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Abstract

Recent experiments with a genetic based encoding schema are pre-

sented as a potentially powerful tool to discover learning rules by means

of evolution. The representation used is similar to the one used in Genetic

Programming (GP) but it employs only a �xed set of functions to solve

a variety of problems. In this paper three Monks' and parity problems

are tested. The results indicate the usefulness of the encoding schema in

discovering learning rules for hard learning problems. The problems and

future research directions are discussed within the context of GP practices.

Keywords: Supervised Learning, Genetic Programming, Monk's Prob-

lems

1 Introduction

The main characteristic of a supervised learning is that the problem is always

de�ned in terms of an input/output mapping. Actually, the target mapping

contains a rule of some sort and the task of learning is to discover this rule and

represent it in such a way that unseen inputs can be correctly mapped to the

outputs. In the simplest form, the rule will be as such: "if the input variable(s)

has/have such value(s) then the output variable(s) has/have that value(s) else
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the input variable(s) .....". This means that there is a direct correlation between

particular input values and particular output values.

However, sometimes the rule may not refer to particular values of variables.

Rather it may refer to possible 'relationships' among input values. It has been

shown by Clark and Thornton [2] that learning behaviors based on some training

sets which take into account the relationship among values of the input variables

can be extremely di�cult (named as type-2 learning problems). In one of the

studies [10] well-known learning algorithms such as ID3, back-propagation and

classi�er systems are tested on a type-2 problem and all showed poor results.

In a previous paper [6] an encoding schema has been presented and tested

on several simple supervised tasks. Combined with genetic algorithms it can

successfully produce evolution of learning rules. Rather than searching for a

general learning algorithm (as in the work of Chalmers [1]), the aim is to see

whether evolution would produce a speci�c learning rule for the problem in hand.

Although the representation schema is very similar to the one used by of Koza [5]

in Genetic Programming (GP) paradigm, introducing prior knowledge into the

representation of initial solutions using problem speci�c functions is minimal, if

any at all. The main motivation to exclude problem speci�c functions is to see

whether evolution can produce (i.e. discover) a learning rule which can, in some

ways, represent those functions. In this strategy potential learning rules are

encoded as random mathematical expressions at variable lengths and only four

functions is allowed: plus, minus, multiplication and protected division. The

terminal units can be random numbers and random variables. The variables are

to be instantiated to input values of training set in a typical supervised learning.

By using LISP's "EVAL" statement, the expressions are evaluated to certain

numbers. This value is then mapped to a value in the range of value of target

outputs through a squashing function and is used to determine the success of a

potential rule in correctly learning the supervised task.

In this paper several experiments where the model is applied to hard learning

problems such as three Monk's problems and parity problems will be presented.

In the sections that follow, I will �rst describe the Three Monk's problems.

Next, I will introduce Genetic Programming (GP) in relation to the Monks

problems. The following section contains the representation strategy and the

process of applying genetic algorithms. Then the experiments and the results

will be presented. Finally, I will conclude with a discussion and future research

possibilities using the genetic based encoding schema.

2 Three MONK's Problems

The three MONK's problems are used to compare the performance of di�er-

ent symbolic and non-symbolic learning techniques [11] including AQ17-DCI,

AQ17-FCLS, AQ14-NT, AQ15-GA, Assistant Professional, mFOIL, ID5R-hat,

TDIDT, ID3, AQR, CN2, CLASSWEB, ECOBVEB, PRISM, Backpropagation
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and Cascade Correlation.

MONKS's problems involve classi�cation of robots which are described by

six di�erent attributes. The attributes and their possible values are as follows:

ATTRIBUTES VALUES

------------- ----------------------------

head_shape round, square, octagon

body_shape round, square, octagon

is_smiling yes, no

holding sword, balloon, flag

jacket_color red, yellow, green. blue

has_tie yes, no

Each of the three problem requires learning of a binary classi�cation task.

Whether the robot belongs to a particular class or not is decided based on the

following rules:

Problem M1: (headshape=bodyshape) or (jacketcolor= red)

Problem M2: Exactly two of the six attributes have their first

value.

Problem M3: (jacketcolor = green and holding = sword) or

(jacketcolor = (not blue) and bodyshape = (not octagon))

The most di�cult one among these problems is the second problem since it

refers to a complex combination of di�erent attribute values and is very similar

to parity problems. Problem one can be described by standard disjunctive nor-

mal form (DNF) and may easily be learned by all symbolic learning algorithms

such as AQ and Decision Trees. Finally, problem three is in DNF form but aims

to evaluate the algorithms under the presence of noise. The training set for this

problem contains 5 percent misclassi�cation.

The results of the comparison have shown that only Backpropagation, Back-

propagation with decay, cascade correlation and AQ17-DCI had 100 percent

performance on Monk 2 problem. However, the success of Backpropagation is

probably is due to the conversion of original training set values into binary val-

ues which obviously this will directly e�ect the learning rule representing the

true cases. The success of AQ17-DCI is clearly attributable to one of its function

which tests the number of attributes for a speci�c value. Monk 1 and Monk 2

were relatively easy to learn by most of the algorithms.

3



2.0.1 Training and Testing Sets

The training and testing sets used for the experiment in this paper are the same

as those used by Thrun in the performance comparison experiments. In these

experiments two di�erent sets are used. The �rst set adapted an original coding

for the problems where each of the attributes would have one of the following

values:

attribute#1 : {1, 2, 3}

attribute#2 : {1, 2, 3}

attribute#3 : {1, 2}

attribute#4 : {1, 2, 3}

attribute#5 : {1, 2, 3, 4}

attribute#6 : {1, 2}

Thus the rules describing the true cases can be reformulated as below:

MONK-1:

(attribute_1=attribute_2) or (attribute_5=1)

MONK-2:

(attribute_n = 1)

for EXACTLY TWO choices of n (n {1,2,...,6})

MONK-3:

(attribute_5 = 3 and attribute_4 = 1) or

(attribute_5 != 4 and attribute_2 != 3)

The second set of training and testing cases for the problems are the conver-

sion of the original coding into the binary coding. Obviously, this has a direct

e�ect on the rules describing the true cases and the formulation of the prob-

lems. The number of input variables increases from 6 to 17 since each possible

value of the attributes is represented as 3 digit binary numbers where each digit

represents the presence of a speci�c value of the attributes.

2.1 Genetic Programming

In the genetic Programming Paradigm of Koza [5] problems of Arti�cial Intel-

ligence (AI) are viewed as the discovery of computer programs which produce

desired outputs for particular inputs. The computer programs can be an ex-

pression, formula, plan, control strategy, decision tree or a model depending on

the sort of AI problem.

He claims that solving AI problems requires searching the space of all pos-

sible computer programs for the �ttest individual computer program. Genetic

Programming (GP) is the method of searching for this �ttest individual com-

puter program based on Darwinian natural selection and genetic operations.
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Genetic programming steps, as in the application of conventional Genetic

Algorithms (GA), involve initialisation of random population of computer pro-

grams and for a number of generation, evaluating the �tness of the individual

programs and applying genetic operators.

One of the important feature of the GP is that it uses variable length of

genome (i.e. computer programs) which re
ects hierarchical and dynamical

aspects of the potential solutions to a particular problem. Since the shape and

the size of the solution to a problem may not be known in advance, speci�cation

or restriction of the potential solutions to certain format may limit the search

space so that it may be impossible to reach a solution. By moving from �xed

length genotype to the adaptation of variable length genotype, GP improves the

capabilities of conventional GA.

In GP the genotype (i.e. computer programs) is composed of a set of func-

tions and terminal units appropriate to the problem domain. The set of ter-

minals are either some variable atoms or some constants. The set of functions

would include arithmetic operations, mathematical functions, programming op-

erations, boolean operations or any other domain speci�c functions.

Consider the even-2-parity problem (not XOR). This problem requires that

the output is true if an even number of inputs are true otherwise it is false. The

possible set of functions for this problem would include AND, OR and NOT and

the terminals would include D1 and D2 representing the input variables. The

potential solutions would be represented as a composition of these functions

and with the help of evolution probably, the following would be found as the

solution to even-2-parity problem.

(OR (AND (NOT D0) (NOT D1)) (AND D0 D1))

GP has been successfully applied to quite a number of problems from sev-

eral domains of AI. However, for each problem a di�erent set of functions and

terminals which are appropriate to the problem are used. In most of Koza's

experiments these primitives are chosen carefully in order to (1) avoid failing to

�nd a solution and (2) improve the performance in �nding a solution.

The selection of the functions and terminals are guided by the su�ciency

property which states that "the set of terminals and the set of primitive functions

be capable of expressing a solution to the problem" [5] p.86. Since there is not

an universal set of functions which is capable of solving every problem, the need

for reducing the set of primitives to a minimally su�cient set seems justi�ed.

However, how to choose a minimally su�cient set remains an open question. In

answering the question Koza focused on determining a set of functions which

would yield a solution which is simple and elegant.

In this paper, I will focus on a di�erent aspect of selection of primitive func-

tions. Suppose that a particular function from a minimally su�cient set of

functions for a particular problem can be de�ned by some relatively more gen-

eral functions. For example, XOR can be de�ned by AND, OR and NOT. For

a particular problem requiring XOR function in the composition of its solution,
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typical GP practice would favor using XOR function since it would drastically

facilitate �nding a solution and the solution would be simple and elegant. Ex-

periments in this paper aim to discover such specialised functions by starting the

search with more general functions which can de�ne the specialised functions.

In GP practice a typical function set for each of the Monks' problems would

probably, at least, be as shown below in F function sets for each of the problem:

MONK-1: (attribute_1=attribute_2) or (attribute_5=1)

F = { EQUAL, OR, (possibly) TEST-ATTRIBUTE-FOR-A-VALUE }

MONK-2: (attribute_n = 1)

for EXACTLY TWO choices of n (n {1,2,...,6})

F = { EQUAL, TEST-NUMBER-OF-ATTRIBUTE-FOR-A-VALUE, NOT, OR, AND}

MONK-3: (attribute_5 = 3 and attribute_4 = 1) or

(attribute_5 != 4 and attribute_2 != 3)

F = { EQUAL, NOT, OR, AND}

For all of the three problems, I will use only protected division, multiplica-

tion, plus, minus and a squashing function which maps the value of an expression

after it is EVALuted to a value in the range of 1 to 0 (see later discussion).

F* = { %, *, +, -, SQUASHING }

In a previous paper, [6] I have shown that arithmetical functions together

with SQUASHING function can de�ne OR, AND and XOR and compared to

these functions they are relatively more general. In this paper I will show that

the encoding system using only the above �ve functions in F* is capable of coding

learning rules for the monks problems which would typically require explicit

introduction of the problem-speci�c-functions in the GP practice. Moreover, I'll

attempt to prove that the strategy employed can be useful in �nding solutions

to hard learning problems such as Monk 2.

3 The Model

3.1 The Encoding Schema

The potential learning rules are encoded as simple mathematical expressions

rather than bit representation. They are at variable lengths. The expressions

are produced randomly involving random numbers (in some experiments real

numbers and in others integers or the combination of the two has been tried)
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and a number of variables to be instantiated to the values of inputs from each

pattern in the training set. The mathematical operators include plus, minus

and multiplication (In addition to these MOD and division operators are also

tried. Although their absence for the experiments to be described here did not

show any noticeable di�erence, it reduced signi�cantly the computational cost

of processing individuals). A typical expression for a problem with two input

values would look like this:

(((1 + *I1*) + (*I2* * *I1*)) - (( 0 - *I2*) - (*I1* * *I2*)))

This expression is randomly produced for a problem with two input values.

*I1* and *I2* are the variables to be instantiated to the input values from the

patterns at each time of evaluation.

When generating the expressions a variable parameter called *percentage* is

used to impose how complex we want the expressions (i.e. longness or shortness

of the expressions). It can have values from 0 to 100. The higher the percentage

value the more complex the expression tends to be. In the experiments variable

*percentage* values are used depending on the complexity of the problem (in

the range of 75 to 85).

Internally each of the expressions is represented as a tree. This structure

is used as a basis of applying genetic operators: crossover and mutation. A

random point in selected expression (tree) is chosen as crossover or mutation

point. More details will be given about this later. The typical structure of an

expression would look like as in Figure 1.

In order to balance the behavior of the expressions (i.e. the bias toward

positive expressions) half of the expressions are given a minus sign in front of

them. This is to achieve, potentially an equal chance of producing negative and

positive values when generating the expressions in the initial population.

3.2 Genetic Algorithms

The Schema Theorem developed by Holland[4] based on genetic search has been

proven to be useful in many applications involving large, complex and deceptive

search spaces [3]. So genetic search is most likely to allow fast, robust evolution

of genotypes encoding for potential learning rules as mathematical expressions.

Using Genetic Algorithms (GA) the model is implemented in LISP. The top

level structure of the system exhibits the following:

1. Initialize the population of expressions

2. Evaluate each expression and determine its �tness

3. Select expressions to reproduce more

4. Apply genetic operators to create new population
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The expression: (*I1* - ((*I2* + 1) * 0))
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Figure 1: Tree representation of an expression.

5. If the solution found or su�cient number of generations are created then

stop; if not go to 2.

The initialization technique is randomly generating mathematical expres-

sions. This introduces the least amount of domain speci�c knowledge into the

initial population through the variables used in the expressions. Unlike Koza's

genetic programmingapplied to particular problems there are no domain speci�c

functions. Only four mathematical functions are allowed; addition, subtraction

and multiplication and protected division.

3.2.1 Evaluation

In order to provide a basis to determine the �tness of the expressions, each

generation the expressions are evaluated using Lisp's "EVAL" statement by

instantiating input values for each of the patterns from the training set.

The �tness of an expression is based on its success in learning a speci�c task.

Since the target outputs are in the range of 0 to 1, the values, once obtained

after the evaluation of the expressions, are mapped to values between 0 and 1 by

using a squashing function. Several functions have been tested in this mapping

including logistic activation function used by [9]. One of the functions which
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showed the most success, especially in mapping to binary target outputs, was

the following:

if value > 1 return 1

if value < 0 return 0

otherwise return the value

The �tness (success) of the individual expression is computed by testing them

on all training patterns, and dividing the total error by the number of patterns,

subtracting from 1 and multiplying by 100 yielding a �tness percentage between

0 and 100.

The expressions are ranked after each generation according to their success.

Those who are higher in the rank (higher scoring ones) are said to be most

�tting expressions.

3.2.2 Selection

The purpose of selection in GA is to give better opportunity of reproducing

to those members of the population which shows better �tness. For the model

this means to select those expressions with higher scores (beginning part of the

rank) and give them more chance to reproduce.

In the model, parent selection technique for reproduction is normalizing

by using an exponential function taken from Whitley's [12] rank-based selec-

tion technique. The function generates integer numbers from 1 to population

size. The generation of numbers exhibits characteristics of a non-linear function

where there is more tendency to produce smaller numbers (since higher scoring

expressions are on top of the rank).

The function is Z = X�

q

X�X�4�(X�1)�Y

2�(X�1)

The selection algorithm is based

on the X, Y, Z values in the above formula where X is a bias computed as 1+Y

where Y is a random number between 0 and 1. The value of Z lies between 0

and 1 and in the rank-ordered population N the expression at position N �Z is

chosen.

The number produced by this function is used as an index to the ranked

population of expressions from highest scoring ones to the lowest scoring. Then,

after producing two indices by using the selection function the corresponding

expressions are selected to undergo the genetic operators.

3.2.3 Genetic Operators

Applying genetic operators introduces variation to the population of expres-

sions and allows the components (genes) of better performing expressions to

live longer. This creates the necessary environment to cause evolution. In order

to accomplish this it uses two di�erent genetic operators; crossover and muta-

tion. However, implementation of the both of the operators used by the system
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are di�erent than conventional implementations on bit strings since the length

of expressions is variable.

In order to apply genetic operators two parent expressions are selected by

using the selection function. The crossover algorithm (one point) requires that

a point should be selected on each parent at random dividing parents into two.

Then the corresponding parts of the parents are exchanged producing two di�er-

ent children. The internal representation of expressions in the system is binary

tree representations. In order to choose a point in this tree two di�erent prob-

abilities are used. One probability determines whether we want to go to the

left or right branches of the tree and the other determines whether to go down

more or to stay at that level. Figure 2 shows systematically how these are

implemented in the system.

if mutate

then create new expression

else

if at end node of either tree

or probability-down > cutoff

then swap parts of trees

else

if probability-left > cutoff

then go down on the left branch

and recurse

else

go down on the right branch

and recurse

Figure 2: Crossover and mutation algorithm.

When the point is chosen, the next thing to decide is whether there will be

a mutation. If there will be a mutation on both of the trees at that point a new

expression is added. Otherwise the parts of the trees side apart from that point

are swapped.

4 Experiments and Results

The model is applied to Three Monks' Problems and Parity problems. The

performance of the model on the MONKS's problems is tested using both the

original coding of training and testing sets where attributes might have a value

in the range of 1 to 5 and the binary coding of these original sets (except that
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MONK1 is not tested for binary coding). The parameters of GA include a

population size of 300, 250 generations, 90 percent probability of crossover and

20 percent probability of mutation. The length of the individuals are determined

probabilistically by a scale down factor which was set to 0.75 in most of the runs.

This would reduce the probability of growth of the expressions gradually during

their creations as well as during the application of the Genetic Operators.

In this particular application of GA on the variable length genotypes, it is

not very easy to decide what set of GA parameters to use. Koza uses 90 and

0 percent probability of crossover and mutation respectively. His population

size is at least 500 depending on the problem and the number of generations

is 51. There are two di�erent issues of concern in deciding what probability

of crossover and mutation to use. These issues are also the problems of GP

like practices and described in detail below. For the moment it is su�cient

to say that since the number of possible solutions is very large for any given

problem, when initialising the populations one wants to include as much useful

expressions as possible (a good diversity) and maintain the diversity during the

process of evolution by means of a higher probability of crossover and mutation.

However, this might increase the probability of loosing useful building blocks

since it is not clear in this sort of representation whether the new individual

created after the genetic operators will be at least as much useful.

The best results of more than 30 runs are given below. One of the �ndings

of the experiments is that a satisfactory solution has not been found in every

run. This is not unusual in either GA or GP practice. They both involve a

probabilistic process in creating an initial population, in selection of individuals

for genetic operations and in selecting a point on the individual for crossover.

For this reason, they can not guarantee that any given run would produce a

successful solution. It is the usual convention to take independent multiple runs

for the same problem to �nd a satisfactory solution.

BEST RESULTS

Original Coding Binary Coding

Training Testing Training Testing

MONK 1 91 88 - -

MONK 2 74 68 79 69

MONK 3 93 98 93.5 97

The results obtained are better than some of the learning algorithms used in

the comparison experiment of Thrun [11]. The performance on MONK 1 and

MONK 3 is at the level of competing with most of the algorithms. Although

the performance on MONK 2 is very low, this is not surprising and similar to

the results obtained by Thrun. Moreover, in a recent extension of the experi-

ments [7] where the representation is improved and the performance in learning,

especially on the MONK 2 problem, is increased.
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The results emphasise how the encoding can enable us to evolve learning

rules for these problems with �xed, general and non-problem-speci�c set of

functions. However there are several problems observed during the course of

the experiments. They include the di�culty and the computational cost of

reaching a solution for complex and larger problems when usin a GP like model.

In the discussion section these problems and their possible solutions will be

explained within the context of Genetic Programming.

The following are some of the evolved learning rules for the problems. The

�rst of the two numbers at the top of each learning rule shows the success

level on the testing and the second shows the success level on the training set

respectively.

The evolved learning rules are a more complex re-representation of the origi-

nal learning rules. Although they don't always produce 100 percent performance

in most cases they provide satisfactory success.

Evolved Learning Rules for MONK 1:

In the run producing the �rst learning rule for MONK 1, random numbers

between 0 and 1 are used. This facilitates �nding a solution but in later exper-

iments they have been removed. Removing random numbers implies that the

solutions merely correspond to the some sort of relationship among the input

variables described in terms of �xed set of functions. The performance of sec-

ond learning is very close to the �rst one but it does not make use of random

numbers

Solution 1) 0.885742 0.916289

(- (- (|%| (- *I1* 0.901633) (- (+ (* *I6* 0.55636)

(- (* (- (|%| (- (+ (|%| *I5* *I3*) (* *I4* *I1*)))

(- *I1* *I2*))) (* *I5* 0.720715))))))

(- (|%| (- *I1* 0.050599) (- (+ (* *I6* 0.55636)

(- (* (- (|%| (- (+ (|%| *I5* *I3*) (* *I4* *I1*)))

(- *I1* *I2*))) (* *I5* 0.720715))))))))))

(|%| *I1* *I2*))))

Solution 2) 0.870968 0.913179

(+ (- *I4* (|%| *I4* (- (* (- (* (- (|%| *I3* *I5*)) *I6*))

(- (* *I5* *I6*)))))) (- (* *I4* (- (+ *I4*

(* (- *I1* *I2*) *I5*))))))

Evolved Learning Rules for MONK 2 (Binary Coding):

The following are the rules for the Monk 2 problem. Note that the model

is relatively successful in coding for the rules of the training set but shows

poor performance generalising over the testing set. This is typical for the hard

learning problems such as parity problems or Monk 2 where the learning rule
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contains a relationship among the input variables. Although it is very di�cult to

get a successful performance on such problems, in general, the poor performance

observed here is not solely due to the strategy employed in the experiments.

This is proved to be the case as a result of our control experiment on the parity

problems discussed later in the section. As it will be explained later in the

discussion section, it has a close link with the way GP like practices.

Solution 1) 0.687865 0.745562

(- (- (* *I17* (- *I12* *I6*))) (* (- *I9* *I8*) *I14*))

Solution 2) 0.668543 0.739645

(- (|%| (- (* (+ *I3* *I5*) *I7*))

(- (+ (- (+ *I6* *I11*)) *I16*))))

Evolved Learning Rules for MONK 2 (Original Coding)

0.661737 0.794811

(|%| (- (+ (- 0 *I1*) (- *I2* *I2*)))

(- (- (- (* 2 *I3*) (+ *I5* *I1*))) (+ *I1* *I5*)))

Evolved Learning Rules for MONK 3 (Binary Coding):

0.973482 0.935242

(- (- (* *I12* *I13*) (+ *I6* *I14*)))))

Evolved Learning Rules for MONK 3 (Original Coding)

The learning rule evolved for MONK 3 (original) is the simple but perfect

solution discovered in terms of the functions and random numbers used. Here

the range of random numbers was 10. The rule is easily understandable and

corresponds exactly to the second part of 'OR' in the original learning rule of

MONK 3: attribute �ve is not equal to four and attribute 2 is not equal to 3.

Note that the evolved expression implicitly code for relative more specialised

functions EQUAL, NOT and AND than arithmetical operators. This clearly

demonstrates the power of the model as a potentially useful tool in discovering

learning rules for learning problems. The resulting rules can sometimes be a

complex and totally new representation or simple re-representations.

0.983607 0.935651

(- (* (- *I5* 4) (- *I2* 3)))))

4.1 Parity Problems: a control experiment

In order to test whether the poor result obtained on MONK2 is directly at-

tributable to the coding strategy I have carried out a control experiment. It

involved testing the model on the similar hard learning problems such as parity.
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The MONK2 and Parity problems are similar in that the learning rule describing

either refers to some kind of relationship among the input variables. The general

rule for parity problems states that the output is true if there are even number

of true values among the input values. As it can be observed from the following

results the model can code for the solutions to the supervised tasks where the

learning rule describes a relationship among the input variables. However, when

the problem gets larger and more complex (5 bit-parity or higher) it becomes

more di�cult for the model to code for the solution. In this case, a larger pop-

ulation size and an increase number of generations as well as longer and more

complex representations of the solutions may be required. For example Koza

in his experiments with even-5-parity problems increased the number of pop-

ulation from 4000 to 8000 to �nd a solution [5]p.533. This is a huge number

compared to our 300 population size and 250 generations.

followings are the results of evolving learning rules for the parity problems.

Note that for each of the problem our �xed set of functions are capable of coding

at least for OR, AND and NOT.

Evolved Learning Rules for 2-Bit-Parity Problem

1.00

(|%| (- (- *I1* *I2*)) (- (- (+ *I1* (- (* *I2* *I2*))) *I2*)))

1.00

(+ (+ *I2* *I1*) (- (* *I2* (+ (- (+ *I1* *I1*)

(- (* *I2* (+ (- *I1* *I2*) *I2*)))) *I1*))))

Evolved Learning Rules for 3-Bit-Parity Problem

1.0

(+ (- (- (- (|%| *I1* (- (* (- (* *I2* *I1*)

(+ *I2* (* *I3* *I1*))) (+

(* (- (+ *I2* *I1*)) *I3*) *I1*))))) (+ (+ (- (* *I1* *I1*)) (*

(- (+ *I2* *I3*)) (- (+ *I1* (+ (- (- *I2* (- (* *I2* *I2*))))

*I1*))))) *I2*)) (- (- *I1* *I3*) *I1*)) (- (* (- (* (- (+ *I3*

*I3*) *I3*) (+ (- (|%| *I3* *I2*)) *I1*))) (- (- (- (- *I2* (-

(|%| (+ *I2* *I2*) *I2*)))) *I2*)))))

1.0

(- (+ (- (- (|%| (- (* *I3* *I2*)) (* *I1* (- (|%| (- (+ *I2*

(+ *I1* (* *I1* (|%| *I3* *I3*))))) *I3*)))))

(+ *I2* (- (+ *I1* *I3*))))

(- (* (|%| *I1* (- (+ *I3* *I2*))) (- (- *I2* *I1*) *I1*)))) (|%|

(- (- (- (+ (- (- *I2* *I3*)) (- (- (- *I3* *I3*)) *I2*)) (|%|

(+ (- (- *I1* *I1*)) (- *I2* *I2*)) *I1*)) *I2*)) (- (- (+ *I1*

(* (+ *I1* *I2*) *I2*))) (- (* *I3* *I3*)))))
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Evolved Learning Rules for 4-Bit-Parity

0.9375

(+ (+ (- (- (+ (+ *I2* (- *I4* (+ (- (* *I3* *I1*)) *I1*)))

(- (- (- (+ (|%| (* *I4* *I1*) *I2*) (- (|%| *I3*

(+ *I2* *I1*))))) (- (* (- (|%| *I4* *I3*)) (- *I2* *I3*))))))

(|%| (- (|%| *I4* (* *I1* (|%| *I1* (+ *I3* *I4*)))))

(* *I3* (+ *I1* *I2*)))) (- (|%| (- (- (* *I3* *I2*) *I3*))

(- (+ (- (|%| *I1* *I3*) *I4*) *I4*) (- (- *I4*

(- (+ (- (- (- (- *I4* *I3*)) *I2*) *I4*) *I2*))))))))

(* (- (|%| (- (- *I1* (- (* *I1* *I4*)))) *I3*)) (- (|%| (- *I2*

(- (|%| *I4* *I2*))) *I4*)))) (- (* (- (+ (+ *I4* *I4*) *I3*))

(- (|%| (|%| (- (* (|%| *I4* *I2*) *I4*)) *I4*) (- (- (- *I4*

*I3*)) *I1*))))))

0.9375

(+ (- (+ (- (- *I4* (- (- *I1* (- (- *I3* *I2*)))))

(* *I1* (+ *I4* *I4*)))

(* (- (+ (- (* (- (|%| (- (- (+ *I2* *I3*)) (- (+ (|%| *I3* *I3*)

*I4*))) (+ *I2* (- (* *I3* *I3*))))) *I3*)) (* (+ *I4* *I2*) *I4*)))

(* (- (+ (- (- (* (- (- (* *I3* *I1*) (- (* *I3* (- (+ *I2* *I2*)))))

) (+ *I2* *I2*)) *I3*)) *I4*)) (* (|%| *I2* (+ *I3* *I4*)) *I1*))))

(|%| (- *I3* (- (* *I3* (+ *I2* *I1*)))) (|%| (- (+ (- (- *I1*

(- *I2* *I4*))) (- (* *I4* *I1*)))) *I1*))) (* (- (* (|%| *I3*

(* (- *I4* *I2*) (- (* *I4* *I4*)))) (- *I4* *I2*))) (- (|%| (-

(- (- (- *I4* (- (+ *I2* *I3*)))) (+ *I4* *I3*))) (- *I3* *I1*)))))

5 Discussion and Future Research Directions

In this paper, the main concern was to see whether the genetic based model

will be able to evolve learning rules for Three Monk's problems starting from

non-problem-speci�c functions. Achieving this aim would prove that (1) the en-

coding strategy and evolution are useful to discover or re-represent the problem-

speci�c-functions describing the learning rules by using a relativelymore general,

�xed set of non-problem-speci�c functions and that (2) the model is helpful in

solving hard learning problems such as Monk 2 and parity problems. The results

of the experiments in [6] and being able to discover or re-represent solutions to

Monk 1 and Monk 3 problems in this paper provided evidence in support of the

�rst hypothesis. Failing to �nd a successful solution for Monk 2 seems a poor

support for the second hypothesis. However, the model is able to �nd solutions

to the parity problems which are similar to Monk 2 problem where the learning
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rule is described in terms of relationships among input values. This provides an

additional support in favor of the second hypothesis. Moreover, when the prob-

lem gets larger and more complex (i.e. moving from 3 to 4 bit and higher parity

problems), evolution of successful learning rules becomes more di�cult. As the

complexity and size of the problem increase, the current strategy of encoding

should search for the larger space to �nd the solution. One of the problem comes

from the non-convergent characteristic of GP like methods. When a solution or

a more �t individual is found during the course of the evolution, it can easily

turn to be an un�t individual after the application of crossover. Although, as a

whole the average �tness of the population increases over generations, it is not

very clear whether evolution works as e�ectively as it is in conventional GA. It

seems that tree representation of the individuals and the richness of the alpha-

bet make it more di�cult to move to a decreased dimensionality in the search

space.

The second issue is that more complex and larger problems might require

solutions which are represented hierarchically. In fact, this is exactly what I

have found through my recent experiments [7]. The new representation pro-

vides a direct hierarchical coding for the possible solutions to Monks and parity

problems and improves the possibility of �nding solution as well as the speed

of it. Although Koza claims that GP is most proper for those problems which

require hierarchical representation, there is a strong evidence in my experiments

and in [8] that this aspect of the GP might be quite limited. In the new ex-

periment, the representation is allowed to be random expressions organised in

layers so that it can code for larger and more complex solutions [7]. In the new

experiments, by incrementally building up expressions on the way towards the

solution it has been found that (1) in every run a solution can be reached, (2)

the solution is reached faster and (3) the power of representation is improved

to code for more complex and larger problems.

For all of the experiments reported in this paper the population size and

number of generations used are 300 and 250 respectively. This is quite a small

number compared to the population size of 4000 and 250 number of genera-

tions used by Koza in his experiments with parity problems. Although Koza

used problem speci�c boolean functions such as OR, AND, NAND, and NOT,

the experiments reported in this paper only used a �xed set of mathematical

functions. Thus, the model seems to be useful and e�cient in discovering rules

for hard learning problems. However, the solutions produced are complex and

di�cult to interpret. The complexity (i.e. the longness) of the solution is a

general problem in GP practices but the solutions are relatively more easily in-

terpretable due to the problem speci�c functions used. One of the next step in

the future is to �nd ways of simplifying these solutions, probably, by editing as

used by Koza in Genetic Programming. However, I am hoping that a thorough

analysis of the evolved learning rules will help to �nd out how the model works

in the future.

Finally, an important �nding of the experiments has been raising a ques-
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tion about the ability of GP like practices to generalize over the test cases.

Although, recent experiments shows that the model can generalise over simple,

linearly separable problems, there is no clear evidence whether it can succesfully

generalise over hard learning probelms. This issue should be one of the major

concern for the next experiments.
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