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Abstract

It is well-known that certain learning methods (e.g., the perceptron learning algorithm) cannot

acquire complete, parity mappings. But it is often overlooked that state-of-the-art learning methods

such as C4.5 and backpropagation cannot generalise from incomplete parity mappings. The failure

of such methods to generalise on parity mappings is sometimes dismissed as uninteresting on the

grounds that it is `impossible' to generalise over such mappings, or on the grounds that parity

problems are mathematical constructs having little to do with real-world learning. However, this

paper argues that such a dismissal is unwarranted. It shows that parity mappings are hard to learn

because they are statistically neutral and that statistical neutrality is a property which we should

expect to encounter frequently in real-world contexts. It also shows that the generalization failure

on parity mappings occurs even when large, minimally incomplete mappings are used for training

purposes, i.e., when claims about the impossibility of generalization are particularly suspect.

1 Introduction

The parity rule is easily stated (e.g., `the output value is true if and only if an odd number of input

values are true') but it is surprisingly hard to learn by conventional methods. The reason is related

to the fact that parity mappings are statistically neutral. The probability (i.e., frequency) of seeing

some particular input value mapped onto some particular output in a parity mapping always turns out

to be the chance value of 0.5. This means that it is impossible to build successful rules which focus

on particular input values: any successful rule must attend to all the input values in order to get the

answer right in all cases.

For the machine learning researcher, the signi�cance of the parity problem has traditionally been its

e�ectiveness as a small but challenging benchmark problem. However, I will argue that this view

underestimates the fundamental nature and wider implications of the problem. I claim that the parity

problem is at the heart of a major class of hard learning problems and that our understanding of the

way in which it can be solved will thus be a key component in our understanding of learning.
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The paper divides up into three main sections. The next section (section two) analyses the statistical

basis of the parity problem and clari�es its relationship with the wider class of statistically neutral

problems. Section three presents a task analysis of learning which leads to a basic distinction between

hard and easy learning problems. Section four shows how the class of hard learning problems are

statistically neutral in principle but not in practice and demonstrates how incidental, statistical e�ects

can be exploited by standard learning methods. Section �ve is a discussion and summary.

2 Statistical properties of the parity problem

In a parity problem we have a number of boolean input variables and one boolean output variable. The

input/output rule states that the output should be true just in case an odd number of input values are

true.

1

If there are just two input variables the problem is known as `Exclusive-OR' (or XOR) since it

is e�ectively the rule that either of the inputs can be true, but not both.

It is well known that parity problems are statistically neutral [1]. This means that all conditional output

probabilities exhibited by a parity mapping have `chance' values, i.e., that no input/output associations

exist. Consider the 3-bit (i.e., 3-input) parity problem, which can be written as a training set (using

1=true, 0=false) as follows.

x

1

x

2

x

3

y

1

1 1 1 =) 1

1 1 0 =) 0

1 0 1 =) 0

1 0 0 =) 1

0 1 1 =) 0

0 1 0 =) 1

0 0 1 =) 1

0 0 0 =) 0

In Table 1 we see the unconditional and conditional probabilities for all input-variable instantiations.

Note that all the probabilities are exactly the chance value for a boolean value, namely 0.5. This is

a necessary consequence of the nature of the input/output rule. The frequencies with which we see

each of the two possible outputs when we put an input variable into a �xed state must always be equal

since there will be just as many cases of the un�xed variables which produce parity as non-parity.

Thus the output probabilities conditional on any particular input variable instantiation will always be

at the chance level. The statistical neutrality of the parity problem means that it cannot be solved

by statistical methods: any process of searching for dependencies between speci�c input and output

variables is of no bene�t because such associations simply do not exist. Thus, the performance of any

learning method which exploits such processes is necessarily compromised on a parity problem. (This is

of course what makes the parity problem a challenging benchmark.) But interestingly, it turns out that

parity is not the only type of problem for which statistical neutrality is guaranteed. Any problem that

can be converted into a modulus-addition problem is guaranteed to be statistically neutral provided

that the number of possible values for any given input variable is equal to, or an exact multiple of

the number of possible output values. To show this we argue backwards from observations about the

statistically neutral training set.
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Arguably, since the rule tests for an odd number rather than an even number, the problem should be called the

disparity problem.

2



C P (y

1

= 0jC) P (y

1

= 1jC)

0.5 0.5

x

3

= 0 0.5 0.5

x

2

= 0 0.5 0.5

x

1

= 0 0.5 0.5

x

3

= 1 0.5 0.5

x

2

= 1 0.5 0.5

x

1

= 1 0.5 0.5

Table 1: Conditional output probabilities in parity mapping.

If the training set for some learning problem is statistically neutral then all the conditional output

probabilities must be at their chance levels. This tells us that in the training set we will see each

value of an input variable X appearing with each output value an equal number of times (i.e., that the

number of possible values of X must be equal to, or a multiple of the number of possible outputs). We

could therefore map the N values of our input variable X onto integers in the range 0:::N � 1 and the

M output values onto integers in the range 0:::M � 1. Moreover, since the only constraint is that each

input value must associate with each output value an equal number of times, we could do this in such

a way as to ensure that the output value is always the modulus to base M of the value of X.

If we do this to each input variable in turn, using a �xed mapping of the output values, we end up with

a purely numeric version of the training set. Then, `incrementing' the integer value of any variable (i.e.,

switching attention to a case in the training set showing the next highest value of the variable) always

has the e�ect of `incrementing' the output value. The training set therefore instantiates a modulus-

addition rule. The general conclusion is that statistically neutral mappings can always be translated

into modulus-addition problems provided that the cardinality of the set of output values is a factor of

the cardinalities of all the input-value sets.

2

2.1 A statistically neutral, non-parity problem

Consider the `consumer problem' whose target mapping is shown below. This is a straightforward

learning problem with a relatively obvious input/output rule. However, we can translate it into a

modulus-addition problem with the following substitutions: person/0, computer/1, consumes/0, dis-

likes/1, heat/0, electricity/1, moisture/2, silicon/3, yes/0, no/1. Under this translation, the requirement

that the input-set cardinalities are equal to, or a multiple of the output-set cardinality is met so we

know that the problem is necessarily statistically neutral.

2

Parity is modulus-addition with modulus 2.
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x

1

x

2

x

3

y

1

person consumes heat =) yes

person consumes electricity =) no

person consumes moisture =) yes

person consumes silicon =) no

person dislikes heat =) no

person dislikes electricity =) yes

person dislikes moisture =) no

person dislikes silicon =) yes

computer consumes heat =) no

computer consumes electricity =) yes

computer consumes moisture =) no

computer consumes silicon =) yes

computer dislikes heat =) yes

computer dislikes electricity =) no

computer dislikes moisture =) yes

computer dislikes silicon =) no

We can con�rm the neutrality of this training set empirically by tabulating the relevant conditional

probabilities. (Table 2 shows the complete set of probabilities which have a �rst or zeroth-order condi-

tion.)

C P (y

1

=nojC) P (y

1

=yesjC)

0.5 0.5

x

1

=person 0.5 0.5

x

1

=computer 0.5 0.5

x

2

=consumes 0.5 0.5

x

2

=dislikes 0.5 0.5

x

3

=electricity 0.5 0.5

x

3

=heat 0.5 0.5

x

3

=silicon 0.5 0.5

x

3

=moisture 0.5 0.5

Table 2: Conditional output probabilities in consumer mapping.

2.2 Performance of learning algorithms on neutral mappings

The performance of learning methods that rely on the exploitation of statistical e�ects is necessarily

compromised on statistically neutral problems. Learning methods that rely solely on the exploitation of

statistical e�ects produce worst-case performance on such problems. Algorithms in the CART family

[2] are a case in point. ID3 [3,4] for example, constructs a decision tree by recursively partitioning

the training set until every pair in a given partition maps onto the same output value. At each stage

of the process, a new partitioning is constructed by dividing up the cases in an existing partition

according to which value they have on the variable whose values are most strongly correlated (within

the partition) with speci�c output values. This has the e�ect of maximizing the output-value uniformity

of new partitions and thus minimising (subject to horizon e�ects) the total number of hyper-rectangular
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partitions required in order to achieve full uniformity. The algorithm is thus guided only by statistical

e�ects in the training data.

The implication is that ID3 should produce worst-case performance on parity problems and on the

consumer problem. In fact, it is easy to con�rm that it will necessarily do so. Since any statistically

neutral problem is equivalent to a modulus-addition problem we know that, in the consumer problem,

every variable value must be associated with equal numbers of each output value. This means that no

variable value is of any use at all in the initial, splitting-up of cases and each, successive, split produces

the same, non-uniform situation at a �ner-grained level. [5] The result is that ID3 necessarily builds a

`lookup table' for the consumer problem, i.e., a decision tree that captures no generalisations whatsoever

and which has one leaf node per case in the training set. The decision tree actually produced in shown

in Figure 1.

yes

yes

no

no

no

no

yes

yes

no

no

yes

yes

yes

yes

no

no

person

silicon

electricity

moisture

heat

silicon

electricity

moisture

heat

computer

dislikes

silicon

electricity

moisture

heat

silicon

electricity

moisture

heat

x1?

x2?

x2?

x3?

x3?

x3?

consumes

dislikes

consumes

x3?

Figure 1: Decision tree produced by ID3 on consumer problem.

2.3 Acquiring complete, neutral mappings with backpropagation

Of course not all learning algorithms rely solely on the exploitation of statistical e�ects. Thus, not

all algorithms produce worst-case performance on neutral mappings. The backpropagation algorithm

[6] for example, had been widely touted as having the ability to exploit structural and/or relational

properties of the target mapping [7]. However, even with backpropagation, the damaging e�ects of

neutrality can be readily discerned.

These are demonstrated in the algorithm's generalization performance on neutral mappings. Typically,

when testing backpropagation on neutral mappings (e.g., parity problems), researchers have included
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the entire mapping in the training data, and have thus not tested the algorithm's ability to generalise

to unseen cases.

3

However, if we test backpropagation's ability to generalise to one unseen case in, say,

the 4-bit parity mapping (i.e., we present 15 of the 16 cases as training data, and test generalization

on the one remaining case), then the results are unambiguously poor.

In an exhaustive empirical analysis, backpropagation was tested for its ability to generalise to one,

randomly selected unseen case in the 4-bit parity mapping. In this analysis a standard, two-layer,

(strictly) feed-forward network was used with the number of hidden units being varied between 3 and

80. Data were collected for 20 successful runs (i.e., achievement of negligible error on the training data)

with each architecture. The learning rate was 0.2 and the momentum value was 0.9.

The results are summarised in Figure 2. This shows the post-training mean error for seens and unseens

averaged over the 20 successful training runs which were performed in each architecture. The basic

error value used here is simply the average di�erence between the target output and actual output

produced. The graph shows negligible mean error for seen cases due to the fact that data were only
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Figure 2: Post-training mean-error curves for parity generalization.

recorded for successful runs. More interestingly, it shows that the mean error on the unseen case is very

3

Why this has becomethe establishedconvention is not entirely clear. It may be to do with an undulyweak appreciation

of the fact that generalization is the key goal in learning. Alternatively, it may be due to the fact that attention has

typically focussed on the acquisition of small parity mappings involving two or three inputs, in which the retention of

even a single case seems absurd.
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poor for all architectures used, i.e., no generalization is achieved. (The fact that the generalization here

is signi�cantly worse than chance is explained below.) For purposes of comparison we carried out an

identical analysis of backpropagation's generalization performance on the consumer problem (holding

back one case as an unseen) and obtained qualitatively similar results, see Figure 3.
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Figure 3: Post-training mean-error curves for consumer generalization.

2.4 Why algorithms fail to generalise over neutral mappings

The dynamics of the backpropagation process are complex. Explaining its generalization failure on

neutral mappings is thus not straightforward. The simplest hypothesis may be that, despite its manifest

success in the acquisition of small, complete parity mappings [8] backpropagation relies primarily on

the exploitation of statistical e�ects and is thus unable to deal properly with neutral mappings. There

are several arguments in favour of this idea.

First, the backpropagation learning algorithm is a generalization of the least-mean-squares algorithm

[9] (and perceptron learning algorithm [10]) which is e�ectively an iterative method for deriving statis-

tical input/output correlations. Thus the backpropagation learning method is rooted in a method for

exploiting statistical e�ects. Second, the generalization performance observed in the 4-bit parity tests

tended to be much worse than chance. This result is explained if the algorithm is primarily relying
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on statistical e�ects since the e�ect that is created when we delete one case from a parity mapping is

a correlation between input cases one Hamming unit away from the deleted case and the complement

of the output for those cases (i.e., the `wrong' output). Thus if the algorithm exploits input/output

correlations then it will tend to always generalise incorrectly from the minimally incomplete parity

mapping. The fact that it does do so tends to con�rm the hypothesis that backpropagation primarily

exploits statistical correlations.

3 Relational problems are approximately neutral

It is sometimes argued that parity mappings are arti�cial, mathematical constructs and that we should

therefore not be too concerned if we �nd that our learning methods fail to generalise over them. Parity

mappings are hard to generalise because they are statistically neutral. But neutrality, or approximate

neutrality is actually a common property of challenging learning problems. In fact it should be obvious

that any learning problem with a complex, relational input/output rule (i.e., a rule which tests for a

relationship among the inputs) will have an approximately nearly neutral training set.

If the input/output rule is relational then we do not expect to see any associations between speci�c

input values and speci�c output values showing up in the training set. There is an association; but it

involves a relationship among the inputs. Thus, we should expect that any relational learning problem

will have a neutral target mapping. Unfortunately, the truth of the matter is less clear-cut. Relational

rules, in fact, do not guarantee neutrality. The way in which a particular relational rule is encoded

in a set of input/output examples can create `incidental' statistical e�ects. The training set shown in

Figure 4 illustrates this.

x

1

x

2

y

1

0 1 =) 1

4 1 =) 3

2 0 =) 2

2 2 =) 0

2 4 =) 2

4 0 =) 4

1 3 =) 2

0 0 =) 0

2 1 =) 1

3 3 =) 0

3 2 =) 1

2 3 =) 1

1 0 =) 1

The input/output rule here is that the output is equal to the absolute di�erence between the input

values. The rule is clearly relational and thus we might expect that the training set will be statistically

neutral. However, the conditional output probabilities shown in Table 3 reveals the existence of many

values which deviate markedly from the chance-level (see, for instance, the value of P (y

1

= 1jx

2

= 1)).

We see, then, that the way in which a relational rule is embodied in a training set can produce incidental

statistical e�ects, i.e., spurious associations. Even where we known that the relational rule we are

dealing with yields a fully neutral target mapping, we still cannot be sure that a training set derived
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C P (y

1

= 4jC) P (y

1

= 0jC) P (y

1

= 2jC) P (y

1

= 3jC) P (y

1

= 1jC)

0.08 0.23 0.23 0.08 0.38

x

1

= 2 0.0 0.2 0.4 0.0 0.4

x

2

= 0 0.25 0.25 0.25 0.0 0.25

x

2

= 3 0.0 0.33 0.33 0.0 0.33

x

2

= 1 0.0 0.0 0.0 0.33 0.67

x

1

= 4 0.5 0.0 0.0 0.5 0.0

x

1

= 3 0.0 0.5 0.0 0.0 0.5

x

2

= 2 0.0 0.5 0.0 0.0 0.5

x

1

= 1 0.0 0.0 0.5 0.0 0.5

x

1

= 0 0.0 0.5 0.0 0.0 0.5

x

2

= 4 0.0 0.0 1.0 0.0 0.0

Table 3: Conditional output probabilities from di�erencing problem.

from the mapping will be neutral. In fact, if the training set is a proper subset of the target mapping

then it is guaranteed not to be neutral.

We can illustrate this using the consumer problem. The full target mapping for this problem is equiv-

alent to a modulus addition problem (which satis�es the relevant cardinality constraints) so we known

that it is necessarily statistically neutral. However, when we derive a training set by selecting a subset

of the cases from the target mapping we necessarily introduce incidental e�ects. Let us say we split the

problem up into the following training set

x

2

x

2

x

3

y

1

person consumes heat =) yes

person consumes electricity =) no

person consumes moisture =) yes

person consumes silicon =) no

person dislikes heat =) no

person dislikes electricity =) yes

computer consumes heat =) no

computer consumes electricity =) yes

computer consumes moisture =) no

computer consumes silicon =) yes

computer dislikes moisture =) yes

computer dislikes silicon =) no

with the following held back as test cases.

x

1

x

2

x

3

y

1

person dislikes moisture =) no

person dislikes silicon =) yes

computer dislikes heat =) yes

computer dislikes electricity =) no

The table of conditional probabilities derived from the training set now includes several non-chance
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values (see Table 4).

C P (y

1

=nojC) P (y

1

=yesjC)

0.5 0.5

x

2

=consumes 0.5 0.5

x

1

=person 0.5 0.5

x

1

=computer 0.5 0.5

x

2

=dislikes 0.5 0.5

x

3

=electricity 0.33 0.67

x

3

=heat 0.67 0.33

x

3

=silicon 0.67 0.33

x

3

=moisture 0.33 0.67

Table 4: Conditional output probabilities from partial consumer mapping.

Thus, relational rules may produce training sets showing at least two types of incidental statistical

e�ect. However, there is a distinction to be made between incidental e�ects which are created by

the encoding procedure and incidental e�ects which are created through the extraction of some of the

cases. The latter form of incidental e�ects exist solely within the residual cases (i.e., the seen cases).

They do not exist | except by chance | within the deleted cases (the unseen cases). Thus, incidental

e�ects created this way do no support generalization. Conversely, incidental e�ects which are created

as artefacts of the original encoding of the problem do exist throughout the target mapping and thus

do support generalization.

The importance of the distinction can be demonstrated by running ID3 on the training set for the

consumer problem shown above. ID3 is able to exploit the incidental e�ects in the production of

a non-degenerate decision tree, see Figure 4. However, because the e�ects are non-generalising, the

generalization performance turns out to be as bad as it could be. The decision tree actually produces

the wrong output in all four cases (i.e., it yields 100% generalization error).

x3?        

heat       

moisture   

electricity

silicon    

x1?        

x1?        

x1?        

x1?        

computer   

person     

computer   

person     

computer   

person     

computer   

person     

{no}       

x2?        

x2?        

{yes}      

{yes}      

x2?        

x2?        

{no}       dislikes   

consumes   

dislikes   

consumes   

dislikes   

consumes   

dislikes   

consumes   {yes}      

{no}       

{no}       

{yes}      

{no}       

{yes}      

{yes}      

{no}       

Figure 4: Decision tree produced by ID3 from partial consumer mapping.

10



3.1 Sparse codings amplify incidental e�ects

The fact that generalising incidental e�ects can be created through the encoding of the underlying,

relational rule means that we can sometimes turn a `hard' learning problem into an `easier' problem

simply by applying an encoding which maximizes the strength and range of generalising incidental

e�ects. A simple approach involves using a sparse coding in which each input variable records the pres-

ence or absence of one value from the original encoding. The e�ect of this is to re-instantiate the input

information in a higher-dimensional input space based on purely binary (i.e., boolean) dimensions. In

such a space, the number of ways of achieving a given partitioning of points using linear discriminations

is typically greatly increased. The performance of algorithms (such as backpropagation) which rely on

the creation of such discriminations is thus enhanced.

Backpropagation, in fact, reliably succeeds in generalising to a single unseen case in the consumer

problem, provided that a sparse coding of the problem is used. Moreover, it can do so utilising just two

hidden units. The fact that it can do this, even though it remains unable to generalise to an unseen

case in a sparse coding of a 4-bit parity problem, is attributable to the fact that one of the input

variables in the consumer problem takes four values. The sparse coding of the problem expresses the

value of this variable in terms of four, binary variables. The dimensionality of the original variable is

thus quadrupled rather than doubled.

3.2 Backpropagation and the MONKS2 problem

The analysis of backpropagation's performance on the sparse-coded consumer problem may help to

explain certain aspects of the performance results reported by Thrun et al. for the MONKS2 problem

[11]. In this problem, the input/output rule is that `exactly two of the six [input] attributes have their

�rst value'. This problem is `similar to parity problems. It combines di�erent attributes in a way which

makes it complicated to describe in DNF or CNF' [11]. The task analysis prompts us to restate this in

terms of the statistical/relational distinction. The fact that the input/output rule refers to a relational

property of the input values means that we should not expect to see correlations between speci�c input

values and speci�c outputs and thus should not expect the problem to be solvable through exploitation

of statistical e�ects, such as might be done via a search for a simple DNF de�nition.

4

Backpropagation's performance on parity generalisation leads us to expect that the algorithm should

perform badly on the MONKS2 problem. But in fact the generalization performance reported by

Thrun is 100% good. To understand this apparent paradox we need to bear in mind that that in

applying backpropagation to this problem, Thrun recoded the problem into a sparse form, thereby

inating the input space from its original, six-dimensional form to a 17-dimensional, binary-valued

space. Even algorithms such as ID3, which use axis-parallel, linear discriminations are assisted by this

sort of recoding. In fact, if we apply the standard ID3 algorithm to MONKS2 represented in a sparse

binary coding, the generalization performance of the algorithm on the �xed unseen cases jumps by

nearly 10% from the level of 67.9% reported in [11]. This case provides us with a useful reminder of the

fact that we need to exercise extreme caution in interpreting performance claims in machine learning

studies.

4

Note that a simple DNF de�nition can be produced if and only if there exist a number of conditional output

probabilities with a value of 1.
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4 Summary and discussion

The general aim of the paper has been to show that the parity problem is more than just a challenging

benchmark problem for empirical learning methods. Once its grounding in statistical neutrality is un-

derstood, it reveals itself as a conceptual landmark in our understanding of hard learning. I have shown

that parity problems are within the class of statistically neutral problems and that any problem which

is interpretable as a modulus-addition problem (with the restriction that the input value cardinalities

must be equal to, or a multiple of the output cardinality) is also within the class. In other words, I

have shown that the class of neutral problems is not restricted to the domain of parity problems.

I have presented empirical data demonstrating how some learning methods perform on neutral problems.

In particular, I presented data relating to ID3, which can be shown analytically to rely solely on

the exploitation of statistical e�ects and thus to be incapable, in principle, of dealing with neutral

problems. I demonstrated that, if we present the complete target mapping for the (statistically neutral)

consumer problem, ID3 produces what is in e�ect a lookup table and that when we present a particular

partial mapping with four cases held back as unseens, ID3 produces a tree which yields 100% incorrect

generalization.

I also presented data relating to backpropagation which, arguably, is biased towards the exploitation

of statistical e�ects. I showed, that the generalization performance of backpropagation on 4-bit parity

problems (with one unseen) and on the consumer problem (with one unseen) was, in an extensive

empirical study, no better than chance.

In the latter part of the paper I have shown how relational problems | which we might expect a priori

to be statistically neutral | typically exhibit `incidental' statistical e�ects. I have shown how these

e�ects are produced in two di�erent ways. First they may be produced by the way in which the problem

is encoded. Second they may be produced through the extraction of elements of the mapping for use as

unseens. The distinction is crucial since it is only the former type of e�ect which permeates the entire

mapping and thus supports generalization.

I have noted that the generalization performance achieved by some methods can be improved when a

neutral problem is recoded into a form which maximizes the prevalence and intensity of the right sort

of incidental e�ect. And I have shown that this can be straightforwardly achieved by giving a problem

a sparse coding. It was noted, in passing, that when the consumer problem is put into a sparse coding,

backpropagation is able to generalise correctly to a single unseen using a network of only two hidden

units.

To emphasise the point about sparse coding I presented some data relating to the MONKS2 problem

which featured in the recent international learning competition [11]. I noted that this problem is inher-

ently relational and thus statistically neutral (modulo incidental e�ects), and that the reported level of

generalization achieved by backpropagation (100% correct) therefore comes as a surprise. However, the

generalization performance can be explained by noting that the researcher who carried out the tests

with backpropagation recoded the problem in a sparse form, thus increasing the dimensionality of the

input space from six to 17 dimensions. As I have said, this recoding is of bene�t to any method which

relies | as backpropagation does | on the utilisation of spatial discriminations in the input space. In

fact, the recoding turns out to be of bene�t even to methods which are restricted to using axis-parallel

discriminations. As an illustration of this, I noted that the generalization performance of the standard

ID3 algorithm [3] turns out to be improve its generalization performance on MONKS2 by nearly 10%

as a result of using a sparse coding. The generalization performance increases from from 67.9% [11] to

77%.
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