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Abstract. Arti�cial evolution as a design methodology for hardware

frees many of the simplifying constraints normally imposed to make de-

sign by humans tractable. However, this freedom comes at some cost,

and a whole fresh set of issues must be considered. Standard genetic

algorithms are not generally appropriate for hardware evolution when

the number of components need not be predetermined. The use of sim-

ulations is problematic, and robustness in the presence of noise or hard-

ware faults is important. We present theoretical arguments, and illustrate

with a physical piece of hardware evolved in the real-world (`intrinsically

evolved' hardware). A simple asynchronous digital circuit controls a real

robot, using a minimal sensorimotor control system of 32 bits of RAM

and a few 
ip-
ops to co-ordinate sonar pulses and motor pulses with

no further processing. This circuit is tolerant to single-stuck-at faults in

the RAM. The methodology is applicable to many types of hardware,

including Field-Programmable Gate Arrays (FPGA's).

1 Introduction

An evolutionary approach to hardware design makes possible the relaxation of

several constraints which other more orthodox techniques require. Human de-

signers conventionally need a prior rigorous analysis of the problem, and a de-

composition of a complex system into separate parts of manageable size; using

arti�cial evolution this is not necessary. Simplifying design constraints are often

applied to hardware so as to make it behave in an easily analysable fashion |

for instance, strict synchronisation to a global clock. This is no longer necessary

with evolution, and such constraints can be relaxed.

However, this freedom comes at some cost; there are a whole new set of is-

sues relating to evolution that must be considered, and many of these will be

unfamiliar to those schooled in conventional design methods. Evolution of hard-

ware systems often cannot be �tted into the constrained optimisation framework

which standard genetic algorithms assume. This means that these algorithms

need some crucial changes.

The main cost of an evolutionary approach is the large number of trials that

are required. Adequate simulations may take time comparable to doing the trials

for real, or may not be feasible; e.g. when vision in complex environments, or the

modelling of detailed semiconductor physics is involved, as will be shown later.
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Under many circumstances robustness in the presence of noise or hardware faults

is a crucial factor, which can increase the number of trials needed. Noise is not

always a problem, indeed it may have advantageous evolutionary e�ects.

We discuss the constraints that can be relaxed and the hard consequences

that must be recognised, initially at a theoretical level. Then a real example of

evolved hardware will be presented in the light of these discussions. A simple

asynchronous digital circuit directly takes echo pulses from a pair of left/right

sonars, and drives the two motors of a real robot, so that it exhibits a wall-

avoidance behaviour in the real world. The complete sensorimotor control system

(no pre- or post-processing) consists of just 32 bits of RAM and a few 
ip-
ops,

and is even tolerant to single-stuck-at faults in the RAM. The remarkable ef-

�ciency of this circuit can be attributed to the facts that it was evolved as a

physical piece of hardware in the real world, and that many of the constraints

on its dynamics were under evolutionary control. The rationale behind this ex-

periment applies to many other kinds of system, including Field-Programmable

Gate Arrays (FPGA's) [2].

The paper proceeds thus: Sections 2{11 discuss various aspects of arti�cial

evolution. Sections 12{14 cover issues of noise, the relationship between sim-

ulation and reality, and fault tolerance. Sections 15{17 discuss the theory of

Intrinsic Hardware Evolution. Sections 18 and 19 give a case study of a physical

piece of hardware, intrinsically evolved in the real world as a robot controller. A

�nal section summarises the discussion.

2 Evolution not Design

Human beings �nd it di�cult to design complex systems, and the main heuris-

tic used to make design easier is \Divide and Conquer". The complex whole

is decomposed into smaller semi-independent parts or modules, which can be

tackled one at a time. For this to work the modules must have minimal interac-

tions between them, to allow any one to be tackled independently of the others.

However, there are many complex systems which either do not have any such

decomposition, or do not obviously show how they should be carved up.

If, however, some objective �tness function can be derived for any given

complex system which is intended to carry out some speci�c task, there is the

possibility of automatic evolution of the system without explicit design. Natural

evolution is the existence proof for the viability of this approach, given appropri-

ate resources. Genetic Algorithms (GAs) [3] use ideas borrowed from evolution

in order to solve problems in highly complex search spaces, and by suitably ex-

tending GAs they can be used to search through design space whilst evading the

problems of decomposition faced by human designers.

The arti�cial evolution approach maintains a population of viable genotypes

(chromosomes), coding for designs or architectures, which are inter-bred and

mutated according to a selection pressure. This pressure is controlled by a task-

oriented evaluation function: the better the system performs its task the more

o�spring it has in succeeding generations. O�spring inherit genetic material from
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their parents. Rather than attempting to hand-design a system to perform a

particular task or range of tasks well, the evolutionary approach should allow

their gradual emergence.

3 GAs for Optimisation

Here we will discuss the framework within which GAs are typically used, before

going on to suggest that for many hardware design problems a signi�cantly

di�erent framework is needed.

The majority of published GA work, both applications and theoretical analy-

sis, refers to optimisation problems which can be seen as search problems in some

high-dimensional search space, of known (usually enormous) size. The compo-

nents to be optimised could be parameters which need to be set at appropriate

real values; or they could be discrete values which need to be chosen. In the

former case the real values needed are usually coded to some desired degree of

precision, so that they can be speci�ed in binary form with a de�ned number of

bits (although some evolutionary algorithms work directly with real values).

What such optimisation problems share is the well-de�ned �nite dimension-

ality of the search space. This allows the choice of some genotype coding, such

that a genotype (often binary) of �xed length can encode any potential solution

within the space of possibilities. In the context of hardware design, this approach

is appropriate where the optimal attributes for a predetermined number of com-

ponents is to be found; also where the ordering of any given set of components

needs to be determined.

GA theory has in general assumed such a �xed-dimensional search space.

The optimisation problem has typically been seen as starting with a population

of random points e�ectively spanning and coarsely sampling the whole search

space. Successive rounds of selection, reproduction and mutation are intended

to focus the population of sample points towards �tter regions of the space,

homing in on an optimum or near-optimal region. Theorems such as the Schema

Theorem, intended to show the circumstances under which GAs can be expected

to produce the desired results, rely on these assumptions. One consequence of

this approach has been the primary reliance on recombination as the genetic

operator, which combines information from di�erent samples in order to move

towards regions of expected higher �tness; mutation is typically treated as a

background operator.

GAs can be considered a compromise between a weak and a strong form of

search. While far stronger than random search, which typically is infeasible in

large search spaces, GAs are not strong enough for one to be able to demonstrate

conclusively that the global optimum has been reached. Once recombination has

brought the population, over a number of generations, into a focused region of

search space | i.e. it is genetically converged | then with only background

rates of mutation further exploration cannot be expected, and search can be

terminated. If this convergence happens too rapidly, it implies that only a sketchy

sampling of the search space has been done, and any local optimum reached may
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be far from the global optimum. Much GA analysis is directed towards setting

up the GA parameters so as to avoid this premature convergence.

However, some problems | including perhaps most hardware design prob-

lems | do not fall into this convenient picture of a �xed-dimensional search

space. If there is no predetermined number of components to be used in the

design then standard GA theory will not apply.

4 GAs for Structure Evolution

There are at least two possible scenarios in which one might be uncertain initially

how many components might be needed. The �rst case is incremental evolution:

where a sequence of increasingly complex tasks is posed, requiring the evolution

in succession of ever more complex hardware systems. The second is evolution

for parsimony: where the number of components is to be reduced to a minimum.

If there is no prede�ned number of components in a structure to be designed

by GA, then any encoding of potential solutions onto a genotype will use an

amount of informationwhich varies from case to case, given a �xed interpretation

process. In other words, genotypes will have to be variable in length. But if the

genotype is potentially unbounded in length, then the nature of the search space

is such that it is impossible for an initial random population of �nite size to

e�ectively sample from all parts of it. Any �nite population inevitably spans

only a constricted region of the whole. Hence any GA search in an unbounded

space must work with a relatively converged �nite population from the very start.

Possible ways in which systems of variable size can be encoded on a genotype

will be discussed below, but this convergence property holds regardless of how

the encoding is done.

Something very similar holds true if there is an upper bound to the number

of components. Suppose that a maximum of 20 components is allowed for some

hardware system, and an initial population contains sampling points to be eval-

uated with varying numbers of components between 0 and this maximum of 20.

Since the subspace of designs with 10 or less components is of a radically dif-

ferent nature from that with 20 components, samples from the former subspace

have no useful correlation in �tness with corresponding points from the latter

(corresponding in the sense that the extra components have been added without

altering the existing ones). But the underlying theory of standard GAs relies on

there being some such correlation.

Evolutionary search can, however, operate in domains of varying dimension-

ality | indeed evolution in the natural world has done just that. Relatively

complex species, with lengthy genotypes, have evolved from simpler ancestors

with smaller genotypes, but a present-day animal should not be considered as

a solution to a problem posed 4 billion years ago, with a search space of �xed

dimensionality.

GAs when applied to search spaces of varying dimensionality need a dif-

ferent framework from those used for standard optimisation problems. Species

Adaptation Genetic Algorithms (SAGA) were developed as this framework.
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5 Species Evolution

In arti�cial evolution problems of varying dimensionality one should expect to

have a genetically converged population, in e�ect a species, at all times. This

contrasts with optimisation problems, where convergence in a GA signals the end

of the search process. Using the example given above, where a hardware design

being evolved could potentially have any number of components up to 20, during

any single generation one should expect all the members of the population to

have the same or a very similar number of components, for instance 10. What

counts as similarity will be quali�ed later.

The conceptual framework of SAGA was introduced by Harvey in 1991 in

order to try to understand the dynamics of a GA when genotype lengths are

allowed to increase [4]. It was shown, using concepts of epistasis and �tness land-

scapes drawn from theoretical biology [5], that progress through such a genotype

space will only be feasible through relatively gradual increases in information in

the genotype (typically, in genotype length). A general trend towards increase

in length is associated with the evolution of a species rather than global search.

Such evolutionary search in the space of hardware designs would be from ini-

tially simple designs for simple tasks, towards more complex designs for more

complex tasks; although in natural evolution there is no externally provided

sense of direction, in arti�cial evolution this can be provided.

Throughout such arti�cial evolution, a species will be relatively �t, in the

sense that most members of the population will be �tter than most of their

neighbours in the �tness landscape. Evolutionary search can be thought of as

searching around the current focus of a species for neighbouring regions which

are �tter (or in the case of neutral drift, not less �t) while being careful not to

lose gains that were made in achieving the current status quo. In the absence of

any mutation (or change-length) genetic operator, selection will concentrate the

population at the current best. The smallest amount of mutation will hill-climb

this current best to a local optimum. As mutation rates increase, the population

will spread out around this local optimum, searching the neighbourhood; but if

mutation rates become too high then the population will disperse completely,

losing the hill-top, and the search will become random. If an ideal balance is

achieved between selective forces and those of mutation (as modi�ed by recom-

bination), then some elements of the population can crawl down the hill far

enough to reach a ridge of relatively high selective values. As discussed in [6],

this results in a signi�cant proportion of the population working their way along

this ridge under selection, and making possible the reaching of outliers ever fur-

ther in Hamming-distance in that particular direction from the current �ttest.

The term `ridge' is used here to �t in with intuitive notions of �tness landscapes;

in fact in high-dimensional search spaces such ridges may form complex neutral

networks, percolating long distances through genotype space.

If any such outliers reach a second hill that climbs away from the ridge, then

parts of the population can climb this hill. Depending on the di�erence in �tness

and the spread of the population, it will either move en masse to the new hill

as a better local optimum, or share itself across both of them.
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So in a SAGA setup of evolution of a converged species, we want to encourage

through the genetic operators such exploration along ridges to new hills, subject

to the constraint that we do not want to lose track of the current hill. Eigen

and co-workers use the concept of a quasi-species to refer to a similar genetically

converged population in the study of early RNA evolution. To quote from [6]:

In conventional natural selection theory, advantageousmutations drove

the evolutionary process. The neutral theory introduced selectively neu-

tral mutants, in addition to the advantageous ones, which contribute to

evolution through random drift. The concept of quasi-species shows that

much weight is attributed to those slightly deleterious mutants that are

situated along high ridges in the value landscape. They guide populations

toward the peaks of high selective values.

6 SAGA and Mutation Rates

Although progress of a species through a �tness landscape is not discussed in

the standard GA literature, in theoretical biology there is relevant work in the

related �eld of molecular quasi-species [7, 6]. In particular, analysis of the `error

catastrophe' shows that, subject to certain conditions, there is a maximum rate

of mutation which allows a quasi-species of molecules to stay localised around

its current optimum. Selection and mutation are opposing forces, the former

tending to increase numbers of the �ttest members of the population, while the

latter tends to drag o�spring down in �tness away from any local optimum. A

zero mutation rate allows for no further local search beyond the current species,

and other things being equal increased mutation rates will increase the rate of

evolution. Hence if mutation rates can be adjusted, it would be a good idea to

use a rate close to but less than any critical rate which causes the species to fall

apart. A further possibility, in the spirit of simulated annealing, is to temporarily

allow the rate to go slightly above the critical rate | to allow exploration | and

then cut it back again to consolidate any gains thus made.

For an in�nite asexual population, in the particular context of molecular evo-

lution, Eigen and Schuster show [7] that these forces just balance for a mutation

rate

m =

ln�

l

where l is the genotype length and � is the superiority parameter of the master

sequence (the �ttest member of the population) | the factor by which selection

of this sequence exceeds the average selection of the rest of the local �tness

landscape, and hence the rest of the population. The diagrams they show for

the very sharp cuto� at the critical rate refer to a �tness landscape with a single

`needle' peak for the master sequence, taking all the rest of the population to

be equally (un-)�t; where the hill slopes more gently from the master sequence,

the cuto� is less abrupt. For typical values of � between 2 and 20, the upper

limit of mutation before a quasi-species `loses its grip' on the current hill would

be between 0:7=l and 3=l. For �nite population size, there is some reduction
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in this critical mutation rate (the `error threshold') [8], but for genotypes of

length order 100, and populations of size order 100, the error threshold will be

extremely close to that for an in�nite population.

Since it is the natural logarithm of � which enters into the equation for m,

variations in � of an order of magnitude do not a�ect ln(�) (and hence the error

threshold) as signi�cantly as variations in genotype length. In conventional GAs,

choice of mutation rates tends to be a low �gure, typically 0.01 or 0.001 per bit as

a background operator, decided upon without regard to the genotype length. The

SAGA framework means that mutation rates of the order of 1 per genotype are

required when using linear rank selection or tournament selection as discussed

below, subject to some quali�cations concerning recombination and `junk DNA'.

These quali�cations tend to increase the recommended rate to somewhere in

the range 1 to 5 mutations per genotype, the idiosyncratic nature of �tness

landscapes for di�erent problems making it di�cult to be more speci�c.

When applying such mutation rates in a GA, it is essential that the prob-

ability of mutation is applied independently at each locus on the genotype.

This gives a binomial distribution (approximating a Poisson distribution for

long genotypes) for the number of mutations per string, so that genotypes with

an expected m mutations have this as the average value with a wide variance

(including the possibility of zero mutations).

7 Neutral Sequences and Drift

Mutations in a genotype encoding a �t phenotype are often deleterious, and

occasionally advantageous. There is a third possibility, that a mutation is neutral

and leaves the �tness unchanged.

Neutral mutations can in turn be subdivided into two kinds, with a rather

grey area between them. They can be in parts of `junk DNA', such that the

decoding of the genotype ignores the values in that part. In this case it is only

the functional part of the genotype (the part which is capable of causing some

di�erence in the �tness) that counts towards e�ective genotype length when

deciding upon mutation rates. For example, if a genotype of length 1000 is 90%

junk, then a mutation rate set at the rate of one per e�ective genotype length

should be implemented at the rate of 1/100 per locus, rather than 1/1000. It

is often di�cult to estimate what proportion of a genotype is junk, however, as

this shades into the second class of neutral mutation.

This second type of mutation may leave the phenotype unchanged, yet open

the possibility of a further mutation making some di�erence. As a simple exam-

ple, a binary genotype with two loci, whose �tness is given by the logical AND

of the alleles at each locus, retains a �tness of 0 during mutation from 00 to 01;

yet this opens up the possibility of a further single point mutation reaching 11,

with a �tness of 1 which was not achievable from the starting point. Such neutral

mutations can in a high-dimensional space allow extended neutral paths which

can percolate through vast areas of sequence space. Neutral drift of a population

through such pathways means that it is much more di�cult to get stuck on a
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local optimum than one's intuition based on 3-D landscapes might lead one to

think. In addition, the percolation of such paths through sequence space tends

to mean that it does not matter too much where in sequence space a converged

population starts; under many circumstances it is possible to reach all possible

�t regions from most starting points.

The SAGA selection and mutation rates encourage just such exploration

through neutral drift in sequence space.

8 Selection

Selective forces need to be maintained at the same level throughout an evolu-

tionary run, so as to balance mutational forces and maintain a similar degree

of genetic convergence throughout. Basing selection directly on absolute �tness

values does not achieve this, and some system based on ranking of the population

must be used. This implies that the �ttest member of the population has the

same expected number of o�spring whether it is far better than the rest, or only

slightly better. Truncation selection (reproducing only from a top slice of the

population) is one way of achieving this, but generally is too severe in restrict-

ing exploration by the less �t mutants. Less severe methods are recommended

such as linear ranking; for instance giving the top ranker twice the average ex-

pected number of o�spring, and reducing this amount linearly as one goes down

the ranks, towards zero.

One way to achieve an e�ect comparable to linear ranking in a steady state

GA is through tournament selection. Rather than replacing the whole population

by a similar number of o�spring at each generation, only one new o�spring at a

time replaces a fatality in an otherwise unchanged population. Two parents for

the o�spring can each be chosen by picking the �ttest of a randomly picked pair

(the tournament), and the fatality chosen at random from the whole population;

alternatively, the parents can be picked at random from the whole population,

and the fatality selected as the loser of a tournament.

Elitism is often advocated in GAs when used for optimisation. This is the

requirement that the current �ttest member of the population is never deleted to

make way for another that is less �t. In real world applications such as hardware

design, however, evaluations are likely to be noisy. Since in this case one can

never be certain which is the �ttest, elitism cannot be relied upon.

9 Recombination

With a genetically converged population, sections of genotype that are swapped

in recombination are likely to be fairly similar. With species evolution, recombi-

nation does not have the prime signi�cance it has in standard GAs | asexual

evolution is indeed feasible | but nevertheless it is a useful genetic operator.

There are two rôles recombination has which are opposite sides of the same

coin. On the one hand, it allows two fortunate mutations which happen to have
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occurred independently in two di�erent lineages within the population to be

combined into one which has both: something not possible with asexual repro-

duction. On the other hand, it allows parents with a detrimental mutation to

produce an o�spring which does not have it: also impossible asexually, in the

absence of highly improbable back-mutations. This latter e�ect in general allows

higher mutation rates to be used with recombination than were suggested above

for asexual populations, thus promoting exploration without risking loss of a

currently achieved local optimum.

Recombination is particularly powerful when combined with a distributed

GA. Here each member of the population is allocated a di�erent position in

some notional geographical space, often a two-dimensional toroidal grid. Re-

combination between individuals is only allowed for pairs within a certain dis-

tance of each other on this grid, which thus comprises a number of overlapping

neighbourhoods. This combines the virtues of small and large populations; small

interrelated local populations allow through random drift more extended search

through genotype space, but the overlapping nature of such localities means that

any improvement found percolates through the whole population.

Recombination can run into problems with genotypes of di�ering lengths; it

may not be clear, given a crossover or recombination point in one parent, where

a corresponding crossover should be made in the other parent. Whatever system

is used should ensure that homologous segments of the genotype are swapped.

Often this may need domain-speci�c GA program code; a general algorithm for

long binary strings is given in [9].

10 Change in Genotype Length

If systems of di�erent complexity are encoded by genotypes of di�erent length,

then the genetic operators must allow changes in genotype length to take place

in the process of going from parent to o�spring. How this is done will neces-

sarily depend to a large extent on the form of genotype encoding. One lesson

spelt out in [4] is that any genetic operator which allows a change in genotype

length should be restricted to small changes only | to be precise, to changes

which in general can be expected to produce a small phenotypic change. This

last quali�cation allows for genetic operators such as gene duplication where the

encoding used means that such duplications are neutral. Neutral gene duplica-

tion, followed by mutations in one of the copies, is a potentially powerful method

for creating variants on useful substructures.

11 Morphogenesis

The preceding discussion has been deliberately general insofar as very few con-

straints have been laid down as to how the genotype should encode for the system

to be evolved. To some extent such an encoding is always domain-speci�c, but

nevertheless there are some general rules that come into play as a system grows

more complex.
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With simple designs where there are no symmetries or repetitions to be

expected, then the straightforward method is for the genotype to encode in

sequence the type and parameters of each component part, together with the

interconnections between such parts. However, as systems become more complex,

then symmetries and repetitions can be expected to play a signi�cant rôle in

many circumstances. For instance, when designing a control system for a robot

with bilateral symmetry, then there may well be good reason to expect this

bilateral symmetry to be re
ected to some extent in the controller. If designing

an arti�cial retina, then repetitions of similar local structure across a 2-D array

can be expected.

If the genotype constitutes in e�ect a linear description of each component

of the system in turn, with for instance the left and right halves separately so

described, then bilateral symmetry can only be achieved by separate independent

evolution of each half of the genotype towards the same target. In a stochastic

process such as evolution this is improbable and di�cult; however it could be

achieved relatively simply if the genotype described just one half, together with a

routine which `called' the description twice with appropriate parameters, in the

sense that a program can call a sub-routine. In the case of multiple repetitions

as in a retinal array, such a process becomes even more e�cient.

Earlier it was suggested that evolution was a method of avoiding the con-

straints of human design, which seems to require the decomposition of a system

into semi-independent modules. The repetitions and symmetries now being dis-

cussed di�er from such human decomposition in two critical ways. Firstly, any

such decomposition can emerge from evolutionary choice, rather than being pre-

determined by fallible human prejudice; and secondly, such repeated modules can

be intimately connected with each other, as with neighbourhood relationships

on a retina, and need not be semi-independent.

In the natural world the genotype does not constitute a description of the

organism. Instead it acts as a constraint on the way in which a multi-cellular

organism develops from a single cell, in such a fashion that symmetries and rep-

etitions can naturally emerge. Attempts to replicate such emergence in arti�cial

evolution are currently ad hoc and domain-speci�c.

12 The Use of Noise

Stochastic noise can be actually be advantageous to the evolutionary process.

Such noise alters the behaviour of the hardware, as compared to its behaviour

in some idealised non-noisy world; hence it alters the �tness of this hardware

at the task on which it is being evaluated. These alterations are in general such

as to blur the �tness landscape, to decrease the di�erence in behaviour (and

�tness) between two pieces of hardware which are neighbours in genotype space.

Rugged regions in the �tness landscape tend to get blurred into more rolling

hills, on which the evolutionary process �nds progression towards higher �tness

much more easy.
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This e�ect is related distantly to that of stochastic resonance. The arguments

are similar to those for the `Baldwin e�ect' [10]. Practical examples of this phe-

nomenon can be seen in [11, 12]. The rôle of noise in smoothing the transition

from simulations to reality is under investigation [12].

13 The Use of Simulation

Arti�cial evolution requires the evaluation of members of a population over the

course of many generations. Virtually all the time and expense is in performing

these evaluations rather than in the genetic operations; optimising these latter

operations has little practical use. The number of evaluations may be reduced

by setting up the GA appropriately. Each individual evaluation should also not

be unnecessarily long.

Simulations are often seen as attractive, o�ering the possibility of performing

evaluations in faster than real time. Such simulations would need to be validated

by testing evolved architectures in realised form at regular intervals. However

there are a number of possible problems, depending on what precisely is to be

simulated. Consider in turn the cases where simulations are of just the hardware,

of both hardware and environment, and of just the environment.

Simulation of the hardware alone might be attempted if appropriate recon�g-

urable hardware was not available | simulations are likely to run more slowly

than the real hardware. This is `extrinsic' evolution, as opposed to `intrinsic'

evolution to be discussed later. Often detailed simulations of physical properties

of hardware are too computationally expensive to be practical; evolution can

then only be e�ective with the real hardware.

When both the hardware and the environment are to be simulated, it is

frequently the latter that is much more complex. Often such simulations are

simply not practical. For instance, when evolving control systems for visually

guided robots [11], the visual world of a robot takes so much computing power

to adequately simulate that testing in the real world is simpler and faster.

Consider �nally the use of real hardware in a simulated environment. It has

been suggested by de Garis [13] that where a hardware device such as a robot

controller must be evaluated within some environment, then an environment

simulation could be implemented in electronics situated next to the evolving

hardware control system on a VLSI chip. It is suggested that this will allow the

speeding up of each evaluation by perhaps many orders of magnitude. There are

two serious doubts to be raised about this proposal.

The �rst is scepticism about the complexity of the simulation. For many real

tasks (and that of a robot controller in a human environment is one example) the

complexity of those crucial aspects of the environment which must be adequately

simulated makes it infeasible; e.g., when the environment includes other entities

of a complexity and speed comparable to that of the hardware itself.

A second doubt arises when an adequate evaluator circuit running faster than

real-time can be built (perhaps possible for simpler situations than robotics). The

same hardware that has been evolved within a high-speed environment must then
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adjust to cope with normal timescales in the real world. This could be done with

clocked hardware, by simply adjusting the clock-rate. However, the imposition

of adjustable clocking on a piece of hardware is a severe constraint, limiting the

range of dynamics available. Later sections will show the bene�t of removing

such constraints. More subtle ways of controlling timescales may be possible,

but only those aspects of the dynamics which are controlled may be exploited

during accelerated evolution. Thus, for this technique to be useful, any bene�ts

from the increased rate of evolution must outweigh the costs of constraints. Note

that real-time simulations are not prone to this di�culty.

14 SAGA and Fault Tolerance

When considering the mutation rate for SAGA (Section 6), we saw that there is

an `error catastrophe' mutation rate above which the species disintegrates and

loses its local �tness peak. For practical SAGA mutation rates, the population

will never completely converge upon the single locally-most-�t sequence, but

will converge around it, in an equilibrium of being driven away by mutation and

pulled back by selection. Most of the individuals will not have the locally-most-

�t genotype, but will be a small number of mutations away in genotype space.

This has the e�ect that selection is not able to hold the population at an isolated

`needle in the haystack' peak as well as it can hold it on a `smoother' hillside,

where �tness falls away gradually with increasing Hamming distance from the

peak. In fact, Thompson [14] adapts one of Eigen & Schuster's experiments

[15] to SAGA, illustrating that an initially completely converged population can

abandon an isolated peak in favour of a less �t smoother one.

The result is that, under certain conditions, the evolving species tends to

move to a high �tness region of the landscape at which mutations have only

a gradual e�ect on �tness on average (if such a region exists). In particular,

most single mutations will tend not to decrease �tness dramatically, although a

few critical ones might. What does this have to do with fault tolerance? Take an

example: say that part of the genotype directly encodes the connectivity between

some components of the phenotype circuit, with a 1 indicating a connection and

a 0 no connection. The preceding argument predicts that single mutations will

tend to have only small e�ects on �tness, implying that the performance of the

circuit will tend not to be drastically degraded by the creation or removal of

connections. Therefore the evolved circuits will tend to be tolerant to hardware

faults that cause connections to be broken or spuriously created.

This general phenomenon applies whenever the genetic encoding is such that

a genetic mutation has the same e�ect on the phenotype as would a certain type

of fault; there will be a tendency for the evolved systems to be less sensitive

to that type of fault than equivalent systems produced by non-evolutionary

means. Current research aims to characterise the e�ect using the NK model

of �tness landscapes [16] over the full range of possible SAGA parameters and

selection schemes: for some settings, evolved individuals have been seen to be

10% less sensitive to single mutations than equivalent individuals found through
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exhaustive search, on average. Thompson [14] deals with the evolution of fault

tolerance in greater detail than here, also suggesting that the use of a co-evolving

antagonistic population of emulated faults could force tolerance to a large set of

faults in cases where the above technique is inapplicable or insu�cient.

15 The Relationship Between Intrinsic Hardware

Evolution and Conventional Design Techniques

Intrinsic

1

evolution of hardware means that the individuals of the evolving pop-

ulation receive �tness scores according to their performance when instantiated

as real physical pieces of electronics. Evolution proceeds by taking note of the

overall behavioural e�ect of variations made to the real circuits; this is very

di�erent from conventional design techniques, which proceed by manipulating

abstract models.

The use of abstract models simpli�es design by allowing some aspects of

reality to be ignored, but the properties of the real hardware that have been

`abstracted away' must be suppressed: they must not be allowed to in
uence

the �nal behaviour of the designed circuit. For example, a designer engaged

in digital design does not need to think about the analogue behaviour of the

transistors, but considers them as ON/OFF switches. To allow circuits designed

at this level of abstraction to work in reality, the transistors must always be

kept in either the ON state or the OFF state except during short transient

periods while they are switching between them. Steps must be taken to ensure

that these transients do not in
uence the overall behaviour of the system as

predicted by the designer's digital model; this is manifest in the use of a global

clock in synchronous design, and the more local co-ordination mechanisms of

asynchronous design methodologies. Hence, the use of an abstract model at the

design stage imposes constraints on what circuits can be produced, in order to

ensure that the model is valid.

Intrinsic hardware evolution, by observing the consequences of variations

made to the real hardware, avoids the need for design abstractions and the ac-

companying constraints. Our notion of the nature of electronic systems is heavily

biased by our design methodologies and the constraints applied to facilitate their

abstractions, so evolvable hardware demands a radical rethink of what electronic

circuits can be. Both the spatial structure (modularity) and the temporal struc-

ture (synchronisation and the rôle of phase in general) need to be considered.

15.1 Unconstrained Spatial Structure

We saw above that with digital design, care must be taken to prevent switch-

ing transients (a feature absent from the designer's model) from a�ecting the

system's overall behaviour. This is done by making sure that one part of the

system does not in
uence the rest until any transient dynamics have died down

1

This term is due to Hugo de Garis.
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and a steady state is reached (all transistors stable in the ON or OFF states).

Usually, this means that the circuit is broken into modules, the internal tran-

sient dynamics of which are hidden from each-other. (Here, the word `module' is

used in a general sense to mean a cohesive sub-assembly within a larger system.)

The spatial or topological structure of the circuit has thus been constrained to

facilitate a design abstraction.

Even if recon�gurable hardware intended for use by digital designers is used

(eg. most current FPGAs) then design abstractions, such as the digital model,

are not required for intrinsic hardware evolution. Is modularity, then, a designer's

constraint that can be abandoned, or is it necessary or useful for all complex

systems whether designed or evolved? Are the kinds of modules appropriate for

an evolving circuit di�erent from those used by a designer?

These questions are currently di�cult to answer fully. Certainly, we have seen

that evolution does not need modular structures to support abstract designer's

models, because intrinsic evolvable hardware (hereafter `intrinsic EHW') does

not use such models. However, the modularity of a system can also be caused

by the nature of the problem-solving or adaptive process that derived it. Hu-

mans typically use some sort of \divide and conquer" strategy, by which the

problem is successively decomposed. Whether the decomposition is a functional

one or a behavioural one [17], the �nal structure arrived at usually has modules

corresponding to that decomposition. Wagner [18] argues that the evolutionary

process also requires a kind of modularity: that there should be an \independent

genetic representation of functionally distinct character complexes." The idea is

that such a genotype-phenotype mapping prevents small mutational variations

applied at one point from having large-scale rami�cations throughout the whole

phenotype, so that parts of it can be improved semi-independently. However, it

is not clear to what extent this consideration necessarily implies modules in the

structure of an EHW circuit, because the \distinct character complexes" of the

phenotype are components of the behaviour of the circuit, not of its physical

organisation

2

. A related rôle for modules in an evolved circuit was given above

(Section 11) when considering the part which repeated structures and symme-

tries can play in the morphogenesis and evolution of complex systems.

It seems that if modular circuits are desirable in EHW, it is because modu-

larity may aid the evolution of complex systems, rather than because modularity

is essential to the operation of a complex electronic circuit. For this reason, the

kinds of modules appropriate to EHW will be tuned to the characteristics of

the evolutionary process (particularly the genetic encoding and morphogenetic

development) and the way in which this interacts with the detailed properties

of the particular type of recon�gurable hardware being used. It remains to be

seen what such modules may look like, but the important message is that they

may be radically di�erent from what is seen in circuits produced by traditional

design methods.

2

For example, a character complex might inhere in a particular basin of attraction of

the system, which could be a property of the whole circuit.
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15.2 Unconstrained Temporal Structure

Real physical electronic circuits are continuous-time dynamical systems. They

can display a broad range of dynamical behaviour, of which discrete-time sys-

tems, digital systems and even computational systems are but subsets. These

subsets are much more amenable to design techniques than dynamical electronic

systems in general, because the restrictions to the dynamics that each subset

brings support design abstractions, as described above. Intrinsic EHW does not

require abstract models, so there is no need to constrain arti�cially the dynamics

of the recon�gurable hardware being used.

In particular, there no longer needs to be an enforced method of control-

ling the phase (temporal co-ordination) in recon�gurable hardware originally

intended to implement digital designs. The phase of the system does not have to

be advanced in lock-step by a global clock, nor even the local phase-controlling

mechanisms of asynchronous digital design methodologies imposed. The suc-

cess of pulse-stream neural networks [19, 20], where analogue operations are

performed using binary pulse-density signals, gives a clue that allowing the sys-

tem's phase to unfold in real-time in a way useful to the problem at hand can

add a powerful new dimension to electronic systems: time. Mead's highly suc-

cessful analogue neural VLSI devices (eg. the `silicon retina') [21], exploiting the

continuous-time dynamics of networks of analogue components (with the tran-

sistors mostly operating in the sub-threshold region), show how pro�table an

excursion into the space of general dynamical electronic systems can be.

In some applications, dynamics on more than a single timescale are needed

in an EHW circuit. For example, a real-time control system needs to behave on a

timescale suited to the actuators (typically in the range milliseconds to seconds),

while the underlying dynamics of the controller's electronic components might be

measured in nanoseconds. Being able to have di�erent parts of a circuit behaving

at di�erent timescales can also be signi�cant in other ways; indeed, learning can

be thought of as a dynamic on a slower timescale than individual task-achieving

behaviours.

There are several ways in which high-speed electronic components can give

rise to much slower behaviour:

{ The phase can be governed by one or more external signals, a digital clock

being the prime example.

{ Large time-constant resources can be provided. Large capacitors or induc-

tors cannot be made in VLSI, so either external components can be made

available, or special techniques can be used to make the most of smaller

on-chip components [22].

{ The high-speed components can somehow be assembled to give rise to slower

dynamics, without explicitly providing large time-constant resources or slow-

speed clocks.

Is the last of these possibilities feasible in an EHW framework? To �nd out,

a simulation experiment was performed to see if a network of high-speed logic

gates could be evolved to oscillate at a much slower timescale. The number of
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logic nodes available was �xed at 100, and the genotype determined which of the

boolean functions of Table 1(a) was instantiated by each node, and how the nodes

were connected. The nodes were analogous to the recon�gurable logic blocks of

an FPGA, but an input could be connected to the output of any node without

restriction. The linear bit-string genotype consisted of 101 segments (numbered

0::100 from left to right), each of which directly coded for the function of a node

and the sources of its inputs, as shown in Table 1(b). (Node 0 was a special

`ground' node, the output of which was always clamped at logic zero.) This

encoding is based on that used in [23]. The source of each input was speci�ed by

counting forwards/backwards along the genotype (according to the `Direction'

bit) a certain number of segments (given by the `Length' �eld), either starting

from one end of the string, or starting from the current segment (dictated by

the `Addressing Mode' bit). When counting along the genotype, if one end was

reached, then counting continued from the other.

BUFFER

NOT

NOR

OR

AND

SymbolName

NAND

NOT-XOR

XOR

(a)

Bits Meaning

0-4 Junk

5-7 Node Function

Pointer to First Input

8 Direction

9 Addressing Mode

10-15 Length

Pointer to Second Input

16 Direction

17 Addressing Mode

18-23 Length

(b)

Table 1. (a) Node functions, (b) Genotype segment for one node.

At the start of the experiment, each node was assigned a real-valued propa-

gation delay, selected uniformly randomly from the range 1.0 to 5.0 nanoseconds,

and held to double precision accuracy. These delays were to be the input-output

delays of the nodes during the entire experiment, no matter which functions the

nodes performed. There were no delays on the interconnections. To commence

a simulation of a network's behaviour, all of the outputs were set to logic zero.

From that moment onwards, a standard asynchronous event-based logic simu-

lation was performed [24], with real-valued time being held to double precision

accuracy. An equivalent time-slicing simulation would have had a time-slice of

10

�24

seconds, so the underlying synchrony of the simulating computer was only

manifest at a time-scale 15 orders of magnitude smaller than the node delays,

allowing the asynchronous dynamics of the network to be seen in the simula-

tion. A low-pass �lter mechanism meant that pulses shorter than 0.5ns never

happened anywhere in the network.
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The objective was for node number 100 to produce a square wave oscillation

of 1kHz, which means alternately spending 0:5� 10

�3

seconds at logic 1 and at

logic 0. If k logic transitions were observed on the output of node 100 during

the simulation, with the n

th

transition occurring at time t

n

seconds, then the

average error in the time spent at each level was calculated as :

average error =

1

k � 1

k

X

n=2

�

�

(t

n

� t

n�1

) � 0:5� 10

�3

�

�

(1)

For the purpose of this equation, transitions were also assumed to occur at

the very beginning and end of the trial, which lasted for 10ms of simulated

time. The �tness was simply the reciprocal of the average error. Networks that

oscillated far too quickly or far too slowly (or not at all) had their evaluations

aborted after less time than this, as soon as a good estimate of their �tness had

been formed. The genetic algorithm used was a conventional generational one [3],

with elitism and linear rank-based selection. At each breeding cycle, the 5 least

�t of the 30 individuals were killed o�, and the 25 remaining individuals were

ranked according to �tness, the �ttest receiving a fecundity rating of 20:0, and

the least �t a fecundity of 1:0. The linear function of rank de�ned by these end

points determined the fecundity of those in-between. The �ttest individual was

copied once without mutation into the next generation, which was then �lled

by selecting individuals with probability proportional to their fecundity, with

single-point crossover probability 0.7 and mutation rate 6:0� 10

�4

per bit.

3

Fig. 1 shows that the output of the best individual in the 40

th

generation

(Fig. 2) was approximately 4

1

2

thousand times slower than the best of the ran-

dom initial population, and was six orders of magnitude slower than the propa-

gation delays of the nodes. In fact, �tness was still rising at generation 40 when

the experiment was stopped because of the excessive processor time needed to

simulate this kind of network. This result suggests that it is possible for evolution

to arrange for a network of high-speed components to generate much slower be-

haviour, without having to provide explicit `slowing-down' resources with large

time constants, and without the need for a clock (though these could still be

useful).

The evolved oscillators produced spike trains rather than the desired square

wave. Probing internal nodes indicated that this was because beating between

spike trains of slightly di�erent frequencies was being used to generate a much

lower frequency; beating only works for spikes, not for square waves.

4

This does

not mean that the task was easy: it is di�cult for beats to reduce the frequency

by the massive factor required and yet produce an output as regular as that seen

in Fig. 1.

3

This per-bit mutation rate was crudely derived by trial and error, but turns out to

be on the order of one signi�cant mutation per genotype for the �nal evolved circuit,

in line with SAGA theory.

4

Of course, the output spike train could be converted into a square wave by passing

it through a toggling 
ip-
op, though this did not evolve here.
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Fig. 1. Output of the evolving oscillator. (Top) Best of the initial random population of

30 individuals, (Bottom) best of generation 40. Note the di�erent time axes. A visible

line is drawn for every output spike, and in the lower picture each line represents a

single spike.
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Fig. 2. The evolved 4kHz oscillator (unconnected gates removed, leaving the 68 shown).

The simulation was quite an unrealistic model of the evolution of the con-

�guration of a real FPGA. No analogue e�ects were modelled apart from time,

but they would be a big part of the way a real chip would behave. Nevertheless,

the result lends strength to the concept of evolving unconstrained dynamical

systems, because beating evolved: a highly e�ective solution which is essentially

a continuous-time phenomenon. Beating does not just occur at one node but
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throughout the network, which does not have any signi�cant modules

5

.

16 Exploiting the Hardware versus Tolerance to Device

Variations

In the evolved oscillator experiment of the previous section, each node had a

slightly di�erent input) output time delay, crudely modelling the propaga-

tion delays of the recon�gurable blocks of an FPGA. The delays were initially

randomly chosen but then held �xed during the experiment. If the delays of

the �nal evolved circuit were re-randomised then the behaviour was totally de-

stroyed, and the circuit was no better than a randomly generated one: it relied

on the particular time delays present during its evolution. Extrapolating to real

intrinsic hardware evolution, it can be expected that all of the detailed physics

of the hardware will be brought to bear on the problem at hand: time delays,

parasitic capacitances, cross-talk, meta-stability constants and other low-level

characteristics might all be used in generating the evolved behaviour.

The exploitation of all of the hardware's physical properties must be traded

against sensitivity to variations in them. Some tolerance is essential because of

the inevitable changes over time due to 
uctuations in the temperature or power

supply, for example, or to the various on-chip ageing phenomena. In addition,

if an evolved design is to be implemented on more than one device (as in a

commercial application), then it must not be a�ected by properties that vary

from chip to chip. The required tolerance can be evolved by making sure that

the properties in question actually do vary while the �tnesses are being eval-

uated. This might involve purposely varying the temperature or power supply

during evaluations and/or carrying out multiple evaluations on di�erent (nomi-

nally identical) recon�gurable devices. An alternative to evaluating over several

separate devices is to use the same recon�gurable hardware to instantiate the

circuit in di�erent ways: translating or rotating it on an FPGA for example.

Extending that idea, a genetic encoding could be used which forces the use of

repeated structures, so that each structure must cope with the characteristics of

all of the places in which it occurs. Another alternative would be to use further

adaptation each time the evolved circuit is transferred from one recon�gurable

device to another.

The introduction of a fault can be seen as an extreme form of variation in

the device's properties: Section 19 will describe a real application of the `further

adaptation' approach to coping with a fault. It may also be possible to use the

evolutionary fault tolerance mechanisms described in Section 14 to give tolerance

to normal device variations.

Even when forced to produce a circuit with tolerance to some range of varia-

tions, there is still room for intrinsic EHW to exploit detailed hardware charac-

teristics much more than conventional design does. Traditional design methods

5

A heuristic graph partitioning algorithm was used to search for non-trivial cohesive

sub-assemblies, but none were found.
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cannot proceed far with precise descriptions of the physics of the individual

components (eg. transistors) before abstraction and modularisation need to be

invoked to make the problem tractable, as discussed above. The `try it and see'

opportunistic nature of intrinsic EHW is not subject to this di�culty, so the de-

tailed behaviours of the components can be integrated usefully to give rise to the

required overall performance. This paper largely concentrates on the use of digi-

tal recon�gurable devices because these are currently available o�-the-shelf, but

we can now see that the advantages of intrinsic EHW over conventional design

are even greater for analogue systems. Analogue FPGAs are being developed

[25] and will be a fruitful avenue for EHW research in the future.

17 The Danger of Inheriting Inappropriate Constraints

from Natural Evolution

Evolvable Hardware is a combination of electronics and evolution. We have dis-

cussed the error of adhering too closely to the conventional principles of electron-

ics, but there are also potential pitfalls in blindly applying ideas from natural

evolution.

Consider biological neural networks. Compared to electronics, the neuron

response and signal propagation times are extremely slow. On the other hand,

there is very high connectivity in three dimensions, contrasting with the highly

restricted planar wiring in VLSI. The two media | biological cell based and sili-

con VLSI based | provide very di�erent resources. A structure evolved to exploit

the former may not e�ciently utilise the latter. It may be possible to evolve par-

allel distributed architectures better tailored to the opportunities provided by

VLSI than models of biological neural networks are. Such an architecture might

use the high speed of VLSI to compensate for limited connectivity in a more

sophisticated way than the multiplexing schemes commonly seen in VLSI im-

plementations of neural nets. Hence it would be unwise to rigidly limit EHW to

a neuro-mimetic structure when intrinsic EHW can o�er a more unconstrained

exploitation of hardware resources. For engineering purposes, `VLSI-plausible'

architectures are required, not `biologically-plausible' ones.

In the same way that the architecture of natural nervous systems evolved to

be suited to the restrictions and opportunities of biology, so did the process of

natural evolution itself adapt to the resources available (\the evolution of evolv-

ability"). The large timescale, highly parallel, distributed co-evolution found in

nature is somewhat di�erent that possible in present-day implementations of ar-

ti�cial evolution. It is thus justi�able to use biologically-implausible mechanisms

where these are e�ective, for example in the setting of the mutation rate or in the

morphogenesis process. The aim is to arrive at an implementation of arti�cial

evolution that is inspired by nature, but suited to the facilities available.

We have now proposed a synthesis of genetic algorithms, natural evolution

and electronics that adapts each in the formation of a new �eld: Intrinsic Evolv-

able Hardware. The next section begins to put some of the ideas into practice.
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18 Case Study: An evolved hardware sensorimotor

control structure

This experiment takes a standard electronic architecture, removes some of the

dynamical constraints used to make conventional design tractable, and subjects

the resulting dynamical electronic system to intrinsic hardware evolution. The

result was the �rst evolved hardware control system for a real robot, reported

in [26].

The EHW circuit was the on-board controller for the robot shown in Fig. 3.

This two-wheeled autonomous mobile robot has a diameter of 46cm, a height

of 63cm, and was required to display simple wall-avoidance behaviour in an

empty 2.9m�4.2m rectangular arena. For this scenario, the d.c. motors were not

allowed to run in reverse and the robot's only sensors were a pair of time-of-


ight sonars rigidly mounted on the robot, one pointing left and the other right.

The sonars �re simultaneously �ve times a second; when a sonar �res, its output

changes from logic 0 to logic 1 and stays there until the �rst echo is sensed at

its transducer, at which time its output returns to 0.

Conventional electronic design would tackle the control problem along the

following lines: For each sonar, a timer would measure the length of its output

pulses | and thus the time of 
ight of the sound | giving an indication of the

range to the nearest object on that side of the robot. These timers would provide

binary-coded representations of the two times of 
ight to a central controller. The

central controller would be a hardware implementation of a �nite-state machine

(FSM), with the next-state and output functions designed so that it computes

a binary representation of the appropriate motor speed for each wheel. For each

wheel, a pulse-width modulator would take the binary representation of motor

speed from the central controller and vary the mark:space ratio of pulses sent to

the motor accordingly.

It would be possible to evolve the central controller FSM as intrinsic EHW

by implementing the next-state and output functions as look-up tables held

in an o�-the-shelf random access memory (RAM) chip.

6

The FSM would then

be speci�ed by the bits held in the RAM, which could be recon�gured under

the control of each individual's genotype in turn. There would be no bene�t

in evolving this architecture as hardware, however, because the electronics is

constrained to behave in accordance with the FSM design abstraction: all of

the signals are synchronised to a global clock to give clean, deterministic state-

transition behaviour as predicted by the model. Consequently, the hardware

would behave identically to a software implementation of the same FSM.

What if the constraint of synchronisation of all signals is relaxed and placed

under evolutionary control? Although super�cially similar to the FSM imple-

mentation, the result (shown in Fig. 4), is a machine of a fundamentally di�er-

ent nature. Not only is the global clock frequency placed under genetic control,

but the choice of whether each signal is synchronised (latched) by the clock or

whether it is asynchronous is also genetically determined. These relaxations of

6

This is the well known `Direct Addressed ROM' implementation of an FSM [27].
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Fig. 3. The robot known as \Mr Chips."

temporal constraints | constraints necessary for a designer's abstraction but not

for intrinsic EHW | endow the system with a rich range of potential dynamical

behaviour, to the extent that the sonar echo pulses can be fed directly in, and

the motors driven directly by the outputs, without any pre- or post-processing:

no timers or pulse-width modulators. (The sonar �ring cycle is asynchronous to

the evolved clock).

Let this new architecture be called a Dynamic State Machine (DSM). It is not

a �nite-state machine because a description of its state must include the temporal

relationship between the asynchronous signals, which is an real-valued analogue

quantity. In the conventionally designed control system there was a clear sen-

sory/control/motor decomposition (timers/controller/pulse-width-modulators),

communicating in atemporal binary representations which hid the real-time dy-

namics of the sensorimotor systems, and the environment linking them, from the

central controller. Now, the evolving DSM is intimately coupled to the real-time
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Fig. 4. The hardware implementation of the evolvable DSM. `G.L.' stands for a bank

of genetic latches: it is under genetic control whether each signal is passed straight

through asynchronously, or whether it is latched according to the global clock of evolved

frequency.

dynamics of its sensorimotor environment, so that real-valued time can play an

important rôle throughout the system. The evolving DSM can explore special-

purpose tight sensorimotor couplings because the temporal signals can quickly


ow through the system being in
uenced by, and in turn perturbing, the DSM

on their way.

For the simple wall-avoidance behaviour, only two of the possible eight feed-

back paths seen in Fig. 4 were enabled. The resulting DSM can be viewed as

the fully connected, recurrent, mixed synchronous/asynchronous logic network

shown in Fig. 5, where the bits stored in the RAM give a look-up table imple-

menting any pair of logic functions of four inputs. This continuous-time dynam-

ical system cannot be simulated in software, because the e�ects of the asyn-

chronous variables and their interaction with the clocked ones depend upon the

characteristics of the hardware: meta-stability and glitches will be rife, and the

behaviour will depend upon physical properties of the implementation, such as

propagation delays and meta-stability constants. Similarly, a designer would only

be able to work within a small subset of the possible DSM con�gurations | the

ones that are easier to analyse.

The genetic algorithm was the same as that described in Section 15.2, with

the contents of the RAM (only 32 bits required for the machine with two feedback
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Fig. 5. An alternative representation of the evolvable Dynamic State Machine, as used

in the experiment. Each is a `Genetic Latch' (see previous �gure).

paths), the period of the clock (16 bits, giving a clock frequency from around

2Hz to several kHz) and the clocked/unclocked condition of each signal all being

directly encoded onto the linear bit-string genotype. The population size was 30,

probability of crossover 0.7, and the mutation rate was set to be approximately

1 bit per genotype. If the distance of the robot from the centre of the room in

the x and y directions at time t was c

x

(t) and c

y

(t), then after an evaluation for

T seconds, the robot's �tness was a discrete approximation to the integral:

�tness =

1

T

Z

T

0

�

e

�k

x

c

x

(t)

2

+ e

�k

y

c

y

(t)

2

� s(t)

�

dt (2)

k

x

and k

y

were chosen such that their respective Gaussian terms fell from their

maximum values of 1.0 (when the robot was at the centre of the room) to a
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minimum of 0.1 when the robot was actually touching a wall in their respective

directions. The function s(t) has the value 1 when the robot is stationary, oth-

erwise it is 0: this term is to encourage the robot always to keep moving. Each

individual was evaluated for four trials of 30 seconds each, starting with di�erent

positions and orientations. The worst of the four scores was taken as the �tness

[28]. For the �nal few generations, the evaluations were extended to 90 seconds,

to �nd controllers that were not only good at moving away from walls, but also

staying away from them.

For convenience, evolution took place with the robot in a kind of `virtual

reality.' The real evolving hardware controlled the real motors, but the wheels

were just spinning in the air. The wheels' angular velocities were measured, and

used by a real time simulation of the motor characteristics and robot dynamics

to calculate how the robot would move. The sonar echo signals were then ar-

ti�cially synthesised and supplied in real time to the hardware DSM. Realistic

levels of noise were included in the sensor and motor models, both of which were

constructed by �tting curves to experimental measurements, including a proba-

bilistic model for specular sonar re
ections. The photograph of Fig. 3 was taken

during an evolutionary run of this kind.

Fig. 6 shows the excellent performance which was attained after 35 genera-

tions, with a good transfer from the virtual environment to the real world. The

robot is drawn to scale at its starting position, with its initial heading indicated

by the arrow; thereafter only the trajectory of the centre of the robot is drawn.

The bottom-right picture is a photograph of behaviour in the real world, taken

by double-exposing a picture of the robot at its starting position, with a long

exposure of a light �xed on top of the robot, moving in the darkened arena. If

started repeatedly from the same position in the real world, the robot follows a

di�erent trajectory each time (occasionally very di�erent), because of real-world

noise. The robot displays the same qualitative range of behaviours in the virtual

world, and the bottom pictures of Fig. 6 were deliberately chosen to illustrate

this.

When it is remembered that this miniscule electronic circuit receives the raw

echo signals from the sonars and directly drives the motors (one of which happens

to be more powerful than the other), then this performance in surprisingly good.

It is not possible for the DSM directly to drive the motors from the sonar inputs

(in the manner of Braitenberg's `Vehicle 2' [29]), because the sonar pulses are

too short to provide enough torque. Additionally, such na��ve strategies would

fail in the symmetrical situations seen at the top of Fig. 6. One of the evolved

wall-avoiding DSMs was analysed (see below), and was found to be going from

sonar echo signals to motor pulses using only 32 bits of RAM and 3 
ip-
ops

(excluding clock generation): highly e�cient use of hardware resources, made

possible by the absence of design constraints.

Fig. 7 illustrates the state-transition behaviour of one of the wall avoiders.

This particular individual used an evolved clock frequency of 9Hz (about twice

the sonar pulse repetition rate). Both sonar inputs evolved to be asynchronous,

and both motor outputs clocked, but the internal state variable that was clocked
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Fig. 6. Wall avoidance in virtual reality and (bottom right) in the real world, after 35

generations. The top pictures are of 90 seconds of behaviour, the bottom ones of 60.

to become the left motor output was free-running (asynchronous), whereas that

which became the right output was clocked. In the diagram, the dotted state

transitions occur as soon as their input combination is present, but the solid

transitions only happen when their input combinations are present at the same

time as a rising clock edge. Since both motor outputs are synchronous, the state

can be thought of as being sampled by the clock to become the motor outputs.

This state-transition representation is misleadingly simple in appearance, be-

cause when this DSM is coupled to the input waveforms from the sonars and its

environment, its dynamics are subtle, and the strategy being used is not at all

obvious. It is possible to convince oneself that the diagram is consistent with the

behaviour, but it would have been very di�cult to predict the behaviour from

the diagram, because of the rich feedback through the environment and sensori-

motor systems on which this machine seems to rely. The behaviour even involves

a stochastic component, arising from the probabilities of the asynchronous echo

inputs being present in certain combinations at the clocking instant, and the
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Fig. 7. A representation of one of the wall-avoiding DSMs. Asynchronous transitions

are shown dotted, and synchronous transitions solid. The transitions are labelled with

(left, right) sonar input combinations, and those causing no change of state are not

shown. There is more to the behaviour than is seen immediately in this state-transition

diagram, because it is not entirely a discrete-time system, and its dynamics are tightly

coupled to those of the sonars and the rest of the environment.

probability of the machine being in a certain state at that same instant (remem-

ber that one of the feedback loops is unclocked).

Even this small system is non-trivial, and performs a di�cult task with min-

imal resources, by means of its rich dynamics and exploitation of the real hard-

ware. After relaxing the temporal constraints necessary to support the designer's

�nite-state model, a tiny amount of hardware has been able to display rather

surprising abilities

7

. FPGAs are undoubtedly very much more powerful than

the DSM. It is left to the reader to speculate on the potential capabilities of

an evolvable chip containing many hundreds of logic gates, bearing in mind the

power released by unconstrained evolution from the equivalent of only two gates

in the DSM described above.

19 The Fault Tolerance of The Evolved Hardware

Control System

To end the paper, we brie
y use the evolved DSM robot controller to consolidate

two of the points made earlier pertaining to fault tolerance.

Firstly, notice that the contents of the RAM were directly encoded bit-for-bit

onto the genotype. A genetic mutation in the RAM coding region causes one of

7

If all of the genetic latches were constrained to be synchronous, so that we have

a FSM, then three control experiments failed to produce successful systems. If all

of the latches were constrained to be asynchronous, then three control experiments

each produced a recognisable wall-avoider, but much inferior to those evolved when

the genetic latches were under evolutionary control.

28



Fitness
Mean

32 different SSA faults

    Mean Faulty

    No Faults

    Mean Random

    2.60

    1.60

Fig. 8. Sensitivity to adverse SSA faults.

the bits in the RAM to be inverted: the same e�ect as a single-stuck-at (SSA)

fault in the RAM's memory array. By the argument of Section 14, there should

therefore be a tendency for the evolved controller to be tolerant to such SSA

faults. Fig. 8 shows that the evolved wall-avoider DSM is indeed quite robust

to adverse SSA faults | observation of the robot's qualitative behaviour bears

this out | but it is not known how much is due to the action of evolution,

and how much is simply a property of the DSM architecture. The 32 possible

adverse SSA faults were each emulated in turn by writing the opposite value

to that speci�ed by the genotype to the RAM bit in question. For each fault,

the DSM was then used to control the robot (in the virtual environment) for

sixteen 90-second runs from the same starting position, and the average �tness

was measured to give the data in the �gure. The results are in accord with the

theory, but gathering su�cient data from the real robot actually to verify the

theory would be prohibitively time-consuming: hence the ongoing study using

NK landscapes mentioned in Section 14.

The second experiment was to introduce the SSA fault marked with an arrow

in Fig. 8 as a permanent feature in the DSM, and then to allow the already-

evolved population to evolve further. At �rst, the �tness of the population was

signi�cantly lowered, with none of the individuals performing as well as the best

of the population used to, but after 10 generations the mean and best �tnesses

of the population had recovered to their previous values. This approach to fault-

tolerance (proposed in Section 16 above) would be useful when transferring the

evolved controller from one piece of hardware to another, or to cope with long-

lasting faults within one.
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20 Conclusion

We have formulated Evolvable Hardware | and in particular intrinsic EHW

| as a synthesis of genetic algorithms, inspiration from natural evolution and

electronics. In forming this synthesis, none of the three components has been left

unaltered. For the evolution of complex structures, genetic algorithms need to be

extended to incorporate the notions of converged species evolution and incremen-

tally increasing complexity: the SAGA framework. When drawing inspiration

from nature, it is necessary to recognise the signi�cantly di�erent constraints and

opportunities associated with the arti�cial evolution of VLSI circuits. Finally,

the whole concept of what electronics can be needs to be re-thought, because

until now it has been governed by what is amenable to design techniques. Step-

ping into the wider space of dynamical electronic systems, the �rst intrinsically

evolved hardware robot controller has been presented, showing remarkable levels

of e�ciency and robustness. There is every reason to expect that this new �eld

will go far, but extravagant projections are not appropriate at this early stage.
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