
Learning Perceptual Invariances: A Spatial Model

Stephen Eglen�, Jim Stone†, Harry Barrow�

�School of Cognitive and Computing Sciences,

University of Sussex,

Brighton BN1 9QH, England.

stephene,harryb@cogs.susx.ac.uk

†AI Vision Research Unit, Psychology Building,

Sheffield University, Western Bank,

Sheffield, S10 2TN, England.

stone@aivru.sheffield.ac.uk

Cognitive Science Research Paper 404

January 1996

Abstract

A novel unsupervised learning method for extracting spatio-temporal invariances has been developed

in (Stone, 1995). The learning method works by trying to jointly minimise the short term variance of

a unit’s output, whilst maximising the long term variance of the output. The learning method has been

applied to extracting disparity from a temporal sequence of random dot stereograms.

This paper reports on developing and applying the learning method to a spatial task, both in one and

two dimensions. Random dot stereograms were used as input to a three layer feedforward network. After

learning, output units in the network became selective for disparity. This confirms the usefulness of the

learning method, and leads the way to creating a full spatio-temporal model, using both temporal and

spatial information.

1 Introduction

An unsupervised learning method of extracting perceptual invariances from a sequence of images has been

developed in (Stone, 1995). The method rests on the assumption that whilst pixel values over a patch

of image can change quite rapidly, the underlying parameters (such as depth or disparity) usually vary

smoothly. Stone and Bray (1995) have also applied the learning method to the problem of converting a

place coding amongst a group of units into a value coding from one unit.

For a unit to be selective to one of these underlying perceptual invariances, such as depth, we should

expect that its output will change smoothly over time in accordance with the invariance. Hence, the unit

should have a low short term temporal variance. However, the unit can have a very low short term temporal

variance (zero) if its output is always the same, regardless of its input. Hence, another constraint that can

be placed on the unit is that it should have a large long term variance: over a long period of time, the unit’s

output should vary quite a lot. The learning method presented in (Stone, 1995) puts both these constraints

into one measure F:

1



F = log
V

U

where V is the long term variance of the unit, and U is the short term variance. By maximising F , we

will jointly maximise the long term variance of the unit’s output and minimise its short term variance. (The

log function is used so that the derivative of F is easy to compute - see Appendix A.)

This learning method was used by Stone in a feedforward network presented with a sequence of one

dimensional random dot stereograms. Each input was a pair of random dot stereograms, with the disparity

between the two images varying in a sinusoidal fashion over time. The learning method was used to

maximise F for the one output unit. After learning, the output of the network was highly correlated (r >

0:97) with the disparity between the images.

The work presented here uses the same learning method to a similar problem in the spatial domain.

Rather than having a sequence of images presented to the network over time, we have one large image

where the disparity varies smoothly over the image. Additionally, instead of having one output unit, we

now have an array of output units, and the learning rule is now applied to maximise F over all of the output

units.

For brevity, the temporal model described by (Stone, 1995) will be called the ‘temporal model’, whereas

the model presented here will be called the ‘spatial model’.

1.1 Related Work

The spatial task used here is the same as the task used in (Becker, 1992). Using the IMAX method, Becker

showed how maximising the mutual information between units of adjacent networks could be used to learn

stereo disparity. However, using an architecture similar to that described here, pre-learning of the hidden

layer was required in order for the system to learn disparity. This pre-learning consisted of maximising

the mutual information between corresponding hidden layer units in adjacent networks. Maximising mu-

tual information between output units without pre-learning was effective only if the hidden layer of each

network was treated as a number of distinct clusters, with weight sharing between corresponding clusters

in different networks. The need for these added constraints suggest that the merit function used in IMAX

may not be best suited to extracting disparity.

2 Method

2.1 Inputs

Two large random dot stereograms were created, such that the disparity varied smoothly (either sinu-

soidally or in a gaussian manner) over the image. The images were also blurred with a gaussian filter, and

normalised to have zero mean and unit variance. Both one and two dimensional images were created, and

are described in more detail later.

2.2 Network Architecture

A three layer fully connected feedforward network was created, similar to the one used in the temporal

model. To simplify the task, a shared weight system was used, as shown in Figure 1. The actual size of the

shared network varied in experiments, but there was always just one output unit from the shared network.

The number of output units in the virtual array was the same as the number of pairs of image patches.

The two input images were broken up into non overlapping patches. Matching patches from each image

were copied into the input layer of the network, and the activity propagated to the output layer of the shared

2



network. The output of the shared network was then copied into the appropriate part of the array of virtual

output units.

For example, let the two input images be 500�1 pixels, and the input layer contain 5�2 input units.

Both input images are therefore broken up into 100 patches of size 5� 1. Patch n from both eyes is

presented together as input to the network. The network computes the output of the network, and this

output is then copied into unit n of the array of virtual output units. This procedure is repeated for all 100

patches, and corresponds to the network being swept across the two large images.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Right InputLeft Input

Right Image

Left Image

Shared Network

Array of virtual

output units

Figure 1: Architecture of the shared network. In this example configuration, the two images are broken

down into 5 patches, and currently patch two is being presented to the network. The output of the shared

network is then copied into the second virtual output unit.

2.2.1 Network Configurations

Two main configurations were used in this work: one dimensional and two dimensional. In the one dimen-

sional configuration, input images were one dimensional and the virtual output units were arranged in a one

dimensional array. In the two dimensional configuration, we used two dimensional input images and the

virtual output units were arranged into a two dimensional array. The one dimensional version corresponds

to a spatial analogy of the temporal learning task, whereas the two dimensional version is a novel extension.

In both configurations, units in each layer were fully connected to units in the next layer. Additionally,

hidden layer units received an extra bias input. Input and output units used the identity transfer function

for calculating the output of units, whereas the hidden units used a tanh transfer function. Appendix A.2

gives the equations describing network activity.

3



2.3 Learning Rule

The temporal model learning rule has been slightly adapted for the spatial model, although it essentially

remains the same. In the temporal model,there is one output unit. The long term variance (V ) and the short

term variance (U) of the unit is measured as:

V =

1

2

T

∑
t=1

(z̄t � z)2

U =

1

2

T

∑
t=1

(z̃t � z)2

where z is the output of the unit, z̄ is the long term weighted average of the output unit, and z̃ is the

short term weighted average of the output unit.

In this model, there is no temporal component, but instead there is an array of output units. Hence, the

long and short term variances are measured as the long and short range spatial variances:

V =

1

2
∑
k

(z̄k� zk)
2

U =

1

2
∑
k

(z̃k� zk)
2

where k ranges over all output units in the virtual output array. z̄k and z̃k now represent the long and

short range spatial variance of virtual output unit k. Therefore, the only differences in the spatial learning

rule and the temporal learning rule is the way in which U and V are calculated, and in turn, the way in

which the short and long term weighted averages are calculated. (Appendix A.3 show how U and V are

calculated.)

2.3.1 Learning Paradigm

Conjugate gradient descent (Williams, 1991) was used to maximised F with respect to each weight in the

network. Each line search of the conjugate gradient required evaluation of F and ∂F
∂w

at several points in the

weight space. After each epoch (defined here as one iteration of conjugate gradient descent), the correlation

between network outputs and disparity was computed. Learning typically continued until the values of F

and r stabilised. Full details of computing F and ∂F
∂w

are given in Appendix A.

It is worth noting that this is an unsupervised learning method. The known disparity between input

images is never used by the learning algorithm – we only use it for computing the correlation between the

network output and disparity.

2.4 Free Parameters

The only free parameters of the model needed were those controlling the extent of spatial averaging for

computing z̄ and z̃. In this model, we used exponentially weighted kernels to compute these terms (see

Appendix A.5), and so the kernel half lives (denoted by hu and hv) controlled the extent of spatial averaging.

The results from the temporal model indicated that the half life hv should be large enough such that z̄ was a

good approximation to the mean value of all of the outputs, whereas hu should be set so that z̃ is averaging

amongst something like ten percent of the output units. The size of the network was initially chosen to be

similar to the network used in the temporal model – ten input units (five units for each image), between

three and ten hidden units and one output unit.

4



2.5 Testing Network Performance

After learning, the weights were then frozen so that the network could be tested on other images not seen

during learning. To do this, the new images were cut up into patches of the same size as those used during

learning and presented to the shared network one at a time. The correlation r between the output of the

network and the known disparity for the image patches was then measured. (The size of the test images

did not need to be the same size as the images used in learning, since the virtual array is not used during

testing.)

3 Results

Two sets of experiments were performed. The first set of experiments used one dimensional input images

with the virtual array of output units arranged in a one dimensional array. The one dimensional configura-

tion therefore was a spatial analogy of the temporal learning task described by (Stone, 1995). The second

set of experiments used two dimensional input images with the virtual array of output units arranged in a

(square) grid, and were the more interesting because of the extra dimension involved.

3.1 One Dimensional Network

Two input images of size 5000�1 pixels were generated to make 1000 pairs of 5�1 image patches. The

disparity between a pair of image patches was set to some value between �1, which varied sinusoidally

with a period of 1000 over the 1000 patches. These image patches were presented to a network with 10

(2�5�1) input units, 10 hidden units and one output unit. The half lives were set in accordance with the

half lives used in the temporal model: hu was 32 and hv was 3200. The virtual output array used here was

a circular 1D array of 1000 output units.

Figure 2 shows the results after learning for 160 epochs. The final correlation between disparity and

network output reached 0:937. Figure 3 shows how the network output developed during learning.

After learning, the network was then tested on two random dot stereogram images of size 1000� 1,

where this time the disparity varied sinusoidally between �1 with a period of 40. As seen from Figure

4, the network generalised well to this image pair, producing a correlation of 0:940 between disparity and

output.

Similar experiments were performed, using inputs whose disparity varied sinusoidally with periods

much less than 1000 for learning. In these experiments, the network would produce outputs highly corre-

lated with disparity, but only if the short term half life, hu was considerably reduced. For example, when

the network was using the data set whose disparity varied sinusoidally over a period of only 40 patches as

input during learning, the half life hu had to be reduced to either 2 or 3 for the network to learn the disparity.

One side effect, as noted by Stone was that reducing the short range half life increased the learning time

(see Figure 4 of Stone, 1994).

5



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

D
is

pa
rit

y

Image Patch Number

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 100 200 300 400 500 600 700 800 900 1000

O
ut

pu
t

Virtual Output Cell Number

Output

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

C
or

re
la

tio
n 

/ M
er

it 
F

un
ct

io
n

Epoch

Correlation
Merit Function

Figure 2: Results of the 1D network learning with the 1d random dot stereograms, where the disparity

varied sinusoidally between �1 with a period of 1000 over the 1000 image patches. Top: Disparity values

for the 1000 pairs of image patches used during learning. Center: Output from the network after learning.

Bottom: Plot of correlation and merit function during learning.

6



-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400 500 600 700 800 900 1000

O
ut

pu
t

Image Patch Number

0 epochs : Initial output

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 100 200 300 400 500 600 700 800 900 1000

O
ut

pu
t

Image Patch Number

10 epochs

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800 900 1000

O
ut

pu
t

Image Patch Number

20 epochs

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

O
ut

pu
t

Image Patch Number

50 epochs

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 100 200 300 400 500 600 700 800 900 1000

O
ut

pu
t

Image Patch Number

100 epochs

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500 600 700 800 900 1000

O
ut

pu
t

Image Patch Number

150 epochs

Figure 3: Development of network output during learning, using the 1D data described in Figure 2. Net-

work outputs are shown left to right and top to bottom after 0, 10, 20, 50, 100 and 150 epochs.

7



-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

D
is

pa
rit

y

Image Patch Number

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 50 100 150 200

O
ut

pu
t

Image Patch Number

Figure 4: Results of testing the 1D network on 200 image patches unseen during learning. Input image

patches were taken from a pair of random dot stereograms with disparity varying sinusoidally between �1

over a period of 40 patches. Top: Disparity values for the 200 pairs of image patches used for testing.

Bottom: Output from the network.

8



3.2 Two Dimensional Network

A pair of random dot stereograms of size 120� 120 pixels were created, such that the disparity between

patches of the images was a gaussian function of the distance of the patch from the centre of the image (see

Figure 5). These two images were then broken down into 3�3 non overlapping image patches. The shared

network had 18 (2� 3� 3) input units, 5 hidden units, and 1 output unit, feeding into a virtual array of

1600 (40�40) output units. Figure 5 shows the network output after 1000 epochs, along with a plot of the

merit function and correlation during learning. Figure 6 shows how the outputs develop during learning.

As can be seen from Figures 5 and 6, the network has essentially learnt the disparity after 200 epochs, and

the remaining 800 epochs are spent gradually improving the merit function.

(Note: The array of 40� 40 disparity values and 40� 40 output values are visualised as 40� 40

greyscale images, with each disparity or output value represented by the pixel intensity: the larger the

value, the brighter the pixel.)

3.2.1 Testing Network Performance

After learning, the weights were frozen and the network tested on a new random dot stereogram pair, where

the disparity varied sinusoidally between �1 independently in both the horizontal and vertical directions

of the images, as shown in Figure 7. 2500 (50�50) pairs of image patches were extracted from this new

image pair and presented to the network. The correlation between network output (shown in Figure 7) and

disparity was 0:890.

3.2.2 Hidden Units

We have not yet considered in detail the role of the hidden units. In some preliminary experiments, we

modified the number of input units and hidden units in the network. Results from three of these networks

are presented for comparison in Table 1. Clearly, the network with the most hidden units (15) performed

the best when the 2D gaussian disparity images were used as inputs during learning. It also produced the

best correlation on the test data (the 2D sinusoidal disparity images). However, much more work needs to

be done looking at the hidden units, including looking at their receptive fields, to understand the role of the

hidden units.

After Learning Testing

Network Size (Input:Hidden:Output) Merit function Correlation Correlation

(2�3�3) : 5 : 1 -1.725 0.923 0.890

(2�5�5) : 3 : 1 -1.267 0.864 0.785

(2�5�5) : 15 : 1 -2.982 -0.972 -0.908

Table 1: Comparison of different network sizes. The 2D gaussian data was used during learning, and the

2D sinusoidal data for testing.

9



-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200

C
or

re
la

tio
n 

/ M
er

it 
F

un
ct

io
n

Epoch

Correlation
Merit Function

Figure 5: Results of the 2D network learning, using as input a random dot stereogram pair where the

disparity between image patches decreased in a gaussian manner from the centre of the image. Top row:

pair of random dot stereograms, used as input to the network. Centre left: Disparity between the two input

images. Centre right: Output from the network after 1000 epochs of learning. Bottom: Plot of correlation

and merit function as a function of learning time.

10



Figure 6: Evolution of the outputs during learning for the 2D network, using the data set presented in

Figure 5 as input. The images, from left to right and top to bottom show network outputs after 0, 10, 20,

30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170,180, 190, 200, 400, 500, 750 and 1000

epochs.

11



Figure 7: Results of testing the 2D network on a novel image pair. Left: Array of disparity values between

the novel image pair. Right: Array of network outputs. The correlation between the disparity and the output

is 0:890.

12



4 Conclusions

We have shown that the unsupervised learning model presented by (Stone & Bray, 1995) can be used in

the spatial domain to learn disparity, in both one and two dimensions. This confirms the usefulness of the

learning method.

This work can be developed in several directions. Firstly, it could be extended to be a non weight

sharing network. This is a harder learning task than the shared network presented here, and will probably

mean that more image patches will need presenting to the network. However, we expect that a non shared

network should produce similar results to the ones presented here.

However, a more significant direction for this work is to apply the learning method to a full spatiotem-

poral task. This would effectively combine the temporal learning rule used in the temporal model and the

spatial learning rule presented here. Input to the network would be a sequence of images. After presenting

one input (or pairs of images in a stereo task) to the whole network, the spatial learning rule could be

applied to the array of output units. Simultaneously, the temporal learning rule could be applied separately

to each output unit. This would produce two error vectors for maximising the merit function with respect

to the network weights.

A Mathematical Details of the Model and Learning Rule

This appendix provides the necessary mathematical details of the model.

A.1 Notation

Term Meaning

x total input to a unit

z Output of a unit

z̄ Long range weighted average of z

z̃ Short range weighted average of z

i Subscript for input units

j Subscript for hidden units

wi j Weight from input unit i to hidden layer unit j

w jk Weight from hidden layer unit j to output layer unit k

∆wi j Weight change from unit i to unit j

θ j Bias weight to hidden unit j

a;b;k Subscript for output units

Φ̃ Short range kernel for convolution to form z̃

Φ̄ Long range kernel for convolution to form z̄

hu, hv Short and long range half lives for convolution kernels

A.2 Calculating Network Activation

Unit activations, x j, and outputs, z j, of hidden layer units are calculated by:

x j = ∑
i

wi jzi +θ j

z j = tanh(x j)

The output values of hidden units are then used to compute the activation and output value of the one output

unit:

13



xk = ∑
j

w jkz j

zk = xk (Identity transfer function)

A.3 Calculating the Merit Function

The merit function, F , is defined as:

F = log
V

U

where V is the long range variance and U is the short range variance:

V =

1

2
∑
k

(z̄k� zk)
2 (1)

U =

1

2
∑
k

(z̃k� zk)
2 (2)

z̄k is the long range mean, and z̃k is the short range mean for an output unit k, defined by a convolution

process:

z̄k = ∑
a

Φ̄a�kza (3)

z̃k = ∑
a

Φ̃a�kza (4)

where a ranges over all virtual output units.

To calculate the derivative of the merit function with respect to each weight, we need to determine:

∂F

∂w
=

1

V

∂V

∂w
�

1

U

∂U

∂w

Hence, after all of the input has been presented to the network, we calculate U and V . We then need to

calculate ∂U
∂W

, or to use the back propagation approach (Rumelhart, Hinton, & Williams, 1986), we need to

calculate ∂U
∂xa

.

A.4 Deriving the Error Derivatives

In a similar fashion to the Back Propagation algorithm, once the errors δ are known for units in the output

layer, they can then be used to calculate weight changes between output and hidden layer units. The errors

can also then be propagated back to the hidden layer units so that the weights between input and hidden

layer units can be updated.

Given δk for output layer units, we can then calculate:

∆w jk = δkz j (5)

We can also calculate δ j from the δk:

δ j = g0(x j)∑
k

w jkδk (6)

where g0(x) is the derivative of the activation function for the hidden layer units.

14



A.4.1 Computing ∂U
∂xa

The error δ attributed to a unit is defined to be δa =
∂E
∂xa

in normal back propagation, where E is the overall

error of the network, and so we need to find ∂F
∂xa

:

given F = log
V

U
(7)

∂F

∂xa

=

1

V

∂V

∂xa

�

1

U

∂U

∂xa

(8)

And so to find ∂F
∂xa

, we need to find ∂U
∂xa

and ∂V
∂xa

:

U =

1

2
∑
k

(z̄k� z)2 (9)

∂U

∂xa

= ∑
k

(z̄k� z)

�

∂z̄k

∂xa

�

∂zk

∂xa

�

(10)

To find
∂zk

∂xa
:

zk = f (xk) (11)

Here the transfer function of the output units is the identity function, and so:

∂zk

∂xa
=

�

1 if a = k

0 otherwise
(12)

To find
∂z̃k
∂xa

:

z̃k = ∑
b

Φ̃b�kzb (13)

∂z̃k

∂xa
= ∑

b

Φ̃b�k

∂zb

∂xa
(14)

Using Equation 12, we can then see that equation 14 is zero unless a = b:

∂z̃k

∂xa

= Φ̃a�k (15)

The values for
∂zk
∂xa

and
∂z̃k
∂xa

from equations 12 and 15 can then be substituted back into equation 10 to give:

∂U

∂xa
=

�

∑k(z̃k� z)(Φ̃a�k�1) if a = k

∑k(z̃k� z)(Φ̃a�k) otherwise
(16)

So, if we simply define a new kernel Φ̃0:

Φ̃0

a =

�

Φ̃a�1 if a = 0

Φ̃a otherwise
(17)

∂U

∂xa

= ∑
k

(z̃k� zk)Φ̃0

a�k (18)

15



By symmetry, a similar expression can be derived for ∂V
∂xa

, so that the final δa is:

δa =
∂F

∂xa

=

1

V

∂V

∂xa

�

1

U

∂U

∂xa

(19)

A.4.2 Summary: Creating weight changes ∆w

1. Calculate the output of virtual output units.

2. Calculate U and V using equations 1 and 2

3. Calculate δa for all output units using equations 18 and 19.

4. Back propagate errors to hidden layer units using equation 6.

5. Calculate weight changes ∆wuv = δvzu for all weights.

A.5 Convolution Masks

For these experiments, exponential masks were used to create the long and short range weighted averages.

The short and long range convolution masks are created by the same equations, but using different values

for λ:

2D: Φ̃(x;y) = exp�λu(x
2
+y2

)

; x;y 2 [�w;+w]

1D: Φ̃(x) = exp�λu(x
2
)

; x 2 [�w;+w]

λ controls the spread of the function. Here we have defined λ in terms of its half life h:

λu =
ln2

hu

The size of the masks is defined by the value of w. Here we have set the cut off point for the exponentials

to be four half lives from the centre of the mask:

w =

�

4h if 4h < nx
2
�1

nx
2
�1 otherwise

where nx is the width of the virtual output array. (This upper limit on the mask width is to prevent the mask

being bigger than the virtual output array.) The masks are also divisively normalised so that the sum of the

mask elements is equal to 1:0.

References

Becker, S. (1992). An Information-Theoretic Unsupervised Learning Algorithm for Neural Networks. Ph.D.

thesis, Graduate Department of Computer Science, University of Toronto.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating

errors. Nature, 323, 533–536.

Stone, J. V. (1994). Learning spatio-temporal invariances. Tech. rep. CSRP 330, COGS, University of

Sussex.

16



Stone, J. V. (1995). A canonical microfunction for learning perceptual invariances. Perception, forthcom-

ing. Also available as CSRP 398.

Stone, J. V., & Bray, A. (1995). A learning rule for extracting spatio-temporal invariances. Network, 6(3),

429–436.

Williams, P. (1991). A marquardt algorithm for choosing the step-size in backpropagation learning with

conjugate gradients. Tech. rep. CSRP 229, COGS, University of Sussex.

17


