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Abstract

An unsupervised method is presented which permits a set of model neurons, or a microcircuit, to

learn low level vision tasks, such as the extraction of surface depth. Each microcircuit implements a

simple, generic strategy which is based on a key assumption: Perceptually salient visual invariances,

such as surface depth, vary smoothly over time. In the process of learning to extract smoothly varying

invariances, each microcircuit maximises a microfunction. This is achieved using a learning rule which

maximises the long-term variance of each unit's output, whilst simultaneously minimising its short-

term variance. The learning rule involves a linear combination of anti-Hebbian and Hebbian weight

changes, over short and long time scales, respectively. The method is demonstrated on a hyper-acuity

task; estimating sub-pixel stereo disparity from a temporal sequence of random-dot stereograms. After

learning, the microcircuit generalises, without additional learning, to previously unseen image sequences.

It is proposed that the approach adopted here may be used to de�ne a canonical microfunction, which

can be used to learn many perceptually salient invariances.

Introduction

The ability to learn perceptually salient visual invariances - surface orientation, curvature, depth, texture, and

motion - is a prerequisite for the more familiar tasks (e.g. tracking and catching prey) associated with biological

vision. This paper addresses the question: What strategies enable neurons to learn these invariances from a temporal

sequence of images, without the aid of an external teacher?

The neuroanatomical uniformity of structure across di�erent areas of the mammalian neocortex may correspond to

an underlying functional uniformity in terms of its ability to learn (Marr, 1970; Creutzfeldt, 1978; Szen�atgoathai,

1978; Douglas, Martin, & Whitteridge, 1989; Barlow, 1985; Ebdon, 1993). One compelling �nding consistent with

this hypothesis is provided in (M�etin & Frost, 1989), where it was demonstrated that the somatic cortex of hamsters

developed visually responsive neurons after retinal �bres had been redirected into the somatosensory thalamus. In

a similar experiment, young ferrets developed visually responsive neurons in the auditory cortex after retinal �bres

had been redirected into the auditory thalamus (Roe, Pallas, Hahm, & Sur, 1990). These �ndings are consistent

with the proposal (Douglas et al., 1989) that di�erent regions of the mammalian cortex may utilise a single type of

canonical microcircuit. These microcircuits are viewed as a functionally modular unit of processing in the neocortex.

Rather than attempting to construct a detailed functional and structural model of a canonical microcircuit, the

approach adopted here is to model putative functional characteristics implemented by such a circuit. Accordingly, it

is assumed that a microcircuit implements a canonical microfunction (the term microfunction is used to emphasise

that the function is associated with a microcircuit, rather than with the whole CNS). Speci�cally, a microcircuit

adjusts its internal connections so as to maximise a canonical microfunction.

A canonical microfunction embodies a generic strategy for learning perceptual invariances. If implemented by a

microcircuit then such a strategy permits learning of perceptually salient invariances which include depth, colour,

and surface orientation. One example of such a strategy is based on an assumption of spatial smoothness (Marr,

1982; Becker & Hinton, 1992). Marr (Marr, 1982) assumed spatial smoothness in order to be able to extract stereo

disparity using hand-crafted (non-learning) methods. Marr's observation (Marr, 1982)(p114) that, \disparity varies

smoothly almost everywhere" can be used to permit learning of random dot stereograms by a neural network model

(Becker & Hinton, 1992).
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Figure 1: A small amount of object rotation can have a dramatic e�ect on the intensities (e.g. �; � and ) of

individual image pixels. The intensities of pixels in a `receptive �eld' change as the object rotates. In this example,

three pixel intensities de�ne an image vector, (�; �; ), as depicted in Figure 2a.

The approach adopted here is consistent with that of (Douglas et al., 1989) and others, but it is more general because

it allows us to concentrate on computational aspects of perceptual learning in a modular neuronal model.

Learning Invariances Using Spatio-Temporal Constraints

According to Gibson (Gibson, 1979), the problem of vision consists of obtaining invariant structure from continually

changing sensations. Essentially, Gibson stated that perceptual invariances are quantities which remain the same

when subjected to visual transformations, such as changes in view angle. In mathematics, an invariant is any

quantity which remains unchanged with respect a given set of transformations. This more general de�nition permits

us to consider quantities such as surface depth in terms of Gibson's theory. For example, it is important to be

able to perceive the depth of a surface, irrespective of the texture on that surface. Here, the invariant is surface

depth, and the set of transformations is de�ned in terms of surface texture. Thus, we can legitimately consider a

perceptually salient physical parameter such as depth in terms of Gibson's theory of invariances. Accordingly, the

terms \invariance" and \parameter" are used interchangeably here.

The potential of Gibson's approach has recently begun to be realised as a series of connectionist models (Becker

& Hinton, 1992; Becker, 1992; Zemel & Hinton, 1991; Foldiak, 1991; Schraudolph & Sejnowski, 1991; Mitchison,

1991; Phillips, Kay, & Smyth, 1995). The model described in this paper is substantially di�erent from these models,

although it shares with them a common assumption: A learning mechanism can discover perceptually salient visual

invariances by taking advantage of quite general properties (such as spatial and temporal smoothness) of the physical

world. These properties are not peculiar to any single physical environment so that such a mechanism should be

able to extract a variety of perceptually salient invariances (e.g. 3D orientation and shape) via di�erent sensory

modalities such as vision, audition and touch.

There are approximately 10

6

retinal ganglion cells projecting from primate retina to the lateral geniculate nucleus;

the activities of these cells can be described in terms of an image vector with 10

6

components. Similarly, the

activities of m ganglion cells derived from a retinal receptive �eld can be described in terms of an image vector with

m components. In general, each component of an image vector is the the intensity of an image pixel, or the activity

of a ganglion cell. Ultimately, it is the activities of sets of ganglion cells, with each set derived from a localised retinal

receptive �eld, that the visual system receives as input. The activities of ganglion cells change as the pattern of light

falling on a receptive �eld changes, causing the image vector to describe a trajectory through an m-dimensional

space. However, the form of this trajectory is caused by the changes in the physical world, and can therefore be

described in terms of a small number of perceptual invariances (e.g. surface depth). It is these invariances that are

useful to an organism. A large part of the problem of perception consists of extracting physical invariances implicit

in a changing image vector. The remainder of this section is intended to provide insight into how this might be

achieved.

The following example uses an image of a rotating object, but the analysis applies to any region (receptive �eld) in an
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Figure 2: Diagram of (a) image vector and (b) parameter vector. Three physical parameters (rotation of an object

around the X, Y and Z axes) de�nes a 3D parameter vector which changes over time (b). The corresponding

changes in three image pixels (�; � and  in Figure 1) are represented as the change in position of a 3D image vector

over time (a).

image, and also to perceptually salient physical parameters other than rotation (e.g. depth, motion and curvature).

Figure 1 shows a rotating textured object and its image I. Clearly, a small change in the orientation of the object

can give rise to a relatively large change in the intensity of individual pixels as the texture moves across the image

plane. In general, a perceptually salient parameter such as rotation is characterised by variability over time, but the

rate of change of the parameter is usually small, relative to that of the intensities of individual image pixels.

The intensities �; � and  of three of the n pixels in I are plotted along perpendicular axes in Figure 2a. Any point,

such as p, de�nes a value for the intensities of these pixels at one time. The intensities of pixels change rapidly

but continuously as the object rotates, and the image vector

1

(�; �; ) sweeps out a trajectory as shown in Figure

2a. Just as (�; �; ) de�nes a 3D image vector, so, the n pixels in I de�ne an nD image vector. A similar type of

trajectory is swept out by this nD image vector, but we would need n axes to display it.

In Figure 2b, the three components of a parameter vector are shown. Each component of this vector speci�es the

rotation of an object around a `world' axis (X;Y or Z). The closed loop of the parameter vector in Figure 2b implies

complete rotation of the imaged object, so that the object begins and ends in the same orientation. This, in turn,

implies that the initial and �nal images are identical. Therefore, the sequence of image vectors also de�nes a closed

loop, as shown in Figure 2a.

For display purposes, the object in this example rotates at a constant rate, so that the temporal proximity of two

parameter vectors is proportional to their proximity along the curve in Figure 2b (e.g. P and Q). Given a sequence

of image vectors derived from a rotating object, can the corresponding sequence of parameter vectors be recovered?

It is tempting to assume that if two image vectors are near to each other then they were derived from a single object

at similar orientations. Unfortunately, a rotating object can generate quite di�erent image vectors, even though the

amount of object rotation which separates these image vectors is small. Therefore, the similarity between successive

image vectors tells us little about the similarity of the object orientations which generated those image vectors. For

example, the similar object orientations implied by the nearby parameter vectors P and Q in Figure 2b correspond

to quite widely separated image vectors p and q in 2a. This occurs if the orientation of a textured object changes

by a small amount and causes a large change in the intensity of image pixels. However, images at successive time

frames usually depict the object at similar orientations in 3-space, even though these images de�ne quite di�erent

image vectors (e.g. p and q). This suggests that a perceptual system should infer that the images corresponding to

p and q show a single object at similar orientations.

Conversely, two image vectors such as p and r may be similar, but if they were widely separated in time (as implied

by the distance between P and R in Figure 2b) then it is likely that they were generated by quite di�erent object

orientations. In this case, a perceptual system would do well to ignore the spurious similarities between images

corresponding to p and r, because they occurred at quite di�erent times.

In summary, the temporal proximity of image vectors provides a temporal binding of parameter values, such as

orientation in 3-space. It is this temporal binding which permits us to infer legitimately that temporally proximal

images are derived from similar physical scenarios. It also permits us to infer that images separated by long time

1

Each image vector de�nes a point, and the terms \point" and \vector" are used interchangeably below.
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intervals are likely to be derived from di�erent physical scenarios.

It is noteworthy that conventional unsupervised learning techniques (e.g. Kohonen maps (Kohonen, 1984), Hebbian

learning (Oja, 1982)) which cluster input vectors according to their Euclidean distance would not, in general, be

capable of clustering together images which were generated by similar physical scenarios. In contrast, the method

presented here takes advantage of the temporal proximity of (often dissimilar) input vectors to discover which

invariances they share.

So far, the general characteristics of how perceptually salient parameters change over time have been described.

These observations can be used to constrain the outputs of a model microcircuit such that its outputs come to

reect these general characteristics. This can be achieved without specifying the desired output (target) value for

any input to the microcircuit. An `economical' way for a microcircuit to generate such a set of outputs is to adapt

its connection weights so that the outputs specify some invariance which is implicit in the microcircuit's inputs.

The Learning Method

A model which uses a type of temporal smoothness constraint can be made to learn visual invariances. The degree of

smoothness of the output or state of a model unit can be measured in terms of the `temporally local', or short term,

variance associated with a sequence of output values. A sequence of states de�nes a curve which is maximally smooth

if the variance of this curve is minimal (the straighter the curve, the smoother the output). However, minimising

only the short term variance has a trivial solution. This consists of setting all model weights to zero, generating a

horizontal output curve. This is consistent with one characteristic, smoothness, of perceptually salient invariances,

but it does not conform to the other characteristic, variability over time. The output can be made to reect both

smoothness and variability by forcing it to have a small short-term variance, and a large long-term variance. Thus

the variance of the output over small intervals should be small, relative to its variance over longer intervals.

The general strategy just described can be implemented using a multi-layer model. Units in the input, hidden and

output layers are labelled i; j and k, respectively. Input and output layers have linear units, and the hidden layer has

tanh units. The state of an output unit u

k

at each time t is z

kt

=

P

j

w

jk

z

jt

, where w

jk

is the value of a weighted

connection from the jth hidden unit to u, and z

jt

is the state of the jth hidden unit.

We can obtain the desired behaviour in z

k

by altering inter-unit connection weights such that z

k

has a large long-

term variance V , and a small short-term variance U . That is, by making V=U large. These requirements can be

embodied in a microfunction F :

F = log

V

U

= log

1=2

P

T

t=1

(z

kt

� z

kt

)

2

1=2

P

T

t=1

(~z

kt

� z

kt

)

2

(1)

Where z

kt

is the state of unit k at time t. (The

1

2

's are formally redundant, but have been introduced to simplify

the derivatives of U and V ). The cumulative states ~z

kt

and z

kt

are both temporal exponentially weighted sums of

states z

k

:

~z

kt

= �

S

~z

k(t�1)

+ (1� �

S

) z

kt�1

: 0 � �

S

� 1 (2)

z

kt

= �

L

z

k(t�1)

+ (1� �

L

) z

kt�1

: 0 � �

L

� 1 (3)

The half-life h

L

of �

L

is much longer (typically 100 times longer) than the corresponding half-life h

S

of �

S

.

Learning consists of adjusting the microcircuit weights so as to maximise F . After learning, the di�erence between

the short-term temporal mean ~z

kt

at each time step and the `current' state z

kt

tends to be small. This implies that

each state z

kt

tends to be similar to states which preceded it, so that the sequence of z

k

states varies smoothly over

time. Conversely, the di�erence between the long-term mean z

kt

and the current state z

kt

tends to be large. This

implies that the sequence of z

kt

states has a large range. A simple way to comply with these two constraints is for

the microcircuit to adjust its weights such that z

kt

varies smoothly in time over a relatively large range.

An information-theoretic interpretation of F is given in (Stone, 1995b). The derivative of F with respect to output

weights results in a learning rule which is a linear combination of Hebbian and anti-Hebbian weight update, over

long and short time scales, respectively

2

:

@F
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1

V
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1

U
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jt
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2

Thanks to Harry Barrow and Alistair Bray for pointing this out.
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Figure 3: Variation of surface depth over time.

(For hidden unit weights, additional terms resulting from the tanh hidden unit activation function are required (see

Appendix)).

The pre- and post-synaptic means used in conventional Hebbian learning rules (e.g. (Sejnowski, 1977)) have been

replaced by the exponentially weighted means, z

jt

and z

kt

(respectively) in the Hebbian part of (4), and by ~z

jt

and ~z

kt

in the anti-Hebbian part of (4). In contrast, the rule described in (Bienstock, Cooper, & Munro, 1982)

uses the exponentially weighted mean of only the post-synaptic output to modulate learning, and this learning is

either Hebbian or anti-Hebbian, depending on the state of the post-synaptic unit. Thus, the rule de�ned in (4)

uses the exponentially weighted mean of both the pre- and post-synaptic states to modulate both the Hebbian and

anti-Hebbian learning applied to every weight.

The learning rule can be interpreted as follows. If V is small relative to U then learning is principally Hebbian,

which has the e�ect of increasing the variability of outputs over long periods. That is, it prevents the state z

k

of

the output unit from being constant. However, if V is large relative to U , then learning is principally anti-Hebbian.

These changes tend to generate an output sequence of z

k

values which (like a perceptual invariance) has a large

range, but which varies smoothly over time. Thus, in the process of maximisingF , the microcircuit's output behaves

increasingly like a perceptual invariance. An economical way to achieve this is for the microcircuit to �nd a set of

weights which e�ectively `discovers' an invariance in the microcircuit's input sequence.

The learning algorithm consists of computing the derivative of F with respect to every weight in the model to locate

a maximumin F . The derivatives of F with respect to weights between the input and hidden unit layers are required.

These derivatives are computed using the chain rule (but not the learning method) described in (Rumelhart, Hinton,

&Williams, 1986). The cumulative result of these computations is used to alter weights only after the entire sequence

of inputs has been presented. However, storage requirements are minimal because all quantities can be computed

incrementally (see Appendix). This learning method also works if on-line weight update is used (Stone & Bray,

1995).

A conjugate gradient method (Williams, 1991) was used to maximise F . An more conventional iterative weight

update rule which took steps of size � @F=@w (where � is the learning rate ) requires about 10 times as many

iterations as the conjugate gradient method. As expected, both methods generate equally good solutions. The only

reason for using the conjugate gradient method is that it is faster than the iterative method.

In conclusion, three noteworthy characteristics are: 1) The learning method is unsupervised, so that the microcircuit

in not informed what the `correct' output should be at any time. 2) Whereas weight changes depend on the recent

history of inputs to a unit, a unit's output z is a function only of the current input. 3) Equation (1) is invariant with

respect to the magnitude of z

k

, and therefore with respect to the magnitude of the weights. Therefore, no weight

normalisation is required. During learning, the pattern of weights alters, but the average magnitude varies relatively

little.
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Figure 4: Network architecture, see text for details.

Experiments

Model Architecture

As shown in Figure 4, the model consists of three layers of units. Every unit in each layer is connected to every

unit in the next layer. The �rst layer consists of two rows of �ve linear units. The 5-pixel left and right images of

a stereo pair are presented to the upper and lower input row, respectively. The hidden layer consists of 10 units.

The state of a unit in the hidden layer is z = tanh(x), where x is the total input to a hidden layer unit from units

in the input layer. The input to the jth hidden unit is x

j

=

P

i

(w

ij

z

i

+ �

j

), where w

ij

is the value of a weighted

connection from the ith input unit to the jth hidden unit, and z

i

is the state of the ith input unit. All and only

units in the hidden layer have a bias weight � from a unit with constant output of 1. These bias weights are adapted

in the same way as all other weights in the model. The output layer consists of a single linear unit.

Input Data: Random Dot Stereograms

The input data used during learning were designed to simulate a surface moving sinusoidally in depth (see Figure

3). These data were derived from an array of random dots S, similar to one member of the pair shown in Figure

5. The dot density used in all images in this paper is 0.167. The array S was convolved with a Gaussian �lter

(with standard deviation of one dot width) to simulate the blurring e�ect of the cornea on the retinal image. S

was then normalised to have zero mean and unit variance. It might be argued that this represents an unreasonable

amount of pre-processing. However, the normalisation does not produce a locally normalised image luminance. It

thus represents less pre-processing than occurs in the primate retina where neuronal circuitry ensures that retinal

ganglion cells receive inputs which are normalised relative to the local image luminance (Douglas, Martin, & Nelson,

1993).

A single learning sequence of 1000 stereo pairs was constructed from S. At each time step, a small patch of S

was used to generate an input stereo pair of images. First, a sequence of 1000 sinusoidally varying disparity values

between �1 was generated. The sine had a period of 1000 time steps. For each disparity value, a 1D 5-pixel image

V

1

was generated by reading intensity values from a location in S into the 5-pixel image. At each time step, this

location was advanced by two pixels to simulate the surface translating at constant velocity. The 5-pixel image

vector was one image of a stereo pair presented to the microcircuit at each time step. The other vector V

2

of a pair

was generated by shifting the location in S by an amount equal to the sinusoidally varying depth (disparity) value

at the current time step. Most disparity values were less than one pixel, so that the second vector V

2

was generated

by linear interpolation over intensity values in S.

6



Figure 5: Random dot stereo pair with dot density 0.167, and depth map recovered by the microcircuit. The

correlation between values in this depth map and stereo disparity was r = 0:91.

Setting Microcircuit Characteristics

The short-term half-life h

S

of �

S

was 32 time steps. In this set of experiments, the long-term half-life h

L

is e�ectively

set to in�nity by de�ning V to be the variance of z

k

, so that z is the mean state of a unit. This produces results

which are not noticeably di�erent from the method described above in which h

L

is large but �nite. As stated above,

each of the 1000 stereo pairs had a disparity determined by a circular array of 1000 sinusoidally varying disparity

values. The initial weights values were drawn from a uniform distribution between �0:3.

There are a total of two microcircuit characteristics to set; the number of hidden units, and the half-life h

S

. (The

model is insensitive to the value of h

L

provided h

L

� h

S

. For the task described here, a minimum of three hidden

units is required (see (Stone, 1995b)). The implications of di�erent values of h

S

are discussed below. There is no

learning rate to choose because the conjugate gradient method used to maximise F ensures that the learning rate is

adjusted automatically.

Results

Performance was measured in terms of the correlation r between the output unit state z

t

and the stereo disparity,

measured over the set of 1000 input pairs. After 50 epochs r = 0:939, and after 800 epochs r = 0:977, where an

epoch consists of one complete presentation of the learning sequence to the microcircuit.

Recall that the microcircuit has no output target values, so it is not `told' what the correct output should be for
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any input.

An analysis of the structure of the weight vectors of hidden units is beyond the scope of this paper. However, a

more detailed analysis of the behaviour of this type of microcircuit is given in (Stone, 1995b, 1995a).

No Hidden Units:As expected for a system which attempts to discover an input/output mapping which is not

linearly separable, learning without a hidden layer of units failed to compute disparity. With the output unit

connected directly to the input layer, correlations of jrj > 0:01 were not exceeded over 10 di�erent simulations with

di�erent initial random weights.

Generalisation: If the model has learned disparity (and not some spurious correlate of disparity) then it should

generalise to new stereo data sets, without any learning of these new sets. Accordingly, the model was tested on two

new data sets. For both sets, generalisation was tested using the microcircuit after 800 epochs.

First, a smoothed randomly varying disparity pro�le with disparities between �1 pixels was used to generate a

sequence of 1D random dot stereograms. For this sequence, the correlation between microcircuit output and stereo

disparity was r = 0:921.

Second, test data was derived from a smoothed (Gaussed) version of the stereo pair shown in Figure 5. As with

the learning data, the standard deviation of the Gaussian was one dot width, the dot density was 0.167, and each

Gaussed array was normalised to have zero mean and unit variance. The right array was identical to the left array,

except for a square region which was shifted by a constant disparity d. For display purposes, d in Figure 5 is equal

to one dot width, but d = 0:5 of a dot width for the microcircuit inputs. This sub-pixel disparity was achieved by

using linear interpolation over grey-levels in the array. The stereo pair used to test the microcircuit was therefore

identical to that shown in Figure 5, except that the former had a disparity of half a dot width. Each input pair was

obtained by reading data from a Gaussed version of the left and right arrays of this stereo pair into the 5-unit upper

and lower input rows, respectively, of the microcircuit.

The microcircuit input was scanned across the Gaussed version of the stereo pair, and an output value was obtained

for each position. This simulates the action of a single microcircuit at every location in the visual �eld. Microcircuit

outputs from the border were discarded

3

, and the resultant 40 � 40 array of microcircuit outputs were plotted in

Figure 5. The correlation between disparity and microcircuit outputs over the resultant 1600 1D input pairs was

r = 0:91.

Discussion

Disparity and Temporal Smoothness

The model discovers a perceptually salient visual invariance by unsupervised learning from a sequence of images.

The stereo disparity task learned is a hyper-acuity task. That is, the amount of disparity is smaller than the width

of any single receptor (pixel). This is consistent with psychophysical studies which demonstrate that subjects can

discriminate disparities as small as 2 seconds of arc, less than one tenth of the width (30 seconds of arc) of a

retinal receptor (Westheimer, 1994). Members of a stereo pair which have a sub-pixel disparity di�er in terms of

the local slope and curvature of their intensity pro�les, and not necessarily in terms of the positions of the peaks

and troughs in these pro�les. Therefore, detecting disparities of less than one pixel requires more than a simple

one-to-one correspondence between the pixels of a stereo pair. The only means available to the model to discover

this invariance was the assumption of its temporal smoothness.

The assumption of temporal smoothness was implemented via a time decay constant �

S

with half-life h

S

. Consider a

model in which each output unit has a di�erent value of h

S

. The value h

S

implicitly speci�es a temporal `grain size'

for a unit, and therefore restricts learning to those parameters which change at a particular rate. At rates of change

which are either too high or too low, perceptual events cannot be detected by a given unit. However, if di�erent

units have di�erent temporal tuning characteristics (i.e. di�erent half-lives) then perceptual events occurring at

a given rate of change can be detected by some sub-population of units. Psychophysical evidence that disparity

sensitive neurons may have di�erent spatiotemporal tuning characteristics is presented in (Morgan & Castet, 1995).

The value chosen for h

S

is important (though not critical) for learning (see (Stone, 1995b)). However, for any

`reasonably smooth' rate of change, some units in a population tuned to di�erent temporal frequencies would learn

disparity.

Even if we accept that an invariance which has a `reasonably smooth' rate of change can be learned by some unit,

it might be argued that perceptually salient parameters simply do not vary smoothly over time. In the perceptual

world, violations of the smoothness assumption are not hard to �nd (e.g. the motion of a stone hitting the ground).

However, such violations are unlikely to undermine the model's performance. This is because the learning method

3

Because the microcircuit cannot be centred over a pixel which is less than three pixels from the edge of an array.
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requires only that discontinuities in parameter values are rare, relative to gradual changes over time. In the example

presented in (Stone, 1995b), four discontinuities every 1000 time steps did not disrupt the learning process. Thus,

the model requires not that all parameters change smoothly at all times, but, more realistically, that parameters

change smoothly most of the time. To paraphrase Marr (quoted in the introduction to this paper), \disparity varies

smoothly almost everywhen".

Canonical Microfunctions

In terms of the evolution of the neocortex, it makes sense to have a single type of canonical microcircuit which can be

used to learn any perceptual invariance. The approach adopted here seeks to delineate functional characteristics of

such a circuit in terms of learning perceptual invariances. This microfunctional approach is useful because it permits

computational aspects of neocortical microcircuits to be considered, even though the detailed neuroanatomy of such

circuits is not known. This represents a compromise between high-level functional models associated with arti�cial

intelligence, and detailed biophysical models.

Note that the approach does not require the assumption that all neocortical microcircuits are the same. It requires

an assumption that all microcircuits are pre-disposed to learning about particular types of properties in their inputs.

The neocortex has evolved in a world which has changed little in terms of what constitutes perceptually salient

physical entities. Therefore, an economical strategy would be to evolve a canonical microcircuit that uses a single

strategy to learn about invariances which remain perceptually important over long periods of evolutionary time.

This single strategy can be formalised in terms of a canonical microfunction (of which F may be an example).

Important aspects of the microfunctional framework are that it requires models which are implemented as arti�cial

neuronal networks, that these networks learn without the aid of a teacher, and that they are (broadly speaking)

functionally consistent with the capabilities of neuronal systems. The term \functionally consistent" is not intended

to refer to the particular learning method used, but rather, to the unsupervised nature of the learning method, and

to the �nal input/output mapping learned by the model.

It is possible to decouple a given putative canonical strategy (e.g. maximise temporal smoothness) from the micro-

function used to implement that strategy; for every strategy, there are many microfunctions which can be used to

implement it. Similarly, it is possible to decouple a given microfunction from the learning method used to maximise

that function. Thus, for every learning algorithm which learns a given mapping

4

, there exist many others which can

learn this mapping in a manner more consistent with the known neurophysiology. An example of this was given by

a pair of papers (Zipser & Anderson, 1988; Mazzoni, Anderson, & Jordan, 1991). The receptive �eld properties of

parietal neurons were simulated using the \biologically implausible" backpropagation method (Zipser & Anderson,

1988). Later, similar results were obtained using a more biologically plausible learning method (Mazzoni et al.,

1991).

The learning method described above is consistent with, but is not determined by, the `temporal smoothness' strategy.

It is intended that this microfunctional approach will yield other strategies which are more general in application

than that described here. At the very least, it is intended that this approach will yield a series of microfunctions

which embody the `temporal smoothness' assumption in a manner which is increasingly consistent with the known

function and structure of neocortical microcircuits.

Conclusion

Conventional low-level computer vision techniques rely upon the assumption that a parameter value is invariant

over some region of space(see (Stone, 1992)). The model described in this paper assumes that perceptually salient

parameters vary slowly over time. When presented with a sequence of images, the model discovered precisely those

parameters which describe the behaviour of the imaged surface through time.

Temporal smoothness is a fundamental property of the perceptual world. Given a sequence of inputs, any learning

system that did not take advantage of the temporal smoothness of perceptual invariances implicit in that sequence

would be discarding a powerful and general heuristic for discovering perceptually salient properties of the physical

world.
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By maximising a given microfunction.
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Appendix: The Learning Algorithm

The learning algorithm relies upon batch update of a weight vector w, which contains all weights in the network. At

each time step t, a stereo pair is presented at the input layer, and the derivative of F with respect to every weight in

the network is computed and added to a cumulative weight derivative vector rF

w

. This derivative vector is used to

update w only after all T = 1000 stereo pairs have been presented at the input units. The same set of stereo pairs

is repeatedly presented in the same order during learning. Storage requirements are minimal because all quantities

required for learning can be computed incrementally.

Notation: Units in the input, hidden and output layers are indexed by subscripts i; j and k, respectively. For

example, a weight which connects hidden unit u

j

to output unit u

k

is denoted w

jk

. The state z

kt

of u

k

at time t is:

z

kt

=

X

j

w

jk

z

jt

(5)

Where z

jt

is the state of u

j

. Input and output layer units have linear activation functions, whereas hidden units

have non-linear (tanh) activation functions. For such a unit u

j

, its output z

j

is the hyperbolic tangent of its input:

z

jt

= tanh

 

X

i

w

ij

z

it

!

(6)

Where w

ij

is a weight connecting input unit u

i

to hidden unit u

j

, and z

it

is the state of u

i

at time t. Weights

connecting input to hidden units, and hidden to output units, are referred to as lower and upper weights, respectively.

The function to be maximised is F = log V=U , where:

U = 1=2

T

X

t=1

(~z

kt

� z

kt

)

2

V = 1=2

T

X

t=1

(z

kt

� z

kt

)

2

V is the long-term variance of z

k

, U is the short-term variance of z

k

, and T is the period over which they are de�ned.

Both V and U are de�ned in terms of exponentially weighted means of z

k

. The weighted means ~z

k

and z

k

di�er

only in terms of their respective exponential rates of decay:

~z

kt

= �

S

~z

k(t�1)

+ (1� �

S

) z

k(t�1)

: 0 � �

S

� 1 (7)

z

kt

= �

L

z

k(t�1)

+ (1� �

L

) z

k(t�1)

: 0 � �

L

� 1 (8)

Where �

S

and �

L

have half-lives of h

S

and h

L

, respectively, with h

L

� h

S

. The formula obtaining a value of � for

a given half-life h is � = 2

1=h

. (Note that z

kt�1

contributes to ~z

kt

and z

kt

, but not to ~z

kt�1

and z

kt�1

).

Evaluating @F=@w:

The derivative of F with respect to any weight w is:

@F

@w

=

1

V

@V

@w

�

1

U

@U

@w

(9)

The identical form of U and V permits us to derive @U=@w for lower and upper weights, from which corresponding

equations for V can be obtained by substitution.

The incremental computation of U up to time t is:

U (t) = U (t� 1) + 1=2 (~z

kt

� z

kt

)

2

(10)

Therefore the derivative of U (t) with respect to any weight w is:

10



@U (t)

@w

=

@U (t� 1)

@w

+ (~z

kt

� z

kt

)

�

@~z

kt

@w

�

@z

kt

@w

�

(11)

Where, from (7):

@~z

kt

@w

= �

S

@~z

kt�1

@w

+ (1� �

S

)

@z

kt�1

@w

(12)

Thus, the incremental computation of (11) depends upon evaluation of @z

kt

=@w in (11) and @z

k(t�1)

=@w in (12),

for both upper and lower weights. Equations for @z

kt

=@w (for upper and lower weights) will be derived next, from

which equations for @z

kt�1

=@w can be obtained by substitution.

Evaluating @z

kt

=@w

jk

:

In the case of an upper weight w

jk

projecting to an output unit u

k

:

z

kt

=

X

j

w

jk

z

jt

(13)

Where z

jt

is the state of the jth hidden unit at time t, so that:

@z

kt

@w

jk

= z

jt

(14)

Evaluating @z

kt

=@w

ij

:

Equation (13) can be re-written in terms of a lower weight w

ij

which projects to a hidden unit u

j

:

z

kt

=

X

j

w

jk

tanh

 

X

i

w

ij

z

it

!

(15)

Where z

it

is the state of the ith input unit at time t. The derivative of z

kt

with respect to w

ij

is:

@z

kt

@w

ij

= w

jk

(1� z

2

jt

) z

it

For an upper weight, this yields:

@U (t)

@w

jk

=

@U (t� 1)

@w

jk

+ (~z

kt

� z

kt

)

�

�

S

@~z

kt�1

@w

jk

+ (1� �

S

)z

jt�1

� z

jt

�

Where @~z

kt�1

=@w is recursively de�ned as in (12). The corresponding derivative for a lower weight is:

@U (t)

@w

ij

=

@U (t� 1)

@w

ij

+ (~z

kt

� z

kt

)

�

�

S

@~z

kt�1

@w

ij

+ w

jk

�

(1� �

S

) (1� z

2

jt�1

)z

it�1

� (1� z

2

jt

)z

it

�

�

Thus (11) can be incrementally evaluated up to any time t. Corresponding equations for @V=@w can be obtained by

substitution in the derivation of @U=@w. The quantities U and V are by de�nition simple to compute incrementally.

Therefore, (9) can be computed on-line. For results presented in this paper, weights were adapted only after weight

derivatives obtained with 1000 inputs had been accumulated. On-line weight update is possible, if, at each time step

t, the cumulative values of U (t) and V (t) are good estimates of U (T ) and V (T ), respectively. This was achieved

(for a di�erent learning task) in (Stone & Bray, 1995) by de�ning U (t) and V(t) as exponentially weighted moving

averages:

U (t) = U (t � 1) + 0:5 (1� )(~z

t

� z

t

)

2

(16)

V (t) = V (t� 1) + 0:5 (1� )(z

t

� z

t

)

2

(17)

Where  � �

L

.
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