
DATR: A Language for Lexical

Knowledge Representation

�

Roger Evans

y

Gerald Gazdar

z

University of Brighton University of Sussex

Much recent research on the design of natural language lexicons has made use of non-

monotonic inheritance networks as originally developed for general knowledge represen-

tation purposes in Arti�cial Intelligence. DATR is a simple, spartan language for de�ning

nonmonotonic inheritance networks with path/value equations, one that has been designed

speci�cally for lexical knowledge representation. In keeping with its intendedly minimalist

character, it lacks many of the constructs embodied either in general purpose knowledge

representation languages or in contemporary grammar formalisms. The present paper

shows that the language is nonetheless su�ciently expressive to represent concisely the

structure of lexical information at a variety of levels of linguistic analysis. The paper

provides an informal example-based introduction to DATR and to techniques for its use,

including �nite state transduction, the encoding of DAGs and lexical rules, and the rep-

resentation of ambiguity and alternation. Sample analyses of phenomena such as in
ec-

tional syncretism and verbal subcategorisation are given which show how the language

can be used to squeeze out redundancy from lexical descriptions.

1. Introduction

Irregular lexemes are standardly regular in some respect. Most are just like regular lex-

emes except that they deviate in one or two characteristics. What is needed is a natural

way of saying \this lexeme is regular except for this property". One obvious approach

is to use nonmonotonicity and inheritance machinery to capture such lexical irregularity

(and subregularity), and much recent research into the design of representation languages

for natural language lexicons has thus made use of nonmonotonic inheritance networks

(or \semantic nets") as originally developed for more general representation purposes in

Arti�cial Intelligence. Daelemans et al. (1992) provide a rationale for, and an introduc-

tion to, this body of research and we will not rehearse the content of that paper here,

nor review the work cited there

1

. DATR is a rather spartan nonmonotonic language for

de�ning inheritance networks with path/value equations. In keeping with its intendedly

minimalist character, it lacks many of the constructs embodied either in general purpose

� This edition of the present paper is to appear in Computational Linguistics.

y Information Technology Research Institute, University of Brighton, Brighton BN2 4AT, U.K.;

Roger.Evans@itri.brighton.ac.uk

z Cognitive & Computing Sciences, University of Sussex, Brighton BN1 9QH, U.K.;

Gerald.Gazdar@cogs.sussex.ac.uk

1 Daelemans & Gazdar (1992) and Briscoe et al. (1993) are collections that bring together much

recent work on the application of inheritance networks to lexical description. Other relevant recent

work not found there includes Bouma (1993), Briscoe et al. (1995), Calder (1994), Copestake

(1992), Daelemans (1994), Daelemans & De Smedt (1994), Ide et al. (1994), Lascarides et al.

(forthcoming), Mellish & Reiter (1993), Mitamura & Nyberg (1992), Penn & Thomason (1994),

Reiter & Mellish (1992), Young (1992), and Young & Rounds (1993).

c
 1995 Roger Evans & Gerald Gazdar

DATR cogs csrp 382, November 1995

knowledge representation languages or in contemporary grammar formalisms. But the

present paper seeks to show that the language is nonetheless su�ciently expressive to

represent concisely the structure of lexical information at a variety of levels of language

description.

The development of DATR has been guided by a number of concerns which we sum-

marise here. Our objective has been a language which (i) has an explicit theory of infer-

ence, (ii) has an explicit declarative semantics, (iii) can be readily and e�ciently imple-

mented, (iv) has the necessary expressive power to encode the lexical entries presupposed

by work in the uni�cation grammar tradition, and (v) can express all the evident gen-

eralisations and subgeneralisations about such entries. Our �rst publications on DATR

(Evans & Gazdar 1989a, 1989b) provided a formal theory of inference (i) and a formal

semantics (ii) for DATR and we will not recapitulate that material here

2

.

With respect to (iii), the core inference engine for DATR can be coded in a page of

Prolog (see, e.g., Gibbon 1993, p50). At the time of writing, we know of a dozen di�erent

implementations of the language, some of which have been used with large DATR lexicons

in the context of big NLP systems (e.g., Andry et al. 1992; Cahill 1993a, 1994; Cahill &

Evans 1990). We will comment further on implementation matters in Section 5, below.

However, the main purpose of the present paper is to exhibit the use of DATR for lexical

description (iv) and the way it makes it relatively easy to capture lexical generalisations

and subregularities at a variety of analytic levels (v). We will pursue (iv) and (v) in the

context of an informal example-based introduction to the language and to techniques for

its use, and we will make frequent reference to the DATR-based lexical work that has

been done since 1989.

The paper is organized as follows. Section 2 uses an analysis of English verbal mor-

phology to provide an informal introduction to DATR. Section 3 describes the language

more precisely: its syntax, inferential and default mechanisms, and the use of abbreviatory

variables. Section 4 describes a wide variety of DATR techniques, including case constructs

and parameters, boolean logic, �nite state transduction, lists and DAGs, lexical rules,

and ways to encode ambiguity and alternation. Section 5 explores more technical issues

relating to the language, including functionality and consistency, multiple-inheritance,

modes of use and existing implementations. Section 6 makes some closing observations.

Finally an appendix to the paper replies to the points made in the critical literature on

DATR.

2. DATR by example

We begin our presentation of DATR with a partial analysis of morphology in the English

verbal system. In DATR, information is organised as a network of nodes, where a node

is essentially just a collection of closely related information. In the context of lexical

description, a node typically corresponds to a word, a lexeme or a class of lexemes. For

example, we might have a node describing an abstract verb, another for the subcase of a

transitive verb, another for the lexeme love and still more for the individual words that

are instances of this lexeme (love, loves, loved, loving, etc.). Each node has associated with

it a set of path/value pairs where a path is a sequence of atoms (which are primitive

objects), and a value is an atom or a sequence of atoms. We will sometimes refer to atoms

in paths as attributes.

2 Note, however, that the de�nitions in the 1989 papers are not given in su�cient generality to cover

DATR equations with more than one (non-atomic) descriptor on the right hand side. Keller (1995)

e�ectively replaces our 1989 presentation of a semantics for DATR and his treatment is general

enough to cover descriptor sequences.

2

Evans & Gazdar Lexical Knowledge Representation

Path
Value

syn cat
verb

syn type
main

syn form
present participle

mor form
love ing

Table 1

Path/value pairs for present participle of love

For example, a node describing the present participle form of the verb love (and

called perhaps Word1) might contain the path/value pairs shown in Table 1. The paths

in this example all happen to contain two attributes, and the �rst attribute can be

thought of as distinguishing syntactic and morphological types of information. The values

indicate appropriate linguistic settings for the paths for a present participle form of love.

Thus its syntactic category is verb, its syntactic type is main (i.e., it is a main verb,

not an auxiliary), its syntactic form is present participle (a two atom sequence),

its morphological form is love ing (another two atom sequence). In DATR this can be

written as

3

:

Word1:

<syn cat> = verb

<syn type> = main

<syn form> = present participle

<mor form> = love ing.

Here, angle brackets <: : :> delimit paths. Note that values can be atomic or they can

consist of sequences of atoms, as the two last lines of the example illustrate

4

. As a

�rst approximation, nodes can be thought of as denoting partial functions from paths

(sequences of atoms) to values (sequences of atoms)

5

.

In itself, this tiny fragment of DATR is not persuasive, apparently allowing only for

the speci�cation of words by simple listing of path/value statements for each one. It

seems that if we wished to describe the passive form of love we would have to write:

Word2:

<syn cat> = verb

<syn type> = main

<syn form> = passive participle

<mor form> = love ed.

This does not seem very helpful: the whole point of a lexical description language is

to capture generalisations and avoid the kind of duplication evident in the speci�cation

of Word1 and Word2. And indeed, we shall shortly introduce an inheritance mechanism

which allows us to do just that. But there is one sense in which this listing approach is

exactly what we want: it represents the actual information we generally wish to access

from the description. So in a sense we do want all the above statements to be present

in our description; what we want to avoid is repeated speci�cation of the common

3 The syntax of DATR, like its name and its minimalist philosophy, owes more than a little to that of

the uni�cation grammar language PATR (Shieber 1986). With hindsight this may have been a bad

design decision since similarity of syntax tends to imply a similarity of semantics. And, as we shall

see in Section 4.7 below, and elsewhere, there is a subtle but important semantic di�erence.

4 Node names and atoms are distinct but essentially arbitrary classes of tokens in DATR. In this

paper we shall distinguish them by a simple case convention { node names start with an uppercase

letter, atoms do not.

5 This is an approximation since it ignores the role of global contexts { see Section 5.1, below.

3

DATR cogs csrp 382, November 1995

elements.

This problem is overcome in DATR in the following way: such exhaustively listed

path/value statements are indeed present in a description, but typically only implicitly

present. Their presence is a logical consequence of a second set of statements, which

have the concise, generalisation-capturing properties we expect. To make the distinction

sharp, we call the �rst type of statement extensional and the second type de�nitional.

Syntactically, the distinction is made with the equality operator: for extensional state-

ments (as above), we use =, while for de�nitional statements we use ==. And, although

our �rst example of DATR consisted entirely of extensional statements, almost all the

remaining examples will be de�nitional. The semantics of the DATR language binds the

two together in a declarative fashion, allowing us to concentrate on concise de�nitions of

the network structure from which the extensional \results" can be read o�.

Our �rst step towards a more concise account of Word1 and Word2 is simply to change

the extensional statements to de�nitional ones:

Word1:

<syn cat> == verb

<syn type> == main

<syn form> == present participle

<mor form> == love ing.

Word2:

<syn cat> == verb

<syn type> == main

<syn form> == passive participle

<mor form> == love ed.

This is possible because DATR respects the unsurprising condition that if at some node a

value is speci�cally de�ned for a path with a de�nitional statement, then the correspond-

ing extensional statement also holds. So the statements we previously made concerning

Word1 and Word2 remain true, but now only implicitly true.

Although this change does not itself make the description more concise, it allows us

to introduce other ways of describing values in de�nitional statements, in addition to

simply specifying them. Such value descriptors will include inheritance speci�cations

which allow us to gather together the properties that Word1 and Word2 have solely by

virtue of being verbs. We start by introducing a VERB node:

VERB:

<syn cat> == verb

<syn type> == main.

and then rede�ne Word1 and Word2 to inherit their verb properties from it. A direct

encoding for this is as follows:

Word1:

<syn cat> == VERB:<syn cat>

<syn type> == VERB:<syn type>

<syn form> == present participle

<mor form> == love ing.

Word2:

<syn cat> == VERB:<syn cat>

<syn type> == VERB:<syn type>

<syn form> == passive participle

<mor form> == love ed.

In these revised de�nitions the right hand side of the<syn cat> statement is not a direct

value speci�cation, but instead an inheritance descriptor. This is the simplest form of

4

Evans & Gazdar Lexical Knowledge Representation

DATR inheritance, it just speci�es a new node and path from which to obtain the required

value. It can be glossed roughly as \the value associated with <syn cat> at Word1 is the

same as the value associated with <syn cat> at VERB". Thus from VERB:<syn cat>

== verb it now follows that Word1:<syn cat> == verb

6

.

However, this modi�cation to our analysis seems to make it less rather than more

concise. It can be improved in two ways. The �rst is really just a syntactic trick: if the

path on the right hand side is the same as the path on the left hand side it can be

omitted. So we can replace VERB:<syn type>, in the example above, with just VERB.

We can also extend this abbreviation strategy to cover cases like the following, where the

path on the right hand side is di�erent but the node is the same:

Come:

<mor root> == come

<mor past participle> == Come:<mor root>.

In this case we can simply omit the node:

Come:

<mor root> == come

<mor past participle> == <mor root>.

The other improvement introduces one of the most important features of DATR { speci�-

cation by default. Recall that paths are sequences of attributes. If we understand paths

to start at their left hand end, we can construct a notion of path extension: a path P2

extends a path P1 if and only if all the attributes of P1 occur in the same order at the

left hand end of P2 (so <a1 a2 a3> extends <>, <a1>, <a1 a2> and <a1 a2 a3>,

but not <a2>, <a1 a3>, etc..). If we now consider the (�nite) set of paths occurring in

de�nitional statements associated with some node, that set will not include all possible

paths (of which there are in�nitely many). So the question arises of what we can say

about paths for which there is no speci�c de�nition. For some path P1 not de�ned at

node N, there are two cases to consider: either P1 is the extension of some path de�ned

at N or it is not. The latter case is easiest { there is simply no de�nition for P1 at N

(hence N can be a partial function, as already noted above). But in the former case,

where P1 extends some P2 which is de�ned at N, P1 assumes a de�nition \by default".

If P2 is the only path de�ned at N which P1 extends, then P1 takes its de�nition from

the de�nition of P2. If P1 extends several paths de�ned at N, it takes its de�nition from

the most speci�c (i.e., the longest) of the paths that it extends.

In the present example, this mode of default speci�cation can be applied as follows.

We have two statements at Word1 which (after applying the abbreviation introduced

above) both inherit from VERB:

Word1:

<syn cat> == VERB

<syn type> == VERB.

Because they have a common leading subpath <syn>, we can collapse them into a single

statement about <syn> alone:

Word1:

<syn> == VERB.

If this were the entire de�nition of Word1, the default mechanism would ensure that

all extensions of <syn> (including the two that concern us here) would be given the

same de�nition { inheritance from VERB. But in our example, of course, there are other

6 And hence also the extensional version, Word1:<syn cat> = verb

5

DATR cogs csrp 382, November 1995

statements concerning Word1. If we add these back in, the complete de�nition looks like

this:

Word1:

<syn> == VERB

<syn form> == present participle

<mor form> == love ing.

The paths <syn type> and <syn cat> (and also many others, such as <syn cat

foo>, <syn baz>) obtain their de�nitions from <syn> using the default mechanism

just introduced, and so inherit from VERB. But <syn form>, being explicitly de�ned,

is exempt from this default behaviour, and so retains its value de�nition, present

participle. And any extensions of <syn form> obtain their de�nitions from <syn

form> rather than <syn> (since it is a more speci�c leading subpath), and so will have

the value present participle also.

The net e�ect of this de�nition for Word1 can be glossed as \Word1 stipulates its mor-

phological form to be love ing and inherits values for its syntactic features from VERB,

except for<syn form>which is present participle ". More generally, this mechanism

allows us to de�ne nodes di�erentially: by inheritance from default speci�cations, aug-

mented by any non-default settings associated with the node at hand. In fact, the Word1

example can take this default inheritance one step further, by inheriting everything

(not just <syn>) from VERB, except for the speci�cally mentioned values:

Word1:

<> == VERB

<syn form> == present participle

<mor form> == love ing.

Here the empty path <> is a leading subpath of every path, and so acts as a \catch

all" { any path for which no more speci�c de�nition at Word1 exists will inherit from

VERB. Inheritance via the empty path is ubiquitous in real DATR lexicons but it should

be remembered that the empty path has no special formal status in the language.

In this way Word1 and Word2 can both inherit their general verbal properties from

VERB. But of course these two particular forms have more in common than simply being

verbs { they are both instances of the same verb, love. By introducing an abstract Love

lexeme, we can provide a site for properties shared by all forms of love (in this simple

example, just its morphological root and the fact that it is a verb).

VERB:

<syn cat> == verb

<syn type> == main.

Love:

<> == VERB

<mor root> == love.

Word1:

<> == Love

<syn form> == present participle

<mor form> == <mor root> ing.

Word2:

<> == Love

<syn form> == passive participle

<mor form> == <mor root> ed.

So now Word1 inherits from Love rather than VERB (but Love inherits from VERB, so the

latter's de�nitions are still present at Word1). However, instead of explicitly including the

atom love in the morphological form, the value de�nition includes the descriptor <mor

6

Evans & Gazdar Lexical Knowledge Representation

root>. This descriptor is equivalent to Word1:<mor root> and, since <mor root>

is not de�ned at Word1, the empty path de�nition applies, causing it to inherit from

Love:<mor root>, and thereby return the expected value, love. Notice here that each

element of a value can be de�ned entirely independently of the others; for <mor form>

we now have an inheritance descriptor for the �rst element and a simple value for the

second.

Our toy fragment is beginning to look somewhat more respectable: a single node for

abstract verbs, a node for each abstract verb lexeme, and then individual nodes for each

morphological form of each verb. But there is still more that can be done. Our focus on

a single lexeme has meant that one class of redundancy has remained hidden. The line

<mor form> == <mor root> ing

will occur in every present participle form of every verb. But it is a completely generic

statement that can be applied to all English present participle verb forms. So can we not

replace it with a single statement in the VERB node? Using the mechanisms we have seen

so far, the answer is no. The statement would have to be (i), which is equivalent to (ii),

whereas the e�ect we want is (iii):

(i) VERB:<mor form> == <mor root> ing

(ii) VERB:<mor form> == VERB:<mor root> ing

(iii) VERB:<mor form> == Word1:<mor root> ing

Using (i) or (ii), we would end up with the same morphological root for every verb (or

more likely no value at all, since it is hard to imagine what value VERB:<mor root>

might plausibly be given), rather than a di�erent one for each. And of course, we cannot

simply use (iii) as it is, since that only applies to the particular word described by Word1,

namely loving.

The problem is that the inheritance mechanism we have been using is local, in the

sense that it can only be used to inherit either from a speci�cally named node (and/or

path), or relative to the local context of the node (and/or path) at which it is de�ned.

What we need is a way of specifying inheritance relative to the the original node/path

speci�cation whose value we are trying to determine, rather than the one we have reached

by following inheritance links. We shall refer to this original speci�cation as the query

we are attempting to evaluate, and the node and path associated with this query as the

global context

7

. Global inheritance, that is, inheritance relative to the global context, is

indicated in DATR by using quoted (": : : ") descriptors, and we can use it to extend our

de�nition of VERB as follows:

VERB:

<syn cat> == verb

<syn type> == main

<mor form> == "<mor root>" ing.

Here we have added a de�nition for <mor form> which contains the quoted path "<mor

root>". Roughly speaking, this is to be interpreted as \inherit the value of <mor root>

from the node originally queried". With this extra de�nition, we no longer need a <mor

form> de�nition in Word1, so it just becomes:

Word1:

<> == Love

<syn form> == present participle.

To see how this global inheritance works, consider evaluating the query Word1:<mor

form>. Since <mor form> is not de�ned at Word1, it will inherit from VERB via Love.

7 Strictly speaking, the query node and path form just the initial global context, since as we shall see

in Section 3.2.2 below, the global context can change during inheritance processing.

7

DATR cogs csrp 382, November 1995

This speci�es inheritance of <mor root> from the query node, which in this case is

Word1. The path <mor root> is not de�ned at Word1 but inherits the value love from

Love. Finally, the de�nition of <mor form> at VERB adds an explicit ing, resulting in a

value of love ing for Word1:<mor form>. However, had we begun evaluation at, say, a

daughter of the lexeme Eat, we would have been directed from VERB:<mor form> back

to the original daughter of Eat to determine its <mor root>, which would be inherited

from Eat itself. So we would have ended up with the value eat ing.

The analysis is now almost the way we would like it to be. However, by moving<mor

form> from Word1 to VERB, we have introduced a new problem: we have frozen in the

present participle as the (default) value of <mor form> for all verbs. Clearly, if we want

to specify other forms at the same level of generality, then <mor form> is currently

misnamed: it should be <mor present participle>, so that we can add <mor past

participle>, <mor present tense>, etc. If we make this change, then the VERB node

will look like this:

VERB:

<syn cat> == verb

<syn type> == main

<mor past> == "<mor root>" ed

<mor passive> == "<mor past>"

<mor present> == "<mor root>"

<mor present participle> == "<mor root>" ing

<mor present tense sing three> == "<mor root>" s.

In adding these new speci�cations, we have added a little extra structure as well. The

passive form is asserted to be the same as the past form { the use of global inheritance here

ensures that irregular or subregular past forms result in irregular or subregular passive

forms, as we shall see shortly. The paths introduced for the present forms illustrate

another use of default de�nition. We assume that the morphology of present tense forms

is speci�ed with paths of �ve attributes, the fourth specifying number, the �fth, person.

Here we de�ne default present morphology to be simply the root, and this generalises to

all the longer forms, except the present participle and the third person singular.

So now for Love, the following extensional statements hold, inter alia:

Love:

<syn cat> = verb

<syn type> = main

<mor present tense sing one> = love

<mor present tense sing two> = love

<mor present tense sing three> = love s

<mor present tense plur> = love

<mor present participle> = love ing

<mor past tense sing one> = love ed

<mor past tense sing two> = love ed

<mor past tense sing three> = love ed

<mor past tense plur> = love ed

<mor past participle> = love ed

<mor passive participle> = love ed.

There remains one last problem in the de�nitions of Word1 and Word2. The morpho-

logical form of Word1 is now given by <mor present participle>. Similarly, Word2's

morphological form is given by <mor passive participle>. There is no longer a

unique path representing morphological form. But this can be corrected by the addition

of a single statement to VERB:

VERB:

8

Evans & Gazdar Lexical Knowledge Representation

<mor form> == "<mor "<syn form>">".

This statement employs a DATR construct, the evaluable path, which we have not

encountered before. The right hand side consists of a (global) path speci�cation, one

of whose component attributes is itself a descriptor, to be evaluated before the outer

path can be. The e�ect of the above statement is to say that <mor form> globally

inherits from the path given by the atom mor followed by the global value of <syn

form>. For Word1, <syn form> is present participle, so <mor form> inherits from

<mor present participle>. But for Word2,<mor form> inherits from<mor passive

participle>. E�ectively, the <syn form> is being used as a parameter to control

which speci�c form should be considered the morphological form. Evaluable paths may

themselves be global (as in our example) or local and their evaluable components may

also involve global or local reference.

Our analysis now looks like this:

VERB:

<syn cat> == verb

<syn type> == main

<mor form> == "<mor "<syn form>">"

<mor past> == "<mor root>" ed

<mor passive> == "<mor past>"

<mor present> == "<mor root>"

<mor present participle> == "<mor root>" ing

<mor present tense sing three> == "<mor root>" s.

Love:

<> == VERB

<mor root> == love.

Word1:

<> == Love

<syn form> == present participle.

Word2:

<> == Love

<syn form> == passive participle.

The entire analysis is somewhat larger than the original, but it encodes all the past and

present tense forms as well as all three participial forms. More importantly, almost all

the information is in the VERB node and is common to many verb lexemes

8

. Indeed, the

other nodes are as small as they reasonably could be: Love simply states that it is a

verb with morphological root love and Word1 simply states that it is a present participle

instance of Love.

Of course, Love is a completely regular verb. But DATR's capacity for de�nition by

default allows subregular and irregular lexemes to be concisely represented also. As an

example, consider the class of verbs which take en as their past participle ending: hew,

mow, saw, sew, etc.

9

We can represent this subregularity with a new verbal node which

defaults to VERB, but overrides just the past participle morphology:

8 Linguistically, the analysis is still not abstract enough since it fails to encode the morphotactic

generalisation that, by default, an in
ected English word consists of a root optionally followed by a

su�x. Such generalisations are easy enough to state in DATR but would entail more elaboration of

our running example than its expository purpose requires.

9 Our orthographic representations in this paper presuppose some basic \spelling rules", thus love ed

is spelt loved, love ing is spelt loving and mow en is spelt mown. If we had chosen to represent

roots and su�xes as letter sequences rather than as atoms then it would have been possible to

implement the necessary spelling rules in a �nite state transducer written in DATR itself. See, for

example, that presented in Section 4.3, below.

9

DATR cogs csrp 382, November 1995

EN_VERB:

<> == VERB

<mor past participle> == "<mor root>" en.

Relevant individual verb lexemes then inherit from this node instead of directly from

VERB:

Mow:

<> == EN_VERB

<mor root> == mow.

Sew:

<> == EN_VERB

<mor root> == sew.

As noted above, the passive forms of these subregular verbs will also now be correct,

because of the use of a global cross-reference to the past participle form in the VERB

node. So for example, the de�nition of the passive form of sew is:

Word3:

<> == Sew

<syn form> == passive participle.

If we seek to establish the <mor form> of Word3, we are sent up the hierarchy of nodes,

�rst to Sew, then to EN VERB, and then to VERB. Here we encounter "<mor "<syn

form>">" which resolves to "<mor passive participle>" in virtue of the embed-

ded global reference to <syn form> at Word3. This means we now have to establish the

value of <mor passive participle> at Word3. Again, we ascend the hierarchy to VERB

and �nd ourselves referred to the global descriptor "<mor past participle>". This

takes us back to Word3, from where we again climb, �rst to Sew, then to EN VERB. Here,

<mor past participle> is given as the sequence "<mor root>" en. This leads us to

look for the <mor root> of Word3 which we �nd at Sew giving the result we seek:

Word3:

<mor form> = sew en.

Irregularity can be treated as just the limiting case of subregularity, so, for example, the

morphology of Do can be speci�ed as follows

10

:

Do:

<> == VERB

<mor root> == do

<mor past> == did

<mor past participle> == done

<mor present tense sing three> == does.

Likewise, the morphology of Be can be speci�ed as follows

11

:

Be:

<> == EN_VERB

<mor root> == be

<mor present tense sing one> == am

<mor present tense sing three> == is

10 Orthographically, the form does could simply be treated as regular (from do s). However, we have

chosen to stipulate it here since, although the spelling appears regular, the phonology is not, so in a

lexicon that de�ned phonological forms it would need to be stipulated.

11 In their default uni�cation reconstruction of this DATR analysis of English verbal in
ection, Bouma

& Nerbonne (1994) invoke \a feature -SG3 to cover all agreement values other than third person

singular" in order \to avoid redundancy". But they do not explain how they would then account for

the �rst person singular present tense form of be without reintroducing the redundancy that they are

seeking to avoid. And the use of this purely morphological feature leads them to introduce a set of

lexical rules in order to map the relevant information across from the (di�erent) syntactic features.

10

Evans & Gazdar Lexical Knowledge Representation

<mor present tense plur> == are

<mor past tense sing one> == <mor past tense sing three>

<mor past tense sing three> == was

<mor past tense plur> == were.

In this section we have moved from simple attribute/value listings to a compact,

generalisation-capturing representation for a fragment of English verbal morphology. In

so doing, we have seen examples of most of the important ingredients of DATR: local and

global descriptors, de�nition by default, and evaluable paths.

3. The DATR language

3.1 Syntax

A DATR description consists of a sequence of sentences corresponding semantically to

a set of statements. Sentences are built up out of a small set of basic expression types,

built up out of sequences of lexical tokens, which we take to be primitive.

In the previous section, we referred to individual lines in DATR de�nitions as state-

ments. Syntactically however, a DATR description consists of a sequence of sentences,

where each sentence starts with a node name and ends with a period, and contains one or

more path equations relating to that node, each corresponding to a statement in DATR.

This distinction between sentences and statements is primarily for notational convenience

(it would be cumbersome to require repetition of the node name for each statement) and

statements are the primary unit of speci�cation in DATR. For the purposes of this section,

where we need to be particularly clear about this distinction, we shall call a sentence

containing just a single statement a simple sentence.

3.1.1 Lexical tokens. The syntax of DATR distinguishes four classes of lexical token:

nodes, atoms, variables and reserved symbols. The complete list of reserved symbols

is as follows:

: " < > = == . ' % #

We have already seen the use of the �rst seven of these. Single quotes can be used to form

atoms that would otherwise be ill-formed as such; % is used for end-of-line comments,

following the Prolog convention; # is used to introduce declarations and other compiler

directives

12

.

The other classes, nodes, atoms and variables, must be distinct, and distinct from

the reserved symbols, but are otherwise arbitrary

13

. For this discussion, we have already

adopted the convention that both nodes and atoms are simple words, with nodes starting

with uppercase letters. We extend this convention to variables, discussed more fully in

Section 3.4 below, which we require to start with the character $. And we take white-space

(spaces, newlines, tabs, etc.) to delimit lexical tokens but otherwise to be insigni�cant.

3.1.2 Right-hand-side expressions. The expressions that may appear as the right-

hand-sides of DATR equations are sequences of zero

14

or more descriptors. Descriptors

12 Aside from their use in Section 3.4, we will completely ignore such directives in this paper.

13 Formally, we require them to be �nite classes, but this is not of great signi�cance here.

14 DATR makes a distinction between a path not having a value (i.e., being unde�ned) and a path

having the empty sequence as a value:

NUM:

<two> ==

<one> == one.

In this example, NUM:<one> has the value one, NUM:<two> has the empty sequence as its value,

and NUM:<three> is simply unde�ned.

11

DATR cogs csrp 382, November 1995

are de�ned recursively, and come in seven kinds. The simplest descriptor is just an atom

or variable:

atom1

$var1

Then there are three kinds of local inheritance descriptor: a node, an (evaluable)

path, and a node/path pair. Nodes are primitive tokens, paths are descriptor sequences

(de�ned below) enclosed in angle brackets and node/path pairs consist of a node and a

path separated by a colon:

Node1

<desc1 desc2 desc3 ...>

Node1:<desc1 desc2 desc3 ...>

Finally there are three kinds of global inheritance descriptor, which are quoted

variants of the three local types just described:

"Node1"

"<desc1 desc2 desc3 ...>"

"Node1:<desc1 desc2 desc3 ...>"

A descriptor sequence is a (possibly empty) sequence of descriptors. The recursive

de�nition of evaluable paths in terms of descriptor sequences allows arbitrarily complex

expressions to be constructed, such as

15

:

"Node1:<"<atom1>" Node2:<atom2>>"

"<"<<Node1:<atom1 atom2> atom3>" Node2 "<atom4 atom5>" <> >">"

But the value sequences determined by such de�nitions are
at: they have no struc-

ture beyond the simple sequence and in particular do not re
ect the structure of the

descriptors that de�ne them.

We shall sometimes refer to descriptor sequences containing only atoms as simple

values, and similarly (unquoted) path expressions containing only atoms as simple paths.

3.1.3 Sentences. DATR sentences represent the statements which make up a descrip-

tion. As we have already seen, there are two basic statement types, extensional and def-

initional, and these correspond directly to simple extensional and de�nitional sentences,

which are made up from the components introduced in the preceding section.

Simple extensional sentences take the form

Node:Path = Ext

where Node is a node, Path is a simple path, and Ext is a simple value. Extensional

sentences derivable from the examples given in Section 2 include:

Do:<mor past participle> = done.

Mow:<mor past tense sing one> = mow ed.

Love:<mor present tense sing three> = love s.

Simple de�nitional sentences take the form

Node:Path == Def.

where Node and Path are as above and Def is an arbitrary descriptor sequence. De�ni-

tional sentences already seen in Section 2 include:

Do:<mor past> == did.

VERB:<mor form> == "<mor "<syn form>">".

EN_VERB:<mor past participle> == "<mor root>" en.

15 A descriptor containing an evaluable path may include nested descriptors which are either local or

global. Our use of the local/global terminology always refers to the outermost descriptor of an

expression.

12

Evans & Gazdar Lexical Knowledge Representation

Each of these sentences corresponds directly to a DATR statement. However we extend

the notion of a sentence to include an abbreviatory convention for sets of statements

relating to a single node. The following single sentence:

Node:

Path1 == Def1

Path2 == Def2

...

PathN == DefN.

abbreviates (and is entirely equivalent to):

Node:Path1 == Def1.

Node:Path2 == Def2.

...

Node:PathN == DefN.

Extensional statements, and combinations of de�nitional and extensional statements,

may be similarly abbreviated, and the examples used throughout this paper make ex-

tensive use of this convention. Such compound sentences correspond to a number of

individual (and entirely independent) DATR statements.

Finally, it is worth reiterating that DATR descriptions correspond to sets of state-

ments: the order of sentences, or of de�nitions within a compound sentence is immaterial

to the relationships described.

3.2 Inheritance in DATR

DATR descriptions associate values with node/path pairs. This is achieved in one of three

ways: a value is explicitly stated, or it is explicitly inherited, or it is implicitly speci�ed

(stated or inherited) via the default mechanism. We have already seen how values are

explicitly stated; in this and the following subsections, we continue our exposition by pro-

viding an informal account of the semantics of speci�cation via inheritance or by default.

The present subsection is only concerned with explicit (i.e., non-default) inheritance.

Section 3.3 deals with implicit speci�cation via DATR's default mechanism.

3.2.1 Local inheritance. The simplest type of inheritance in DATR is the speci�cation

of a value by local inheritance. Such speci�cations may provide a new node, a new path,

or a new node and path to inherit from. An example de�nition for the lexeme Come

illustrates all three of these types:

Come:

<> == VERB

<mor root> == come

<mor past> == came

<mor past participle> == <mor root>

<syn> == INTRANSITIVE:<>.

Here the empty path inherits from VERB so the value of Come:<> is equated to that of

VERB:<>. And the past participle inherits from the root: Come:<mor past participle>

is equated with Come:<mor root> (i.e., come). In both these inheritances, only one of

the node or path was speci�ed: the other was taken to be the same as that found on the

left-hand-side of the statement (<> and Come respectively). The third type of local in-

heritance is illustrated by the �nal statement, in which both node and path are speci�ed:

the syntax of Come is equated with the empty path at INTRANSITIVE, an abstract node

de�ning the syntax of intransitive verbs

16

.

16 Bear in mind that the following are not synonymous

13

DATR cogs csrp 382, November 1995

There is a natural procedural interpretation of this kind of inheritance, in which

the value associated with the de�nitional expression is determined by \following" the

inheritance speci�cation and looking for the value at the new site. So given a DATR

description (i.e., a set of de�nitional statements) and an initial node/path query, we look

for the node and path as the left hand side of a de�nitional statement. If the de�nitional

statement for this pair provides a local descriptor, then we follow it, by changing one

or both of the node or path, and then repeat the process with the resulting node/path

pair. We continue until some node/path pair speci�es an explicit value. In the case of

multiple expressions on the right hand side of a statement, we pursue each of them

entirely independently of the others. This operation is local in the sense that each step

is carried out without reference to any context wider than the immediate de�nitional

statement at hand.

Declaratively speaking, local descriptors simply express equality constraints between

de�nitional values for node/path pairs. The statement:

Node1:Path1 == Node2:Path2.

can be read approximately as \if the value for Node2:Path2 is de�ned, then the value of

Node1:Path1 is de�ned and equal to it". There are several points to notice here. First,

if Node2:Path2 is not de�ned, then Node1:Path1 is unconstrained, so this is a weak

directional equality constraint. However, in practice this has no useful consequences, due

to interactions with the default mechanism { see Section 5.1 below. Second, \de�ned"

here means \de�ned by a de�nitional statement", that is a \==" statement: local inheri-

tance operates entirely with de�nitional statements, implicitly introducing new ones for

Node1:Path1 on the basis of those de�ned for Node2:Path2. Finally, as we shall discuss

more fully in the next subsection, \value" here technically covers both simple values and

global inheritance descriptors.

3.2.2 Global inheritance. Like local inheritance, global inheritance comes in three

types: node, path, and node/path pair. However, when either the node or the path is

omitted from a global inheritance descriptor, rather than using the node or path of the

left-hand-side of the statement it is contained in (the local context of the de�nition), the

values of a global context are used instead. This behaviour is perhaps also more easily

introduced procedurally rather than declaratively. As we saw above, we can think of local

inheritance in terms of following descriptors starting from the query. The local context

is initially set to the node and path speci�ed in the query, and when a local descriptor is

encountered, any missing node or path components are �lled in from the local context,

and then control passes to the new context created (that is, we look at the de�nition

associated with the new node/path pair). In doing this, the local context also changes

to be the new context. Global inheritance operates in exactly the same way: the global

context is initially set to the node and path speci�ed in the query. It is not altered when

local inheritance descriptors are followed (so it \remembers" where we started from), but

when a global descriptor is encountered, it is the global context that is used to �ll in any

missing node or path components in the descriptor, and hence to decide where to pass

control to. In addition, both global and local contexts are updated to the new settings.

So global inheritance can be seen as essentially the same mechanism as local inheritance,

but layered on top of it { following global links alters the local context too, but not vice

versa.

Come:<syn> == INTRANSITIVE:<>.

Come:<syn> == INTRANSITIVE.

since the latter is equivalent to

Come:<syn> == INTRANSITIVE:<syn>.

14

Evans & Gazdar Lexical Knowledge Representation

For example, when a global path is speci�ed, it e�ectively \returns control" to the

current global node (often the original query node) but with the newly given path. Thus

in Section 2, above, we saw that the node VERB de�nes the default morphology of present

forms using global inheritance from the path for the morphological root:

VERB:<mor present> == "<mor root>".

The node from which inheritance occurs is that stored in the global context. So a

query of Love:<mor present> will result in inheritance from Love:<mor root> (via

VERB:<mor present>), while a query of Do:<mor present> will inherit from Do:<mor

root>.

Similarly, a quoted node form accesses the globally stored path value, as in the

following example:

Declension1:

<vocative> == -a

<accusative> == -am.

Declension2:

<vocative> == "Declension1"

<accusative> == -um.

Declension3:

<vocative> == -e

<accusative> == Declension2:<vocative>.

Here, the value of Declension3:<accusative> inherits from Declension2:<vocative>

and then from Declension1:< accusative>, using the global path (in this case the

query path), rather than the local path (<vocative>) to �ll out the speci�cation. So the

resulting value is -am and not -a as it would have been if the descriptor in Declension2

had been local rather than global.

We observed above that when inheritance through a global descriptor occurs, the

global context is altered to re
ect the new node/path pair. Thus after Love:<mor

present> has inherited through "VERB:<mor root>", the global path will be <mor

root> rather than <mor present>. When we consider quoted node/path pairs, it turns

out that this is the only property that makes them useful. Since a quoted node/path pair

completely respeci�es both node and path, its immediate inheritance characteristics are

the same as the unquoted node/path pair. However, because it also alters the global

context, its e�ect on any subsequent global descriptors (in the evaluation of the same

query) will be di�erent:

Declension1:

<vocative> == "<nominative>"

<nominative> == -a.

Declension2:

<vocative> == Declension1

<nominative> == -u.

Declension3:

<nominative> == -i

<accusative> == "Declension2:<vocative>".

In this example, the value of Declension3:<accusative> inherits from Declension2:

<vocative> and then from Declension1:<vocative> and then from Declension2:

<nominative> (because the global node has changed from Declension3 to Declension2)

giving a value of -u and not -i as it would have been if the descriptor in Declension3

had been local rather than global.

There are a number of ways of understanding this global inheritance mechanism.

The description we have given above amounts to a \global memory" model, in which

a DATR query evaluator is a machine equipped with two memories: one containing the

15

DATR cogs csrp 382, November 1995

current local node and path, and another containing the current global node and path.

Both are initialised to the query node and path, and the machine operates by repeatedly

examining the de�nition associated with the current local settings. Local descriptors alter

just the local memory, while global descriptors alter both the local and global settings.

This model is the basis of at least one implementation of DATR but it is not, of

course, declarative. Nevertheless, the notion of global inheritance does have a declarative

reading, very similar to local inheritance but, as we have already suggested, layered on

top of it. Recall that local inheritance establishes a network of weak equality relation-

ships among node/path pairs, and these equalities are used to distribute values across

this network. As we mentioned above, formally speaking the local inheritance network

controls the distribution not only of simple values, but of global descriptors as well. That

is, to local inheritance, values and global descriptors are one and the same, and are in-

herited through the network. Indeed, this is the intuitive warrant for the use of the quote

notation: the quotes turn an inheritance descriptor into a (kind of) value. Consequently,

global descriptors are also distributed through the local inheritance network, and so are

implicitly present at many node/path pairs in addition to those they are explicitly de�ned

for. In fact, a global descriptor is implicitly present at every node/path pair which could

ever occur as the global context for evaluation of the descriptor at its original explicitly

de�ned location. This means that once distributed like this, the global descriptors form

a network of weak equality relationships just like the local descriptors, and distribute the

simple values (alone) in just the same way.

To see this interpretation in action, we consider an alternative analysis of the past

participle form of Come. The essential elements of the analysis are as follows:

BARE_VERB:

<mor past participle> == "<mor root>".

Come:

<mor root> == come

<mor past participle> == BARE_VERB.

Local inheritance from BARE VERB to Come implicitly de�nes the following statement (in

addition to the above):

Come:

<mor past participle> == "<mor root>".

Because we have now brought the global inheritance descriptor to the node corresponding

to the global context for its interpretation, global inheritance can now operate entirely

locally { the required global node is the local node, Come, producing the desired result:

Come:

<mor past participle> = come.

Notice that, in this last example, the �nal statement was extensional, not de�ni-

tional. So far in this paper we have almost entirely ignored the distinction we established

between de�nitional and extensional statements, but with this declarative reading of

global inheritance we can do so no longer. Local inheritance uses de�nitional inheritance

statements to distribute simple values and global descriptors. The simple-valued de�-

nitional statements thereby de�ned map directly to extensional statements, and global

inheritance uses the global inheritance statements (now distributed), to further distribute

these extensional statements about simple values. The statements have to be of a formally

distinct type, to prevent local inheritance descriptors from distributing them still further.

In practice, however, we need not be too concerned about the distinction: descriptions

are written as de�nitional statements, queries are read o� as extensional statements

17

.

17 However, in principle, there is nothing to stop an extensional statement being speci�ed as part of a

16

Evans & Gazdar Lexical Knowledge Representation

The declarative interpretation of global inheritance suggests an alternative procedu-

ral characterisation to the one already discussed, which we outline as follows. Starting

from a query, local descriptors alone are used to determine either a value or a global de-

scriptor associated with the queried node/path pair. If the result is a global descriptor,

this is used to construct a new query, which is evaluated in the same way. The process re-

peats until a value is returned. The di�erence between this and the earlier model is really

just one of perspective. When a global descriptor is encountered one can either bring the

global context to the current evaluation context (�rst model), or take the new descriptor

back to the global context and continue from there (second model). The signi�cance of

the latter approach is that it reduces both kinds of inheritance to a single basic operation

which has a straightforward declarative interpretation. Thus we see that DATR contains

two instances of essentially the same declarative inheritance mechanism. The �rst, local

inheritance, is always speci�ed explicitly, while the second, global inheritance, is speci�ed

implicitly in terms of the �rst.

Extending these inheritance mechanisms to the more complex DATR expressions is

straightforward. Descriptors nested within de�nitional expressions are treated indepen-

dently | as though each was the entire value de�nition rather than just an item in a

sequence. In particular, global descriptors which alter the global context in one nested

de�nition have no e�ect on any others. Each descriptor in a de�nitional sequence or

evaluable path is evaluated from the same global state. In the case of global evalu-

able paths, once the subexpressions have been evaluated, the expression containing the

resultant path is also evaluated from the same global state.

3.3 De�nition by default

The other major component of DATR is de�nition by default. This mechanism allows a

DATR de�nitional statement to be applicable not only for the path speci�ed in its left-

hand-side, but also for any rightward extension of that path for which no more speci�c

de�nitional statement exists. In e�ect, this \�lls in the gaps" between paths which are

de�ned at a node, on the basis that an unde�ned path takes its de�nition from the path

which best approximates it without being more speci�c

18

. Of course, to be e�ective,

this \�lling in" has to take place before the operation of the inheritance mechanisms

described in the previous section.

Consider for example, the de�nition of Do we gave above.

Do:

<> == VERB

<mor root> == do

<mor past> == did

<mor past participle> == done

<mor present tense sing three> == does.

Filling in the gaps between these de�nitions, we can see that many paths will be implicitly

de�ned only by the empty path speci�cation. Examples include:

Do:

<mor> == VERB

<syn> == VERB

<mor present> == VERB

<syn cat> == VERB

DATR description directly. Such a statement would respect global inheritance but not local

inheritance and might be useful to achieve some exotic e�ect.

18 For formal discussion of the semantics of the DATR default mechanism, see Keller (1995).

17

DATR cogs csrp 382, November 1995

<syn type> == VERB

<mor present tense sing one> == VERB.

If there had been no de�nition for <>, then none of these example paths would have

been de�ned at all, since there would have been no leading subpath with a de�nition.

Note how <mor> itself takes its de�nition from <>, since all the explicitly de�ned <mor

: : :> speci�cations have at least one further attribute.

The de�nition for <mor past> overrides default de�nition from <> and in turn

provides a de�nition for longer paths. However,<mor past participle> blocks default

de�nition from <mor past>. Thus the following arise

19

:

Do:

<mor past tense> == did

<mor past tense plur> == did

<mor past tense sing three> == did

<mor past participle plur> == done

<mor past participle sing one> == done.

Similarly all the <mor present> forms inherit from VERB except for the explicitly cited

<mor present tense sing three>.

De�nition by default introduces new DATR sentences each of whose left-hand-side

paths is an extension of the left-hand-side paths of some explicit sentence. This path

extension carries over to any paths occurring on the right-hand-side as well. So for

example, the sentence:

VERB:

<mor present tense> == "<mor root>"

<mor form> == <mor "<syn form>">.

gives rise to the following, inter alia:

VERB:

<mor present tense sing> == "<mor root sing>"

<mor present tense plur> == "<mor root plur>"

<mor form present> == <mor "<syn form present>" present>

<mor form passive> == <mor "<syn form passive>" passive>.

This extension occurs for all paths in the right-hand-side, whether they are quoted or

unquoted and/or nested in descriptor sequences or evaluable paths.

The intent of this path extension is to allow descriptors to provide not simply a

single de�nition for a path but a whole set of de�nitions for extensions to that path,

without losing path information. In some cases this can lead to gratuitous extensions to

paths { path attributes specifying detail beyond any of the speci�cations in the overall

description. However, this does not generally cause problems since such gratuitously

detailed paths, being unspeci�ed, will always take their value from the most speci�c path

that is speci�ed (e�ectively, gratuitous detail is ignored)

20

. Indeed, DATR's approach to

default information always implies an in�nite number of unwritten DATR statements,

with paths of arbitrary length.

3.4 Abbreviatory variables

The default mechanism of DATR provides for generalisation across sets of atoms by means

of path extension and is the preferred mechanism to use in the majority of cases. However,

19 The past participle extensions here are purely for the sake of the formal example { they have no

role to play in the morphological description of English (but cf. French where past participles in
ect

for gender and number).

20 Thus, for example, the path <mor plur acc> is a gratuitous extension of the path <mor plur> for

English common nouns since the latter are not di�erentiated for case.

18

Evans & Gazdar Lexical Knowledge Representation

when one wants to transduce atoms in the path domain to atoms in the value domain

(see Section 4.3, below), it is extremely convenient to be able to make use of abbreviatory

variables over �nite sets of atoms. This is achieved by declaring DATR variables whose use

constitutes a kind of macro: they can always be eliminated by replacing the equations in

which they occur with larger sets of equations that spell out each value of the variables.

Conventionally, variable names begin with the $ character and are declared in one of the

following three ways:

vars $Var1: Range1 Range2

vars $Var2: Range1 Range2 ... - RangeA RangeB

vars $Var3.

Here, the �rst case declares a variable $Var1 that ranges over the values Range1, Range2

..., where each RangeN is either an atom or a variable name, the second case declares

$Var2 to range over the same range, but excluding values in RangeA RangeB ..., and

the third declares $Var3 to range over the full (�nite) set of atoms in the language

21

. For

example:

vars $letters: a b c d e f g h i j k l m n o p q r s t u v w x y z.

vars $vowels: a e i o u.

vars $consonants: $letters - $vowels.

vars $not_z: $letters - z.

vars $odd: 1 3 5 7 9.

vars $even: 0 2 6 4 8.

vars $digit: $odd $even.

Caution has to be exercised in the use of DATR variables for two reasons. One is that

their use makes it hard to spot multiple con�lcting de�nitions:

vars $vowel: a e i o u.

DIPTHONG:

<e> == e i <>

<$vowel> == $vowel e <>.

Here, <e> appears on the left hand side of two con
icting de�nitions. Exactly what

happens to such an improper description in practice depends on the implementation and

usages of this kind can be the source of hard to locate bugs (See also Section 5.1, below.).

The other reason is that one can fall into the trap of using variables to express

generalisations that would be better expressed using the path extension mechanism.

Here is a very blatant example:

vars $number: singular plural.

NOUNX:

<third $number> == <second $number>.

This would almost certainly be better expressed as:

NOUNX:

<third> == <second>.

The following example is a variant on the same theme:

vars $number: singular plural.

NOUNY:

<$number third> == <$number second>.

which suggests, not a real need for the use of DATR variables, but rather an inappropriate

choice of attribute order in the design of the description.

21 Undeclared variables are similarly assumed to range over the full set of atoms. Some

implementations may also include implicit de�nitions of more restricted variables, such as $integer.

19

DATR cogs csrp 382, November 1995

4. DATR techniques

The DATR fragments introduced above illustrate the basic descriptive resources pro-

vided by the language. We now present some further examples, showing how these basic

components combine to provide a powerful representation tool.

4.1 Case constructs and parameters

Evaluable paths allow the value of one path to be determined by the value of another.

More generally, the values of an arbitrary number of descriptors can be invoked as pa-

rameters in an evaluable path and thus determine the value of a particular node/path

pair. The familiar case construct of procedural programming languages is readily imple-

mented, as the following example describing English plural su�xes shows:

NOUN:

<plural> == <case of "<origin>">

<case of latin masculine> == -i

<case of latin neuter> == -a

<case of> == -s

<origin> == norman.

Cat:

<> == NOUN.

Datum:

<> == NOUN

<origin> == latin neuter.

Alumnus:

<> == NOUN

<origin> == latin masculine.

Here the value of the <origin> attribute of a noun (denoting its etymological source)

is used to determine the value of its <plural> su�x. Thus we can derive the following

extensional statements:

Cat:

<plural> = -s.

Datum:

<plural> = -a.

Alumnus:

<plural> = -i.

We do not need to invoke an attribute called case to get this technique to work. For

example, in Section 2, we gave the following de�nition of <mor form> in terms of <syn

form>:

VERB:

<mor form> == <mor "<syn form>">.

Here the feature <syn form> returns a value (such as passive participle or present

tense sing three) which becomes part of the path through which <mor form> inher-

its. This means that nodes for surface word forms need only state their parent lexeme

and <syn form> feature in order for their <mor form> to be fully described

22

. So, as

22 More generally, evaluable paths provide \structured inheritance" in the sense of Daelemans & De

Smedt (1994, 161-168).

20

Evans & Gazdar Lexical Knowledge Representation

we saw in Section 2 above, the passive participle form of sew is fully described by the

node de�nition for Word3.

Word3:

<> == Sew

<syn form> == passive participle.

For �nite forms, we could use a similar technique. From this,

Word4:

<> == Sew

<syn form> == present sing third.

we would want to be able to infer this:

Word4:

<mor form> = sew s

However, the components of <syn form>, present, sing, third are themselves values

of features we probably want to represent independently. One way to achieve this is to

de�ne a value for <syn form> which is itself parameterised from the values of these

other features. And the appropriate place to do this is in the VERB node, thus:

VERB:

<syn form> == "<syn tense>" "<syn number>" "<syn person>".

This says that the default value for the syntactic form of a verb is a �nite form, but

exactly which �nite form depends on the settings of three other paths, <syn tense>,

<syn number> and <syn person>. So now we can express Word4 as:

Word4:

<> == Sew

<syn tense> == present

<syn number> == sing

<syn person> == third.

This approach has the advantage that the attribute ordering used in the <mor...> paths

is handled internally: the leaf nodes need not know or care about it

23

.

4.2 Boolean logic

We can, if we wish, use parameters in evaluable paths that resolve to true or false. We

can then de�ne standard truth tables over DATR paths:

Boolean:

<> == false

<or> == true

<if> == true

<not false> == true

<and true true> == true

<if true false> == false

<or false false> == false.

This node de�nes the standard truth tables for all the familiar operators and connectives

of the propositional calculus expressed in Polish rather than in�x order

24

. Notice, in

particular, how the DATR default mechanism completes most of the truth table rows

without explicit listing. The de�nability of the propositional calculus may appear, at �rst

sight, to be a curiosity, one which has no relevance to real-life lexical representation. But

23 Word3 remains unchanged, overriding the de�nition of <syn form> and so not requiring these

additional features to be de�ned at all.

24 We can, of course, use the same technique to de�ne many-valued logics if we wish.

21

DATR cogs csrp 382, November 1995

that is not so. Consider a hypothetical language in which personal proper names have one

of two genders, masculine or feminine. Instead of the gender being wholly determined

by the sex of the referent, the gender is determined partly by sex and partly by the

phonology. Examples of this general type are quite common in the world's languages

25

.

In our hypothetical example, the proper name will have feminine gender either if it ends

in a consonant and denotes a female or if it ends in a stop consonant but does not denote

a female. We can encode this situation in DATR as follows

26

:

Personal_name:

<> == Boolean

<ends_in_consonant> == "<ends_in_stop>"

<gender_is_feminine> ==

<or <and "<female_referent>" "<ends_in_consonant>">

<and <not "<female_referent>"> "<ends_in_stop>">>.

We can then list some example lexical entries for personal proper names

27

:

Taruz:

<> == Personal_name

<female_referent> == true

<ends_in_consonant> == true.

Turat:

<> == Personal_name

<female_referent> == true

<ends_in_stop> == true.

Tarud:

<> == Personal_name

<ends_in_stop> == true.

Turas:

<> == Personal_name

<ends_in_consonant> == true.

Note that both Turas and Tarud turn out not to denote females, given the general false

default in Boolean

28

. The genders of all four names can now be obtained as theorems:

Taruz: <gender_is_feminine> = true.

Turat: <gender_is_feminine> = true.

Tarud: <gender_is_feminine> = true.

Turas: <gender_is_feminine> = false.

25 For example, Fraser & Corbett (1995) use DATR to capture a range of

phonology/morphology/semantics interdependencies in Russian. And Brown & Hippisley (1994) do

the same for a Russian segmental phonology/prosody/morphology interdependency. But one can

�nd such interdependencies in English also: see Ostler & Atkins (1992: 96-98).

26 Note that complex expressions require path embedding. Thus, for example, the well-formed

negation of a conditional is <not <if>> rather than <not if>.

27 For the sake of simplicity, we have assumed that the truth values of <ends in consonant> and

<ends in stop> are just stipulated in the entries, and indeed the second de�nition in

Personal name means that <ends in stop> implies <ends in consonant>. But if the entries

represented the phonology of the words in DATR also, then these predicates could be de�ned on the

basis of the feature composition of the stem-�nal segment. As a number of researchers have shown,

the highly defaulty character of lexical phonology and morphophonology makes DATR a very

suitable medium of representation (Bleiching 1992, 1994; Cahill 1993b; Gibbon 1990, 1992; Gibbon

& Bleiching 1991; Reinhard 1990; Reinhard & Gibbon 1991).

28 It is straightforward to add extra DATR code so as to derive <gender> = feminine when

<gender is feminine> is true and <gender> = masculine when <gender is feminine> is false,

or conversely.

22

Evans & Gazdar Lexical Knowledge Representation

4.3 Finite state transduction

Perhaps surprisingly, DATR turns out to be an excellent language for de�ning �nite state

transducers (FSTs)

29

A path can be used as the input tape and a value as the output

tape (recall that the DATR default mechanism means that extensions to left-hand-side

paths are automatically carried over as extensions to right-hand-side paths, as discussed

in Section 3.3, above). Nodes can be used for states, or else states can be encoded in

attributes that are pre�xed to the current input path. Here, for example, is a very simple

DATR FST that will transduce a path such as <subj 1 sg futr obj 2 sg like> into

the value ni ta ku penda (Swahili for I will like you)

30

:

S1:

<subj 1 sg> == ni S2:<>

<subj 2 sg> == u S2:<>

<subj 3 sg> == a S2:<>

<subj 1 pl> == tu S2:<>

<subj 2 pl> == m S2:<>

<subj 3 pl> == wa S2:<>.

S2:

<past> == li S3:<>

<futr> == ta S3:<>.

S3:

<obj 1 sg> == ni S4:<>

<obj 2 sg> == ku S4:<>

<obj 3 sg> == m S4:<>

<obj 1 pl> == tu S4:<>

<obj 2 pl> == wa S4:<>

<obj 3 pl> == wa S4:<>.

S4:

<like> == penda.

Although the example is trivial, the technique is both powerful and useful. Gibbon

(1990), for example, has made notably e�ective use of it in his treatments of African tone

systems

31

. Much of the computational phonology and morphology of the last decade and

a half has depended on FSTs (Kaplan & Kay 1994). Potential lexical applications come

readily to mind { for example, the orthographic spelling rules for English su�xation (cf.

sky/skies). We give below a small fragment of such an FST in which + is used as a mor-

pheme boundary marker. Note the role of DATR variables in giving concise expression to

the rules:

vars $abc: a b c d e f g h i j k l m n o p q r s t u v w x y z.

vars $vow: a e i o u.

SPELL:

<> ==

<+> == <>

<$abc> == $abc <>

<e + $vow> == $vow <>.

These axioms then give rise to theorems such as these:

SPELL:

29 Cf. Krieger et al. (1993), who reconstruct �nite state automata in a feature description language.

30 For clarity, this FST does not exploit default inheritance to capture the 50% overlap between the

subject and object pronoun paradigms. See Gazdar (1992) for a version that does.

31 And see McFetridge & Villavicencio (1995) for a less exotic application.

23

DATR cogs csrp 382, November 1995

<l o v e> = l o v e

<l o v e + s> = l o v e s

<l o v e + e d> = l o v e d

<l o v e + e r> = l o v e r

<l o v e + l y> = l o v e l y

<l o v e + i n g> = l o v i n g

<l o v e + a b l e> = l o v a b l e.

4.4 Representing lists

DATR's foundation in path/value speci�cations means that many of the representational

idioms of uni�cation formalisms transfer fairly directly. A good example is the use of

first and rest attributes to represent list-structured features, such as syntactic ar-

guments and subcategorised complements. The following de�nitions could be used to

extend our verb fragment by introducing the path <syn args>, which determines a list

of syntactic argument speci�cations.

NIL:

<> == nil

<rest> == UNDEF

<first> == UNDEF.

VERB:

<syn cat> == verb

<syn args first syn cat> == np

<syn args first syn case> == nominative

<syn args rest> == NIL:<>.

Here extensions of <syn args first> specify properties of the �rst syntactic argument,

while extensions of <syn args rest> specify the others (as a �rst/rest list). UNDEF is

the name of a node that is not de�ned in the fragment, thus ensuring that <syn args

rest first>, <syn args rest rest>, and so forth are all unde�ned. The fragment

above provides a default speci�cation for <syn args> for verbs consisting of just one

argument, the subject NP. Subclasses of verb may, of course, override any part of this

default; for instance, transitive verbs add a second syntactic argument for their direct

object:

TR_VERB:

<> == VERB

<syn args rest first syn cat> == np

<syn args rest first syn case> == accusative

<syn args rest rest> == NIL:<>.

The description can be improved by using a separate node, NP ARG, to represent the

(default) properties of noun-phrase arguments:

NP_ARG:

<first syn cat> == np

<first syn case> == accusative

<rest> == NIL:<>.

VERB:

<syn cat> == v

<syn args> == NP_ARG:<>

<syn args first syn case> == nominative.

TR_VERB:

<> == VERB

<syn args rest> == NP_ARG:<>.

24

Evans & Gazdar Lexical Knowledge Representation

TR VERB accepts the NP ARG default unconditionally for the direct object argument, but

VERB overrides the default case for its subject argument. The e�ect of the empty path

(<>) speci�cation in the NP ARG inheritances is to \strip o�" the leading subpath from

the path whose value is inherited. The default mechanism adds the same path extension

to both sides, giving rise to statements such as the following:

VERB:<syn args first syn cat> == NP_ARG:<first syn cat>.

TR_VERB:<syn args rest first syn cat> == NP_ARG:<first syn cat>.

TR_VERB:<syn args rest first syn case> == NP_ARG:<first syn case>.

Three element argument lists, such as that needed for ditransitive verbs, are constructed

in the obvious way (where PP ARG is assumed to be like NP ARG but for prepositional-

phrase complements):

DI_VERB:

<> == TR_VERB

<syn args rest rest> == PP_ARG:<>.

4.5 Lexical rules

A lexical representation language needs to be able to express the relations that are now

widely thought to be in the domain of lexical rules

32

. Canonically, such rules deal with the

phenomena that used to be described by the \cyclic rules" of late 1960s transformational

grammar. Characteristically, they pertain to rather speci�c classes of lexical items (e.g.,

transitive verbs, or tensed auxiliary verbs) and they are subject to exceptions of various

kinds

33

. It is these characteristics that have led many linguists to consign them to the

lexicon. They usually involve a di�erence in argument structure and this is sometimes

accompanied by a morphological di�erence. The combination of evaluable paths with a

standard encoding of argument lists make it rather easy to de�ne lexical rules in DATR

34

.

Here, by way of illustration, is a partial analysis of verbs that implements a lexical

rule for syntax of the (agentless) passive construction

35

:

VERB:

<mor past> == "<mor root>" ed

<mor form> == "<mor "<syn form>">"

<syn cat> == verb

<syn subcat> == "<syn args>"

<syn args> == NP_ARG:<>

<syn args first syn case> == nominative.

PASSIVE_VERB:

<> == VERB

<mor passive> == "<mor past>"

<syn subcat rest> == "<syn args rest rest>".

TR_VERB:

32 See Carpenter (1991; 1992) and Ritchie et al. (1992, 93-111) for thorough discussion and

exempli�cation of lexical rules in several di�erent grammatical frameworks. More generally, Briscoe

& Copestake (1991) and Copestake & Briscoe (1992) argue that, in the context of a default

inheritance lexicon, the very same lexical rule mechanism can be invoked for both sense extensions

and morphological processes.

33 Radically lexicalist frameworks, which lack any construction-speci�c grammatical rules outside the

lexicon, do not restrict the use of lexical rules to \cyclic" phenomena. Thus, for example, Evans et

al. (1995) report the use of DATR to formulate a lexical rule for wh-questions in LTAG, inter alia.

34 Evaluable paths are not essential in this domain: thus Kilgarri� (1993) does not employ them in his

DATR analysis of verbal alternations in the context of an HPSG lexicon, although he does use the

standard encoding of argument lists.

35 Since our purpose here is expository, we have deliberately kept the analysis to minimum. Dealing

with the semantics of passive, for example, involves more of the same rather than any issue of

principle.

25

DATR cogs csrp 382, November 1995

<syn args rest> == NP_ARG:<>

<> == <<mood "<syn form>">>

<mood> == active

<mood passive> == passive

<active> == VERB:<>

<passive> == PASSIVE_VERB:<>.

This example introduces several new techniques. Firstly, in TR VERB we have a double

parametrisation on <syn form>: the value of <syn form> is evaluated and used to

create a <mood> path. The value returned by this path is then used to route the inheri-

tance. This allows us to employ the default mechanism to make the default mood active

(for arbitrary <syn form> values other than those that begin with the atom passive),

and thus just pick out <syn form> passive (and its extensions) for verbs in the passive

mood. Secondly, <active> and <passive> path pre�xes are provided for the explicit

purpose of controlling the inheritance route. Thirdly, the example presupposes a distinc-

tion between the syntactic arguments list (<syn args>) associated with a lexeme and

the subcategorisation frame list (<syn subcat>) associated with a particular syntactic

form of a lexeme. If the mood of the form is active (and the TR VERB node says that

anything that is not passive is active), then the subcategorisation frame is the same as

the argument list. But if the mood of the form is passive, then the part of the subcate-

gorisation frame that deals with objects and complements is stripped of its �rst item {

i.e., its direct object. By default, this dependency of subcategorisation frame on mood

will be inherited by all the descendants of TR VERB whether these be instances of simple

transitive verb lexemes or nodes de�ning speci�c types of transitive verbs (ditransitives,

object-plus-in�nitive verbs, bet-class verbs, etc.) and their descendants. Thus, if we as-

sume, for example, that the lexeme Donate is an instance of DI VERB as de�ned above,

and that Word5 and Word6 are in
ected tokens of Donate, then we will be able to derive

the following theorems:

Word5:

<mor form> = donate ed

<syn form> = past tense

<syn subcat first syn cat> = np

<syn subcat first syn case> = nominative

<syn subcat rest first syn cat> = np

<syn subcat rest first syn case> = accusative

<syn subcat rest rest first syn cat> = pp

<syn subcat rest rest first syn pform> = to

<syn subcat rest rest rest> = nil.

Word6:

<mor form> = donate ed

<syn form> = passive participle

<syn subcat first syn cat> = np

<syn subcat first syn case> = nominative

<syn subcat rest first syn cat> = pp

<syn subcat rest first syn pform> = to

<syn subcat rest rest> = nil.

Finally, notice that the equation that speci�es passivemorphology appears on the PASSIVE VERB

node. This ensures that passive morphology is unde�ned for verbs which are not syntac-

tically passive.

The techniques used in this rather simple treatment of passive can be readily adapted

for use in encoding other lexical rules and for grammatical frameworks other than that

implicit in the PATRish syntax we have adopted in our example. Thus, as noted above,

26

Evans & Gazdar Lexical Knowledge Representation

Evans et al. (1995) formulate various lexical rules for LTAG. They can also be readily

adapted for use in the semantic domain and used, for example, to implement the distinc-

tion between �xed and projective inheritance of lexical semantic information proposed

by Pustejovsky (1991,433-437).

It is advantageous to express lexical rules in the same formal language as is used

to express the lexical hierarchy since lexical rules themselves may well exhibit exactly

the kinds of defaulty relations, one to another, that lexical classes do

36

. Thus a lexical

rule for direct wh questions may be a variant of that for indirect wh questions: similar,

sharing components, but not identical. With a suitable degree of abstraction, achieved by

parameterisation of the components, lexical rules can be rei�ed in a language like DATR,

allowing one to inherit from another.

4.6 Representing ambiguity and alternation

DATR is a language that allows the lexicon writer to de�ne sets of partial functions

from sequences of atoms to sequences of atoms. That is actually all that it allows the

lexicon writer to do. Because DATR deals in functions it does not embody any notion of

disjunction or any possibility of multiple values being associated with a single node/path

pair. It might seem, at �rst glance, as if such a language would be quite inappropriate to

a domain such as the lexicon where ambiguities are common. In practice, however, this

turns out not to be the case. Consider the homonymy of bank:

Bank1:

<> == NOUN

<mor root> == bank

<sem gloss> == side of river.

Bank2:

<> == NOUN

<mor root> == bank

<sem gloss> == financial institution.

This is simply the traditional analysis of homonymy, encoded in DATR: there are two

entirely distinct lexemes with unrelated meanings that happen both to be nouns and to

have indistinguishable morphological roots.

Or consider the polysemy of cherry

37

:

Cherry:

<> == NOUN

<mor root> == cherry

<sem gloss 1> == sweet red berry with pip

<sem gloss 2> == tree bearing <sem gloss 1>

<sem gloss 3> == wood from <sem gloss 2>.

Again, this is a rather traditional analysis. There are (at least) three distinct but related

senses

38

. They are not freely interchangeable alternative values for a single attribute or

36 Cf. Krieger (1994, 279) who notes some other advantages.

37 The example is due to Kilgarri� (1995) who shows that the kind of polysemy exhibited by cherry

applies generally to fruit trees and can thus be speci�ed at a higher node in the lexical network,

removing the need for stipulation (as in our example) at the Cherry node, the Apple node, and so

on. Kilgarri� & Gazdar (1995) also present an extended example showing how DATR can be used to

encode the regular and subregular polysemy associated with the crop, �bre, yarn, fabric and

garment senses of words like cotton and silk. See also Copestake & Briscoe (1995) for related work

on regular and subregular polysemy.

38 For perspicuity, we provide these in DATR-augmented English here. But in a serious treatment they

could just as well be given in a DATR-encoding of the lambda calculus, say (as used in Cahill &

Evans 1990, for example).

27

DATR cogs csrp 382, November 1995

path. Instead, DATR allows their relatedness of meaning to be captured by using the

de�nition of one in the de�nition of another.

A very few words in English have alternative morphological forms for the same

syntactic speci�cation. An example noted by Fraser & Hudson (1990, 62) is the plural

of hoof which, for many English speakers, can appear as both hoofs and hooves

39

. DATR

does not permit a theorem set such as the following to be derived from a consistent

description:

Word7:

<syn number> = plural

<mor form> = hoof s

<mor form> = hoove s.

But it is quite straightforward to de�ne a description that will lead to the following

theorem set:

Word7:

<syn number> = plural

<mor form> = hoof s

<mor form alternant> = hoove s.

Or something like this:

Word7:

<syn number> = plural

<mor forms> = hoof s | hoove s .

Or this:

Word7:

<syn number> = plural

<mor forms> = { hoof s , hoove s }.

Of course, as far as DATR is concerned f hoof s , hoove s g is just a sequence of

seven atoms. It is up to some component external to DATR which makes use of such

complex values to interpret it as a two member set of alternative forms. Likewise, if we

have some good reason for wanting to put together the various senses of cherry into a

value returned by a single path, then we can write something like this:

Cherry:

...

<sem glosses> == { <sem gloss 1> , <sem gloss 2> , <sem gloss 3> }.

which will then provide this theorem:

Cherry:

<sem glosses> = { sweet red berry with pip ,

tree bearing sweet red berry with pip ,

wood from tree bearing sweet red berry with pip }.

Also relevant here are the various techniques for reducing lexical disjunction discussed

in Pulman (forthcoming).

4.7 Encoding DAGs

As a feature-based formalism with a syntax modelled on PATR, it would be reasonable to

expect that DATR can be used to describe directed acyclic graphs (DAGs) in a PATR-like

fashion. Consider an example such as the following:

DAG1:

<vp agr> == <v agr>

39 See also the dreamt/dreamed verb class discussed by Russell et al. (1992, 330-331).

28

Evans & Gazdar Lexical Knowledge Representation

<v agr per> == 3

<vp agr gen> == masc.

This looks like simple reentrancy from which we would expect to be able to infer:

DAG1:

<vp agr per> = 3.

And, indeed, this turns out to be valid. But matters are not as simple as the example

makes them appear: if DAG1 was really the DAG it purports to be, then we would also

expect to be able to infer:

DAG1:

<v agr gen> = masc.

But this is not valid, in fact <v agr gen> is unde�ned. It might be tempting to conclude

from this that the equality operator in DATR is very di�erent from the corresponding op-

erator in PATR, but this would be to misunderstand what has happened in this example.

In fact, the semantics of the statement

DAG1:

<vp agr> == <v agr>.

taken in isolation is very similar to the semantics of the corresponding PATR statement:

both assert equality of values associated with the two paths. The DATR statement is

slightly weaker in that it allows the left-hand-side to be de�ned when the right-hand-side

is unde�ned. But, even in DATR, if both sides are de�ned they must be the same, so,

in principle, the value of the left-hand-side does semantically constrain the value of the

right-hand-side. However, in a DATR description, specifying explicit values for extensions

of the left-hand-side of such an equality constraint overrides its e�ect, and thus does

not in
uence the values on its right-hand-side.

Another di�erence lies in the fact that DATR subpaths and superpaths can have

values of their own:

DAG2:

<v agr> == sing

<v agr per> == 3.

From this little description we can derive the following statements, inter alia:

DAG2:

<v agr> = sing

<v agr num> = sing

<v agr per> = 3

<v agr per num> = 3.

From the perspective of a standard untyped DAG-encoding language like PATR, this is

strange. In PATR, if <v agr per> has value 3, then neither <v agr> nor <v agr per

num> can have (atomic) values.

As these examples clearly show, DATR descriptions do not map trivially into (sets

of) standard DAGs (although neither are they entirely dissimilar). But that does not

mean that DATR descriptions cannot describe standard DAGs. Indeed, there are a

variety of ways in which this can be done. An especially simple approach is possible

when the DAGs one is interested are all built out of a set of paths whose identity is

known in advance (Kilbury et al. 1991). In this case, we can use DATR paths as DAG

paths, more or less directly:

PRONOUN2:

<referent> == '<' 'NP' referent '>'.

She2:

<> == PRONOUN2

<case> == nominative

29

DATR cogs csrp 382, November 1995

<person> == third

<number> == singular.

From this description, we can derive the following theorems:

She2:

<case> = nominative

<person> = third

<number> = singular

<referent> = < NP referent >.

We can also derive the following un-DAG-like consequences, of course:

She2:

<case person> = nominative

<person number> = third

<referent referent referent> = < NP referent >.

But these nonsensical theorems will be of no concern to a DATR-invoking NLP system

that is able to specify in advance which paths are of interest for DAG-construction and

to ignore all the rest

40

.

A more sophisticated approach uses DATR itself to construct a DAG description (in

the notation of your choice) as a value

41

:

IDEM:

<> ==

<$atom> == $atom <>.

PATH:

<> == '<' IDEM '>'.

LHS_EQ:

<> == PATH '='.

LHS_EQ_RHS:

<> == LHS_EQ "<>".

PRONOUN1:

<dag> == [LHS_EQ_RHS:<case>

LHS_EQ_RHS:<person>

LHS_EQ_RHS:<number>

LHS_EQ:<referent> PATH:<'NP' referent>].

She1:

<> == PRONOUN1

<case> == nominative

<person> == third

<number> == singular.

From this description, we can derive the following theorem:

She1:

<dag> = [< case > = nominative

< person > = third

< number > = singular

< referent > = < NP referent >].

40 In this connection, see the discussion of \closure de�nitions" in Andry et al. (1992, 259-261).

41 This approach is due to recent unpublished work by Jim Kilbury. He has shown that the same

DATR theorems can have their values realised as conventional attribute-value matrix

representations, Prolog terms, or expressions of a feature logic, simply by changing the �ne detail of

the transducer employed.

30

Evans & Gazdar Lexical Knowledge Representation

The sequence of atoms on the right hand side of this equation is just a sequence of

atoms as far as DATR is concerned. But a grammar or a parser that expects to see DAGs

represented as they are here can interpret the DATR values as easily as it can the contents

of a �le

42

.

5. Technical Issues

In this section we brie
y discuss a number of technical issues, relating both to DATR as

a formal language, and also to practical aspects of DATR in use.

5.1 Functionality

Most DATR descriptions consist only of de�nitional statements, and include at most one

statement for each node/path pair. In this section we examine the signi�cance of this

observation from a formal perspective. As already noted in Section 2, DATR nodes can

be thought of semantically as denoting partial functions from paths (sequences of atoms)

to values (sequences of atoms)

43

. Generalising this view in the obvious way, whole DATR

descriptions can be thought of as denoting functions from nodes to (partial) functions

from paths to values. This semantic notion induces a notion of consistency for DATR

descriptions: we say that a DATR description is consistent if and only if it has a coherent

interpretation as a function, that is, if the extensional sentences de�ned (explicitly or

implicitly) for each node constitute a (partial) function from paths to values.

The syntax of DATR does not itself prevent one from writing down inconsistent

descriptions:

VERB:

<syn cat> == verb

<syn cat> == noun.

However, such descriptions are of no utility and it would be desirable to �nd a mechan-

ical way of eliminating them. In pursuit of this, we can de�ne a syntactic notion of

functionality over DATR descriptions as follows:

A DATR description is functional if and only if (i) it contains only

de�nitional statements and (ii) those statements constitute a (partial)

function from node/path pairs to descriptor sequences.

The signi�cance of this syntactic notion arises from the following property:

Every functional DATR description is consistent.

To understand why this is

44

note �rst that the default extension process preserves func-

tionality, since it only adds de�nitional statements about new node/path pairs not already

present in the original description. Local inheritance derives new statements associated

42 Indeed, it will be interpreting the contents of a �le if DATR has been used to de�ne a lexicon that

has subsequently been compiled out, rather than being accessed directly by components of the NLP

system (see Section 5.3, below). We are not, of course, claiming that textual representations will

standardly provide the optimal interface between an implementation of DATR and the larger NLP

system in which it is embedded (cf., e.g., Duda & Gebhardi 1994).

43 We continue to oversimplify matters here. As Keller (1995) points out, the meaning of a node

depends on the global context, and a node thus really denotes a function from global contexts to

partial functions from paths to values. Though important, this point is tangential to the issue

addressed here.

44 For simplicity here, we consider only the case of length one descriptor sequences { the general case

involves complications not relevant to the main point.

31

DATR cogs csrp 382, November 1995

with a node/path pair, but at most one of these de�nes a value or global inheritance

descriptor (since local inheritance ceases at that point). Thus although the local inher-

itance makes the description become syntactically non-functional, the speci�cation of

values or global descriptors remains functional. The value speci�cations map directly to

extensional statements, while the global inheritance descriptors operate just as the local

ones, adding at most one further value statement for each global inheritance statement,

so that ultimately the consistency of the set of (extensional) value statements is assured.

This theorem cannot be strengthened to a biconditional, however, since consistent

but non-functional DATR descriptions exist, as in the following examples:

NONFUNC1:

<a> == UNDEF

<a> == 1.

NONFUNC2:

<a> ==

<a> == 1

 == 1.

NONFUNC3:

<a> ==

 == <a>

<a> == 1.

In NONFUNC1, UNDEF is a node with no associated de�nitions, so the �rst statement imposes

no constraint on the value of <a>; in NONFUNC2, two de�nitions for <a> are provided

which happen to de�ne the same value; in NONFUNC3, we establish a mutual dependence

between <a> and , and then de�ne a value for one (either) of them. However, we

have not encountered any examples of nonfunctional but consistent descriptions which are

not better expressed by a straightforward functional counterpart

45

. Indeed, we suspect

(but have no proof) that every consistent DATR description is extensionally equivalent

to (that is, de�nes the same extensional sentences as) a functional one.

In the light of these considerations, we assume here, and elsewhere, that functionality

is a reasonable restriction to place on DATR descriptions

46

. The advantage of this is that

it is completely trivial to check that a DATR description is functional and hence guarantee

its consistency. In other words, we can substitute a straightforward syntactic constraint

on descriptions for the less tractable notion of semantic consistency, apparently without

signi�cant loss of expressive power. Among other things, this means that implementations

of DATR can thus either treat attempted violations of functionality as syntactic errors

and require the user to eliminate them, or (more commonly in existing implementations)

they can treat apparent violations as intentional corrections and silently erase earlier

statements for the node and path for which a violation has been detected.

5.2 Multiple inheritance

Multiple inheritance, in inheritance network terminology, describes any situation

where a node in an inheritance network inherits information from more than one other

node in the network. Wherever this phenomenon occurs there is the potential for con-

icting inheritance, i.e., when the information inherited from one node is inconsistent

45 NONFUNC3 perhaps comes closest, but adding statements about extensions of either <a> or

quickly breaks the illusion that the two are in some sense \uni�ed".

46 This only applies to original source descriptions: as we mentioned above, the formal inference

mechanisms that implement inheritance necessarily add statements to make a description

nonfunctional. But since these can always be automatically determined, they need never appears

explicitly in source descriptions.

32

Evans & Gazdar Lexical Knowledge Representation

with that inherited from another. Because of this, the handling of multiple inheritance

is an issue which is central to the design of any formalism for representing inheritance

networks.

For the formalism to be coherent, it must provide a way of avoiding or resolving any

con
ict which might arise. This might be by banning multiple inheritance altogether, re-

stricting it so that con
icts are avoided, providing some mechanism for con
ict resolution

as part of the formalism itself, or providing the user of the formalism with the means to

specify how the con
ict should be resolved. Putting aside considerations of functionality

for the moment, we see that, in DATR, both the second and third of these options are

employed. The \longest-de�ned-subpath-wins" principle amounts to con
ict resolution

built into the formalism; however, it does not deal with every case: de�nitions such as

Node3:

<> == Node1

<> == Node2.

may result in unresolvable con
icts. Such con
icts could, of course, just be ruled out by

appealing to their inconsistency, which, following a logical tradition, is grounds for ruling

the description to be \improper".

Touretzky (1986, p70�) provides a formal description of a number of properties that

an inheritance network may have, and discusses their signi�cance with respect to the

problem of multiple inheritance. Tree-structured networks, as their name suggests, allow

any node to inherit from at most one other node, so multiple inheritance con
icts cannot

arise. Orthogonal networks allow a node to inherit from more than one other node,

but the properties it inherits from each must be disjoint, so that again, no con
ict can

possibly arise.

The basic descriptive features of DATR allow the speci�cation of simple orthogonal

networks similar to Touretzky's. For example, if we write:

A:

<a> == true.

B:

 == false.

C:

<a> == A

 == B.

then we are specifying a network of three nodes (A B, and C), and two \predicates"

(boolean-valued attributes coded as DATR paths <a> and), with C inheriting a

value for <a> from A, and for from B. The network is orthogonal, since <a> and

 represent distinct (sets of) predicates.

Orthogonal multiple inheritance (OMI) is a desirable property of lexical represen-

tation systems. Consider an analysis in which we put the common properties of verbs

at a VERB node and the (disjoint) common properties of words that take noun phrase

complements at an NP ARG node. A transitive verb (TR VERB) is both a verb and a word

that takes an NP complement, thus it should inherit from both VERB and NP ARG in this

analysis. In DATR, this might be expressed as follows:

VERB:

<cat> == verb.

NP_ARG:

<arg cat> == np

<arg case> == acc.

TR_VERB:

<cat> == VERB

<arg> == NP_ARG.

33

DATR cogs csrp 382, November 1995

Here TR VERB inherits from both VERB and NP ARG but the path pre�xes cat and arg

ensure that the inheritance is orthogonal and that no con
ict (e.g., in respect of <cat>

values) can arise.

More generally, OMI is invaluable for partitioning the various di�erent, and largely

independent, aspects of lexical description conventionally associated with such initial

path pre�xes as phn (phonology), mor (morphology), syn (syntax), and sem (semantics).

In the English verbal system, for example, most morphological subregularities (such as

having a past participle form in -en) operate entirely independently of most syntactic

subregularities (such as having a ditransitive subcategorisation frame). Within the se-

mantic domain, Pustejovsky & Boguraev (1993, 214) introduce the expression typed

inheritance for OMI and argue for its advantages in connection with the consistent

assembly of the di�erent facets of meaning associated with a lexical item.

The above examples of OMI are in fact instances of a more general phenomenon in

DATR. We have already noted that the combination of the longest-de�ned-subpath-wins

and logical consistency are the basis of DATR's support for coherent multiple inheritance.

It turns out that functionality (which of course implies consistency) ensures orthogonality,

so that OMI falls out as the most normal, natural mode of de�nition using DATR.

Finally here, we note that a number of recent lexical theories have invoked a form

of inheritance in which multiple parents with overlapping domains are speci�ed, and a

priority ordering imposed to resolve potential inheritance con
icts (e.g., Flickinger 1987;

Russell et al. 1992). In this prioritised multiple inheritance (PMI), precedence is given

to nodes that come earlier in the ordering, so that the inherited value for a property

comes from the �rst parent node in the ordering that de�nes that property, regardless of

whether other later nodes also de�ne it (possibly di�erently).

Surprisingly perhaps, DATR's version of OMI can be used to reconstruct PMI with-

out making syntactic and semantic additions to the language. In fact, we have described

elsewhere no fewer than three di�erent techniques for capturing PMI in DATR (Evans et

al. 1993). But DATR was primarily designed to facilitate OMI analyses of natural lan-

guage lexicons and we do not believe that PMI treatments of the lexicon o�er signi�cant

analytical or descriptive advantages.

5.3 Modes of use

Lexicons can either be developed by hand or, in principle at least, they can be induced

from relevant data. Once created, lexicons get used for language understanding, language

generation, or both. Lexicons that are in use also have to be maintained. At present,

implementations of lexical representation systems are typically specialised to one or two

of these tasks. A language for lexical knowledge representation is merely one component

of a lexical representation system, of course, but its design may well have implications

for the tasks noted above. A language that coded everything into bit strings might be

fully adequate for the induction and generation tasks, say. But it would probably not

facilitate manual lexicon maintenance.

From a more formal point of view, Barg (1994) provides the useful tabular concep-

tualisation of the inferential tasks that may be associated with a lexical representation

language like DATRshown in Table 2, below. Consider the English verbal morphology

facts that provided our running example in Section 2, above. The conventional inference

task presupposes that we have a description (such as that given in that section) and

a query (such as Love: <mor past participle>): the task is to infer the appropriate

value for this query, namely love ed. This task is crucial to lexicon development and

maintenance since it provides the means by which the developer can check the empirical

adequacy of their analysis. It is also a task that is likely to �gure in the on-line use

of the lexicon in a language processing system, once the relevant lexical entry (i.e., the

34

Evans & Gazdar Lexical Knowledge Representation

Theory Query Value

Conventional inference
given given unknown

Reverse query
given unknown given

Theory induction
unknown given given

Table 2

Possible inference tasks (adapted from Barg 1994)

relevant DATR node) has been determined, to recover information associated with the

entry. And it is the task that does the compilation in systems that use a partially or fully

compiled-out o�-line lexicon (as in Andry et al. 1992).

The reverse query task again presupposes that we have a description available to us.

But instead of starting with a known query, we start instead with a known value (love

ed, say, and the task is to infer what queries would lead to that value (Love: <mor past

participle>, Love: <mor past tense sing one>, etc.)

47

, The ability to perform this

kind of inference may also be useful in lexicon development and maintenance. However, its

most obvious application is to \bootstrap" lexical access in language processing systems

that make direct use of an on-line lexicon: given a surface form (in analysis) or a semantic

form (in generation), we need to identify a lexical entry associated with that form by

reverse query, and then access other lexical information associated with the entry by

conventional inference. Langer (1994) gives an inference algorithm, based on the familiar

chart data structure, for reverse querying DATR lexicons; and Gibbon (1993) describes

EDQL (Extended DATR Query Language) which permits quanti�cation into components

of multisentence DATR queries.

The �nal task is that of theory induction. Here one starts with a set of known query-

value pairs (Love: <mor past participle> = love ed., Love: <mor pres tense sing

three> = love s., etc.) and the task is to induce a description that has those pairs as

theorems under the application of conventional inference. In a world in which all the

relevant data was already clearly set out in descriptive linguistic work, an algorithm

that e�ciently achieved this kind of induction would be the philosopher's stone to the

construction of computational lexicons. In the real world, such an algorithm would still

be useful for domains like morphology (where the quality and clarity of extant descriptive

linguistic work is very high), for bootstrapping lexical descriptions for subsequent manual

development by humans, for updating lexicons in the light of newly encountered lexical

information, and for converting one kind of lexicon into a completely di�erent kind of

lexicon by inducing the latter from the output of the former. The automatic induction of

(symbolic) lexicons from data is a very new research area in computational linguistics:

Kilbury (1993), Kilbury et al. (1994), Light (1994) and Light et al. (1993) have proposed

a variety of incremental algorithms that take a partial lexical hierarchy and elaborate

it as necessary in the light of successively presented data sets, whilst Barg (1994) has

presented a nonincremental algorithm that induces full DATR hierarchies from suitable

data sets.

Since DATR is no more than a language, it does not itself dictate how a DATR

lexicon is to be used. As it turns out, di�erent researchers have used it very di�erently.

Andry et al. (1992), in the context of a speech recognition task involving the parsing of

\extremely large lattices of lexical hypotheses" (p248), opted for o�-line compilation of

their 2000 word DATR lexicons into pairs of on-line lexicons, one of which was encoded

47 An alternative formulation is to start with a known value and path, and the task is to infer the

appropriate nodes.

35

DATR cogs csrp 382, November 1995

with bit-vectors for speed and compactness. At the other extreme, Duda & Gebhardi

(1994) present an interface between a PATR-based parser and a DATR lexicon where the

former is dynamically linked to the latter and able to query it freely, in both conventional

and reverse modes, without restriction. And Gibbon (1993) presents an implementation

of a very
exible query language, EDQL, which allows quanti�cation over any constituents

of (possibly complex) DATR queries.

5.4 Implementations

As already noted, the inferential core of DATR is extremely simple to implement. We

know of the existence of around a dozen di�erent implementations of the language but

there may well be others that we do not know of. The best known, and most widely

available are our own (Brighton/Sussex), which is written in Prolog and runs on most

Unix platforms, Gibbon's (Bielefeld) DDATR Scheme and NODE Sicstus Prolog imple-

mentations, and Kilbury's (Duesseldorf) QDATR Prolog implementation which runs (in

compiled form) on PCs and on Sicstus Prolog under Unix. All of these are freely avail-

able on request, as is an extensive archive of over one hundred example fragments some

of which illustrate formal techniques and others of which are applications of DATR to

the lexical phonology, morphology, syntax or semantics of a wide variety of di�erent

languages

48

. Other interesting implementations that we are familiar with include the ex-

perimental reverse query implementation by Langer (Osnabrueck), Duda & Gebhardi's

(Berlin) implementation that is dynamically linked to PATR, and Barg's (Duesseldorf)

implementation of a system that induces DATR descriptions from extensional data sets.

6. Concluding Remarks

Our title for this paper is to be taken literally { DATR is a language for lexical knowledge

representation. It is a kind of programming language, not a theoretical framework for

the lexicon (in the way that HPSG is a theoretical framework for syntax, say). Clearly,

the language is well suited to lexical frameworks that embrace, or are consistent with,

nonmonotonicity and inheritance of properties through networks of nodes. But those

two dispositions hardly constitute a restrictive notion of suitability in the context of

contemporary NLP work. Nor are they absolute requirements: it is, for example, entirely

possible to write useful DATR fragments that never override inherited values (and so are

monotonic) or which de�ne isolated nodes with no inheritance.

It is true, of course, that our examples, in this paper and elsewhere, re
ect a particular

set of assumptions about how NLP lexicons can be best organised. But, apart from

the utility of inheritance and nonmonotonicity, we have been careful not to build those

assumptions into the DATR language itself. There is, for example, no built-in assumption

that lexicons should lexeme-based rather than, say, word- or morpheme-based.

Unlike some other NLP inheritance languages, DATR is not intended to provide

the facilities of a particular syntactic formalism. Rather, it is intended to be a lexical

formalism that can be used with any syntactic representation which can be encoded

in terms of attributes and values. Thus, at the time of writing, we know of nontrivial

DATR lexicons written for GPSG, LTAG, PATR, Uni�cation Categorial Grammar, and

Word Grammar. Equally, the use of DATR does not commit one, in advance, to adopting

any particular set of theoretical assumptions with respect to phonology, morphology or

semantics. In phonology, for example, the language allows one to write transducers that

48 Anonymous FTP to ftp.cogs.sussex.ac.uk and directory /pub/nlp/DATR provides access to

various DATR implementations, the example archive, and some relevant papers and documentation.

36

Evans & Gazdar Lexical Knowledge Representation

map strings of atomic phonemes to strings of atomic phones. But it also allows one to

encode full-blown feature and syllable-tree based prosodic analyses.

Unlike the formalisms typically proposed by linguists, DATR does not attempt to

embody in its design any substantive and restrictive universal claims about the lexicons

of natural language. That does not distinguish it from most NLP formalisms, of course.

However, we have also sought to ensure that its design does not embody features that

would restrict its use to a single language (English, say) or to a particular class of closely

related languages (the Romance class, say). The available evidence suggests that we

have succeeded in the latter aim since, at the time of writing, nontrivial DATR fragments

of the lexicons of Arabic, Arapesh, Czech, English, French, German, Gikuyu, Italian,

Latin, Polish, Portuguese, Russian and Spanish have been developed. There are also

smaller indicative fragments for Baoule, Dakota, Dan, Dutch, Japanese, Nyanja, Sanskrit,

Serbo-Croat, Swahili and Tem.

Unlike most other languages proposed for lexical knowledge representation, DATR

is not intended to be restricted in the levels of linguistic description to which it can

sensibly be applied. It is designed to be equally applicable at phonological, orthographic,

morphological, syntactic and semantic levels of description. But it is not intended to

replace existing approaches to those levels. Rather, we envisage descriptions of di�erent

levels according to di�erent theoretical frameworks being implementable in DATR: thus

an NLP group might decide, for example, to build a lexicon with DRT-style semantic

representations, HPSG-style syntactic representations, \item & arrangement" style mor-

phological representations and a KIMMO-style orthographic component, implementing

all of these, including the HPSG lexical rules, in DATR. DATR itself does not mandate

any of the choices in this example, but equally nor does it allow such choices to be

avoided

49

. DATR cannot be (sensibly) used without a prior decision as to the theoretical

frameworks in which the description is to be conducted; there is no \default" framework

for describing morphological facts in DATR, say. Thus, for example, Gibbon (1992) and

Langer & Gibbon (1992) use DATR to implement their ILEX theory of lexical organisa-

tion, Corbett & Fraser (1993) and Fraser & Corbett (in press) use DATR to implement

their Network Morphology framework, and Gazdar (1992) shows how Paradigm Function

Morphology analyses (Stump 1992) can be mapped into DATR. Indeed, it would not be

entirely misleading to think of DATR as a kind of assembly language for constructing (or

reconstructing) higher level theories of lexical representation.

Acknowledgments

We are grateful to the four CL referees for their criticisms and suggestions; to Lynne Cahill,

Dafydd Gibbon, Jim Kilbury and David Weir for their comments on an earlier draft of the

paper; and to Walter Daelemans and John Nerbonne for their comments on the �rst draft of

the appendix. We thank Petra Barg, Lynne Cahill, Norman Fraser, Dafydd Gibbon, Elizabeth

Jenkins, Jim Kilbury, Lionel Moser, and Ingrid Renz for their role(s) in the development of the

DATR language and the coding techniques discussed above; Fernando Pereira for early critical

comments that led directly to the introduction of evaluable paths into the language; and Bill

Keller and David Weir for much relevant recent interaction. This research was supported by

various grants to the authors from ESRC (UK) and SERC/EPSRC (UK).

49 However, DATR's framework-agnosticism may make it a plausible candidate for the construction of

polytheoretic lexicons. For example, one that would allow either categorial or HPSG-style

subcategorisation speci�cations to be derived, depending on the setting of a parameter.

37

DATR cogs csrp 382, November 1995

References

Francois Andry, Norman Fraser, Scott

McGlashan, Simon Thornton, & Nick

Youd (1992) Making DATR work for

speech: lexicon compilation in SUNDIAL.

Computational Linguistics 18, 245-267.

Petra Barg (1994) Automatic acquisition of

DATR theories from observations.

Theories des Lexicons: Arbeiten des

Sonderforschungsbereichs 282,

Heinrich-Heine University of Duesseldorf.

Doris Bleiching (1992) Prosodisches Wissen

in Lexicon. In G. Goerz, ed., Proceedings

of KONVENS-92, Berlin: Springer-Verlag,

59-68.

Doris Bleiching (1994) Integration von

Morphophonologie und Prosodie in ein

hierarchisches Lexicon. In Harald Trost,

ed., Proceedings of KONVENS-94,

Vienna: Oesterreichische Gesellschaft fuer

Arti�cial Intelligence, 32-41

Gosse Bouma (1993) Nonmonotonicity and

categorial uni�cation grammar.

Proefschrift, Rijksuniversiteit Groningen.

Gosse Bouma & John Nerbonne (1994)

Lexicons for feature-based systems. In

Harald Trost, ed., Proceedings of

KONVENS-94, Vienna: Oesterreichische

Gesellschaft fuer Arti�cial Intelligence,

42-51.

Ted Briscoe & Ann Copestake (1991) Sense

extensions as lexical rules. In D. Fass, E.

Hinkelman & J. Martin, eds.

Computational approaches to Non-Literal

Language, Proceedings of the IJCAI

Workshop, Sydney, 12-20.

Ted Briscoe, Ann Copestake & Alex

Lascarides (1995) Blocking. In Patrick

Saint-Dizier & Evelyne Viegas, eds.

Computational Lexical Semantics.

Cambridge: Cambridge: Cambridge

University Press, 272-302.

Ted Briscoe, Valeria de Paiva & Ann

Copestake, eds. (1993) Inheritance,

Defaults, and the Lexicon, Cambridge:

Cambridge University Press.

Dunstan Brown & Andrew Hippisley (1994)

Con
ict in Russian genitive plural

assignment: A solution represented in

DATR . Journal of Slavic Linguistics,

2(1), 48-76.

Lynne Cahill (1993a) Some re
ections on

the conversion of the TIC lexicon into

DATR. In Ted Briscoe, Valeria de Paiva

and Ann Copestake, eds. Inheritance,

defaults, and the lexicon. Cambridge,

Cambridge University Press, 47-57.

Lynne Cahill (1993b) Morphonology in the

lexicon. Sixth Conference of the European

Chapter of the Association for

Computational Linguistics, 87-96.

Lynne Cahill (1994) An inheritance-based

lexicon for message understanding

systems. Fourth ACL Conference on

Applied Natural Language Processing,

211-212

Lynne Cahill & Roger Evans (1990) An

application of DATR: the TIC lexicon, in

Proceedings of the 9th European

Conference on Arti�cial Intel ligence,

Stockholm, 120-125.

Jo Calder (1994) Feature-value logics: some

limits on the role of defaults. In C.J.

Rupp, M.A. Rosner & R.L. Johnson, eds.

Constraints, Language and Computation.

London: Academic Press, 205-222.

Bob Carpenter (1991) The generative power

of categorial grammars and head-driven

phrase structure grammars with lexical

rules. Computational Linguistics 17,

301-313.

Bob Carpenter (1992) Categorial grammars,

lexical rules, and the English predicative.

In Robert Levine, ed. Formal Grammar:

Theory and Implementation. New York:

Oxford University Press, 168-242.

Ann Copestake (1992) The representation of

lexical semantic information. PhD

dissertation, University of Sussex,

Cognitive Science Research Paper CSRP

280.

Ann Copestake & Ted Briscoe (1992)

Lexical operations in a uni�cation based

framework. In James Pustejovsky &

Sabine Bergler, eds. Lexical Semantics

and Knowledge Representation. Berlin:

Springer-Verlag, 101-119.

Ann Copestake & Ted Briscoe (1995)

Regular polysemy and semi-productive

sense extension. Journal of Semantics 12,

15-67.

Greville Corbett & Norman Fraser (1993)

Network Morphology: a DATR account of

Russian nominal in
ection. Journal of

Linguistics 29, 113-142.

Walter Daelemans (1994) Review of Ted

Briscoe, Valeria de Paiva & Ann

Copestake, eds. (1993) Inheritance,

Defaults, and the Lexicon, Cambridge:

Cambridge University Press.

Computational Linguistics 20.4, 661-664.

Walter Daelemans & Koenraad De Smedt

(1994) Inheritance in an object-oriented

representation of linguistic categories.

International Journal of

38

Evans & Gazdar Lexical Knowledge Representation

Human-Computer Studies 41.1/2,

149-177.

Walter Daelemans, Koenraad De Smedt &

Gerald Gazdar (1992) Inheritance in

natural language processing .

Computational Linguistics 18.2, 205-218.

Walter Daelemans & Gerald Gazdar, eds.

(1992) Computational Linguistics 18.2 &

18.3, special issues on inheritance.

Walter Daelemans & Erik-Jan van der

Linden (1992) Evaluation of lexical

representation formalisms. In Jan van

Eijck & Wilfried Meyer, eds.

Computational Linguistics in the

Netherlands: Papers from the Second

CLIN Meeting. Utrecht: OTS, 54-67.

Marc Domenig & Pius ten Hacken (1992)

Word Manager: A System for

Morphological Dictionaries. Hidesheim:

Georg Olms Verlag.

Markus Duda & Gunter Gebhardi (1994)

DUTR { A DATR-PATR interface

formalism. In Harald Trost, ed.,

Proceedings of KONVENS-94, Vienna:

Oesterreichische Gesellschaft fuer

Arti�cial Intelligence, 411-414.

Roger Evans & Gerald Gazdar (1989a)

Inference in DATR. Fourth Conference of

the European Chapter of the Association

for Computational Linguistics, 66-71.

Roger Evans & Gerald Gazdar (1989b) The

semantics of DATR. In Anthony G. Cohn,

ed. Proceedings of the Seventh Conference

of the Society for the Study of Arti�cial

Intel ligence and Simulation of Behaviour.

London: Pitman/Morgan Kaufmann,

79-87.

Roger Evans, Gerald Gazdar & Lionel Moser

(1993) Prioritised multiple inheritance in

DATR. In Ted Briscoe, Valeria de Paiva

and Ann Copestake, eds. Inheritance,

defaults, and the lexicon. Cambridge,

Cambridge University Press, 38-46.

Roger Evans, Gerald Gazdar & David Weir

(1995) Encoding lexicalized tree adjoining

grammars with a nonmonotonic

inheritance hierarchy. 33rd Annual

Meeting of the Association for

Computational Linguistics, 77-84.

Daniel P. Flickinger (1987) Lexical Rules in

the Hierarchical Lexicon, doctoral

dissertation, Stanford University.

Norman Fraser & Greville Corbett (1995)

Gender, animacy, and declensional class

assignment: a uni�ed account for Russian.

In Geert Booij & Jaap van Marle, eds.

Year Book of Morphology 1994.

Dordrecht: Kluwer, 123-150.

Norman Fraser & Greville Corbett (in press)

Gender assignment in Arapesh: a Network

Morphology analysis. Lingua 00, 00-00.

Norman Fraser & Richard Hudson (1990)

Word Grammar: an inheritance-based

theory of language. In Walter Daelemans

& Gerald Gazdar, eds. Proceedings of the

Workshop on Inheritance in Natural

Language Processing. Tilburg: Institute

for Language Technology, 58-64.

Gerald Gazdar (1992) Paradigm function

morphology in DATR. In Lynne Cahill &

Richard Coates, eds. Sussex Papers in

General and Computational Linguistics.

Brighton, University of Sussex, Cognitive

Science Research Paper CSRP 239,

43-53.

Dafydd Gibbon (1990) Prosodic association

by template inheritance. In Walter

Daelemans & Gerald Gazdar, eds.

Proceedings of the Workshop on

Inheritance in Natural Language

Processing. Tilburg: Institute for

Language Technology, 65-81.

Dafydd Gibbon (1992) ILEX: a linguistic

approach to computational lexica. In

Ursula Klenk, ed. Computatio Linguae:

Aufsaze zur algorithmischen und

quantitativen Analyse der Sprache

(Zeitschrift fur Dialektologie und

Linguistik, Beiheft 73), Stuttgart: Franz

Steiner Verlag, 32-53.

Dafydd Gibbon (1993) Generalized DATR

for
exible lexical access: PROLOG

speci�cation. Bielefeld: Verbmobil Report

2.

Dafydd Gibbon & Doris Bleiching (1991)

An ILEX model for German compound

stress in DATR. Proceedings of the

FORWISS-ASL Workshop on Prosody in

Man-Machine Communication, 1-6.

Nancy Ide, Jacques Le Maitre & Jean

V�eronis (1994) Outline of a model for

lexical databases. In Antonio Zampolli,

Nicoletta Calzolari & Martha Palmer,

eds. Current Issues in Computational

Linguistics: In Honour of Don Walker.

Pisa: Kluwer, 283-320.

Ronald M. Kaplan & Martin Kay (1994)

Regular models of phonological rule

systems. Computational Linguistics 20.3,

331-378.

William Keller (1995) DATR theories and

DATR models. 33rd Annual Meeting of

the Association for Computational

Linguistics, 55-62.

James Kilbury (1993) Strict inheritance and

the taxonomy of lexical types in DATR.

Unpublished manuscript, University of

Duesseldorf.

James Kilbury, Petra [Barg] Naerger &

Ingrid Renz (1991) DATR as a lexical

component for PATR. Fifth Conference of

the European Chapter of the Association

39

DATR cogs csrp 382, November 1995

for Computational Linguistics, 137-142.

James Kilbury, Petra [Barg] Naerger &

Ingrid Renz (1994) Simulation

lexicalischen Erwerbs In Sascha W. Felix,

Christopher Habel & Gert Rickheit

Kognitive Linguistik: Repraesentation und

Prozesse. Opladen: Westdeutscher Verlag,

251-271.

Adam Kilgarri� (1993) Inheriting verb

alternations. Sixth Conference of the

European Chapter of the Association for

Computational Linguistics, 213-221.

Adam Kilgarri� (1995) Inheriting polysemy.

In Patrick Saint-Dizier & Evelyne Viegas,

eds. Computational Lexical Semantics.

Cambridge: Cambridge: Cambridge

University Press, 00-00.

Adam Kilgarri� & Gerald Gazdar (1995)

Polysemous relations. In F.R. Palmer, ed.

Grammar and Meaning: Essays in

Honour of Sir John Lyons. Cambridge:

Cambridge University Press, 1-25.

Hans-Ulrich Krieger (1994) Derivation

without lexical rules. In C.J. Rupp, M.A.

Rosner & R.L. Johnson, eds. Constraints,

Language and Computation. London:

Academic Press, 277-313.

Hans-Ulrich Krieger & John Nerbonne

(1993) Feature-based inheritance

networks for computational lexicons. In

Ted Briscoe, Valeria de Paiva and Ann

Copestake, eds. Inheritance, defaults, and

the lexicon. Cambridge, Cambridge

University Press, 90-136.

Hans-Ulrich Krieger, Hannes Pirker & John

Nerbonne (1993) Feature-based

allomorphy. 31st Annual Meeting of the

Association for Computational

Linguistics, 140-147.

Hagen Langer (1994) Reverse queries in

DATR. COLING-94, 1089-1095.

Hagen Langer & Dafydd Gibbon (1992)

DATR as a graph representation language

for ILEX speech oriented lexica. Technical

Report ASL-TR-43-92/UBI,

University of Bielefeld.

Alex Lascarides, Nicholas Asher, Ted

Briscoe & Ann Copestake (forthcoming)

Order independent and persistent typed

default uni�cation. To appear in

Linguistics & Philosophy.

Marc Light (1994) Classi�cation in

feature-based default inheritance

hierarchies. In Harald Trost, ed.,

Proceedings of KONVENS-94, Vienna:

Oesterreichische Gesellschaft fuer

Arti�cial Intelligence, 220-229.

Marc Light, Sabine Reinhard & Marie

Boyle-Hinrichs (1993) INSYST: an

automatic inserter system for hierarchical

lexica. Sixth Conference of the European

Chapter of the Association for

Computational Linguistics, 471.

Paul McFetridge & Aline Villavicencio

(1995) A hierarchical description of the

Portuguese verb. Proceedings of the XIIth

Brazilian Symposium on Arti�cial

Intel ligence, 00-00.

Chris Mellish & Ehud Reiter (1993) Using

classi�cation as a programming language.

IJCAI-93, 696-701.

Teruko Mitamura & Eric H. Nyberg III

(1992) Hierarchical lexical structure and

interpretive mapping in machine

translation. COLING-92 Vol. IV,

1254-1258.

John Nerbonne (1992) Feature-based

lexicons { an example and a comparison

to DATR. In Dorothee Reimann, ed.

Beitrage des ASL-Lexicon-Workshops.

Wandtlitz, 36-49.

Nicholas Ostler & B.T.S. Atkins (1992)

Predictable meaning shift: some linguistic

properties of lexical implication rules. In

James Pustejovsky & Sabine Bergler, eds.

Lexical Semantics and Knowledge

Representation. Berlin: Springer-Verlag,

87-100.

Gerald Penn & Richmond Thomason (1994)

Default �nite state machines and �nite

state phonology. Computational

Phonology: Proceedings of the 1st Meeting

of the ACL Special Interest Group in

Computational Phonology, 33-42.

Stephen G. Pulman (forthcoming)

Uni�cation encodings of rich grammatical

formalisms. To appear in Computational

Linguistics.

James Pustejovsky (1991) The generative

lexicon. Computational Linguistics 17.4,

409-441.

James Pustejovsky & Branimir Boguraev

(1993) Lexical knowledge representation

and natural language processing.

Arti�cial Intel ligence 63.1-2, 193-223.

Sabine Reinhard (1990)

Verarbeitungsprobleme nichtlinearer

Morphologien: Umlautbeschreibung in

einem hierarchischen Lexikon. In

Burghard Rieger & Burkhard Schaeder

Lexikon und Lexikographie. Hildesheim:

Olms Verlag, 45-61.

Sabine Reinhard & Dafydd Gibbon (1991)

Prosodic inheritance and morphological

generalisations. Fifth Conference of the

European Chapter of the Association for

Computational Linguistics, 131-136.

Ehud Reiter & Chris Mellish (1992) Using

classi�cation to generate text. 30th

Annual Meeting of the Association for

Computational Linguistics, 265-272.

Graeme D. Ritchie, Graham J. Russell,

40

Evans & Gazdar Lexical Knowledge Representation

Alan W. Black and Stephen G. Pulman

(1992) Computational Morphology.

Cambridge, Ma.: MIT Press.

Graham Russell (1993) Review of Marc

Domenig & Pius ten Hacken (1992) Word

Manager: A System for Morphological

Dictionaries. Hidesheim: Georg Olms

Verlag. Computational Linguistics 19.4,

699-700.

Graham Russell, Afzal Ballim, John Carroll

& Susan Warwick-Armstrong (1992) A

practical approach to multiple default

inheritance for uni�cation-based lexicons.

Computational Linguistics 183, 311-337.

Harvey Sacks (1973) On some puns with

some intimations. In Roger W. Shuy. ed.

Report of the 23rd Annual Roundtable

Meeting on Linguistics and Language

Studies. Washington D.C.: Georgetown

University Press, 135-144.

Stuart M. Shieber (1986) An Introduction to

Uni�cation Approaches to Grammar.

Stanford: CSLI/Chicago University Press.

Greg Stump (1992) On the theoretical

status of position class restrictions on

in
ectional a�xes. In Geert Booij & Jaap

van Marle, eds. Year Book of Morphology

1991. Dordrecht: Kluwer, 211-241.

David S. Touretzky (1986) The Mathematics

of Inheritance Systems. London/Los

Altos: Pitman/Morgan Kaufmann.

Mark A. Young (1992) Nonmonotonic sorts

for feature structures. AAAI-92, 596-601.

Mark A. Young & Bill Rounds (1993) A

logical semantics for nonmonotonic sorts.

Proceedings of the 31st Annual Meeting of

the ACL, 209-215.

41

DATR cogs csrp 382, November 1995

APPENDIX: The critical literature on DATR reviewed

Since DATR has been in the public domain for the last half dozen years and been widely

used in Europe during that period (by the standards of lexical knowledge representation

languages), it is not surprising that it has attracted some critical attention from others

working in the �eld. In this appendix, we consider and respond to the critical material that

has been published: Domenig & ten Hacken (1992), Bouma & Nerbonne (1994), Nerbonne

(1992), Krieger & Nerbonne (1993), and Daelemans & van der Linden (1992). Langer &

Gibbon (1992) also respond to the last three papers in the context of a thorough general

review of appropriate evaluation criteria for lexical knowledge representation formalisms.

We are indebted to their discussion.

Domenig & ten Hacken (1992) base part of their critique of DATR on an idiosyncratic

analysis of the English -s/-es su�x choice as a matter of pure morphology. This may be

because they are considering DATR as a candidate \FMP" { formalism for morphological

processing { even though, as they note \DATR is strictly speaking not an FMP" (p8)

and \is not speci�cally geared to morphological processing" (p15). As they point out,

dealing with the choice morphologically leads to undermotivated in
ectional subclasses,

obscures the role of phonology in the choice of form, and misses the morphophonological

generalisation that unites nouns and verbs in respect of the choice. But their critique

is based on the assumption that they have identi�ed \the most natural way to express

[the choice] in DATR" (p17). Given the well-known facts of this phenomenon

50

, their

analysis seems to us to be about as unnatural as it could be. Depending on the nature

and purpose of one's lexicon, it would be much more natural to deal with the choice

orthographically with a DATR-coded FST of the kind discussed in Section 4.3, above, or

morphophonologically using the kind of phonological representation adopted by Reinhard

& Gibbon (1991), say.

Domenig & ten Hacken actually cite this latter paper in connection with German

umlaut and suggest that the -s/-es alternation might be handled in the same way. How-

ever, they go on to claim, quite incorrectly, that \morphophonological generalisations

can actually not be expressed as such" in DATR because \they are represented as prop-

erties of the individual lexemes" (pp23-24). This claim appears to be based on a false

assumption that DATR nodes are somehow restricted to the description of lexemes. This

is an odd assumption to make given that the Reinhard & Gibbon paper postulates nodes

for vowels, syllables, stems, stem types, pre�xes, plural in
ection, and syntactic cate-

gories, as well as lexemes. But then they dismiss the analysis given in that paper as

\incomprehensible" (p24).

A related straw man appears in their discussion of how alternation within a mor-

phological paradigm might be represented in DATR (p22). They once again postulate an

analysis that proliferates nodes beyond necessity and fail to spot the possibility of path

domain or value domain analyses such as those sketched in Section 4.6, above. They go

on to o�er a \slightly speculative" evaluation of ways in which DATR might be able to

represent word formation, concluding that they \do not see any possibility of represent-

ing the rules involved in word formation" (p22). This conclusion again appears to be

based on their assumption that DATR nodes are somehow restricted to the description

of lexemes. But DATR, of course, knows nothing about lexemes, a�xes, vowels, words,

lexical rules, or whatever. These are higher level notions that the analyst may choose to

represent in a wide variety of ways.

50 The orthographic alternation applies to the third person singular present tense forms of verbs and

the plural forms of nouns. The choice between the alternants is wholly governed by the phonology

of the verb or noun stem.

42

Evans & Gazdar Lexical Knowledge Representation

Finally, Domenig & ten Hacken contend that lexical inheritance formalisms (and

thus DATR) are unusable for the purpose for which they were designed because the

humans who have to work with them for lexicon development cannot keep track of all

the interactions. They provide no evidence for this assertion and the widespread adoption,

development and use of a variety of large inheritance lexicons in working NLP systems

over the last few years make the assertion seem somewhat implausible. They conclude

that their evaluation of DATR has been \unfair" (p29) because they failed to consider the

language in its natural environment. We agree that their evaluation is unfair but ascribe

the cause to the ways in which they attempted to apply DATR to their chosen tasks

51

.

Daelemans & van der Linden (1992) review a number of approaches to lexical knowl-

edge representation, including DATR, with respect to their notational adequacy and ex-

pressivity. They argue that adequate approaches will allow (i) recursive path formation;

(ii) multiple inheritance, preferably orthogonal multiple inheritance; (iii) non-monotonic

inheritance; and require (iv) that irregular items take precedence over regular ones with-

out explicit coding (p61). Since, as we have seen, and as Langer & Gibbon (1992) note,

DATR has all four of these properties, one might expect it to emerge from their review

with at least a low alpha grade. But in fact they �nd fault with it on a number of grounds.

The �rst of these is the use of double quotes to mark global inheritance in the

concrete syntax of DATR. They claim that global inheritance is the normal kind of in-

heritance in DATR and should thus not be marked in any special way, whilst (unquoted)

local inheritance is exceptional and should therefore have a special notation (like quotes)

associated with it (p63)

52

. The small example they give lends some plausibility to their

claim. However, the claim is nonetheless misleading. Quoted paths (the only instances of

global inheritance to be found in their example fragment) are indeed ubiquitous at the

highest nodes of existing DATR fragments. But unquoted nodes, unquoted paths and un-

quoted node/path pairs all also occur very frequently in existing DATR fragments, whilst

quoted nodes and quoted node/path pairs are hardly found at all. And, in some common

applications of DATR, such as FSTs, no use at all may be made of global inheritance.

Their second objection is to the way path extension in DATR permits the derivation

of theorems that have no interpretation in the domain being modelled (p63). Thus, for

example, a description that had (a) as a (sensible) theorem might also have (b) as one

of an in�nity of (silly) theorems:

(a) Parrot:<mor plur> = parrot s.

(b) Parrot:<mor plur past perfect> = parrot s.

The issue here is that while DATR encourages abstraction away from the most speci�c

level of detail wherever possible, it does not itself provide a built-in mechanism for stating

what that most speci�c level is. Our position is that this is part of the lexical metatheory,

rather than the lexical description itself. It needs to be known by anyone (or any system)

wishing to access the lexicon properly, and it may be practically useful to constrain

access by checking for the well-formedness of queries according to such a metatheory {

this could be done quite straightforwardly in DATR as an adjunct to the main lexicon if

desired. But this notion is external to, and independent of, the lexical description itself:

the range of sensible queries only weakly constrains the manner in which their values are

de�ned.

Their third objection concerns multiple inheritance. They draw attention to the fact

that DATR's normal mode of multiple inheritance is orthogonal and complain that priori-

tised multiple inheritance can only be expressed with additional DATR code (p63). How-

51 For another critical discussion of the same Domenig & ten Hacken material, see Russell (1993).

52 One of our referees comments that \the issue .. appears to be rather scholastic". We agree.

43

DATR cogs csrp 382, November 1995

ever, we agree with their earlier comment \that orthogonal multiple default inheritance is

at this stage the best solution for con
icts" (p61) and can see no computational linguistic

motivation for equipping DATR with a further primitive inheritance mechanism

53

.

Their fourth objection consists of the claim that \it is not possible in DATR to have

complex structured objects as values" (p64). In one sense this is true since DATR values

are simply sequences of atoms. But although true, it does not provide support for a

sound objection. DATR can construct those sequences of atoms on the basis of a com-

plex recursive description, and the atom sequences themselves can represent complex

recursive objects so far as NLP system components outside the lexicon are concerned.

The sequences of atoms that DATR provides as values simply constitute an interface for

the lexicon that is entirely neutral with respect to the representational requirements of

external components. For what is intended to be a general purpose lexical knowledge

representation language, not tied to any particular conceptions of linguistic structure or

NLP formalism, this neutrality seems to us to be a feature, not a bug.

In a �fth objection, they note correctly that the semantics of paths in DATR and

PATR is di�erent but then go on to claim that DATR paths \could be better described

as atomic attributes" that \do not correspond with a recursive structure" and whose

\only function is to support pre�x matching" (p64). None of these latter claims are

true. If DATR paths were atomic attributes then our Section 4.3, above, on �nite state

transducers could not have been written; DATR paths are the same as PATR paths as far

as recursive structure is concerned; and, as we have seen throughout this paper, DATR

paths have many functions in addition to pre�x matching.

In a �nal set of comments, they brie
y raise various issues connected with the in-

tegration of DATR lexicons with uni�cation based grammar (p64). We have dealt with

these issues in earlier parts of the present paper and will not rehearse them here

54

.

Krieger & Nerbonne (1993) claim that \the basic insight of DATR" lies in its use

in characterising \the in
ectional variants of a lexeme as alternative (disjunctive) reali-

sations" (p135). This claim confuses the basic insight of a very traditional approach to

in
ectional morphology with the application of DATR in implementing that approach.

Elsewhere they note that \the fundamental idea in our characterisation is due to the

work in DATR, in which paradigms are treated as alternative further speci�cations of

abstract lexemes" (p104). Unfortunately, their own implementation of this fundamen-

tal idea turns out to be signi�cantly less satisfactory than that provided in the DATR

analysis to which they refer. In order to reconstruct paradigms in their feature language,

they invoke distributed disjunctions (�xed length term expressions)

55

. The descriptive

problem with this approach, as they admit, is that \there is no way to note that a single

form in a paradigm is exceptional without respecifying the entire paradigm { the disjunc-

tion must be respeci�ed as a whole .. there is no way to identify a particular alternation

within the distributed disjunction" (p107). Anyone familiar with the way in
ection works

in Romance languages will immediately see that this is a very serious weakness. In Latin,

for example, there are many individual words and small subclasses of words that devi-

ate from a major declension or conjugation in just one or two parts of the paradigm.

Under Krieger & Nerbonne's approach every such case will require one to \respecify the

entire paradigmatic disjunction" (p107). This is exactly the kind of redundancy that the

53 But see Daelemans & De Smedt (1994) for articulation of the methodological principle that

underlies the third objection.

54 The issues are also discussed in detail by Langer & Gibbon (1992).

55 Langer & Gibbon (1992) argue, at some length, that it is formally inappropriate to add distributed

disjunction to a typed feature structure language of the kind otherwise assumed by Krieger &

Nerbonne.

44

Evans & Gazdar Lexical Knowledge Representation

introduction of defaults is meant to eliminate

56

.

At the root of Krieger & Nerbonne's (1993) critique of DATR is a complaint that

it fails to provide all the resources of a modern fully equipped uni�cation grammar

formalism (p90-91). From our perspective, this is a bit like criticising standard ml on

the grounds that it lacks the functionality provided in ada. Thus, for example, they

complain that disjunction is missing from DATR and that nobody seems to be trying to

add it to the language (p110). They cite their own \extensive employment of [distributed]

disjunction" (p110) as evidence for its utility in lexical description, apparently forgetting

that their use of distributed disjunction to describe in
ection was motivated by a desire

to reconstruct a treatment of in
ection that they had seen implemented in DATR. They

provide no motivation for adding distributed disjunction to DATR's (rather small) list of

available descriptive resources because that list of resources already allows better analyses

of the phenomena they discuss than does their version of distributed disjunction, as noted

above.

They also object to the fact that use of a DATR lexicon will require an \interface"

(p110) between the lexicon and a feature-based parser. But, as we have seen in Section 4.7

above, such an interface will normally be trivial and required in any case (since Krieger

& Nerbonne's parser must be able to access and read �les that contain text descriptions

of feature structures). As it is, they seem happy to countenance an interface to a separate

two-level morphophonemic processor (p103, n9) whereas, inDATR, the morphophonemics

can be done entirely in the lexicon if one wishes.

From remarks they make on pages 109 and 111 of their paper, Krieger & Nerbonne

appear to believe that it is impossible to implement a particular in
ectional analysis

of the passive in Latin in DATR. They do not provide much of an argument but what

they do say suggests that the simple treatment of passive given in Section 4.5, above, is

likewise impossible. This may be because they regard their own internal interpretation

of lexical rules as \novel" (p113) although examples of that interpretation of lexical rules

appear in earlier DATR work that they cite.

Many of the points made in Nerbonne (1992) are repeated from the more accessible

Krieger & Nerbonne (1993)

57

and we have considered them in our discussion of the latter.

Some of the points from the 1992 and 1993 papers resurface again in Bouma & Nerbonne

(1994). Nerbonne appears to misconstrue Evans et al. (1993) as an attempt to augment

DATR with reentrancy and goes on to suggest that DATR is somehow forced to maintain

that \all linguistic generalisations tend to follow the lines of morphological form" (p47)

when, in fact, the attribute ordering used in a DATR treatment of morphology is entirely

independent of the use and ordering of those same attributes elsewhere in the lexicon

(see the discussion at the end of Section 4.1, above). Like Daelemans & van der Linden

(1992), he makes some pessimistic comments about the integration of a DATR lexicon

with feature-based grammars. Some of these are e�ectively dealt with elsewhere in this

paper, but two of them need to be noted here. He asserts that if a rich feature formalism

is encoded in DATR then \distinctions must be lost". It is not clear from the context

exactly which distinctions he has in mind or what the basis for the claim is. But the

expressions of all existing feature formalisms can be represented by sequences of atoms

(and thus by DATR values) and all existing lexicons for feature-based NLP systems use

such representations. We therefore �nd the claim deeply implausible. He also asserts that

56 Krieger & Nerbonne are not forced to use distributed disjunction to describe in
ectional

paradigms. Their very well-equipped feature description language provides alternative analytical

resources. What puzzles us is why they chose to use distributed disjunction for this purpose.

Bouma & Nerbonne (1994) propose using lists of speci�ed phonological forms instead.

57 Although the joint 1993 paper has a later publication date, it appears to have been written �rst.

45

DATR cogs csrp 382, November 1995

the fact that an atom may mean one thing in the semantics of DATR and something quite

di�erent in the semantics of a feature formalism will lead to \massive redundancy" (p47)

in lexical speci�cations (the phrase gets repeated in Bouma & Nerbonne 1994). Again,

no argument in support of this conclusion is o�ered. And we cannot see how semantic

overloading of atoms gives rise, of itself, to any kind of redundancy

58

. Indeed, those

who design programming languages normally introduce semantic overloading in order to

achieve economy of expression.

Finally, Bouma & Nerbonne (1994) comment that \in spite of Kilgarri�'s (1993) in-

teresting work on modelling some derivational relations in the pure inheritance machinery

of DATR, we know of no work attempting to model potentially recursive derivational re-

lations, and we remain sceptical about relying on inheritance alone for this". We are not

sure what they mean by \the pure inheritance machinery of DATR" or why they think

that someone attempting an analysis of recursive derivation in DATR would want to do

so using \pure inheritance" alone. Here is a trivial (and linguistically rather pointless)

DATR analysis of the more complex of their two examples:

Word:

<v> == "<>"

<a from n> == <n> + al

<v from a> == <a> + ize

<n from v> == <v> + tion.

Institute:

<> == Word

<root> == institute.

From this description we can derive theorems like these:

Institute:

<root> = institute

<n from v root> = institute + tion

<a from n from v root> =

institute + tion + al

<v from a from n from v root> =

institute + tion + al + ize

<n from v from a from n from v root> =

institute + tion + al + ize + tion.

Note the recursive reintroduction of the tion su�x in the last theorem shown.

58 Sacks (1973) makes interesting reading in this connection.

46

