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Abstract

This paper describes a novel approach to solving two problems in-

herant in neural networks. The `face unit' network system avoids the

unmanagability of neural networks above a certain size by using small,

individual networks for each class, and allows the addition of new data to

the database without complete re-training of the system.

1 Introduction

Recognising objects and, in particular, the di�cult subproblem of recognis-

ing human faces is the subject of a great deal of research in computer vision.

However, it is only recently that work on biologically-motivated, statistical ap-

proaches to face recognition has begun to deliver real solutions. One of the

main problems that these approaches tackle is dimensionality reduction to re-

move much of the redundant information in the original images. There are

many possibilities for such representations of the data, including principal com-

ponent analysis, Gabor �lters and various isodensity map or feature extraction

schemes. A well known example is the work of Turk & Pentland (1991), on

the `eigenface' approach, which is widely acknowledged to be useful for practi-

cal application. However, the need for representations at a range of scales and

orientations causes extra complexity and updating the average eigenface (used

for localisation) when new faces are added to the dataset are problems for this

scheme. These di�culties have been overcome to some extent in later work by

various researchers (Pentland et al. 1994, Petkov et al. 1993, Rao & Ballard

1995). In particular, it seems that problems of lighting variation and multi-

ple scales can be overcome by choosing an appropriate representation scheme.

Rao & Ballard (1995) go further in their `topographic memory' approach using

natural basis functions and claim some tolerance to variations in facial features

and expressions. Their representation also addresses the problems of rotation

normalisation and scale invariance. However, it seems that greater variations in
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face orientation, expression, occlusion etc. may still be di�cult to overcome in

any scheme which does not employ an adaptive learning component.

In this paper we are concentrating on the issues of learning to overcome

variability in di�erent views of the same face and the ability of a processing

scheme to scale up to larger datasets without compromising discrimination per-

formance. We want our face recognition scheme to generalise over a wide range

of conditions to capture the essential similarities for a given face. The Radial

Basis Function (RBF) network is a very good candidate given our requirements

(Moody & Darken 1989, Poggio & Girosi 1990, Girosi 1992, Ahmad & Tresp

1993). Its main characteristics are computational simplicity (allowing fast con-

vergence in training) and its description by well-developed mathematical theory

(resulting in statistical robustness). Edelman et al. (1992) found the HyperBF

scheme, which is a RBF interpolating classi�er, was very e�ective and gave

performance error of only 5-9% on generalisation under changes of orientation,

scale and lighting. This compares favourably with other state of the art systems

such as the Turk and Pentland scheme. In an earlier study of our own (Howell

& Buxton 1995), we found that appropriately trained RBF networks could per-

form without error over a range of view orientations for small datasets and that

performance was invariant to large ranges of o�sets and scales. However, for

large datasets performance was much lower and the training was much slower

as the network had to cope with many more hidden units. In this study, we

address the issue of scaling up by reorganising our RBF networks into smaller

`face recognition units'.

Although we are not aiming to implement a biologically plausible scheme

here, we recognise the many ways in which cognitive and neurophysiological

studies have contributed to our understanding of human face perception and

suggested possible approaches to automation in machine vision systems at many

levels of analysis. Here we are adopting the idea of `face units' for recognising

familiar faces from the work of Bruce and Young (Bruce & Young 1986, Bruce

1988) as they seem a useful way of developing a modular, scaleable architecture.

The reorganisation is to allow fast small networks trained with examples of views

of the person to be recognised. These face units should give high performance

and also alleviate the problem of adding new data to an existing trained network,

which would otherwise have to be retrained. In our earlier studies the �rst layer

of the network mapped the inputs with a hidden unit devoted to each oriented

view, o�set, and scaled image of each person in the training set. The second

layer was trained to combine all the di�erent views of a person so that a single

output unit corresponded to an individual and all other views acted as negative

data. Here we are using the various views of the person to be recognised as

before but we are selecting confusable views of other people as the negative

evidence for the network and leaving out the other data. Our face units then

have just 2 outputs corresponding to `yes' or `no' decisions for the individual.

This is in contrast with Edelman et al. (1992) who did not choose to use such

negative evidence in their study. The rest of the paper outlines our approach

and presents results to show that this system organisation allows 
exible scaling

up which could be exploited in real-life applications.
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2 The RBF Network Model

The RBF network is a two-layer, hybrid learning network (Moody & Darken

1988), with a supervised layer from the hidden to the output nodes, and an unsu-

pervised layer, from the input to the hidden, where individual radial Gaussian

functions for each hidden unit simulate the e�ect of overlapping and locally

tuned receptive �elds. Unlike a back-propagation network, for instance, this

gives the RBF an activation that is related to the relative proximity of the test

data to the training data, which gives a direct measure of con�dence in the out-

put of the network for a particular pattern. If the pattern is more than slightly

di�erent to those trained, very low (or no) output will occur.

3 The `Face Unit' Concept

The concept of face recognition units was suggested in the perceptual frame-

works for human face processing proposed by Hay & Young (1982) and Bruce

& Young (1986). Each unit here produces a positive signal only for the partic-

ular person it is trained to recognise. For each individual, an RBF network is

trained to discriminate between that person and others selected from the data

set. Rather than using all the data available to train the network against an

individual, the strategy adopted was to use only negative data that was most

similar (using an Euclidean distance metric) to the positive data. Note that we

assume similiarity leads to confusability, so the inclusion of this type of negative

evidence in the training should improve descrimination. It was anticipated that

this data was that with which the network would have the most `trouble' when

learning to discriminate `for' and `against' the individual, since it would be the

most ambiguous. Unlike earlier tests which had only positive output signals

(one per class), here two outputs are used for each `face unit' network: `yes' for

the current class and `no' for all other classes.

The reduction in the size of the network plus the use of negative knowledge,

allows a more e�cient coding of the information with greatly reduced training

times. Furthermore, people can be added to the data set of a trained set of

networks by the creation of a new `face unit' network for each new individual to

be added without retraining the original database, as the reorganised scheme is

completely modular.

4 Method

4.1 Form of Test Data

Lighting and location for the training and test face images in these initial studies

has been kept fairly constant to simplify the problem. For each individual to

be classi�ed, ten images of the head and shoulders were used in ten di�erent

positions in 10

�

steps from face-on to pro�le of the left side, 90

�

in all.
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The data set of ten faces (100 images in all) was gathered using a video

camera and frame grabber, giving 8-bit grey-scale 384�287 images. A 100�100-

pixel `window' was located manually in each image centred on the tip of the

person's nose, so that visible features on pro�les, for instance, should be in

roughly similar locations to face-on. This `window' region was sub-sampled to

a variety of resolutions for testing. Full details are given in Howell & Buxton

(1995).

4.2 Invariance Data Sets

Two additional data sets were created from the original data to test the RBF

network's generalisation abilities: One data set to test scale-invariance was pro-

duced with �ve copies of each image: one at the standard sampling `window'

size, and four re-scaled at �12:5% and �25% of the standard surface area. The

other data set, which tested o�set-invariance, was produced also with �ve copies

of each image: one at the standard sampling `window' position, and four others

at the corners of a box where all x,y positions were �10 pixels from the centre.

The random selection of data from this set e�ectively doubles the variation in

data, eg the scale of a test scale-invariance image could be up to �50% that of

a training image.

4.3 Types of `Face Unit' Networks

For the training of `face unit' networks, the term `pro' is used to denote hidden

units or evidence for the class, whilst `anti' denotes that against the class. This

evidence was selected according to Euclidean vector distance comparisons with

images of the same pose angle of face with 'anti' evidence taken from the class

that was the closest (most confusable) to the `pro' class.

Two types of network layout were used: one where equal numbers of `pro'

and `anti' hidden units were used, and one where two `anti' were used for ev-

ery `pro'. The latter was used to show whether it would give better negative

descrimination, which is important where there are large number of potential

classes in large datasets. The `face unit' network size is denoted by `p+a', where

p is the number of `pro' hidden units, and a is the number of `anti' hidden units.

Tests were made on a range of network sizes from 1+1 to 6+12. To give an op-

timal spread of the image data for training, �xed selections of pose angle were

used for each size of network. For instance, the 5+5 and 5+10 networks used

poses 1, 3, 5, 7 and 9, where the pose range was 0{9.

Two strategies were investigated for the selection of `anti' evidence: Multiple

best negative networks used whichever `anti' image was closest for each pose

angle, so that several `anti' person-classes could be used. Single best negative

networks used an average of all vector distances over all pose angles to select one

`anti' person-class to represent all negative evidence. It was anticipated that the

latter method would be superior, as a more coherant 3-D class boundary would

be given by a single negative person-class for all pose angles. Fig. 1 shows

how the images used for training were selected in an actual test for a 5+10
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Figure 1: Example of `pro' (top line) and `anti' (middle and bottom lines)

evidence used for a 5+10 `face unit' network

multiple best negative `face unit' network. This shows how the same person is

not necessarily used for all `anti' views.

4.4 Adding `Face Units'

To add new person-classes to the dataset, it would be necessary to save vector

di�erence information after the initial selection of \anti" evidence. On the

addition of a new person-class, vector di�erences would be calculated for the

new class, saved and compared with the existing values. Any `face unit' where

the new class was closer than existing `anti' evidence would need to be re-

trained. All other `face units' would not require further training. In the worse

case, this would mean the entire system of `face unit' networks being re-trained,

but it anticipated that this would be unusual, especially as the number of classes

became large.

4.5 Use of Con�dence Measures

The statistical nature of the RBF network's output allows a `con�dence' mea-

sure based on the level of output. Initial tests used a `winner take all' strategy,

where input was classi�ed according to the output node with the highest value.

Subsequent examination of results showed that when the network correctly clas-

si�ed an image, the output values tended to be more disparate that when it

incorrectly classi�ed an image, with the correct output unit much larger than

all others. The largest and second largest output values

1

are most di�erent in

correct classi�cations and least in incorrect classi�cations. This allows the use

1

in the case of `face unit' networks, there are only two output values, but this behaviour

is also apparent with other RBF networks with larger numbers of outputs.
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of a threshold based on the relationship of these two values to reject as `uncer-

tain' results below this threshold, leaving a smaller, but more accurate, set of

classi�cations.

The initial approach taken was to use a threshold based on the ratio of the

two output values, eg, if the two values were 0.2 and 0.5, the ratio between them

would be 2.5. For comparison, further tests have been made using a threshold

based on the absolute di�erence of the two outputs.

5 Results

In all these tests the network had a 100% success at classifying training images

once trained, which is not included in the test results. These give performance

values for the classi�cation of test images only, which were all those images not

used for training.

The `Hidden Units' column indicates the number of hidden units in the

network which is the number of `pro' and `anti' training images. `% Correct' is

the average classi�cation performance for all the face unit networks without any

discarding strategy. `Min. Pro' and `Min. Anti' is the minimum performance

found in all the face units, the maximum always being 100%. `Max. % Correct'

is the maximumaverage classi�cation performance found using a discard stategy,

with the ratio and percentage discarded in the `Ratio' and `% Discard' columns.

Tests where the threshold was so high that all of either the `pro' or `anti' results

had been discarded for an individual face unit network were ignored.

5.1 Multiple Best Negative Classes, Ratio Threshold

Test 1: Equal `pro' to `anti' training

Hidden Ave. % Min. Min. Max. Ave. Min. Min. Ratio %

Units Correct `Pro' `Anti' % Correct `Pro' `Anti' Discard

6+6 83 75 37 88 100 27 1.8 26

5+5 83 80 44 89 80 57 1.9 40

4+4 82 50 57 85 40 54 1.3 18

3+3 75 71 23 78 80 9 1.7 47

2+2 73 50 38 83 50 21 1.4 44

1+1 60 0 9 64 0 4 1.5 36
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Test 2: 1 `pro' to 2 `anti' training

Hidden Ave. % Min. Min. Max. Ave. Min. Min. Ratio %

Units Correct `Pro' `Anti' % Correct `Pro' `Anti' Discard

6+12 89 50 83 96 67 86 1.8 23

5+10 83 40 80 89 25 81 1.9 32

4+8 80 17 67 83 0 70 1.3 15

3+6 72 14* 70 78 0 76 1.7 38

2+4 66 0* 88 68 0 91 1.4 26

1+ 2 58 0* 91 57 0* 92 1.2 8

Entries marked `*' indicate that the maximum rate found in the individual `face

units' was not 100%.

Note that the discard strategy failed for the `1+2' network, in that no ratio was

found which could increase the correct classi�cation rate.

5.2 Single Best Negative Class, Ratio Threshold

Test 3: Equal `pro' to `anti' training

Hidden Ave. % Min. Min. Max. Ave. Min. Min. Ratio %

Units Correct `Pro' `Anti' % Correct `Pro' `Anti' Discard

Ratio card

6+6 72 75 14 75 75 10 1.1 8

5+5 75 60 31 79 100 14 2.0 44

4+4 73 50 29* 74 60 23 1.3 15

3+3 72 71 23 76 80 13 1.6 43

2+2 71 25 46 72 50 6 1.8 64

Test 4: 1 `pro' to 2 `anti' training

Hidden Ave. % Min. Min. Max. Ave. Min. Min. Ratio %

Units Correct `Pro' `Anti' % Correct `Pro' `Anti' Discard

Ratio card

6+12 83 50 58 89 50 66 2.3 40

5+10 84 40 73 86 33 80 1.4 16

4+8 79 0 52 85 0 51 2.2 46

3+6 70 14 68* 74 0 79 1.6 35

2+4 68 13 86 70 0 86 1.4 26

Note that the 1+1 and 1+2 networks are equivalent to the those in the previous

tests, so these results are not included.
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5.3 Multiple Best Negative Classes, Di�erence Threshold

Test 5: Equal `pro' to `anti' training

Hidden Max. Ave. Min. Min. Di�erence %

Units % Correct `Pro' `Anti' Discard

6+6 87 100 23 0.33 33

5+5 89 80 53 0.3 39

4+4 85 40 66 0.13 18

3+3 78 80 7 0.28 52

2+2 83 50 21 0.17 44

1+1 64 0 4 0.2 36

Test 6: 1 `pro' to 2 `anti' training

Hidden Max. Ave. Min. Min. Di�erence %

Units % Correct `Pro' `Anti' Discard

6+12 96 67 86 0.28 23

5+10 89 0 84 0.25 24

4+8 85 20 70 0.1 12

3+6 79 0 77 0.28 40

2+4 67 0* 89 0.05 8

1+2 57 0* 91 0.15 14

5.4 O�set Variance Data

Test 7: Equal `pro' to `anti' training

Hidden Ave. % Min/Max Min/max

Units Correct `Pro' `Anti'

10+10 53 13/85 14/99

20+20 49 3/67 37/99

30+30 55 5/65 43/98

Test 8: 1 `pro' to 2 `anti' training

Hidden Ave. % Min/Max Min/max

Units Correct `Pro' `Anti'

10+20 51 3/33 70/99

20+40 48 0/20 60/89

30+60 55 0/45 60/97
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5.5 Scale Variance Data

Test 9: Equal `pro' to `anti' training

Hidden Ave. % Min/Max Min/max

Units Correct `Pro' `Anti'

10+10 53 13/85 15/99

20+20 48 3/67 37/99

30+30 54 5/65 43/98

Test 10: 1 `pro' to 2 `anti' training

Hidden Ave. % Min/Max Min/max

Units Correct `Pro' `Anti'

10+20 51 3/33 70/99

20+40 48 0/37 59/99

30+60 54 0/55 61/98

5.6 Remarks

� The use of `face unit' RBF networks have been shown to give both in-

creased classi�cation performance and more 
exible training than conven-

tional RBF methods, cf. Howell & Buxton (1995). This is in spite of large

variations in the 3-D views used.

� Training times were much shorter due to the smaller network size { around

one minute for each 6+12 network, compared to 2-3 weeks for a 100/400

network from the previous section.

� Using extra `anti' evidence gave an improvement in the `no' response for

the network, to give a peak overall performance of 89% without discard

and 96% after 23% discard on this dataset.

� Contrary to expectation, using multiple best negative networks showed a

signi�cant advantage in performance over single best negative networks.

This shows that it is better to take a mixture of views from di�erent

person-classes as negative evidence.

� Little di�erence in performance was observed between the ratio- and di�-

erence-based `con�dence' thresholds.

� Poor generalisation was observed with the shift- and o�set-invariance data

sets, though this could be due to the large amount of variation used to

create the data. Automatic face-segmentation systems should be able to

localise face information within smaller bounds than were used here.
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6 Conclusion/Future Work

In summary, the RBF network `face unit' organisation has proved to give a 
ex-

ible, scaleable architecture which can perform at a high level in terms of both

classi�cation, generalisation over varying views, and speed of training. It is also

a highly modular architecture that allows us to add more data and create as

many new face units as are required. In particular, these studies showed that

negative evidence plays a crucial role in shaping the discrimination between in-

dividuals and that this showed up particularly in the correct \no" responses of

trained units. Multiple views of di�erent people were more e�ective in improv-

ing performance than taking the same number of views of just one confusable

person even though we might have expected a clearer decision boundary for the

latter. It is also clear from these studies that the use of a con�dence measure

to discard some possible classi�cations is an e�ective strategy for improving

the classi�cation and generalisation performance on this dataset. This strategy

would be most e�ective in studies of face recognition from image sequences we

have planned for the near future. This extension of the work will exploit motion

segmentation and look at a range of representations of the face data (Psarrou

et al. 1995). We are interested in tracking the faces and gathering enough in-

formation to classify them accurately with good generalisation to other image

sequences containing familiar people.

One disadvantage of our current scheme is the need to try all candidate

face units during recognition of test data. This could be improved by paral-

lel implementation or an indexing scheme to �nd the right face unit or set of

face units in a hierarchical organisation of the units themselves. The work of

Rao & Ballard (1995) is particularly interesting in this respect as they claim

real-time indexing is possible using convolutions for distance computations to

identify likely candidates. Another promising approach uses Gabor wavelet rep-

resentations (Daugman 1988) which can be used for segmentation and tracking

of faces using transforms of the data and may allow indexing in a similar way.

Although such processing schemes are capable of multiscale face recognition and

are robust to some changes in expression and orientation, we feel that a better

strategy is to characterise the degrees of freedom in the input data required

for the application. Systematic training can then be used to engineer a solu-

tion that copes with the dataset as required since typical `mugshot' recognition,

for example, is a very di�erent task from active surveillance and recognition

of moving, emotive people. What is required here is to explicitly address the

need for invariance to scale, orientation, motion and expression in recognition

performance or conversely characterise the need to estimate these measures if

they are of interest for a particular application.
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