
Brave Mobots Use Representation

Chris Thornton

Cognitive and Computing Sciences

University of Sussex

Brighton BN1 9QN

UK

Email: Chris.Thornton@cogs.susx.ac.uk

WWW: http://www.cogs.susx.ac.uk/users/christ/index.html

Tel: (44)1273 678856

December 20, 1995

Abstract

The paper uses ideas from Machine Learning, Arti�cial Intelligence and Genetic Algorithms to

provide a model of the development of a `�ght-or-
ight' response in a simulated agent. The mod-

elled development process involves (simulated) processes of evolution, learning and representation

development. The main value of the model is that it provides a clear illustration of how learning

processes may lead to the formation of representations, and how these may form the infrastructure

for closely-coupled agent/environment interaction.

1 Introduction

In recent years there has been a rapid development in our understanding of the detailed mechanisms

underlying the emergence of intelligent behaviour. Research on Machine Learning (ML) has introduced

powerful new models of lifetime learning (Shavlik and Dietterich, 1990). Research on Genetic Algo-

rithms (GAs) and Arti�cial Life (ALife) has advanced our understanding of the role played by evolution

(Cli�, Husbands and Harvey, 1993). And research in Arti�cial Intelligence (AI) and psychology has pro-

vided powerful illustrations of the way in which the emergence of intelligent behaviour depends on the

development of representational structure (Muggleton, 1992; Karmilo�-Smith, 1992). Unfortunately,

despite this progress, the `big picture' is still elusive. Ideas from one community do not interface easily

with ideas from another.

If we look at the relationship between learning theories and representation theories, for example, we

�nd that the learning processes investigated by the Machine Learning community tend not to produce

`representational structure' of the type commonly studied by the AI community. In fact, very often,

learning processes are not constructive in any sense. Where they do involve the generation of structure,

it tends not to have any obvious representational interpretation. The interface between models of

learning and models of evolution is equally problematic. Many of the more powerful models of learning

tend to be supervised in nature. This means they assume the existence of an all-knowing `teacher' |

an assumption which is hard to accommodate within standard evolutionary scenarios.

1

This paper launches an all-out assault on this interfacing problem. It introduces a novel learning

method (`explicitation') and shows how its unsupervised, constructive nature allows it to be used to

link learning with both evolutionary and representation-development scenarios. The main body of

the paper provides a practical demonstration of this in the form of a computational model of the

development of a `�ght-or-
ight' behaviour in a simulated agent (an `animat'). It shows how evolution,

learning, agent/environment interaction and representation-development e�ectively `cooperate' so as to

achieve a particular behavioural competence.

2 The �ght-or-
ight task

In the model presented by the paper, a simulated agent (an `animat') develops the ability to produce a

�ght-or-
ight response to a certain type of attack. The model involves evolutionary processes, learning

processes and representation-development processes. And it shows how the developmental process is

modulated by the changing structure of the agent/environment interaction.

The agent which forms the main focus of the model is known as the `prey'. This agent has the sensory-

motor properties of a simulated mobile robot or `mobot' (cf. Nol�, Floreano, Miglino and Mondada,

1994; Reynolds, 1994; Koza, 1992) similar to the widely used `Khepera' mobot (see Figure 1) (K-Team,

1993; Jacobi, Husbands and Harvey, 1995). The prey has two wheels (not shown) situated at either

end of a transverse axle, and a castor at the rear to provide a stable, tripod wheelbase. The wheels can

be driven forwards or backwards at di�ering speeds thus achieving any blend of forwards, backwards

and rotational movement.

Figure 1: The Khepera mobot.

Within the model, the prey agent interacts with another, mobot-like agent, known as the `predator'.

The interactions take place in in a simple arti�cial world which is a
at, continuous, rectangular arena.

The arena always contains one prey agent and one predator agent. In Figure 2 (a), these two agents

are shown as circular shapes. The larger circle represents the predator. The smaller circle represents

the prey. Each agent has an arrow which shows its current direction of motion.

The prey has a single range-�nding sensor and a one-cycle memory (i.e., it is able to remember its

2

(a) (b)

X

(c)

Figure 2: Basic agent scenarios.

previous sensor input). In each time cycle of the simulation, the sensor produces a real value between

0 and 1 which varies monotonically with the proximity of the nearest obstacle along a ray pointing

directly ahead, see Figure 2 (b). The border of the arena does not constitute an obstacle and thus

never a�ects the sensed proximity value. However, it may re
ect the proximity of the other agent if the

position of that agent falls somewhere along the sensor ray, see Figure 2 (c). If no obstacle intersects

the sensor ray, the sensor returns a zero value. The larger of the two agents, known as the predator,

has a variety of sensors. However, since the model is concerned with the development of behaviour in

the prey, these are not relevant and will not be discussed.

Within the simulation, the predator's goal is to to destroy the prey as quickly as possible. The prey's

goal is to survive while, at the same time, minimising movement. The predator attempts to achieve

its goal by implementing a `search-and-destroy' strategy. If it �nds itself facing away from the prey, it

turns towards it; see Figure 3 (a) and (b). (Note that in these displays, the lightly shaded agent shapes

mark out previous positions, and thus constitute a visible trail.) If it �nds itself facing directly towards

the prey, it moves forward: Figure 3 (c). It may approach the prey at either a steady or accelerating

pace. If the former, then it will swerve away at the last moment, provided the prey is facing directly

3

(a) (b)

(c) (d)

Figure 3: The basic predator/prey scenario.

into the attack, see Figure 3 (d). If it approaches at an accelerating pace, it will continue moving

forwards regardless of where the prey is facing, eventually colliding with, and destroying it (not shown).

Whenever a predator approaches, the prey should thus turn towards the approach and remain static.

If the rate of approach turns out to be increasing, the prey should
ee. The prey is thus required to

implement a rudimentary `�ght-or-
ight' strategy.

3 Previous work on �ght-or-
ight

What developmental or evolutionary story might account for the emergence of a �ght-or-
ight response

in a particular agent? To date, work on �ght-or-
ight has largely been con�ned to the ethology commu-

nity. This research has focussed on the implementation of the behaviour rather than its development

(cf. Feder and Lauder, 1986; Gerlai, 1993). There is also work of relevance in the animal learning lit-

erature but this is concerned with the phenomenon of behavioural `freezing' rather than �ght-or-
ight

4

itself (cf. Bolles, 1979; Flaherty, 1985). Where the issue of the development of behavioural responses

is confronted explicitly (cf. Barnett, 1973), there are few operational models and none as yet that deal

explicitly with �ght-or-
ight.

Generic work on the evolution of intelligent behaviour has typically focussed on the genetic algorithm

model of Holland (Holland, 1975; Goldberg, 1989) and the classi�er system of Wilson (1991). Work on

behaviour learning has concentrated on algorithmic models such as recursive decision-tree generation

(Quinlan, 1986) or neural-network models such as backpropagation (Rumelhart, Hinton and Williams,

1986) or competitive learning (Rumelhart and Zipser, 1986). However, there has been no previous

attempt to produce a computational model which shows the role played by evolutionary, learning and

representation-construction processes in the development of this behaviour.

4 Evaluating standard learners

Can the development of the �ght-or-
ight behaviour in agents be modelled solely in terms of lifetime

learning? To investigate this various learning methods were tested for their ability to acquire the �ght-

or-
ight response. Experiments were conducted using C4.5

1

and standard backpropagation. Both of

these are supervised methods and thus require explicit training examples. In the experiments carried

out a training set of 1000 input/output pairs was used and these were derived direct from a running

simulation.

The input in each pair was a vector of numbers corresponding to the prey's current sensory input and its

corresponding input in the previous cycle. (The second input constitutes the learner's `memory' of the

�rst.) The output in each case speci�ed the wheel motions for an appropriate execution of the �ght-or-

ight behaviour. Thus, in those cases where the input vector was derived in the context of an oncoming,

accelerating predator, the target outputs speci�ed the wheel motions for a
ight response. In the testing

of backpropagation standard parameters for learning rate and momentum (0.01 for learning rate and

0.9 for momentum) were used in an ordinary feed-forward architecture of three, fully interconnected

layers. Architectures involving from 3 to 30 hidden units in the middle layer were tested, but it was

found that the number of hidden units made little di�erence to the �nal performance.

The two methods were both tested for their ability to generalise. The quality of generalisation with

respect to unseen cases was examined, as was the degree to which the learning methods were able to

reproduce the �ght-or-
ight response in a replication of the original simulation. In both cases, both

methods performed poorly. The average results obtained are summarised in Table 1. The error shown

here is RMS error on a testing set of 1000 cases. The `Deaths' column shows the number of deaths

sustained by a trained agent in a simulation of 2000 time steps, in which the predator agent produced

12 aggressive (accelerating) approaches.

Error Deaths

C4.5 0.209 12

Backpropagation 0.670 8

Table 1: Performance of C4.5 and backpropagation on �ght-or-
ight.

1

C4.5 is an improved version of the well-known ID3 algorithm (Quinlan, 1986).

5

5 A hand-crafted implementation

The failure of the standard learning methods to learn the �ght-or-
ight task might be due to the fact

that this task is just `too complex' to learn. But this seems unlikely since the behaviour is actually fairly

easy to hand-craft. The essence of the �ght-or-
ight response is the discrimination between two rates

of approach. For an agent with proximity sensors, an approach is essentially a pattern of increasing

proximity values. An accelerating approach is a pattern in which the di�erence between the values is

increasing through time. (Formally, an approach is a �rst-order dynamic e�ect (i.e., a change in a

variable over time) while the accelerating approach is a second-order e�ect (i.e., a change in a change

in a variable over time).) So any implementation for this behaviour must discriminate these two types

of e�ect.

Let us consider how we might develop the implementation as a neural network. First, we must imple-

ment the agent's one-cycle memory and again the easiest way to do this is simply to arrange for the

input stream to have a built-in `echo'. We arrange for the input data to be a set of two-element vectors,

such that each vector is made up of the current and previous sensor input. Given this input stream,

our network must obviously have two input neurons. But how to arrange the rest of the network? One

possibility is illustrated in Figure 4. In this network, the right wheel motor has a forwards bias and

the left motor has a negative bias. There is also an internal neural network in which activation
ows

upwards (or `backwards' through the mobot). The single proximity sensor is connected by an excita-

tory connection to the left input neuron of the network (the right input neuron contains the previous

proximity input) and there are inhibitory connections from the main input neuron to both motors.

The internal structure of the network functions to provide the detection of accelerating approaches.

The neurons in the �rst layer of the network determine whether the di�erence between the current

proximity (labelled p@t) and previous proximity (p@t-1) is above or below some given value. The two

neurons actually shown in the �gure have one positive and one negative weight each. The absolute

di�erence between the weights is 0.1 but the signs are di�erent in the two cases. The left-hand neuron

will thus be activated just in case the di�erence between the two proximity values is less than 0.1 (the

label is therefore d<0.1) and the right-hand neuron will be activated just in case the di�erence between

the two proximity values exceeds 0.1 (the label is thus d>0.1). When the di�erence is exactly 0.1, the

two neurons are thus both inactive. Since they both have inhibitory connections to the neuron shown

in the third layer, and since this neuron has a positive bias, it will always be activated except when the

di�erence between the two proximity values is exactly 0.1. It thus forms a detector for this di�erence

and its label is d=0.1.

This basic di�erence-measuring architecture is repeated (but not shown) for all other relevant di�erence

values (0.2, 0.3, 0.4 etc.). Suitably weighted connections are then used to ensure that the activation of

the left-hand neuron in the fourth layer precisely re
ects the real di�erence between the two proximity

values. The �rst four layers of the network thus function to measure the �rst-order dynamic e�ect we

are concerned with; i.e., the current rate of approach as measured in terms of the di�erence between

the current and previous proximity input.

Our ultimate aim is, of course, that the network should measure the change in the rate of approach, i.e.,

the acceleration. Fortunately, this can, be accomplished in almost exactly the same way we measured

the change in the proximity. The top four layers of the network repeat the strategy implemented by the

bottom four layers | only now using the measured di�erence value (i.e., rate of approach) as the basic

input. The node containing the measured rate of approach is labelled d@t and the node containing the

previous di�erence value is d@t-1. The top neuron of the network e�ectively measures the acceleration

in the current rate of approach (D). The establishment of excitatory connections from this neuron to

both wheel motors ensures that the mobot will `jump' whenever an approach is made with a suitable

6

p@t-1p@t

d@t d@t-1

+0.6

-0.5

-0.6

+0.5

-1.0 -1.0

...

d=0.1

d>0.1d<0.1

+0.6
-0.5

+0.5

-0.6

-1.0 -1.0

+0.1
+0.2+0.3

+0.4

...

... ...

+

+

D

D<0.1 D>0.1

D=0.1

+

+ +

+

_

__

Figure 4: A hand-crafted �ght-or-
ight architecture.

high rate of acceleration see Figure 5. The network thus implements a rudimentary `�ght-or-
ight'

response.

6 Learning by explicitation

As we saw in section 4, the experiments with standard learning methods described in section ... pro-

duced poor generalisation performance. However, it turns out that we can obtain quite reasonable

performance using a learning method called `explicitation'. And by embedding this method within

an ongoing evolutionary scenario, and by allowing processes of agent/environment interaction to take

place within each agent's lifetime, we can actually obtain performance which is reliably good. The

explicitation learning procedure is unusual in that it is both unsupervised and constructive. More-

over, the structures that it generates as a part of normal processing tend to have a representational

interpretation. The method is introduced via a Bayesian analysis of induction.

7

Figure 5: Flight response.

Imagine we have a body of dataD. Each datum inD is made up of the values of variables x

1

; x

2

; x

3

:::x

n

.

Assume one datum has a missing value. Can we use the other data to predict the missing value? If

we �nd that every possible value has an equal observed probability then we clearly cannot make any

prediction at all. This occurs if, for all cases

P (x

i

= v) =

1

jV j

where x

i

is the variable with a missing value, v is a particular value, and V is the set of all possible

values of x

i

. If all values do not have the same probability then we should obviously predict the missing

value to be the one which has the highest observed probability. However, there are several ways in

which we can work out observed probabilities. We can look at the unconditional probability of seeing

a particular value of x

i

.

P (x

i

= v)

We can look at the probability of seeing a particular value conditional on explicit values of the other

values, i.e.,

P (x

i

= v

a

jx

j

= v

b

:::)

where v

a

and v

b

are possible values and `...' denotes the optional inclusion of other instantiations.

Finally, we can look at the probability of seeing a particular value conditional on there being an implicit

property among the instantiations of other variables:

8

P (x

i

= vjg(X) = v

g

)

Here X is the entire datum and v

g

is the value of a function g, which evaluates the implicit property.

Methods which attempt to discover and exploit such probabilities for inductive purposes, without using

any other source of information, are `empirical learning' algorithms. There are a large number of

these (Shavlik and Dietterich, 1990, Michalski, Carbonell and Mitchell, 1983, Michalski, Carbonell and

Mitchell, 1986). However, the Bayesian analysis enables us to divide them up into two basic types.

A method that attempts to exploit either of the �rst two forms of probability confronts a relatively

easy task. Only cases that are explicitly observed in the data need to be taken into account. There

are a �nite number of these. The task thus involves deriving frequency statistics (probabilities) over a

�nite dataset.

A method that attempts to exploit probabilities of the third form confronts a much harder task. It has

to �rst identify the appropriate evaluation function for the implicit property (i.e., it has to guess what

the property is). There are an in�nite number of possible implicit properties and the task thus involves

dealing with an in�nitely large search space.

Practical learning methods naturally tend to be predisposed towards the easier task, i.e., they tend to

exploit probabilities of the �rst and second form. A typical example is the Focussing method (Bundy,

Silver and Plummer, 1985). Some methods such as ID3 (Quinlan, 1986) do not consider the third

form at all. On the other hand, there are also methods which focus exclusively on the third form.

Examples include the `BACON-esque' methods of Langley and co-workers (Langley, 1977; Langley,

1978; Langley, Bradshaw and Simon, 1983; Langley, Simon, Bradshaw and Zytkow, 1987) and related

methods such as (Wol�, 1978; Wol�, 1980; Lenat, 1982; Wnek and Michalski, 1992). Some methods

such as backpropagation (Hinton, 1989) appear to straddle the fence, showing some ability to exploit

both main forms (Thornton, 1994b).

Interestingly, we can deduce that the evaluation function used in the third form must measure a

relational property of its inputs. To understand why, we need to think about the way in which the

function di�erentiates di�erent types of input. Let us say that the function produces a particular value

whenever the input variables have certain absolute values. In this case, this evaluation is e�ectively a

label for an explicit case. If all the values of the function are derived this way, the conditional probability

can obviously be reduced to a set of probabilities of the second form. Thus, if the probability is a

valid example of the third form, the evaluation function must measure a non-absolute (i.e., relational)

property of its inputs. Learning problems whose solutions involve exploiting probabilities of the third

form are thus relational. Problems which involve exploitation of probabilities for explicit cases are

statistical, since they simply involve the derivation of frequency statistics over a �nite dataset.

2

Of course, since the space of relational e�ects is in�nitely large, relational learners always and necessarily

have a bias (Utgo�, 1986), i.e., they have a predisposition to consider certain types of relationship.

Relational learners are also always potentially recursive. The identi�cation of any set of relational

e�ects involves the application of evaluations (functions) to the original data. This creates new values,

and thus new data. These new data can themselves be processed for statistical and relational e�ects

in a recursive manner.

At each stage, this process is e�ectively building a new level of description of the original data. Each

level encodes or expresses a relational e�ect in the form of a single variable using an evaluation (a test

2

Learning methods can be classi�ed the same way. Learning procedures which exploit probabilities of the �rst and

second form are statistical while ones which exploit probabilities of the third form are relational.

9

or measure) of the underlying relationship. Ths structure that will be built in a given case depends

not only on the original data source but also on the bias of the method. Moreover, the in
uence of the

bias `accumulates' and becomes increasingly strong as the process builds layer upon layer.

I call any which exploits relational and statistical e�ects in this recursive manner an explicitation

process, on the grounds that it incrementally renders implicit properties of the data explicit, through

a process of recursive redescription.

6.1 A hybrid implementation

The explicitation process can be implemented in many di�erent ways. However, for present purposes a

`hybrid' implementation (Torrance and Thornton, 1991) was used. This incorporates a neural-network

component and an algorithmic or `symbolic' component. The neural network component has the task of

exploiting statistical e�ects and the algorithmic component has the task of implementing the recursive

exploitation of relational e�ects. The latter uses a bias which e�ectively restricts its attention to

relationships involving constant di�erences. A set of data were considered to exhibit a relational e�ect

(i.e., to belong to a relationship) just in case they could be arranged into a linear order such that each

variable would show a constant di�erence from datum to datum. Data satisfying this constraint were

said to exhibit a linear signature. (As an e�ciency measure, the relational exploitation was directed

towards the statistical e�ects identi�ed at any given layer, rather than to the relevant original data.

Thus the learning always adopted a coarse-grained view of available data.)

The foundation for the neural network (statistical) component was the well-known unsupervised pro-

cedure of competitive learning (Rumelhart and Zipser, 1986). This is a general and robust method.

However, like many unsupervised processes, it has a blind-spot in that it is unable to directly exploit

low-order

3

statistical e�ects.

4

The basic procedure of an unsupervised learning method involves group-

ing inputs together according to similarity. This process `discovers' cases in which a set of input values

typically co-occur and thus tends to expose nth-order associations between variable values (where n is

the number of values making up a complete input). However, the process ignores possible associations

of order less than n, i.e., ones which do not involve the complete set of input variables taken together.

Unsupervised methods can usually be adapted to overcome this de�ciency. In the case of competitive

learning (Rumelhart and Zipser, 1986) the adaptation is straightforward; it merely involves `double-

weighting' each connection in the network (Thornton, 1994a). Each node in a competitive learning

network de�nes a point in the input space known as a `centre'. Each time an input is presented to the

network, the action of the network serves to identify the centre which is nearest to the input, and then

move it slightly closer still. Over time, the centres gravitate towards the central points for the densest

clusters of inputs. Thus the operation of the method serves to identify clusters of similar inputs.

In the standard con�guration, competitive learning works with some prespeci�ed set of centres. Each

of these is a vector V of n weights. The response of a particular centre to a particular input vector is

just the negated sum of absolute di�erences between the input values and the weights:

�

X

i

jX

i

� V

i

j

For each input vector, the algorithm selects the centre with the highest response and then changes the

ith weight by

r(X

i

� V

i

)

3

The order of a statistical e�ect is the number of variables involved.

4

An `e�ect' for present purposes is simply any observable probability whose value deviates markedly from chance.

10

where r is the learning rate.

To sensitise the method to lower-order, probabilistic structure we associate each weight with an addi-

tional, con�dence weight W

i

. Each centre is thus de�ned in terms of a vector of weights and associated

vector of con�dence weights. We modify the response function so that the response of a centre to an

input is

�

X

i

W

i

(jX

i

� V

i

j)

and arrange for the con�dence-weight vectors to be updated so that each W

i

moves towards the nor-

malised accuracy of the corresponding V

i

. The unnormalised accuracy value for the ith weight of a

particular centre is just

�

X

j

X

i

jX

i;j

� V

i;j

j

where j ranges over the cases in the training set that are won by the relevant centre (node).

This `double-weighting' adaptation provides us with the property we want. The original competitive

learning process e�ectively searches for input clumps in the input space. The adapted method searches

for clumps in subspaces of the input space. It not only �nds associations between input values but also

determines which values are associated. It is thus able to exploit mth-order statistical e�ects in an

n-dimensional input space, where m < n.

6.2 Recursive exploitation of relational e�ects

To obtain the hybrid explicitation procedure, the adapted competitive learning regime was integrated

with an algorithmic component capable of implementing relational searches. This component was

con�gured so that it would become active at the point where all statistical e�ects in a given data source

had been exploited. Its task was to test the discovered associations for the presence of linear signatures

and, for each signature found, introduce a new variable whose values would provide an evaluation of

the identi�ed relationship. This was achieved by arranging for instantiations of the variable to re
ect

the projection of new data upon the relevant data line. These new variables, and their memory bu�ers,

then form the input variables for the next layer of the network.

The method can be visualised as a network building operation which alternates between a statistical

exploitation phase in which new competitive nodes are produced and a relational exploitation phase in

which new variables are produced. This is visualised in Figure 6. Initially the network contains just two

input nodes or variables. The double-weighted competitive learning process is then used to produce a

layer of competitive nodes (Figure 6 (b)). (Competitive learning usually operates with a �xed set of

nodes. However, for present purposes it was more convenient to allow nodes to be added incrementally

until such time as all statistical e�ects had been exploited.) The relational exploitation process is then

used to derive higher-level variables (Figure 6 (c)) which gives rise to the creation of a higher level of

competitive nodes (Figure 6 (d)).

To summarise, the learning method used in the model is a variant of the competitive learning regime. It

uses a recursive process of relational exploitation to incrementally extend the original neural network.

The most important features of the method are as follows.

� Network connections are always double-weighted so as to enable exploitation of low-order statis-

tical e�ects.

11

. . .

. . .

. . .

. . .

. . .

. . .
Primitive input variables

First competitive layer

First layer of derived variables

Second competitive layer

(a) (b)

(c) (d)

Figure 6: Explicitation using neural-network construction.

� The identi�cation of a linear signatures at any layer always leads to the production of a new node

at the next level of the network. The action of the network is con�gured so as to instantiate

such variables with a value re
ecting the geometric projection of the current input upon the line

carved out by the relevant signature. Such variables thus provided an approximate measure of

the relevant relationship.

� The learning is fully incremental. Nodes and layers are added to the network up until the point

at which all e�ects | statistical and relational | are fully exploited.

� The learner's one-cycle memory is implemented by providing each main variable with a bu�er

which always hold its previous value.

7 The model

We now turn attention to the model itself. This takes the form of a simulation program written in the

language POP-11 (Barrett, Ramsay and Sloman, 1985). The program takes about 10 minutes to run

12

on a single-user Sun SPARC 1+. As we will see, the phenomena it generates while doing so include

simulations of evolutionary processes, learning processes and interactions between predator and prey

agents.

The simulation divides up into a number of phases. In the initial phase, the world contains a single prey

agent and a single predator agent. The predator agent exhibits the `non-aggressive' behaviour pattern

described above. If it �nds itself facing away from the prey, it simply attempts to turn towards it; see

Figure 3 (a) and (b). If the predator �nds itself facing directly towards the prey, it moves forward at

a `slow' or a `fast' pace: Figure 3 (c). If the prey is directly facing the predator when the predator is

about to collide with the prey, the predator turns away: Figure 3 (d). If the prey is facing away, the

predator continues moving forwards, colliding with the prey and destroying it (not shown).

To begin with, the prey agent has a very simple internal architecture. It has a single proximity sensor

and this is is connected by inhibitory or excitatory connections to either of the two wheel motors, both

of which may have an independent bias. (Thus it is an example of Braitenberg's `vehicle 2' (Braitenberg,

1984).) An example of this basic architecture is shown in Figure 7. This plan view shows the two wheels

+

++

-

Sensor

Left
wheel

Right
wheel

Figure 7: Early prey architecture.

and drive motors (the dark, rectangular shapes close to the boundary of the agent), the sensor (a small

dark circular shape on the lower part of the boundary) and the connections between them. There

is a plus sign above the right motor which denotes the fact that the motor has a forwards (positive)

bias. Conversely, the left motor has a minus sign which denotes a backwards (negative) bias. There

13

are excitatory connections from the sensor to both wheel motors. With these biases and sensor-motor

connections, the agent will tend to move towards whatever excites its sensor, tending to veer to the left

at all times (Braitenberg, 1984).

During the initial phase, the prey is subject to an evolutionary process involving asexual reproduction.

The prey's internal architecture is speci�ed using a simple genetic encoding, i.e., a `genotype'. Each

time a prey is destroyed through collision with the predator, a slightly mutated copy of its genotype is

generated and this is used as the speci�cation for an o�spring. This o�spring then replaces its parent

in the arena. The predator agent remains unchanged throughout this process. We can think of this

in terms of evolution having no e�ect on the predator. (The role of the prey's genotype in this initial

phase is very limited: it only has to specify the existence/non-existence of the sensor-motor connections

and the biases for the motors. However, the genotype length is variable and later in the model it is

required to specify a more complex internal con�guration.)

To survive attacks by the predator, the prey must rotate continuously until such time as the predator

is sensed, and then cease all motion. Because of the forwards orientation of the prey's sensor, this

strategy ensures that the prey stops at the point where it is facing directly towards the predator. This

e�ectively `blocks' any oncoming attack: Figure 8 (a). The only internal architecture that generates

(a) (b)

- -

-+

Figure 8: Simple survival strategy.

this behaviour is the one shown in Figure 8 (b). Here, the right-track motor has a permanent forwards

bias (i.e., tends to run forwards unless explicitly stopped) and the sensor is connected by inhibitory

connections to both track motors. Thus the prey is caused to rotate when there is no sensory input and

to halt when there is. This implements the required survival strategy. The initial evolutionary phase

continues until such time as a prey with this con�guration of connections and biases is generated. From

this moment on, the attacks of the predator are always successfully blocked. As a result the `lifetime'

of the prey is su�cient to enable learning to take place.

14

7.1 Events in the initial learning phase

As we have seen, the prey has a single sensor which senses the proximity of the nearest obstacle (e.g.,

the predator) along a ray pointing directly ahead. Predator attacks, in the initial phase of the model,

take the form of rapid advances towards the prey, which are then aborted if the prey turns out to be

facing towards the oncoming predator. Thus the prey's input environment is a sequence of proximity

values, a sample of which is as follows.

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59

0.59 0.59 0.59 0.59 0.60 0.60 0.61 0.62 0.63 0.64 0.66 0.67 0.68

0.69 0.70 0.71 0.72 0.73 0.74 0.76 0.77 0.78 0.79 0.80 0.81 0.82

0.84 0.85 0.86 0.87 0.88 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note the prevalence of zero (0.00) values, the runs of increasing values (signifying an oncoming predator)

and the runs of identical values (signifying a predator moving into a head-on position).

Learning takes place in the prey using the hybrid explicitation method. As mentioned, all data variables

in the learning process are bu�ered, which means that the learning actually has access to a data stream

based on two variables: the sensor value itself and the previous sensor value. The statistical-exploitation

aspect of the learning leads to the discovery that particular pairs (i.e., two-value sequences) of sensor

values occur with high frequency. Examples include (0.63, 0.64) and (0.77, 0.78). The existence of

these is a consequence of the fact that the predator tends to advance on the prey at a steady rate, thus

smoothly increasing its measured proximity from cycle to cycle.

The exploitation of these e�ects results in the formation of a number of competitive nodes (neurons).

By the time the learning method has discovered all frequently occuring pairs of values, the network

contains 33 nodes (see the lower part of the network shown in Figure 9). The learning process now

begins to `search' for relationships among the patterns (centers) that the neurons respond to. It quickly

discovers that the patterns exhibit two linear signatures. The predator tends to approach at either a

fast or a slow pace and these two styles of approach give rise to two signatures, one of which is associated

with small constant case-to-case variable di�erences and the other of which is associated with large,

constant, case-to-case variable di�erences.

The learning responds to the discovery of these two signatures by creating two derived variables.

These are connected up to the relevant nodes come to form what are in e�ect virtual sensors | one

measuring the proximity of a slowly-approaching predator and the other measuring the proximity of

a rapidly approaching predator. Again, the learning introduces bu�ers for both derived variables, see

the middle layer of the network in Figure 9.

7.2 The second learning phase

At this stage in the model, the predator begins to vary its behaviour. When approaching a prey, it now

does so either `aggressively' (i.e., at an increasing pace) or `non-aggressively' (at a steady pace). The

prey's sensory environment thus changes. A sample sequence of sensor inputs is as follows.

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59

15

+

Figure 9: Final network structure.

0.59 0.59 0.59 0.59 0.62 0.66 0.72 0.73 0.76 0.81 0.83 0.87

0.93 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

In addition to the primitive input environment, there is now also the derived (recoded) input environ-

ment for the prey to consider. This is set of instantiations produced in the derived variables (and their

bu�ers) which is produced when sensor inputs are fed to the network. When the learning is applied to

these new data a further layer of nodes is created. Through training, these come to respond to speci�c

patterns of values in the derived variables.

Recall that the �rst layer of derived variables (and their bu�ers) e�ectively measure the proximity of a

particular type of approach (i.e., a fast or slow one). The main patterns that they exhibit (and which

are therefore discovered by the learning) thus include the pattern created by an accelerating but distant

predator, the pattern created by a constant-paced, distant predator, the pattern created by a close,

accelerating predator and so on. Again, due to the fact that sensed proximity always increases, bu�er

values are always slightly below current values. Thus, the nodes responding to accelerating approaches

16

exhibit patterns of values which show a marked relationship (another linear signature).

The detection of this relationship leads directly to the construction of a higher-level variable. This

e�ectively measures the proximity of an accelerating approach and thus comprises an `accelerating-

approach'. Two other higher-level nodes are also generated at the same time. The �nal network is as

shown in Figure 9 .

7.3 The �nal evolutionary phase

The generation of these �nal nodes exhausts the exploitation of statistical and relational e�ects. The

�nal evolutionary phase now begins. Instantiations of the left, topmost variable re
ect the proximity

of an accelerating approacher. If no accelerating approacher is sensed, then this variable will have a

zero instantiation. If one is sensed, this variable will have a non-zero instantiation. This node thus

constitutes an accelerating-approach `detector'.

+ +

--

+

Figure 10: Final implementation.

17

The prey genotype is now considerably more complex. It may specify excitatory or inhibitory con-

nections from any of the nodes in the network to either of the two motors. As evolution continues,

di�erent connection schemes are tried and many prey are destroyed. Eventually, a genotype is produced

which speci�es a combination of inhibitory connections from the main sensor variable, and excitatory

connections from the accelerating-approach node to both of the two motors, as shown in Figure 10 .

With these connections and biases, the prey `jumps' whenever it is confronted with an obstacle moving

at an accelerating pace directly towards it.

The �nal behaviour of the prey is illustrated in Figure 11. Its response to a steady-paced approach is

to remain stationary (to `face in' to the attack, see Figure 11 (a)) while its response to an accelerating

approach is to jump away (Figure 11 (d)). Thus the prey implements a rudimentary of �ght-or-
ight

response. With the successful emergence of this behaviour, the simulation terminates.

(a) (b)

(c) (d)

Figure 11: Production of
ight response.

18

8 Representational interpretation

As we have seen, the learning and evolutionary processes simulated in the model result in the production

of a large neural network structure within the prey. I now show that this structure can be given a

representational interpretation. The internal structure of the network architecture developed in the

prey agent(s) is illustrated schematically in Figure 12. Here, variables are shown as rectangular shapes

t

_

__

+

+ +

accelerating

approacher@c

steady

approacher@c approacher@c

accelerating ...

approacher@
t-1

slow

t-1
approacher@

fast

t

slow
approacher@

fast
approacher@

decelerating accelerating

approacher@ approacher@

approacher@c approacher@c approacher@c

steady

...

approacher@

t-1
obstacle@

tobstacle@

+

Figure 12: Representational structure of a successful prey architecture.

and nodes as oval shapes in the usual manner. All of the nodes and variables shown in the �gure function

as relational detectors or measures of some sort. All are given a label which attempts to characterise

the property they measure or detect. The notations t and t-1 are used to distinguish between current

and previous properties. The character c is used to denote an unknown constant value.

The bottom, left variable is simply the channel for the current sensor input. Its label is thus obstacle@t

since the sensor is an obstacle proximity sensor and thus provides a measure of the proximity of an

obstacle at time t. Competitive nodes at the �rst level of the network respond to particular patterns of

values across the main input variable and its bu�er. Each one thus detects an approach taking place

19

at a particular proximity; the label used is thus approach@c. (Note that all nodes at this level respond

to events extending across time t and t-1 and thus have no time subscript.)

The variables making up the third level of the network are derived from the signatures detected in

the e�ects captured by the second-level nodes. They thus measure the proximity of an approach oc-

curring at a particular rate (i.e., either fast or slow). The labels applied are thus fast-approacher@t,

slow-approacher@t etc. The nodes at the fourth layer of the network respond to approaches which

maintain a constant or a changing description over the third-layer variables, i.e., which either stay slow

or fast, or change from one rate to the other. I therefore use the labels accelerating-approacher@c and

steady-approacher@c here. Finally, the variables at the �fth and top layer of the network capture signa-

tures among the e�ects identi�ed at the layer below. They thus provide measures of the proximity of an

accelerating, decelerating or steady approach. The labels used here are thus accelerating-approacher@

decelerating-approacher@ and steady-approacher@.

Is this `representation' or not? If we address the question in a narrow-minded way, the answer has to

be `no'. The structure created by the simulated processes is not a `representational structure' in the

classical sense. It is not a frame structure. It is not an ISA hierarchy. It is not a script. It is not a

Prolog database. And it is not a primal sketch, or an object-centered description.

On the other hand, the structure clearly does deal in terms of symbolic values. The current value of one

of the accelerating-approach@c detectors, for example, is not an explicit (or even statistical) property

of the raw input. It is a derived value which is used by other parts of the network | and the next

layer of variables in particular | as a stand-in for an abstract property of the environment. The value

is thus quite literally treated by the rest of the network as a symbol or sign of that property.

The same goes for the nodes and variables in layers two, three and �ve. Each node or variable in

these layers e�ectively instantiates a symbol for an abstract feature of the environment. It does so by

processing its inputs, which are themselves either raw sensor data or symbols for less abstract features

of the environment. The network as a whole then is a kind of processing device. But the data it deals

in are symbols for more-or-less abstract and in most cases dynamic features of the current environment.

The dynamic state of the network is thus an active `re-presentation' | a multi-levelled recoding | of

events and processes in the environment.

Rich and detailed though the �nal representational structure is, it nevertheless does not in any sense

constitute a `fully-detailed world model'. Nor is it imposed by any external agency. Rather, it emerges

as a natural result of the interactions between processes and agencies operating both externally in

the environment and internally within the prey. The main driving force behind the representational

development in the prey is in fact the interplay between the assimilatory and accommodatory forces

active within the lifetime learning (cf. Boden, 1979). Presented with sensor data, the network e�ectively

assimilates that data to its current, internal representation. Over time there is also accommodation.

This comes in two forms: structural accommodation, involving the creation of new nodes, variables and

layers; and non-structural accommodation involving the tuning of network weights. As a result, there is

the construction of a sequence of redescriptions or recodings of the prey's current sensory environment,

much in the manner of Karmilo�-Smith's `representational redescription' process (Karmilo�-Smith,

1979; Karmilo�-Smith, 1992; Clark and Karmilo�-Smith, 1993). The general conclusion then is that

the structure does have a representational interpretation and that it is precisely the one shown in Figure

12 .

20

9 Final comments

The paper has presented a model of the development of a �ght-or-
ight behaviour in a simulated agent.

Because the model makes use of the explicitation learning method, which is both unsupervised and

constructive, it is able to present a developmental picture in which evolutionary processes e�ectively

co-operate with learning processes in the formation of representational structure. Because the model

uses processes which are fully incremental, it is able to show how an agent/environment interaction can

modulate and guide an underlying evolutionary process. And because the learning is implemented in

the form of a neural-network process, the learning process is at least reconcilable with current models

of brain mechanism.

The model thus provides a `big-picture' story about the way in which the development of complex

intelligent behaviours might involve evolutionary processes, learning processes, agent/environment in-

teraction and representation development. The learning method forms a a bridge between the GA

paradigm on the one hand and the representationalist paradigm on the other.

Unfortunately, in its present manifestation the model has many shortcomings. As a computational

implementation, it is not as robust as one would like. It also incorporates as ad hoc features the device

of one-cycle memory (i.e., data bu�ering). The selection of a linear-signature bias during relational

learning is also weakly motivated. But the most serious de�ciency is probably the fact that the model

makes use of what is in e�ect, a pre-scripted sequence of events. It requires that the predator implement

certain changes in behaviour at certain points in the process. If these behavioural alterations do not

take place on cue, the learning process is derailed.

However, it is believed that all these de�ciencies will be remedied in the ongoing development of this

work. Future versions of this model will aim to show how a �ght-or-
ight response emerges in a more

natural, unscripted scenario, involving multiple predator and prey agents in addition to other forms of

process and contingency. Work is currently in progress towards this end.

10 Acknowledgements

Thanks to Dave Cli� and Jim Stone for helpful input on an earlier draft.

References

[1] Barnett, S. (1973). Ethology and Development. Heinemann Medical.

[2] Barrett, R., Ramsay, A. and Sloman, A. (1985). POP-11: A Practical Language for Arti�cial

Intelligence Programming. Chichester: Ellis Horwood.

[3] Boden, M. (1979). Piaget. Fontana Modern Masters, Fontana Press.

[4] Bolles, R. (1979). Learning Theory (2nd edition). New York: Holt.

[5] Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology. London: The MIT Press.

[6] Bundy, A., Silver, B. and Plummer, D. (1985). An analytical comparison of some rule-learning

programs. Arti�cial Intelligence, 27, No. 2 (pp. 137-81).

21

[7] Clark, A. and Karmilo�-Smith, A. (1993). The cognizer's innards: a psychological and philosoph-

ical perspective on the development of thought. Mind and Language, 8.

[8] Cli�, D., Husbands, P. and Harvey, I. (1993). Evolving visually guided robots. In J. Meyer, H.

Roitblat and S. Wilson (Eds.), From Animals to Animats: Proceedings of the Second International

Conference on Simulation of Adaptive Behaviour (SAB92). MIT/Bradford Books.

[9] Feder, M. and Lauder, G. (Eds.) (1986). Predator-Prey Relationships. Perspectives and Approaches

from the Study of Lower Vertebrates. Chicago and London: University of Chicago Press.

[10] Flaherty, C. (1985). Animal Learning and Cognition. New York: Knopf.

[11] Gerlai, R. (1993). Can paradise �sh (macropodus opercularis anabantidae) recognize a natural

predator? an ethological analysis. Ethology, 94 (pp. 127-136).

[12] Goldberg, D. (1989).Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-

Wesley.

[13] Hinton, G. (1989). Connectionist learning procedures. Arti�cial Intelligence, 40 (pp. 185-234).

[14] Holland, J. (1975). Adaptation in Natural and Arti�cial Systems. Ann Arbor: University of Michi-

gan Press.

[15] Jacobi, N., Husbands, P. and Harvey, I. (1995). Noise and the reality gap: the use of simulation

in evolutionary robotics. In F. Moran, A. Moreno, J.J. Morelo and P. Chacon (Eds.), Proceedings

of the Third European Conference on Arti�cial Life (Advances in Arti�cial Life). Springer.

[16] K-Team, (1993). Khepera users manual. Lausanne: EPFL.

[17] Karmilo�-Smith, A. (1979). Micro- and macro-developmental changes in languiage acquisition and

other representational systems. Cognitive Science, 3, No. 2 (pp. 81-118).

[18] Karmilo�-Smith, A. (1992). Beyond modularity: a developmental perspective on Cognitive Science.

Cambridge,Ma.: MIT Press/Bradford books.

[19] Koza, J. (1992). Genetic Programming: on the Programming of Computers by Means of Natural

Selection. Cambridge, Massachusetts: MIT Press.

[20] Langley, P. (1977). Rediscovering physics with bacon-3. Proceedings of the Fifth International Joint

Conference on Arti�cial Intelligence: Vol I.

[21] Langley, P. (1978). BACON.1: a general discovery system. Proceedings of the Second National Con-

ference of the Canadian Society for Computational Studies in Intelligence (pp. 173-180). Toronto.

[22] Langley, P., Bradshaw, G. and Simon, H. (1983). Rediscovering chemistry with the BACON system.

In R. Michalski, J. Carbonell and T. Mitchell (Eds.), Machine Learning: An Arti�cial Intelligence

Approach (pp. 307-329). Palo Alto: Tioga.

[23] Langley, P., Simon, H., Bradshaw, G. and Zytkow, J. (1987). Scienti�c Discovery: Computational

Explorations of the Creative Processes. Cambridge, Mass.: MIT Press.

[24] Lenat, D. (1982). AM: discovery in mathematics as heuristic search. In R. Davis and D.B. Lenat

(Eds.), Knowledge-Based Systems in Arti�cial Intelligence (pp. 1-225). New York: McGraw-Hill.

[25] Michalski, R., Carbonell, J. and Mitchell, T. (Eds.) (1983). Machine Learning: An Arti�cial

Intelligence Approach. Palo Alto: Tioga.

22

[26] Michalski, R., Carbonell, J. and Mitchell, T. (Eds.) (1986). Machine Learning: An Arti�cial

Intelligence Approach: Vol II. Los Altos: Morgan Kaufmann.

[27] Muggleton, S. (Ed.) (1992). Inductive Logic Programming. Academic Press.

[28] Nol�, S., Floreano, D., Miglino, O. and Mondada, F. (1994). How to evolve autonomous robots:

di�erent approaches in evolutionary robotics. In R.A. Brooks and P. Maes (Eds.), Proceedings of

Arti�cial Life IV (pp. 190-197).

[29] Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1 (pp. 81-106).

[30] Reynolds, C. (1994). Evolution of corridor following behavior in a noisy world. In D. Cli�, P.

Husbands, J. Meyer and S.M. Wilson (Eds.), Proceedings of the Third International Conference

on Simulation of Adaptive Behavior (pp. 402-410).

[31] Rumelhart, D., Hinton, G. and Williams, R. (1986). Learning representations by back-propagating

errors. Nature, 323 (pp. 533-6).

[32] Rumelhart, D. and Zipser, D. (1986). Feature discovery by competitive learning. In D. Rumelhart,

J. McClelland and the PDP Research Group (Eds.), Parallel Distributed Processing: Explorations

in the Microstructures of Cognition. Vol I (pp. 151-193). Cambridge, Mass.: MIT Press.

[33] Shavlik, J. and Dietterich, T. (Eds.) (1990). Readings in Machine Learning. San Mateo, California:

Morgan Kaufmann.

[34] Thornton, C. (1994a). Unsupervised learning with the soft-means algorithm. Proceedings of the

World Congress on Neural Networks. Vol. IV (pp. 20-205). San Diego.

[35] Thornton, C. (1994b). Statistical biases in backpropagation learning. Proceedings of the Interna-

tional Conference on Arti�cial Neural Networks (pp. 709-712). Sorrento, Italy.

[36] Torrance, S. and Thornton, C. (Eds.) (1991). Special issue on hybrid models. AISB Quarterly, No.

78, AISB society.

[37] Utgo�, P. (1986). Machine Learning of Inductive Bias. Kluwer International Series in Engineering

and Computer Science, Vol. 15, Kluwer Academic.

[38] Wilson, S. (1991). The animat path to AI. In J. Meyer and S.W. Wilson (Eds.), Proceedings of

the First International Conference on the Simulation of Adaptive Behaviour (From Animals to

Animats) (p. 16). Cambridge: MIT Press.

[39] Wnek, J. and Michalski, R. (1992). Hypothesis-driven constructive induction in AQ17-HCI: a

method and experiments. ML1 Report, Center for Arti�cial Intelligence, George Mason University.

[40] Wol�, J. (1978). Grammar discovery as data compression. Proceedings of the AISB/GI conference

on Arti�cial Intelligence (pp. 375-379). Hamburg.

[41] Wol�, J. (1980). Data compression, generalisation and overgeneralisation in an evolving theory of

language development. Proceedings of the AISB-80 conference on Arti�cial Intelligence. Amster-

dam.

23

