. Thus the IPS

problem is tackled using a LST rule to choose between jobs, and the SI

rule to choose an operation-machine combination within a job.

3.3 Distributed GAs & the Coevolutionary Ecosystem Model

The DGA model is fully described in [Husbands P, 1992; McIlhagga M,

Husbands P, Ives R, 1996]. In the basic DGA [Collins R and Jefferson D,

1991] a population of chromosomes is kept in a non-ordinal data structure

similar to that of a traditional GA [Goldberg D E, 1989]. However a

landscape grid (a 2D torus) is maintained, allowing geographically local

selection and replacement strategies. That is, members of the population

mate with other members nearby on the 2D grid and their offspring are

placed in the same ‘neighbourhood’. The advantages of a DGA are: low

variance in best solutions found over multiple runs; high variance in good

solutions represented in the population at the end of a run; better quality

and quantity of solutions found and faster decent to very good solutions

[McIlhagga M, Husbands P, Ives R, 1996; Collins R and Jefferson D, 1991].

In the ecosystems model for

handling the IPS problem, a

number of different species

coevolve on the 2D grid. Each

cell on the grid contains one

member of each  species. This

is illustrated in Fig 5. The

genotype of each species

represents a plan for a

component to be

manufactured in the machine

shop. Separate populations

evolve under the pressure of

selection to find near-optimal plans for each component. However, their

costs account for shared resources in their common world (a machine shop

model). This means that without the need for an explicit scheduling stage,

a low cost schedule will emerge as the plans are being optimized.

Manufacturing data is used to randomly construct populations of plan

structures, one for each component. Arbitrator chromosomes, who resolve

conflicts between members of the other populations, are an important part

of this model—their fitness depends on how well they achieve this. Each

population, including Arbitrators, evolve under the influence of selection,

crossover and mutation [Husbands P, 1993].

Selection works by using a ranking scheme within a 12 chromosome

neighbourhood: the fittest individual is twice as likely to be selected as the

median. Offspring replace individuals from their parents' neighbourhood.

neighbourhood
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Fig 5: Distributed Set of Species



Replacement is probabilistic using the inverse scheme to selection. Genetic

material remains spatially local and a robust and coherent coevolution

(particularly between Arbitrators and process plans) is allowed to unfold.

The cost, hence selection, functions for plan organisms involve two

stages: i) population specific criteria (machining costs), and ii) takes into

account interactions between populations. Arbitrators are only evaluated

at the second stage, their fitness depending on how well they reduce

conflicts between plans. The second stage of the plan cost function involves

simulating the simultaneous execution of several plans, one for each

component manufactured. These plans (plus an Arbitrator) are taken from

the same cell on the grid—an important factor in allowing coherent

coevolution. Any waiting time due to interactions between plans (resource

conflicts) are added to manufacturing costs to give the total plan cost.

4. Description of the Problems

The test problems were generated from data collected from David Brown

Vehicles Ltd. [Palmer G, 1994]. The statistics shown later are mean

figures taken from 100 sample problems. A problem is a number of jobs (1-

14), each of which requires a plan scheduled for a specific shop-floor. A job

represents the manufacture of one or more identical parts which (usually)

remain together as they move through the shop. Each part can have 1-14

processes. A process plan may be either fixed or flexible, it describes the

processes that are carried out (including possible ordering constraints) for

a specific set of features to appear on a work piece. The shop-floor does not

alter between problems. It comprises 25 machines which vary in the

number and diversity of processes that they can carry out.

Each plan is generated from a representation of a part (descriptions of

its features and operation order constraints) and the possible processes

that can generate those features on the work-piece; in this case there are

1-2 processes per feature. Most can be carried out on a large selection of

machines, greatly increasing the search space for this IPS problem.

4.1 Problem Generation

The problems used were generated according to plan templates as detailed

in [Palmer G, 1994]. A template forms the basis of a job, giving possible

operations, machine options and ordering constraints. The number of

operations for an instance of a job is chosen at random within the limits

defined in the template. The ordering constraints and machine options in

the generated (flexible) plans form the basis for the IPS search space. The

major problem parameters were as follows:

1-14 operations per job (generated at random from a plan template)

5-10 jobs per problem (generated at random)

1-2 applicable methods per operation (generated from a  plan template)



There were 24 available operation methods. The earliest availability date

for each machine was randomly generated from an appropriate range.

Release and due dates, set-up and machine times, were generated in

accordance with lookup tables and random functions [Palmer G, 1994].

Operation times were calculated using the company’s estimation program.

4.2 The Cost Function

In addition, machine utilization, U, for each machine can be calculated:

Where ai is the initial availabe date of machine i.

All of Palmer’s results reproduced here were found using the compound

cost function ‘mean flowtime plus twice the total tardiness’ (MFTT2). The

more distributed coevolutionary GA approach uses slightly different cost

functions. These were adapted from Palmer’s to fit the coevolutionary

architecture. It should be pointed out that results from the two methods

were compared over exactly the same set of statistical evaluation criteria.

Below we show the results for two cost functions used with the

coevolutionary DGA: Grp. and Cont. The difference between these two

costing criteria is as follows. Cont. stands for contribution. Here the plan

chromosomes have a cost that is in part proportional to it’s own efficiency

and in part proportional to the efficiency of the group that is belongs to.

Each cell on the DGA grid contains a single group comprising one unique

plan for each part being planned plus an arbitrator. The evaluation of an

individual may be tardiness or plan cost (includes machine set-up and

machining costs). Grp. stands for group, here each chromosome in the

group is given the same cost: a weighted sum of the efficiency of all of the

chromosomes in a cell. Below, PG and PC are the Grp. and Cont. process

plan chromosomes cost functions respectively. AG and AC are the Grp. and

Cont. arbitrator cost functions respectively.

PC = (flowtime + 2*tardiness)*N (N is No of plans),

AC = total wait time + 2*total tardiness.

The following cost functions can

then be calculated:

• makespan: maxC
• mean flowtime:

F =
1

N
. jF

j =1

N

∑

• total tardiness: jT
j =1

N

∑
• proportion of tardy jobs.

Each job j has the following data

associated with it:
• release date rj

• due date dj

• completion time Cj

• flowtime Fj = Cj - rj

• lateness Lj = Cj - dj

• tardiness Tj = max (0, Lj)

• processing time of job j on machine i,

Pij

iU = 1

maxc − ia
. ijP

j =1

N

∑

PG = MFTT2,

AG = MFTT2,



5. The Coevolutionary DGA Implementation

Section 5 describes problem specific details of the DGA implementation.

5.1 Plan Encoding

• Each job is encoded in a separate fixed

length of (varies between jobs) chromosome.

• Chromosomes have two sections, the first

deals with method (machine) choices, the

second with sequence (ordering) choices.

• Currently, all methods that do have a

choice have two options and are therefore

represented in binary. Lookup tables

translate these values into a machine

choice. Method choices are held on the

genome in an order which maps to a set of

known operations (1-N).

• For each job, the cost function maintains a

tree containing the space of legal sequences

of operations. Sequence choices on the

chromosome are interpreted as routes down the tree for that job. The default

sequence is always legal, so in cases where the problem description constrains

the genome to only one legal sequence, the sequencing information is implicit.

• The evaluation function is a set of routines that traverse a given tree, following

a given route, returning with a necessarily valid operation sequence.

The sequence choices may be much larger than the method choices,

depending simply on the branch rate of the tree. Thus, a separate data

structure is maintained to hold the maximum possible value of each gene.

Legal crossover is made trivial with this representation, provided it only

occurs at gene boundaries. Translocation is not possible with this scheme.

5.2 Arbitrator Encoding

An arbitrator is a series of lookup tables, flattened into a bit string, used to

resolves resource (machine) conflicts between different plans. The Nth

table encodes preference relationships for the Nth manufacturing

operations. Relationships for every possible component pairing are

represented. See [Husbands P, 1994] for details. The event-processing in

the cost function responds to a request for the use of a machine as follows:

1. If machine is unoccupied, provisionally put the operation on that machine.

2. If the machine is already provisionally occupied by another operation, an

arbitrator will decide whether the new operation is placed on the machine

instead, and the first operation placed in a waiting state, or whether the

second operation should wait until the machine is released.

One job per Chromosome
 chromosome

Second section encodes
theoperation ordering choices
0 for left branch &
1 for right branch

1, 9, 5, 7, 3, 8, 2 1, 1, 0

Operation choices code for paths through
the tree where a choice exists

First section Encodes
the machine
choices

Termination

Cost Function
Tree:

m1
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m3

m2

Operation  choice

Fig 6: Chromosome



The provisional status of an operation placement is lost when the time in

the event-processing routines reaches the operation completion time. As

operations cannot be performed in part, an operation taken off a machine

is said to have been waiting all along. No consideration is made for the

time an operation has provisionally occupied a machine when conflict

arises. The binary table encodes which of the two plans wins machine-use.

6. Results

The results for the SA and dispatch rule algorithms presented here are

reprinted from [Palmer G, 1994]. Due to time constraints, we chose not to

re-implement these algorithms. The results in [Palmer G, 1994] show the

mean results over a set of 100 problems. Here we present our results along

side those shown in his thesis. Statistics were derived from 100 problems.

The number of objective function calls per run was 525,000.

Algorithm Make

span

Proportion

Tardy

Total

Tardiness

Total Time

Machining

Machine

Utilization

Mean

Flowtime

GPDGA cont 81.22 0.14 5.84 171.75 0.18 34.86

GPDGA grp 80.40 0.15 5.47 172.23 0.18 34.63

SA 89.09 0.18 8.87 191.22 0.18 36.10

DR 95.96 0.31 30.28 218.13 0.19 41.37

Table 1: Problem Set Comparison Over Assorted Cost Functions

The DGA outperforms SA and DR for all

optimisation criteria (Table 1). Mean

improvements over SA, averaged over all

optimization criteria (not machine

utilization), were 16.58% and 15.75% for

GPDGA cont. and grp. respectively. The

mean improvements over DR, averaged

over the optimization criteria, were

37.60% and 39.00% for GPDGA cont. and grp. respectively. See section 4.2

for an explanation of the two GPDGA cost functions. The DGA performs

≈1% better when the cost function reflect the efficiency of an individual

and not just the group that it came from.

One advantage of using the coevolutionary DGA over SA is that in one

run it is capable of generating more than one solution to the problem at

hand. Table 3 shows the mean number of chromosomes within 5% of the

best found. The figures are averages over 100 problems. The data is taken

from the same set of experiments used to generate Table 1. This

emphasizes the fact that the DGA is not only finding good solutions to  an

NP-Hard problem, but is finding multiple different near optimal solutions.

It is impossible to make a detailed comparison of the solutions found by

different techniques (other than mean costs over 100 problems) because

Palmer does not include problem solutions in his thesis [Palmer G, 1994].

Objective

function:

CONTRIBUTI

ON, GROUP

popsize: 1500.

Evaluations

per problem:

525,000 (1.5

hours on an

Sparc ipx).

Table 2: Parameters



Further analysis indicated the

presence of a few aspects which

significantly swung the results

for the Total Tardiness criterion.

These occur in cases where a

problem includes a number of

plans generated from the same

templates-section. In such cases,

the due-dates turn out to be similar for a number of jobs which largely

demand the same machines (i.e. the method flexibility required to avoid

waiting-times turns out to be particularly limited). Because there are 14

job-types, and 5-10 different jobs per problem, the probability of getting

three or more jobs from the same job-type class is ≈0.071 (given 105 jobs,

an average of ≈7.5 jobs would be the same as at least two others). This

aspect adds to the difficulty of the problem by making the total tardiness

hard to minimize. Table 4 shows the results for two identical DGA runs,

differing only in the problems used: i.e. two different sets of 100 problems.

Algorithm Makespan Proportion

Tardy

Total

Tardiness

Total time

Machining

Machine

Utilization

Mean

Flowtime

GPDGA 1st 62.75 0.18 16.67 112.86 0.16 23.93

GPDGA 2nd 63.50 0.16 12.89 117.22 0.16 23.99

SA 89.09 0.18 8.87 191.22 0.18 36.10

K&C 95.96 0.31 30.28 218.13 0.19 41.37

Table 4: Comparison of Two sets of 100 Problems (GPDGA Cont. cost function)

The results stay reasonably constant except for tardiness factors. Thus the

effect of the MFTT2 in Table 5. This suggests that, although 100 problems

would provide statistical significance for most of the optimization criteria,

the sample may not be large enough to give a fair comparison of tardiness.

7. Conclusions

We found that for all the optimization criteria described in [Palmer G,

1994] the coevolutionary DGA consistently outperformed the SA algorithm

and the DR algorithm. Results suggest that variance in costs due to

sample size should be calculated in this sort of comparative study. It is

clear that some optimisation criteria are more sensitive to this effect than

others. A larger sample than that provided by Palmer would have been

desirable. Both DGA cost function configurations investigated improved on

the performance of the SA by a factor of over 15%, and on the dispatching

rule by more than 35%. The results

suggest that a cost function that

includes factors that are related to both

its individual performance as well as

it’s group performance will outperform,

Algorithm Mean Flow

time + Total

Tardiness * 2

Mean No.

Competing

Solutions

GPDGA Cont. 46.54 8.76

GPDGA Grp. 45.56 9.74

SA 53.84 N/A

DR 101.93 N/A

Table 3: MFTT2 Comparison

Algorithm MFTT2

GPDGA 1st 57.27

GPDGA 2nd 49.77

SA 53.84

K&C 101.93

Table 5: MFTT2



by about 1%, one which only accounts for the group performance. Unlike

the other techniques, the DGA produced a number of unique, high quality

solutions, to the problem on each run (typically 8 or 9).
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