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Abstract

The conventional mechanism used to gain

fault tolerance is redundancy. In contrast,

this paper suggests that arti�cial evolution

can be used to produce systems that are in-

herently insensitive to faults, with fault tol-

erance becoming part of the task speci�ca-

tion. The possible techniques are investi-

gated, and the study is grounded in a real-

world evolved electronic control system for

a robot.

1 Introduction

If a defect occurs in the underlying im-

plementation of a fault-tolerant system, it

either continues una�ected or undergoes

graceful degradation. In a harsh environ-

ment or a safety-critical application, a sys-

tem might be required to retain a certain

level of ability even if a computer's memory

becomes slightly corrupted, or a few transis-

tors fail. Fault tolerance is especially impor-

tant in designs for integrated circuits, be-

cause it increases the yield of usable chips

in the presence of unavoidable silicon de-

fects, permitting larger and cheaper chips.

Indeed, wafer-scale integration is not feasi-

ble without fault tolerance [1].

This paper investigates the production of

fault-tolerant designs by arti�cial evolution.

Firstly, I describe an evolved electronic con-

trol system to serve as an example in what

follows. Then I shown that in some circum-

stances, evolution will automatically tend to

produce designs that are insensitive to some

faults. Next, the discussion is broadened to
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the practicalities of explicitly including fault

tolerance as one of the properties required of

the evolving system. I then note that defec-

tive components can sometimes be exploited

by evolution as if they were working parts.

Finally, we see that the evolution of these

designs that are by their nature insensitive

to faults can go hand-in-hand with more tra-

ditional redundancy approaches.

2 A Real-World Example

The specimen evolved system used as an ex-

ample in this paper is a real electronic cir-

cuit evolved to control a real robot. The cir-

cuit is a simple example of \evolvable hard-

ware" | a recon�gurable electronic archi-

tecture that can physically instantiate many

possible circuits. By placing the con�gura-

tion under evolutionary control, it is pos-

sible to evolve electronic circuits that are

evaluated by their performance as real phys-

ical circuits implemented in hardware. This

technique has profound implications, but

here I will only sketch out the details nec-

essary for the rest of this paper, and the

interested reader is referred to [2].

The objective was to cause a two-wheeled

robot always to move, but yet to keep away

from all four walls of its rectangular enclo-

sure as much as possible. The evolvable

hardware architecture for the control sys-

tem is shown in Figure 1: I call it a \Dy-

namic State Machine" (DSM). It is based

on the well-known \direct-addressed ROM"

implementation of a �nite-state machine [3],

but has been endowed with the potential

for much richer dynamical behaviour, by

putting many of the temporal constraints

under genetic control. As in the �nite-

state machine, a RAM holds a look-up ta-

ble of the next state to follow each possi-



1 1 16101

Motors

MM
Clock

Evolved

1k by 8 bits RAM

Evolved RAM Contents

G.L.

G.L.

10 Address inputs 8 Data outputs

Sonars

Figure 1: The evolvable DSM.

ble (present-state, input) combination. The

clocked state-register that would normally

hold the present state has been replaced by a

\Genetic Latch" (G.L.), which behaves like

the state register except that which of the

variables are latched according to the clock,

and which are passed straight through asyn-

chronously is under genetic control. Ge-

netic latches also control whether any of the

inputs or outputs are clocked. All of the

latches run from a common clock, but its

frequency is under genetic control, as is the

contents of the RAM.

The temporal freedom available in this

arrangement means that the evolved DSM

robot controller is able to accept directly

the echo pulses from a pair of time-of-ight

sonars mounted on the robot facing left and

right, and to generate the pulse trains to

drive the two d.c. motors as its outputs. For

the simple wall-avoidance behaviour, only

two of the RAM's data outputs and four of

its address inputs were enabled, so only 32

bits of RAM and six latches were placed at

the evolutionary algorithm's disposal.

A 16-bit binary code for the clock period,

a bit for each signal passing through a ge-

netic latch, and the 32 bits of RAM were

all encoded directly onto a linear bit-string

genotype. A conventional generational ge-

netic algorithm (GA) was used [4], but with

elitism (the �ttest individual of each gener-

ation was always copied once without mu-

tation into the next) and linear rank-based

selection. The bitwise mutation probability

was set to give an expected rate of one per

genotype, the crossover probability was 0.7,

and the population size was 30. Fitness was

measured according to the performance of

the real hardware DSM in controlling the

real wheels (which were just spinning in the

air), but the sonar echo signals were syn-

thesised in real-time by a simulator. The

products of evolution in this \virtual envi-

ronment" have been veri�ed to perform well

in the real world | after about 40 genera-

tions, the behaviour is to move reliably to

the centre of the arena and wander around

there, even if started o� facing into a corner.

Armed with this real-world example of

a piece of electronics evolved to control a

robot, the following sections discuss the evo-

lution of fault tolerance. Note, however,

that the concepts are general and are not

con�ned to this particular arrangement.

3 The Evolution of Fault

Tolerance

3.1 Via the Genetic Mutation

Operator

A single-stuck-at (SSA) fault means that

one signal in the system is clamped at an

invariant value due to a defect. For a

RAM chip, a SSA fault in the memory array

causes a particular bit of the RAM always

to read the same (either always 0 or always

1) no matter what is written to it, while all

of the other bits function correctly. Now re-

call that for the evolving DSM example, the

contents of the RAM chip were directly en-

coded, bit-for-bit, onto the bit-string geno-

type. As a consequence of this encoding, an

application of the genetic mutation (bit-ip)

operator to the section of the genotype cod-

ing for the RAM causes one of the RAM's

bits to be inverted | the same e�ect as an

adverse SSA fault. This section will show

that evolved systems automatically tend to

have some insensitivity to faults that have

the same e�ect as genetic mutations, as in

this example. The phenomenon arises from

the way in which the �tness landscape [5]

(the \topography" of �tness values assigned

over the space of all possible genotypes) in-

uences the distribution of individuals in an

evolving population.

In considering the evolution of nucleic



acids, Eigen [6] de�nes a \quasi-species" as

\a mutant `clan' that is ordered around one

or a degenerate set of selected master se-

quences, containing weighted contributions

from all mutants present in the distribution.

: : :This distribution, and not a single type,

is the target of selection." For a converged

population, which has arrived at a local op-

timum, it can be imagined that the popu-

lation forms a \cloud" on the �tness land-

scape, unable to converge completely upon

the optimal genotype because of the forces

of mutation, but held around it by crossover

and selection. Consequently, optima that

have surrounding regions of high �tness will

be favoured over isolated optima standing

out alone amongst low �tness genotypes, be-

cause it is around the optimum that most of

the individuals will be found, not exactly at

the optimal genotype.

Eigen [6] summarised several experiments

which demonstrate this e�ect in a model

used for the study of molecular evolution.

Here, I adapt one of those experiments to

the GA described in the previous section.

Consider a population of 5-bit genotypes.

Let the Hamming distance of an individual

i from the sequence 00000 be h(i), so that

h(i) is simply the number of `1's in i's geno-

type. Then de�ne i's �tness as:

�tness(i) =

8

>

>

<

>

>

:

10 if h(i) = 0

9 if h(i) = 5

5 if h(i) = 4

0 otherwise

This �tness landscape consists of two op-

tima. The �rst is a global optimum of 10

for the genotype 00000, which is an isolated

optimum: all genotypes near it in Hamming

space (within three bit-ips) give zero �t-

ness. The second optimum is for the se-

quence 11111, and has the slightly inferior

�tness of 9, but is surrounded by a region

of medium �tness, such that all �ve possible

1-bit mutants of the optimum have �tness

5. All other genotypes confer zero �tness.

The GA was as described earlier (expected

mutation rate of 1 per genotype, population

size 30) except that the elitism mechanism

was removed. To initialise the population,

all of the genotypes were set to the 00000

global optimum, and the GA was then let

to run. After 200 generations, the distri-

bution of the population was measured by

counting the number of individuals at each

of h(i) = 0; 1; 2; 3; 4; 5. The measurements
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Figure 2: Mean population distribution.

were averaged over 100 runs of the GA.

The results (Figure 2) show that the pop-

ulation nearly always moved away from the

isolated global optimum, in favour of the

slightly suboptimal �tness peak, with its

surrounding 1-bit mutant region of medium

�tness. In the �gure, the bar for h(i) = 5

is not the highest, even though the popula-

tion is converged around this point, because

there is only one possible genotype (11111)

for h(i) = 5, but there are more possibili-

ties for h(i) = 4; 3; 2; 1, as indicated. The

outcome was similar even when the elitism

mechanism was re-introduced, as long as

there was more than 10% noise added to the

�tness evaluations, or if the two optimawere

set to be of equal �tness.

So far, we have considered a highly con-

trived �tness landscape having only two op-

tima. To see whether the result applies to

more typical situations, the NK model of �t-

ness landscapes was used[5]. N is the num-

ber of binary \genes" in the genotype. Each

gene's additive contribution to the overall

�tness is a real-valued function of the values

of K other epistatically linked genes and it-

self. Each gene's function and epistatic link-

ages are chosen randomly and then held con-

stant to de�ne a static random landscape.

N is the dimensionality of the �tness land-

scape, and K its ruggedness. K=0 gives a

single-optimum landscape, and K=N � 1 a

maximally rugged (uncorrelated) one.

The GA described earlier (but with a pop-



ulation of 1000, a bitwise mutation probabil-

ity of 0.005, and no elitism) was applied to a

random N=20, K=10 landscape.

1

After 100

generations, the �ttest individual was taken,

and the mean �tness decrease caused by sin-

gle mutations was calculated (averaged over

all possible single mutations). Then, a new

random N=20, K=10 landscape was gen-

erated, and exhaustive search was used to

�nd that genotype with �tness closest to the

one found by the GA on the other land-

scape. The mean �tness decrease of this

non-evolved individual in the presence of

single mutations was then compared to that

of the evolved one. Repeating the entire pro-

cess 250 times (until the results were statis-

tically signi�cant) showed that the �tness

decrease of the evolved individuals in the

presence of a single mutation was 5% less

than for non-evolved ones of equal �tness

2

,

on average.

It can be tentatively concluded that when

using a GA, the population will tend to con-

verge upon a high-�tness region of the �t-

ness landscape in which single mutations are

less deleterious, on average, than if a simi-

lar result had been arrived at through non-

evolutionary means.

3

Therefore, if the in-

troduction of some type of fault a�ects the

phenotype in the same way as would a ge-

netic mutation, then the evolved system will

automatically tend to tolerate a fault of that

type better than a non-evolved (designed)

system would. The e�ect will certainly de-

pend upon the shape of the particular �t-

ness landscape, the mutation rate and the

population size, and it is not yet known if it

is of any practical importance: the 5% im-

provement seen on N=20, K=10 landscapes

is small.

As mentioned earlier, this phenomenon

should cause the evolved DSM wall-avoider

to be less sensitive to SSA faults in the RAM

memory array than equivalent non-evolved

DSMs. Unfortunately, it has not been feasi-

ble to produce DSMs as good as the evolved

ones by other means (such as design), and

it would be too time-consuming to repeat

the comparison enough times for it to be

1

Future work will determine the e�ect of varying

these parameters.

2

If the exhaustive search could not �nd an indi-

vidual with �tness very close to the evolved one, or

if the GA produced a freak very-poor result, then

that trial was discarded.

3

This may also apply, to a decreasing extent, to

greater numbers of simultaneous mutations.

Fitness
Mean

32 different SSA faults

    Mean Faulty

    No Faults

    Mean Random

    2.60

    1.60

Figure 3: Sensitivity to adverse SSA faults.

statistically signi�cant. However, Figure 3

shows that the evolved wall-avoider DSM is

quite robust to adverse SSA faults | obser-

vation of the robot's qualitative behaviour

bears this out | but it is not known how

much is due to the e�ect described above,

and how much is simply a property of the

DSM architecture. The 32 possible adverse

SSA faults were each emulated in turn by

writing the opposite value to that speci�ed

by the genotype to the RAM bit in ques-

tion. For each fault, the DSM was then used

to control the robot (in the virtual environ-

ment) for sixteen 90-second runs from the

same starting position, and the average �t-

ness was measured to give the data in the

�gure.

This section has shown that when the in-

troduction of some type of fault has the

same e�ect on the phenotype as would a ge-

netic mutation, then evolved systems will

tend to be less sensitive to those faults

than equivalent systems produced by non-

evolutionary means. The observation is not

con�ned to SSA faults: if, for example, the

connectivity matrix of a neural network is

directly encoded onto the genotype, then

evolved networks should tend to be less sen-

sitive to spurious breaking and creation of

connections than non-evolved ones. The

magnitude of the e�ect in a practical appli-

cation will depend upon the particular �t-

ness landscape; it is not yet known if it is

great enough to be useful.

3.2 With an Environment of

Faults

The argument of the previous section ap-

plies only when the genetic encoding is such

that the faults of interest have the same phe-



notypic e�ect as a genetic mutation. What

about faults and encoding schemes where

that is not so? What if greater tolerance

to faults is required than can be obtained

in that way? Then the evolving system

needs to be deliberately subjected to the

faults of interest during its �tness evalua-

tions, so that tolerance to them is an ex-

plicit part of the task to be performed

4

: the

phenotype must operate in an environment

of faults. The exposure to faults can most

easily be done in a software simulation, but

some fault emulation is also possible in an

evolvable hardware architecture | the abil-

ity to introduce SSA faults into the DSM's

RAM is an example (see previous section).

A problem with the \environment of

faults" method arises when only a small

proportion of the possible faults of interest

have a serious e�ect on the system, but it

is not known beforehand which those will

be: it depends on how the system happens

to evolve. If, when assessing the �tness of

an individual, it is not subjected to all of

the faults during its evaluation, but rather

to a random selection of them, then it will

often be those individuals which are lucky

enough not encounter any crucial faults that

score best, instead of those which are actu-

ally better. Such very noisy �tness evalua-

tions reduce the e�cacy of the evolutionary

process. For all but the smallest systems, it

is prohibitively time-consuming to test each

individual in the presence of every possible

fault, so some way of adaptively choosing

those faults likely to disrupt the evolving

system is required.

Hillis [8] faced a directly analogous prob-

lem in generating test cases for the eval-

uation of evolved sorting networks. They

quickly evolved to sort all but a few test

cases correctly, but it could not be deter-

mined a priori which would be the \prob-

lem" tests. Hillis' solution was to co-evolve

test cases along with the sorting networks:

the networks were scored according to how

well they sorted the test cases, and the

test cases by how well they found aws in

the sorters. The continuous and automatic

adaptation of test cases by co-evolution

was found to be superior to simply vary-

ing the test cases over time or over the two-

dimensional grid upon which the population

was spatially distributed.

4

There is also the possibility that the Baldwin ef-

fect could occur, aiding the evolutionary process[7].

Hillis' result strongly suggests that the

use of a co-evolving population of faults may

be a way to subject individuals to faults dur-

ing their evaluations, but without wasting

time on faults to which they are already ro-

bust. It may then be possible to evolve toler-

ance to all of a large set of faults of interest,

because the co-evolving faults would soon

adapt to thwart a group of individuals that

could be seriously a�ected by any subset of

them. There is a danger that the co-evolving

populations will become trapped in a cycle,

without making useful progress: more em-

pirical investigation into the applicability of

this approach is needed.

3.3 By Exploiting Resources

If a particular defect persists for an extended

period of time while the system is evolving,

then the behaviour of the faulty part be-

comes just another component to be used:

the evolutionary algorithm does not \know"

that the part is supposed to do something

else. For example, one of the SSA faults

(the one marked with an arrow in Figure 3)

was introduced as a permanent feature in

the DSM, and the evolved controller was al-

lowed to evolve some more. At �rst, the

�tness of the population was dramatically

lowered, with none of the individuals per-

forming as well as the best of the population

used to, but after 10 generations the mean

and best �tnesses of the population had re-

covered to their previous values. In this

case, the faulty part was tolerated rather

than used , but in general this need not be

so. This mode of fault tolerance may prove

useful when transferring an evolved system

between pieces of hardware having di�er-

ent defects, or to cope with slowly changing

faults in the same hardware.

3.4 By Redundancy

This paper has concentrated on how the

nature of the evolutionary process may be

used to produce designs that are inherently

fault-tolerant. However, the work reported

in [9, 10, 11] shows that the more tradi-

tional fault tolerance technique of redun-

dancy (the use of spares when faults are

identi�ed) may be integrated into an evo-

lutionary framework. A special architec-

ture for a �eld-programmable gate array

integrated-circuit is presented, which sup-



ports the \embryological" development of a

circuit speci�ed by a genome (which could

be evolved). During this development, and

even during run-time, if some of the self-

testing cells of the array are found to be

faulty, the chip can automatically redis-

tribute the expression of the genome so as to

avoid those cells. This promising approach

implies that the use of arti�cial evolution

may be able to augment the highly e�ec-

tive fault-tolerance techniques already de-

veloped for hand-designed systems.

4 Conclusion

Traditionally, humans design fault-tolerant

systems by providing spare parts. In con-

trast, arti�cial evolution can produce sys-

tems that are inherently tolerant to faults

by the nature of their construction, with-

out explicit redundancy. Viewing arti�cial

evolution as an automatic design process,

fault-tolerance can be integrated with the

behavioural requirements and respected in

all aspects of the design. Some insensitiv-

ity to faults that have the same inuence on

the system as a genetic mutation will tend

to arise \for free." Tolerance to an arbi-

trary and large set of faults can possibly be

achieved e�ciently through the use of a co-

evolving population of faults, which adap-

tively targets weak-spots. Implementation

defects that are permanent or slowly chang-

ing may even have whatever properties they

happen to exhibit put to use. Finally, the

evolutionary approach can be used as well

as more traditional redundancy methods.

This early study suggests that arti�cial evo-

lution may be well suited to the di�cult,

yet rewarding, challenge of fault-tolerant de-

sign, but much more empirical investigation

is needed.
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