
THE UNIVERSITY OF SUSSEX

An Empirical Exploration of Computations with

a Cellular-Automata-Based Arti�cial Life World

Pedro Paulo Balbi de Oliveira

Submitted for the degree of D. Phil.

February 23, 1995

CONTENTS

Declaration viii

Acknowledgments ix

Abstract xi

Preface xii

1 INTRODUCTION: GUIDELINE FOR THE THESIS 1

1.1 What the Thesis is About : 1

1.2 Steps to Be Taken : 1

1.2.1 Outline of the Chapters : 2

1.3 Contributions of the Thesis : 3

1.3.1 Results : 3

1.3.2 Claim : 3

1.4 Publications and General Dissemination of the Work : : : : : : : : : : : : 4

2 MAPPING OUT THE TERRRITORY 5

2.1 The Territory: Arti�cial Life : 5

2.2 Evolutionary Computation : 6

2.3 Emergent Computation : 8

2.3.1 Coupled Computations : 8

2.3.2 From the Turing Gas to Turing Machines : : : : : : : : : : : : : : 8

2.4 Enaction : 10

2.5 Cellular Automata : 11

2.5.1 General : 11

2.5.2 Sexual and Self-Reproduction in Cellular Automata : : : : : : : : 13

2.5.3 Universal Computability in Cellular Automata : : : : : : : : : : : 14

2.5.4 Forms of Computation in Cellular Automata : : : : : : : : : : : : 15

2.5.5 Computations and Complex Dynamics : : : : : : : : : : : : : : : : 16

2.5.6 Parameterisations of Cellular Automata Rule Spaces : : : : : : : : 16

2.6 The Journey : 18

3 ENACT: ARTIFICIAL LIFE IN CELLULAR AUTOMATA 19

3.1 Introduction : 19

3.2 Overview : 19

3.3 Structure and Morphology of the Agents : : : : : : : : : : : : : : : : : : : 20

3.4 Movement : 21

3.5 Environmental Interactions : 24

3.6 Selection : 25

3.7 Development : 26

3.8 Reproduction : 28

i

3.8.1 Sexual Reproduction : 28

3.8.2 Crowding E�ect : 29

3.8.3 Further Details of the Reproduction Process : : : : : : : : : : : : : 29

3.9 Qualitative Dynamics : 30

3.9.1 Scanning the Dynamical Regimes by Varying Life Expectancy : : : 30

3.9.2 Two Attractors: Extinctions and Deadlocks : : : : : : : : : : : : : 32

3.9.3 Enact's Regime of Operation : 33

3.10 Evolutionary Activity : 34

3.10.1 Selection: The pathways rather than the ends : : : : : : : : : : : : 34

3.10.2 Movement is Enact's power-house : : : : : : : : : : : : : : : : : : 35

3.10.3 The Genotype Only Provides Initial Conditions for Development : 35

3.10.4 Coevolution with Constrained Adaptation : : : : : : : : : : : : : : 36

3.11 Implementation : 38

3.12 An Historical Perspective of the System : : : : : : : : : : : : : : : : : : : 38

3.12.1 Before Enact : 38

3.12.2 Enact's Lineage : 39

3.13 Summary : 41

4 ENACT AS A VIRTUAL PROGRAMMABLE MACHINE 42

4.1 Introduction : 42

4.2 Using Enact: Implementation of a Turing Machine : : : : : : : : : : : : : 42

4.2.1 Introduction : 42

4.2.2 The Implementation : 43

4.2.3 The Turing machine in Action: Recognition of a Language : : : : 46

4.3 Methodological Issues : 48

4.3.1 Programming Issues : 48

4.3.2 Implicit and Explicit Instantiated State Transitions : : : : : : : : 48

4.3.3 Revisiting a Previous Work : 49

4.3.4 On the Possibilities of Enact : 50

4.4 Turing Machines and Enact : 51

4.5 Conceptual Issues : 52

4.6 Summary : 53

5 COLLAPSING A COEVOLUTIONARY PROCESS INTO A COMPUTABLE

FUNCTION 56

5.1 Introduction : 56

5.2 The Model of Computation at a Glance : : : : : : : : : : : : : : : : : : : 56

5.3 The Model of Computation in Detail : 57

5.3.1 Transforming the State Transition Table : : : : : : : : : : : : : : : 58

5.3.2 General Aspects : 58

5.3.3 State Change of the Turing Machine : : : : : : : : : : : : : : : : : 61

5.3.4 Tape and Head Manipulation : 62

5.3.5 Halting Condition : 63

5.4 The Character of Reproduction : 64

5.4.1 Impossibility of Automatic Generation of Inputs : : : : : : : : : : 64

5.4.2 Automatic Generation of Non-Intermediate Steps of Computation 65

5.5 Implication : 66

5.5.1 From a Model of Computation to a Model of Coupled Computations 66

5.5.2 Coupled Computations : 67

5.6 Conclusion : 67

ii

5.7 Summary : 68

6 COUPLING COMPUTATIONS THROUGH SPACE 69

6.0.1 Introduction : 69

6.1 Coupled Computations : 69

6.2 The Role of Space : 70

6.3 Coupling Turing Machines through Space : : : : : : : : : : : : : : : : : : 71

6.3.1 Assumptions and De�nitions : 71

6.3.2 Models of Coupling : 71

6.4 The STA Model : 72

6.4.1 The Weak STA Model: only the form of the table is modi�ed : : : 73

6.4.2 The Strong STA Model: the table content is modi�ed : : : : : : : 74

6.5 The STA Model Embedded in Enact : 74

6.5.1 Towards Probing a Region of the Space of Computable Functions : 75

6.5.1.1 Beyond the STA Model : : : : : : : : : : : : : : : : : : : 75

6.5.1.2 Rationale of the World Set-Up : : : : : : : : : : : : : : : 75

6.5.1.3 Possible Consequence : 77

6.5.2 Enact's Approach to Coupled Computations in Perspective : : : : 77

6.6 Final Remark : 79

6.7 Summary : 80

7 CONCLUSION 81

7.1 The Thesis in Retrospect : 81

7.1.1 Open Issues : 82

7.2 The Balloonist Becomes a Driver: A Generalisation of Enact : : : : : : : 83

7.3 Personal Statement : 84

APPENDICES

A The Complete list of State Transitions in Enact 87

A.1 Introduction : 87

A.2 State Transitions for Movement : 88

A.3 State Transitions for Selection : 89

A.3.1 Selection from Random Initial Con�guration : : : : : : : : : : : : 89

A.4 State Transitions for Reproduction : 90

A.5 State Transitions for Development : 91

A.5.1 Neonatal Development : 91

A.5.2 Adult Development: Ageing and Death : : : : : : : : : : : : : : : 91

B The C code that implements Enact in Cellsim 2.5 92

C Codi�cation of the State Transition Table of the Turing Machine Implemented in

Chapter 4 106

C.1 State Transition Establishing the End of the Computation : : : : : : : : : 106

C.2 State Transitions Coding for the Rightward Movement of the Head : : : : 106

C.3 State Transitions Coding for the Lefward Movement of the Head : : : : : 107

D Details of the Implementation of the Turing Machine Described in Chapter 5 108

D.1 State Transitions Used for the TM Machinery : : : : : : : : : : : : : : : : 108

D.2 Movement of the Agents : 108

BIBLIOGRAPHY 123

iii

LIST OF FIGURES

3.1 Moore neighbourhood and the notation used according to the geographic

position of the cells. : 20

3.2 Structure and morphology of an agent in Enact. Phenotype and memetype

may change through environmental interactions, but while the initial adult

state of the former directly depends on the genotype, the latter is initially

determined through direct parental inheritance. For practical purposes

however, only the P -state is considered the agent's phenotype, and only

the K-states its memetype (see Section 3.3). : : : : : : : : : : : : : : : : : 21

3.3 Alternative, simpli�ed representation of an agent. The B-states represent

the states of the body cells, with no reference to its internal structure. : : 21

3.4 Succession of snapshots of the same set of cells as a 4-cell-long agent moves

2 cells leftwards in successive iterations. The dots represent the background

state. : 22

3.5 Successive snapshots from the same region of the cellular space as a 4-cell-

long agent moves 3 cells diagonally, after being in a horizontal position.

The dots represent the background state, and the B-states are a generic

representation of any kind of body cell. : : : : : : : : : : : : : : : : : : : 23

3.6 Subsequent snapshots of the same set of cells showing the body adjustment

of a 5-cell-long agent, from an arbitrary initial position. The dots represent

the background state. : 24

3.7 Illustration of the notion of interaction site, represented here by the set of

four E-states in a cross-like fashion. The dots represent the background

state, a special form of environmental state that does not obstruct an agent

in its way. : 26

3.8 The stages of the developmental process. Only the newborn's genotype

is exclusively dependent on the parents; all the other steps may have the

in
uence of the environment. Ageing is the only developmental aspect

that only depends on the \clock-tick" of the automaton. The index 1

refers to the beginning of adulthood, and the symbol M represents the full

memetype of the developing agent. : 27

3.9 E�ect of the expected life span of the individuals on the dynamics of the

overall population. The origin of the graph is the bottom of the left-

hand corner. The horizontal axis is time (number of iterations), and the

vertical is population size. The graph spans through about 24000 iterations

and is compressed, each point being plotted at each 20 iterations. The

numbers attached to the graph provide a measure of the expected life span

of the individuals, and were manually changed during the run; more details

explained in the text. : 31

3.10 Causal links between the parameters that determine Enact's basic dynam-

ics. Only the expected life span is an explicit parameter, e�ectively controlled. 33

iv

4.1 Representation of the stages involved in one step of computation of the

Turing machine. Each step is de�ned by the symbol E

ii

being written on

the tape, the machine entering the new state B

ii

, and the head then moving

to the left (a) or to the right (b). The dots represent the background state;

refer to Table 4.1 for additional information on the notation being used. : 45

4.2 Computation involved in the recognition of the string 0011 which is repre-

sented here by 0

E

0

E

1

E

1

E

. The sequence shows, at each step, the symbol

con�guration of the tape and the state of the Turing machine. The position

of the machine state relative to tape symbols represents the position of the

head at the corresponding computation step. It is assumed that the head

is able to read the tape symbol which is on its right-hand side. : : : : : : 47

5.1 Representation of the �rst phase of a step of computation. The phase is

characterised by a state change in the associated Turing machine of the

computation. The dots represent the background state. : : : : : : : : : : 59

5.2 The second phase of a step of computation, where a symbol is written on

the tape of the Turing machine and the head of the machine moves a step

on the tape. The dots represent the background state. : : : : : : : : : : : 60

5.3 Representation of all the possible state transitions. : : : : : : : : : : : : : 62

5.4 Dependence between the states involved in two successive steps of compu-

tation. : 62

5.5 State con�guration of agents that represent a correct input and the corre-

sponding output of the computation. The input agent represents a string

that is recognised as belonging to the language �. : : : : : : : : : : : : : : 63

5.6 Speci�cation of a reproductive process that would yield newborn agents

that represent the initial state of the computation. All the ones represent-

ing intermediate steps are prohibitted. The # represents any state category. 66

6.1 The three models of coupled Turing machines, in which the state transition

table (STT) is part of both the environment and the agent; that is, it is

part of the space they are de�ned in. The agents are represented at the

bottom and the interaction sites at the top. : : : : : : : : : : : : : : : : : 72

D.1 State transitions specifying the way the heads of the agents are modi�ed as

a result of the environmental interactions. The states the transitions lead

to are made explicit in Table D.5. : 109

v

LIST OF TABLES

2.1 Cellular automata with ability for self-reproduction, in a comparison with

the sexual reproduction process embedded in Enact. : : : : : : : : : : : : 14

2.2 Some cellular automata capable of universal computation. : : : : : : : : : 15

4.1 Correspondence between the constituent elements of a Turing Machine and

the states currently being used to implement it. : : : : : : : : : : : : : : : 44

4.2 Transition function (�) of the Turing machine that recognizes the language

� = f0

n

1

n

j n � 1g. : 47

4.3 State transitions supporting the hardware of the Turing Machine. The

transitions in the �rst subcolumn of the �rst column support the mecha-

nism that allows the head to move leftward, while the transitions in the

other subcolumn allows the rightward move of the head. The cells marked

with the symbol # mean that their state is irrelevant in these neighbour-

hoods. The subscript def refers to the default value used in the cellular

automata. The subscripts r and br refer to the geographic position of the

cell in its neighbourhood. The background state is represented by 0. : : : 54

4.4 General representation of the state transitions of the Turing machine. The

rows are shown in three sets; the �rst set refers to the head moving left,

while the next refers to the rightward movement. The isolated transition

on the bottom shows the halting condition, which should apply to each

and every �nal state B

F

. The cells marked with the symbol # mean that

their state is irrelevant in these neighbourhoods. The subscript r refers to

the geographic position of the cell in its neighbourhood. The background

state is represented by 0. : 55

5.1 Transition table governing the sequence of steps of computation that allow

the associated Turing machine to recognise the language � = f0

n

1

n

j n �

1g. The 0-state corresponds to Enact's background state and should be

distinguished from 0

K

, the memetype state that represents the character

0 of the language. The third element of the triplets stands for the head

moving to the left or to the right in the corresponding step of computation. 57

5.2 Correspondence between the constituent elements of a Turing Machine and

the states currently being used to implement it. : : : : : : : : : : : : : : : 58

5.3 Environmental dynamics from E to E

ii

. E

ii

is a mirror of P

ii

. : : : : : : : 61

5.4 Adult phenotypic development of the agents P

i

7! P

ii

. The new phenotypic

state P

ii

is given for each value of E

i

and P

i

. Note that E

0

and E

1

are

respectively equivalent to E

2

and E

3

; also, that P

f

is always preserved, i.e.,

not a�ected by E

i

. : 62

vi

6.1 The complete set of instantiated state transitions for the world set-up men-

tioned in the text. There are two types of interaction sites, characterised

by a cross-like shape, its rightmost cell being the one that di�erentiates the

two types, according to its state being E

+

or E

�

. As the interaction sites

are traversed by the agents, the latter become subjected to the instantiated

state transitions. : 76

D.1 State transitions supporting the actions of the Turing machine that do not

depend on the state transition table of the function being computed. : : : 109

D.2 State transitions supporting the actions of the Turing machine that are

de�ned by the state transition table of the function being computed. : : : 110

D.3 Neonate development from P

0

to P

i

. : 110

D.4 Neonate development from T

0

to T

i

. : 111

D.5 Development of the heads of the agents according to their P

ii

- and T

i

-states.

The head is inactive for P

f

, and active otherwise. : : : : : : : : : : : : : : 111

vii

DECLARATION

I hereby declare that this thesis has not been submitted, either in the same or di�erent

form, to this or any other university for a degree.

Signature:

viii

ACKNOWLEDGEMENTS

This thesis became possible thanks to grants (No. 200695/88.6 and No. 451458/94-0)

from CNPq, the Brazilian Council for Scienti�c and Technological Development; and to

the leave of absence conceded by my employer, INPE, the National Institute for Space

Research. I thank them and express my deepest recognition for their investment.

I'm very grateful to Phil Husbands, who became my supervisor at the end of the �rst

year, for his unconditional support at the various stages of this thesis, and in particular

for his midwifery work as I tried to get the �nal version of this thesis together.

My most special gratitude to Inman Harvey, for all that I've learned from him, for all

the everyday discussions, and for all the great stories from his past.

Coincidently, around the time I arrived at Cogs various people with similar interests

also arrived; I regret that Peter Hyett, probably Cogs' �rst alifer, did arrive too early. Our

alergic meetings on alife were certainly the best re
ection of the extremely stimulating

environment that was created. Thanks a lot to the alergic members, the �rst generation,

who one way or another contributed to this work: Robert Davidge, Mukesh Pattel, Dave

Cli�, Andy Wuensche and Serge Thill.

Thanks to Mike Scaife, my supervisor during the �rst year, for having accepted me at

Cogs, and whose friendliness and personal support were essential in my �rst months.

I'm also very grateful to generous travel grants from Cogs' Postgraduate Fund; AISB,

the UK Society for Arti�cial Intelligence and Simulation of Behaviour; Universit�e de

Compi�egne; and Santa Fe Institute.

Thanks to Orlando and Sandra, Teresa, Miguel, Rui and Sandra, and Antonio for

always being close; Eevi, Alistair, Arantza, Chris Taylor and Paulo for the friendship;

Lionel Moser for discussions; the designers of Cellsim for keeping it in the public domain;

Richard Dallaway for his helpfulness; Valeria for the ceiling; and... Anyway, thanks to all

of you folks with whom I shared good moments, on campus, in Brighton, in D421 (yes,

I'm the last one!) and in 4C15.

And certainly, my tenderest gratitude to Carmen and Luara, for their love, patience,

and companionship during this long journey.

ix

Para

Dona Lindinha

e

Seu Altamiro

x

THE UNIVERSITY OF SUSSEX

An Empirical Exploration of Computations with

a Cellular-Automata-Based Arti�cial Life World

Submitted for the degree of D. Phil.

February 23, 1995

Pedro Paulo Balbi de Oliveira

ABSTRACT

Aligned with the recent tendency towards the conception of computational systems

gleaned from evolutionary biology, a cellular-automata-based arti�cial life world is pre-

sented.

The aim of the thesis is the de�nition of the architecture of the system, named Enact,

its implementation, and its exploration as a computing machinery. More precisely, the

following connected issues provide the motivation for the research: how can an arti�cial-

life world at an organismic level be de�ned in cellular automata, such that it can be

viewed as a computational machine, when viewed from an external standpoint; and what

kinds of models of computation are suggested by it.

Enact is a family of two-dimensional, non-deterministic cellular automata, whose tem-

poral evolution can be described in terms of the metaphor of an arti�cial-life world where

a population of agents undergo a coevolutionary process. During their lifetime, the agents

move about, sexually reproducing, interacting with the environment, and being subjected

to a developmental process.

An agent is formed by a sequence of contiguous cells, so that the cells at each end

can be thought of as its head and tail, whereas the cells in between constitute its body.

A single cell of the body forms the agent's genotype. Another cell, whose initial state

depends on the agent's gene, represents the phenotype. The remaining cells of the body

are fully determined through direct parental inheritance, constituting what we call the

agent's memetype.

Enact can be regarded as a programmable, virtual machine de�ned by the arti�cial-life

processes it supports, and relying upon six categories of states which represent environ-

ment, the agent's terminals, genotype, phenotype, memetype, and an additional category

to allow the agents to move. It is using these high-level concepts that computations are

addressed herein.

Fundamental to the system is that all events de�ned in it are coupled to each other

through the movement of the agents.

Here we fully present Enact's architecture, and describe its possibilities; explain how

Enact can be programmed; discuss conceptual issues underlying its use and design; iden-

tify and implement a model of computation in the system that relies, at least in principle,

on all arti�cial-life processes embedded in it; show that this model of computation is in

fact a simple case of a model of coupled computations, also embedded in the system; gen-

eralise the former model of coupled computations, and brie
y mention a particular world

set-up in which a number of computable functions could be observed as coming out of the

coupling process; and �nally, point at practical problems of going about the latter with

the current system as it stands, setting out the requirements that its successor should

have, in order to be an e�ective generalisation of Enact from the architectural point of

view, while still preserving the conceptual underpinnings that led to its inception.

xi

PREFACE

Drivers and Balloonists

A position one could �nd oneself in when starting a thesis, is to have a clear, well-de�ned

problem in front of them that would provide the direction of the journey. This situation

is more like riding a vehicle on a road, as unknown and unexplored as it may be. This

journey is usually crammed with roundabouts, no-way-throughs, shortcuts, crossroads,

whatever, and no matter the problems one may have, there will often be a safe parking

area that can be quickly reached. In the worst cases, it is always possible to stop wherever

one is.

An image that is probably adequate to convey the feeling I have had during these

years is that of a balloonist. Unlike the driver, the constraints are less well-de�ned and

the journey can
ow in a freer way. But it is riskier too. If attention is driven away from

the internal control or from the wind, returning may become more and more di�cult.

Driving is controlling. But when ballooning, this action has to be taken very seriously, as

there is no other way to carry on: no resting areas or sudden stops are generally possible,

and the wind, after all, may always blow.

I wish I could have been a driver in this thesis. But I was more like a balloonist.

Instead of a well-de�ned problem I had to face from the beginning, that would strongly

constrain my journey, what I had was a strong motivation impelling me forwards. My

struggle, even anguish in various moments, was to keep control of it so that I could reach

a safe place at the end. Rather than driving into a region that I would have to �nd

my way through, I felt more as if I was exploring an area in which I had found myself.

Rather than answering questions, I felt myself asking them. This is not what I would

have wanted, but it is how it came to be.

This thesis is not about a problem. It is about a motivation. And how it materialised

in the form of a small piece of scienti�c research.

xii

Chapter 1

INTRODUCTION: GUIDELINE FOR THE THESIS

This chapter is intended to be a general guideline for the thesis.

The attempt was to provide a clear picture of the aim of the thesis; the steps that

were taken towards reaching it; the results that were obtained; the claims to be made;

the content of the subsequent chapters; and the publications that were derived from the

research reported herein.

1.1 What the Thesis is About

This thesis is about Enact, a family of cellular automata whose dynamics can be described

in terms of the metaphor of an arti�cial-life world where a population of agents undergo a

coevolutionary process. During their lifetime, the agents move about, sexually reproduce,

interact with their environment, and are subjected to a developmental process.

The aim of the thesis is the de�nition of the architecture of the system and its imple-

mentation, as well as its exploration as a computing machine.

More precisely, the following connected issues provide the motivation for the research:

� how can an arti�cial-life world at an organismic level be de�ned in cellular automata

terms, such that it can be viewed, from an external standpoint, as a computational

machine; and

� what kinds of models of computation are suggested by it.

In the next chapter we will discuss how this thesis �ts into the larger picture of arti�cial

life and cellular automata research.

1.2 Steps to Be Taken

In the order they appear, the steps we are going to take throughout the thesis are the

following:

1. To present Enact's architecture, its implementation, and to describe its possibilities.

2. To show that the system can be viewed as a programmable virtual machine, and

explain how to go about using it.

3. To identify and implement a model of computation in the system that relies, at

least in principle, on all arti�cial-life processes embedded in it.

4. To show that this model of computation is in fact a simple case of a model of coupled

computations, also embedded in the system.

1

5. To generalise the former model of coupled computations, and to hint at a particular

world set-up in which a number of computable functions could be observed coming

out of the coupling process.

6. To point at practical problems of going about the latter with the current system as

it stands, and to set out the requirements that its successor should have, in order

to be an e�ective generalisation of Enact from the architectural point of view, while

still preserving its conceptual underpinnings.

1.2.1 Outline of the Chapters

The content of the following chapters are as follows:

� Chapter 2 provides background knowledge for the thesis identifying the territory in

which this journey will take take place, as well as the borders which will constrain

it. It is aimed at rendering the thesis self-contained, and also to point out the

relationships between the research carried out in the thesis with other pieces of

work in the �eld. The main topics presented include a general identi�cation of the

�eld of arti�cial life; a characterisation of evolutionary and emergent computation;

the de�nition of cellular automata, and aspects of their relation with computations.

� Chapter 3 is a full description of Enact. Enact is a family of two-dimensional,

non-deterministic cellular automata, whose temporal evolution can be described

in terms of the metaphor of an arti�cial-life world where a population of agents

undergo a coevolutionary process. During their lifetime, the agents roam about,

sexually reproducing, interacting with the environment, and being subjected to

a developmental process which includes ageing and death. The overall qualitative

dynamics of the system as well as the aspects involved in its underlying evolutionary

activity are also discussed.

� Having described Enact in detail, Chapter 4 goes on to exemplify how the system

can be used as a programming environment. Since the basic dynamics of the system

is guaranteed by the underlying rule of the cellular automata, as long as it is not

disrupted, all the arti�cial-life processes will be preserved. The idea of programming

the system, therefore, means the establishment of a particular world set-up for

the underlying arti�cial life activity. The example discussed is the implementation

of a Turing machine, where the tape is implemented as a sequence of contiguous

environmental cells, and the machine head as an agent. In doing so, the issue of

embedding computations in Enact is introduced.

� Expanding on the Turing machine implemented in Chapter 4, Chapter 5 rebuilds it,

but now relying on the entire population of agents. The intent is to show how the

entire arti�cial life activity of the system could be considered as a computational

machine, when viewed from an external standpoint. In doing so, the models of

computation implicit in Enact are identi�ed, the main one being fully described

in the chapter. It is then suggested that models of coupled computations can be

developed out of them.

� With that suggestion in mind, Chapter 6 describes what these models of coupled

computation would be. Basically they are de�ned in terms of a set of Turing ma-

chines that share with each other one of their components (the tape symbols; their

internal states; or their state transition table). Then, the chapter discusses in more

2

detail the model in which the state transition table is the shared component among

the various machines. It is argued that this model, if conveniently constrained,

provides a way to address the issue of coupled computations in the context of En-

act's coevolutionary activity, and also that it opens the possibility of addressing the

issue of criticality phenomena in constrained spaces of computable functions. In

this respect Chapter 6 then brie
y sketches a particular Enact set-up within which

those possibilities might be realised, which has a simple de�nition but is su�ciently

rich in terms of the space of computable functions that it entails; this set-up also

serves to introduce a generalisation of Enact's main model of coupled computation.

All the issues related to the mentioned set-up should be seen as preliminary ideas

related to future work to be done, but even their partial presentation is useful to

clarify various aspects of the issue of coupled computations in the context of Enact.

� Finally, Chapter 7 is an evaluation of what has been done throughout the thesis, as

well as prospective in terms of what its achievements are pointing at. In particular

it highlights what has been achieved both in practical and conceptual terms; points

at practical problems with Enact as it stands; and provides a generalised de�nition

of the system that is currently being undertaken. It then concludes the thesis with a

personal statement on the historical pathways that led me to the research reported

herein.

1.3 Contributions of the Thesis

1.3.1 Results

The way we explored the research theme of this thesis was by adopting an engineering

standpoint. That is, although Enact is inspired by them, it is not a model of the biological

notions it relies on.

In keeping with that, the following results have been established:

� The architecture of Enact itself, insofar as it is a rather complete arti�cial life world

at the organismic level, fully couched in cellular automata terms.

� The programmability of the system, and the way to go about it.

� The identi�cation of a model of computation that is couched in terms of the high-

level arti�cial-life processes embedded in Enact.

� The exploration of the role of an explicit notion of space in the provision of coupling

between computations.

1.3.2 Claim

Further to those concrete results, I will argue that

� by conveniently constraining the process of coupled computations, Enact may prove

to be a useful tool to address the issue of coupled computations in the context of its

coevolutionary activity; and also that it opens the possibility of addressing issues

such as criticality phenomena in these constrained spaces of computable functions.

3

1.4 Publications and General Dissemination of the Work

Most of the core material in this thesis has been published in one form or another. This

section provides further details, also mentioning other forms of exposition of the work

such as talks that have been given.

Based on my research proposal outline I gave a talk in the Students Session of the

International Conference on Evolving Knowledge in Natural Science and Arti�cial Intel-

ligence, organised by the British Society for the Philosophy of Science, in Reading, UK,

1989. None of the student papers appeared in the proceedings volume.

In a slightly modi�ed version, my contribution to the previous conference, [de Oliveira

1989], was presented as a poster in the second Arti�cial Life Workshop, held in Santa

Fe, NM, USA, 1990; but since the work was still in a premature stage for publication,

the paper was not submitted for the workshop proceedings. I then wrote a report on the

workshop which was published as [de Oliveira 1990b] in AISB Quarterly: the Newsletter

of the Society for Arti�cial Intelligence and Simulation of Behaviour.

I had completed a precursor of Enact when I was accepted for the International Sum-

mer School in Complex Systems organised by and held in the Santa Fe Institute, NM,

USA. As a result of it, a paper was written and published in a book that came out of

the event. The paper { [de Oliveira 1992a] { discussed the �rst ideas of the system, still

unamed at that time, its main aspects having been included in Chapter 3 of this thesis.

The second version of the system was published as the technical report [de Oliveira

1992c], together with what became the content of Chapter 4. This work was �rst presented

in the beginning of 1992 in a talk at the British Computing Society Workshop on Cellular

Automata, held in London; this event did not have a full proceedings volume. Later on, it

was accepted for Complex Systems 92, held in Australia, and published in the book that

came out of it; that paper { [de Oliveira 1993] { is an abridged version of the original,

and contains the essence of Chapter 4.

The third version of the system, then named Enact, was �rst published in the technical

report [de Oliveira 1992b], and later on accepted for a poster presentation and demon-

stration at the third Arti�cial Life Workshop, Santa Fe, USA, but not included in the

proceedings. This paper was rather long, and recently it was rewritten and split into two

disjoint papers.

The �rst part, the description of, and discussion on Enact was accepted for the confer-

ence Cellular Automata in Research and Industry, held in Italy; the paper that appeared

in the proceedings { [de Oliveira 1994a] { draws from Chapters 3 and 7. The second part

appeared as [de Oliveira 1994c] in the proceedings of the International Conference On

Evolutionary Computation: Parallel Problem Solving from Nature, 3, held in Israel.

Yet another paper, [de Oliveira 1994b], which is essentially Chapter 6, was published

in the proceedings of the third Workshop on Physics and Computation, held in Dallas,

USA.

And �nally, a version of Chapter 5 was accepted for publication as [de Oliveira 1995]

in the periodical BioSystems: Journal of Biological and Information Processing Sciences.

4

Chapter 2

MAPPING OUT THE TERRRITORY

As my interests became more and more focussed it became clear they were leading me

to the emerging new discipline of arti�cial life, Alife for short.

What follows is a description of this territory, as well as of its borders that our journey

will be constrained with. In addition to providing background material in order to render

the thesis self-contained, the aim of this chapter is, wherever possible, to provide links

from speci�c points of the thesis to related pieces of research found in the literature, and

also to subsequent parts of the thesis where the topic at issue will be addressed in more

detail. It also aims at �tting the thesis into the larger picture provided by arti�cial life

and cellular automata research.

2.1 The Territory: Arti�cial Life

Ever since Langton [1986] used the term arti�cial life for the �rst time in the conference

Evolution, Games and Learning: Models for Adaptation in Machines and Nature, [Farmer

et al. 1986], the momentum associated with the discipline has steadily grown. As this

happened two other events also had a seminal role, [Langton 1989] and [Forrest 1990].

But it was only Alife-II, the second Arti�cial Life Workshop at the beginning of 1990,

that really marked the consolidation of the �eld; see [de Oliveira 1990b] for a report on

this most exciting event.

A widely cited expression by Langton (as in [Langton 1992a]) states that the aim of

the enterprise is to push current knowledge from life-as-we-know-it to life-as-it-could-be.

And for this matter, arti�cial life is in the con
uence of various disciplines such as theory

of computation, arti�cial intelligence, physics and mathematics of nonlinear systems, and

theoretical biology. As far as AI and cognitive science are concerned Alife brings with it

a �erce criticism of classical cognitivism, by getting closer to biological aspects that have

systematically been left aside or relegated to the background. In this respect it is worth

remarking that, to some extent, Alife represents a rescue of old insights from the days of

cybernetics, but now with more adequate tools for the enterprise.

Arti�cial life is a direct consequence of the great theoretical developments that research

in complex systems underwent during the eighties, as well as the availability of compu-

tational power to support their simulations. These are systems that are characterised

fundamentally by an architecture of many components with however local interactions

between them. Even though this local activity can be very simple, the overall behaviour

of the system can be very complex. This is the case, for instance, of computational entities

like neural nets, cellular automata, and classi�er systems, and also of systems like spin-

glasses, societies, and economies. [Serra and Zanarini 1990] and [Weisbuch 1991] provide

two excellent accounts of complex systems from a more computational orientation.

5

There have been various international meetings on arti�cial-life-related topics. Most

notably, the Workshops on Arti�cial Life, of which Alife-II was the second edition, has

taken place in USA every other year since 1987 ([Langton 1989]). It alternates with the

European Conference on Arti�cial Life, since its inception in 1991 ([Varela and Bourgine

1992]). Another important regular conference is Simulation of Adaptive Behaviour, that

has taken place biennially since 1990 ([Meyer and Wilson 1991]).

More speci�c workshops have also appeared such as the Workshop on Physics and

Computation, which in its current { third { edition has become regular, but after the

�rst one took place in 1981 ([PhysComp-81 1982]); and the Workshop on Perception and

Action, which has just happened and very likely will have follow-ups. Various events

involving cellular automata (such as the workshop [CSC 1991]) have also found a new

thrust. The fact is that, in many countries more and more events have been organised

around Alife-related topics, from summer schools to special sessions and tracks in the

major international conferences (in control, for instance).

Various journals have also been created in the post Alife-II period in order to be partly

or fully devoted to arti�cial-life-related issues. These are [Meyer 1993], [Langton 1994],

[Jong 1994], and [Morowitz 1994].

Also, traditional journals have opened space for Alife, in particular the ones that

focus on AI and cognitive science. In this respect, it is worth mentioning [Cli� 1994], a

special-theme issue of AISBQ, the newsletter of the Society for Arti�cial Intelligence and

the Simulation of Behaviour; [Agre and Rosenchein 1993], a special issue of the Arti�cial

Intelligence journal; and [Huberman 1994], a forthcoming special issue of the latter journal

on nothing less than phase transitions, an issue that has very often appeared within Alife

(as in [Langton 1990]).

General presentations on arti�cial life abound. Langton's various discussions, such

as [Langton 1992a], are mandatory; [Belew 1991] emphasises its relations with arti�cial

intelligence; [Mikhailov 1992] follows an engineering-oriented perspective; and [Levy 1992]

provides a popular presentation, with an insider's view not only of research but also of

the researchers themselves, mainly the ones from the mecca of the �eld, the Santa Fe

Institute, Santa Fe, USA.

Various pieces of work emerged in the context of arti�cial life that bear relevance to

arti�cial intelligence and cognitive science. In addition to the fully embodied approaches

to cognition based on autonomous robots (as in [Brooks 1991b] and [Brooks 1991a]), it is

also worth mentioning the emphasis on embodied approaches even if with simple animals

and in simulated settings, as discussed in [Cli� 1991]; and the views of cognition linked

to dynamical processes, as developed in [Beer 1992] and [van Gelder 1992].

Having established arti�cial life as the main territory of this thesis, what follows is a

set of boundaries within which our journey will be constrained with.

2.2 Evolutionary Computation

Among the arti�cial life topics, evolutionary computation is certainly the most well-known;

in fact, conferences on the issue have been around for nearly ten years already. The

International Conference on Genetic Algorithms is the oldest of them, having been taken

place every two years since 1985 ([Grefenstette 1985]), always in the USA. The Parallel

Problem Solving from Nature conference has always been more general than the former; for

instance, it was in its �rst edition, [Schwefel and M�anner 1991], that the mostly American

{ at least up to that moment { genetic algorithms community, �rst met the evolutionary

strategies Germany-based community. Since then, the two have taken place in alternate

years. Completing the cycle on evolutionary computation there has also been since 1992

6

([Fogel and Atmar 1992]) the annual, so far USA-based, International Conference on

Evolutionary Programming.

The three techniques mentioned above { genetic algorithms (GA), evolution strategies

(ES), and evolutionary programming (EP) { are the main ones currently in use, although

variations do exist. The technique of genetic programming ([Koza 1990]) is also worthy

of mention. [Goldberg 1989] is still the most accessible entry point to the �eld of genetic

algorithms. The research pespectives in genetic algorithm as perceived in [De Jong 1985]

are still very up-to-date, mainly if compared with an assessment of the �eld written

nowadays, as in [De Jong and Spears 1993]. Of particular relevance to the arti�cial life

community is the review presented in [Mitchell and Forrest 1993], and also the work

on variable-length genotypes presented in [Harvey 1994]. [Fogel 1992] traces back the

history of evolutionary computation, speci�cally from the perspective of evolutionary

programming. [Ho�meister and B�ack 1991] is a convenient introduction to evolutionary

strategies, insofar as it is made by comparing it with genetic algorithms. [De Jong and

Spears 1993] is also adequate to provide a unifying view on the di�erent techniques of

evolutionary computation.

Basically they are search techniques in problem spaces gleaned from (an abstraction

of) evolutionary genetics. In all of them the search starts with a population of candidate

solutions that are generated by a random process. This population is then evaluated

in regard to their proximity to the expected solution of the problem at issue. Based

on this evaluation, a selection process is then carried out that picks out a subset of the

population, so as to form the basis upon which a new population will be created. The

latter is achieved by applying genetic operators to the pool of selected individuals, one

of them being sexual reproduction between pairs of individuals. The new population {

which is expected to be formed by a better set of candidate solutions than the former {

then replaces the original, and the process iterates.

The distinction between the three approaches is mostly due to the di�erent emphasis on

the role and usage of the genetic operators. So, while in GA the most important operator

is crossover { that creates two individuals out of two others, by exchanging segments

between the latter { in EP and ES mutations in the individuals have the primary role; in

fact, crossovers are hardly used at all. Also, while in ES the mutation rate is adaptive,

this is typically not the case in GA and EP. However, as [De Jong and Spears 1993] has

recently discussed, these di�erences are mostly historical; as a coherent theory of the �eld

progresses, these di�erences have become fuzzier.

It is worth distinguishing two usages of evolutionary computation techniques: as an

optimisation technique, which is the most widespread form; and as a computational model

for evolutionary studies in natural and arti�cial systems. For the purposes of this thesis

it is worth bearing in mind that it is the latter usage that will be of interest. In fact,

the evolutionary facet associated with the system to be presented herein will explore an

aspect of evolution more related to viability than to optimisation; this will be discussed

in Section 3.10.

Given the importance of coevolution in nature and the potential of coevolutionary

models in practical applications, there are still relatively few references in this topic. Key

pieces of work include [Hillis 1992], where two processes coevolve, one being a sorting

algorithm, and the other, a parasite-like process that creates test-cases for the latter, at

the end of which a new sorting algorithm is discovered; and [Husbands 1993] where a

real-world application is developed for the problem of job-shop scheduling.

Another alley also yet to be explored in greater detail is the use of these techniques in

conjunction with cellular automata, as is the case of [Lipsitch 1991].

One particular class of applications of evolutionary computation that has been a matter

7

of huge attention in the last few years is their use to evolve neural networks. Various

surveys exist in this area, [Yao 1992] being a recent one.

2.3 Emergent Computation

A topic that will be particularly relevant in this thesis is what has been denoted emergent

computation, after a workshop on the topic, which was essential to gather momentum

for arti�cial life; its proceedings were published as [Forrest 1990]. The point here is the

characterisation of the global behaviour of a complex system in terms of information

processing. Many complex systems can be described in such a way, for instance, a neural

network, which, after having gone through a learning period, may become capable of

performing a computation; putting it in another way, its behaviour may be described in

terms of a computation that is being performed.

[Forrest 1990] presents a number of contexts in which the issue of emergent compu-

tations is approached, from number-theoretic accounts, to the behaviour of networks of

logical gates.

The form of emergent computation that will be of interest in this thesis is the one

associated with cellular automata. That is, the characterisation of their global behaviour

in terms of computations. As will be discussed in Chapter 6, the aspect of emergent

computations we will be addressing is the one that can be viewed as a process of coupled

computations.

2.3.1 Coupled Computations

By coupled computations I mean a number of computational processes occurring in a

way that the steps of computation of each one interfere with the steps of the others.

The interest in this process is in its facet of self-organisation and emergence. Unlike a

standard process of parallel computation, where the focus of the process is the achievement

of a prede�ned computation, in coupled computations the interest is the process itself.

Naturally, the question of how to constrain the process such that a prede�ned computation

can be performed is certainly an issue. But the general concern extends beyond that, so

as to also include such question as: how is it possible to drive the process to converge to

one computation or another, with the same basic architecture; which kinds of coupling

processes admit reversible emerged computations; issues on the robustness of the coupling

schemes, and on the di�erences between the coupling schemes themselves; etc.

In order to appreciate better our approach to coupled computations it is worth review-

ing related approaches to the issue, which will be referred to again in later chapters.

2.3.2 From the Turing Gas to Turing Machines

One type of coupling scheme is obtained when the unit of coupling is a computable

function de�ned an abstract space. An example of this type is the so-called Turing gas,

as de�ned in [Fontana 1992]. In this system a population of particles are subjected to

pairwise collisions with the possibility of formation of new ones which, in turn, enter the

chain of already existing reactions. The Turing gas is a system of coupled computations

because the particles are functions coded in a variant of pure-Lisp called AlChemy (a

shorthand for \Algorithmic Chemistry"), the collisions between the particles being the

evaluation of one of the functions having the second as the argument. The Turing gas

has been used as a model of systems that have an inherent \constructive dynamics", that

is, whose components act on each other constructing new ones which themselves have the

8

ability to take part in the constructive process; a paradigmatic example of this kind of

system are chains of molecular reactions.

Another kind of system of coupled computations is the one based on coupled executions

of an assembly-like language that runs in a (typically) virtual machine. [Ray 1992] and

[Rasmussen et al. 1990] are landmark examples of this kind; [Rasmussen et al. 1992] is

also important, although this work goes beyond the particular coupling scheme currently

at focus.

1

It is worth noting the fact that they (indeed, like [Fontana 1992]), tackle the

issue of coupled computations without having, however, the need to explicitly recognise

it.

[Ray 1992] features Tierra, an arti�cial life world where a population of programs com-

pete for memory space and CPU time of their host machine. The programs are subjected

to an evolutionary process so that the ones that manage to replicate more, get more of

these resources, thus guaranteeing their survival. In particular, there are situations in

which individuals manage to run instructions that belong to another individual to their

own bene�t or harm. Therefore, coupled computations in Tierra occur when an area

of memory contains instructions that belong to an organism, but are shared by other

individuals due to their own individual nature.

The systems Venus I and II, and Luna, discussed in [Rasmussen et al. 1990] and

[Rasmussen et al. 1992], all implement variants of the idea of a \soup" of instructions

spread over an area of memory, where a population of program counters coexist executing

the shared code. In terms of coupled computations these systems therefore follow the same

approach as Tierra, which is the sharing of instructions among the di�erent computing

processes.

A lower-level approach to coupled computations is the one where the unit of coupling

are Turing machines. A reference along this line is [McCaskil 1989] (presumably an early

inspiration for the Turing gas). This work uses interacting TMs for studying functional

self-organisation, and is based on a binary string encoding of their transition tables.

Recently Rucker (1993) released a software package and accompanying book which,

in spite of simply aiming at being an entertainment arti�cial-life system, provides an

interesting example of coupled computations. This alife world is inhabited by a population

of two-dimensional Turing machines whose individual transition tables are coded in the

organisms' genotypes. The organisms' environment is seen as a two-dimensional tape

that is shared among all individuals. As they move about they leave trails that can be

followed by the others. The symbols that make up the trails are, therefore, the symbols

that are written on the tape which, when read by other organisms, provide the e�ective

coupling among the computations individually de�ned in each Turing machine.

As far as Enact's approach to coupled computations is concerned, the best way to

describe it is by thinking of the state con�guration of the agents as representing the tape

and the internal states of a Turing machine, and their environment as providing the locus

in space where one step of a computation will take place. From this perspective, the

state transition rule of the machine becomes part of the \physics" of the world, such that

the computation is materialised at the points in space where an agent interacts with its

environment. As will be made clear later, it is the movement of the agents that determines

the outcome of an individual computation; but since movement directly depends on the

availability of space, it is clear that space is the ultimate determinant of the coupling

process.

This approach will be discussed in detail in Chapter 6, in particular pointing out

1

Its theme is the more encompassing concept of dynamics of \self-programmable matter"; although not

explicitly recognised in the paper, it essentially corresponds to the notion of constructive dynamics

de�ned in [Fontana 1992].

9

advantages it suggests in respect to the systems described above. It is worth advancing,

however, that the advantages of the current approach will be argued but, for practical

reasons, will not be explored in a running set-up within the thesis; this will be explained

in Chapter 7. Finally, a natural generalisation of the Turing-machine-based approach will

then be made, that equates computations to the developmental processes undergone by

the agents.

Hence, in respect to coupled computations the contribution of this thesis will be the

de�nition of a modality of coupled computations that is entrenched in an arti�cial life

activity, and where the coupling medium of the computations is the space provided by

the cellular array of Enact's underlying cellular automata.

2.4 Enaction

Enaction is a research programme in cognitive science identi�ed in [Varela 1989], and

further extended in [Varela et al. 1991]; see also [Dennett 1992] for a review of the latter

monograph.

The characterisation of enaction is built upon the notion of embodied cognition, whose

major consequence is the decrease of emphasis on the role of representations in the un-

derstanding of cognitive phenomena. Enaction's alternative to representation is \embod-

iment", that is, the history of dynamically coupled interactions of active agents in their

worlds. According to the enactive view, cognitive structures emerge, through lifetimes

and lineages, bringing forth a signi�cance that only makes sense through the history of

interactions, and ensuring the continued, ongoing activity of the cognitive system in its

world.

To help understand the technical sense of enaction it is useful to look up the term

\enact" in dictionaries of the English language; in doing so it is clear that there are two

typical { rather distinct from each other { meanings of the verb to enact. For instance,

in [Hornby 1989] the �rst connotation is identi�ed as to

\: : :perform (a part, play, etc.) on, or as if on, the stage of a theatre : : :",

and the other as to

\: : :make or pass (a decree) : : :"

What the proponent of enaction had in mind, therefore, was a term with which it

would be possible to characterise a view of the notion of representations in cognitive

science that would rely on both connotations of the term at the same time. Namely,

while the �rst connotation stresses the view that representations do not really exist, the

second emphasises that they come into existence by a deliberate act (of interpretation).

When the notion was �rst put forward in [Varela 1989], apparently Varela was unaware

of the work that has been carried out by Brooks (cited earlier) in the construction of

autonomous robots. At the time [Varela et al. 1991] was published, he was aware of that

research line to the extent that it was treated in the book as a paradigmatic realisation of

the enactive stance. But it is worth mentioning that various other approaches to building

autonomous mobile robot, such as the evolutionary approach described in [Cli� et al.

1993], may well be regarded as another form of realisation.

Not many pieces of research have been published addressing the topic, at least from

my bias of more computational accounts; I should add, though, that I have not followed

the more philosophical stream of publications. [Rutkowska 1990] is one of the few exam-

ples, where the importance of the enactive perspective for developmental psychology is

10

recognised. Following a workshop on autopoiesis held in Dublin at the end of 1992 there

was some activity on the Internet, but not much recently. It is also worth mentioning

that there is a substantial overlap between the communities interested in enaction with

the one interested in autopoiesis { a concept that aims at characterising an organisational

principle of the living entities (see [Maturana and Varela 1987] for instance) { although

the latter has been more active. Anyway, complementing the practical aspects of enaction

that Brook's work epitomises (at least from Varela's viewpoint), for an in-depth account

of the philosophical issues that come out of enaction, and their analysis within the context

of a particular theme in cognitive science, namely, colour vision in di�erent animals, see

[Thompson et al. 1991].

The implicit reference to enaction that Enact carries in its name re
ects an acknowl-

edgement to enaction as an \umbrella" that encompasses various concepts which Enact

also attempts to emphasize, in particular the role of self-organisation. It also represents

a personal recognition to the fact that the �rst time I became aware of those concepts, in

a coherent way, was in the context of enaction.

In particular, it is a recognition to the biological roots of enaction, epitomized by the

concept of evolution as natural drift, the view of biological evolution that was developed

in an interwined fashion with enaction, as put forward in [Maturana and Varela 1987].

From a very general perspective, evolution as natural drift could well be summed up as

the view of evolution that also recognises self-organisation as another major component

in biological evolution, thus stressing the necessity of going beyond the predominant view

that natural selection provides. At least from this macro perspective this view is very

similar to the one Kau�man has put forward in [Kau�man 1991], which was epitomized

by his monograph [Kau�man 1993].

In the context of the latter topic, it is relevant to mention the biological notion of

exaptation, a term proposed in [Gould and Vrba 1982] to refer to structures whose function

did not arise as a consequence of progressive adaptations via natural selection.

2

Even

though the link between the two concepts { enaction and exaptation { had apparently

not yet been recognised, they seem to me very much related in their stress on viability (and

self-organisation) rather than optimisation as a primary aspect of biological evolution.

Punctual references to enaction occur throughout the thesis, but the reader should be

warned not to be misled by considering Enact as a system that explores the deep cognitive

issues implied by enaction in any wide sense. In fact, this thesis can, and in fact, should

be read from a purely cellular automata standpoint.

2.5 Cellular Automata

2.5.1 General

Cellular automata (CA) are arrays of �nite-state machines that can also be described as

discrete dynamical systems ([To�oli and Margolus 1987]). In the terminology we will use

here, they are made up of a set of cells, which are organized in a regular n-dimensional

lattice, the cellular space, or simply, the lattice or array. At any time, each cell can take

2

Incidentally, a debate involving exaptationist versus adaptationist explanations has started and is still

very active; for example, [Pinker and Bloom 1990] features a recent debate in the context of the evolu-

tion of human language, with both sides �ercely represented. The predominance of the adaptationist

programme is precisely the target of the criticisms expressed not only in [Gould and Vrba 1982], but also

in [Gould and Lewontin 1984], [Lewontin 1984] and [Piatelli-Palmarini 1989]. As remarked in [Lewontin

1989, page 107], it is not that alternatives are not mentioned, but that they are all considered \diver-

sions from the big event, the ascent of Mount Fitness". Quite signi�cantly, in the list of 172 references

shown in the remarkable review of the �eld of simulation of adaptive behaviour presented in [Meyer

and Guillot 1991], none of the previous references related to the adaptationist debate can be found.

11

on one among a set of discrete values, which are the cell states. The states of all the

cells in the lattice are updated (typically) synchronously, the new state of each cell being

dependent upon the state of its local neighbourhood, i.e., its current state together with

the states of a group of neighbouring cells. The updating of each cell state is achieved

by applying to the cell neighbourhood a set of deterministic or non-deterministic state

transitions which together, de�ne the rule of the automaton.

The activity of cellular automata (CA) often takes place over an \inert" background,

sometimes called quiescent; in this case the state that characterizes the background be-

comes the quiescent state. Very often the cellular array is wrapped around on itself

which, in the case of two-dimensional CA yields a torus type of array; this kind of bound-

ary condition is referred to as periodic background. Otherwise it is referred to as blank

background. Typical neighbourhoods for two-dimensional CA involve a cell and its eight

surrounding neighbours (the Moore neighbourhood), or the four surrounding neighbours

in a diagonal cross (the von Neumann neighbourhood). Enact uses the former. Variations

of cellular automata do exist in a number of themes like asynchronous updates of the cell

states; inhomogeneous rules (that is, di�erent state transitions for di�erent groups of

cells); variable neighbourhoods; etc. Because they are not relevant for present purposes

they will not be reviewed here, but the reader is referred to [To�oli and Margolus 1987]

for an excellent introduction to these and many other issues related to the phenomenology

of cellular automata.

McIntosh [1990a] partitions the history of cellular automata in two eras. The �rst is

the von Neumann era, which started when Burks, after von Neumann's death, edited and

published in [von Neumann 1966] the details of his famous cellular automaton that was

capable of self-replication. This era continued up to 1970, when the most famous cellular

automaton, the game-of-life, was published in Martin Gardner's column in Scienti�c

American, thus initiating the Gardner era.

3

To these we could well add in sequence

the Wolfram era, after Wolfram's seminal 1983 paper (republished as [Wolfram 1986a]),

where he undertook a computer-based search through the properties of the elementary

automata, guided by some concepts from the realm of nonlinear dynamics and statistical

mechanics.

[Gutowitz 1991] is still the most comprehensive account of cellular automata, both

for theoretical aspects and applications in various domains. And [Gutowitz 1994] is the

most up-to-date version of the \frequently-asked-questions" �le of the CA Internet-based

mailing list, an extremely valuable compilation of pointers to all aspects of CA.

Because cellular automata are dynamical systems and computing devices, the inter-

play between their dynamical and computational capabilities makes them a particularly

appealing conceptual framework for arti�cial life realisations. For instance, it is known

that there are great di�culties in analysing the dynamical behaviour of conceptual frame-

works related to arti�cial-life (see [Forrest and Miller 1990] in respect to classi�er systems

and [Vose 1991] in respect to genetic algorithms). But because there is a relatively longer

tradition in that issue in the context of cellular automata, in general they may be more

tractable in this respect. Also, their established formal status rules out the need for ad

hoc dynamics that, in additional to being arbitrarily de�ned, might render its analysis

too di�cult.

Having made general comments on CA, in the next subsections I will address speci�c

topics that bear a more direct relevance for this thesis.

3

The game-of-life is a binary cellular automaton { let us call them alive and dead { with Moore neigh-

bourhood. Its de�nition is the following. If a cell is dead but is surrounded by 2 or 3 cells which are

alive, then it becomes alive in the next iteration. If the cell is alive and has exactly 3 surrounding cells

which are alive, it remains alive in the next iteration. Otherwise, it becomes dead.

12

2.5.2 Sexual and Self-Reproduction in Cellular Automata

The important role of sexual reproduction in the provision of variability in nature, and

the fact that the most important evolutionary computation techniques rely upon sexual

reproduction, motivated the introduction of such a feature also in the context of Enact.

Although a number of cellular automata exhibiting the ability of self-reproduction have

been discovered { for instance, [von Neumann 1966], [Codd 1968], [Banks 1971], [Langton

1984] and [Byl 1989] { no cellular automaton embedding a form of sexual reproduction

has apparently been reported, other than the one in this thesis. The closest reference in

the literature seems to be [Vitanyi 1973] where an abstract discussion is carried out on

how to extend the cellular automaton described in [von Neumann 1966] so as to allow

sexual reproduction. The complexity of the automaton, however, renders it completely

impractical for present purposes, and, in fact, neither of them have ever been implemented.

On the other hand, if one wishes to create self-reproducing automata it is also im-

portant to prevent them from exhibiting a trivial self-reproduction. In this respect the

point made in [Langton 1984] is relevant. A two-state cellular automaton { that performs

addition modulo 2 { described therein exhibits self-reproduction, but is overly trivial since

it can be fully described at the level of the automaton's underlying physics. That is, its

self-reproduction cannot be described in terms of any higher level process that would be

identi�able in its dynamics.

The �rst �ve rows of Table 2.1 present a collection of the most seminal cellular au-

tomata exhibiting the ability of self-reproduction. All of them are two-dimensional and

use von Neumann neighbourhood, as de�ned earlier. The partial or uncertain pieces of

information contained in the table are due to the respective references not providing them

in a precise and unambiguous way. The highlighted row at the bottom of the table con-

trasts the sexual reproduction process embedded in Enact with the equivalent features of

the self-reproducing automata. The universal constructability that is mentioned therein

refers to the feature of a cellular automaton being able to construct in its array any state

con�guration that is given to it; for automata that have this feature, self-reproduction

can be achieved in the special situation in which the input description for the cellular

automaton is its own initial con�guration of states. The last two columns of Table 2.1

refer to the imposition that the automaton at issue should have the feature stated in the

column.

It is clear that their complexity { as expressed by the number of cells in the initial

con�guration, and by the number of possible states per cell { vary signi�cantly and

depend on the design constraints imposed on the automaton.

4

So, the imposition of

both universal computability and constructability imply extremely complex automata.

By relaxing these constraints much simpler cellular automata can be created, as the table

shows in the fourth and �fth rows.

Another aspect worthy of comparison is the number of initial con�gurations which

still supports sexual or self-reproduction. In [Byl 1989], for instance, various initial con-

�gurations are possible, while in [Langton 1984] only one can self-reproduce. In Enact,

however, the number of possible initial con�gurations is only bounded by the �niteness of

the cellular space; the only requirement is that the agents involved be well-formed. Sim-

ilarly, so it seems that a large number also applies to von Neumann's automaton, with

the di�erence that, in this case, each individual initial con�guration has to be carefully

crafted.

The initial size con�guration shown in the table refers to the number of cells of the

4

The neighbourhood size could also be a measure of complexity, but is not relevant for present purposes

since they are the same for all cellular automata shown in the �rst �ve rows of the table.

13

Authors Year

Number of Size of Initial Universal Universal

States Con�guration Computability Constructability

von Neumann �1952 29 � 10

4

yes yes

Codd 1968 8 � 10

4

yes yes

Banks 1971 4 ? yes no

Langton 1984 8 86 no no

Byl 1989 6 11 no no

Enact 1992 4 6 yes no

Table 2.1: Cellular automata with ability for self-reproduction, in a comparison with the

sexual reproduction process embedded in Enact.

cellular space that require initially special values. In the case of Enact, the value expressed

refers to two 3-cell-long agents, since this is the requirement for a pair of minimally well-

formed agents.

5

The standpoint adopted in Enact is one of achieving sexual-reproduction, with a sig-

ni�cant degree of complexity, that would allow the satisfaction of constraints such as the

necessity of a mating con�guration for the parental agents; the requirement that agents

of any size can reproduce; necessity of coping with the movement of the parents and of

the o�spring as reproduction takes place; among others. More details will follow in the

next chapter.

2.5.3 Universal Computability in Cellular Automata

Here we review the general issue of universal computability in cellular automata. Table 2.2

presents a collection of cellular automata capable of universal computation. Some of the

cellular automata mentioned therein have already been shown in Table 2.1, since they

also have the ability of self-reproduction. The table is not meant to be exhaustive, but

to provide some historical landmarks on the topic.

The complexity of the automaton naturally depends on the constraints imposed on its

de�nition. Compare, for instance, the two cellular automata discovered by Banks [1971].

Also, bearing in mind the simple measure of complexity de�ned by the multiplication

of the three parameters that appear in the table, it is clear that, similarly to what we

have seen in the case of self-reproduction ability, simpler cellular automata have been

discovered over time. Noteworthy in this respect is [Lindgren and Nordahl 1990] which,

implementing Minsky's [1967] Turing machine { with 4 tape symbols and 7 internal states

{ describes the simplest cellular automaton currently known that is capable of universal

computation. It is also worth mentioning that due to the complexity of the automaton and

the size of the required initial con�guration, the actual implementation of its underlying

universal computing device may become practically infeasible. In fact, as far as I am

aware this is the case both for von Neumann's automaton and for the game-of-life, which

5

At least when considering that there is no di�erentiation between the body-cells of the agents, as will

be discussed in the next chapter.

14

Author Year

Number of Neighbourhood

Dimension Note

States Size

von Neumann �1952 29 5 2

Codd 1968 8 5 2

Smith III 1971 18 3 1

Banks 1971 3 5 2 blank background

Banks 1971 2 5 2 periodic background

Berlekamp et al. 1982 2 9 2 game-of-life

Albert and Culik II 1987 14 3 1

Lindgren and Nordhal 1990 7 3 1 simplest one currently known

Enact 1992 20 9 2

Table 2.2: Some cellular automata capable of universal computation.

have been proved to be capable of universal computation but, due to practical di�culties,

have never been actually implemented.

The data presented for Enact in the table assumed the implementation of the aforemen-

tioned Minsky's universal Turing machine, and draws from the machine we will implement

in Chapter 4. It is worth advancing, however, that the relevance of this implementation

is that it is couched in an arti�cial-life framework, which is novel; furthermore, it will

provide us with the necessary ground for more sophisticated forms of computation that

we will be dealing with in the subsequent chapters.

2.5.4 Forms of Computation in Cellular Automata

Computations appear in the cellular automata literature usually in two forms. The �rst

form, which has been called intrinsic computation, is the one performed directly from

the rule of the cellular automaton, the initial con�guration of the cellular array being the

input for the computation. As an example, imagine a one dimensional cellular automata

with 2 states (say, 0 and 1) and 5 neighbours { i.e., the cell at issue and its 4 closer

neighbours, 2 from each side, left and right { such that, for any initial con�guration the

following is observed: if the number of 1's is larger than the number of 0's, after a certain

number of iterations all cells usually go to 1; otherwise, they usually go to 0. This is a

rule that has been a matter of great attention (mainly after its use in [Packard 1988])

and has become known as Gacs-Kurdyumov-Levin rule (after their discoverers), or simply

GKL's rule, for short. This is a clear case in which a non-trivial computation { whose

usual characterisation needs global evaluation of the initial conditions { is performed

by purely local means. Other CA that present some intrinsic computation capabilities

have also been discovered for adding binary numbers, for multiplying them, and even, for

enumerating the prime numbers expressed in binary form.

The other context in which computations appear in CA research is precisely the one

we will be dealing with here. These, which we can refer to as non-intrinsic computations,

occur at a higher-level than in the latter form. The role of the rule of the automaton

15

in non-intrinsic computation is the provision of a sustained dynamics over which the

computation will be performed. For instance, in the case of Enact, this dynamics is

precisely the arti�cial-life activity of the world, where we can identify high-level concepts

such as agent, environment, and so on. The input of the computation in this form of

computation is not the full initial con�guration of the cellular array, as in GKL's rule,

but only a part of it, like the state con�guration of one particular agent (again, in the

case of Enact). The way the game-of-life has been proved to be computation universal (in

[Berlekamp et al. 1982]) follows exactly this idea, as does von Neumann's self-reproducing

automaton, also mentioned. As far as I know, the work presented here was the �rst

attempt to explore non-intrinsic CA-based computations in a systematic way.

2.5.5 Computations and Complex Dynamics

From Alife-II the notion of edge-of-chaos dynamics started to become a widely dissem-

inated concept, mainly due to Langton's paper, [Langton 1992b] (even though he had

made the same claims earlier in [Langton 1990]). This notion was �rst put forward in

[Wolfram 1986a] in order to identify a special dynamical regime squashed between chaotic

regimes and the ones characterized by �xed points and cycle limits. The interest in these

complex dynamical regimes, as they are also denoted, lies in the fact that, as argued by

Langton and Wolfram, they possess the necessary conditions for the emergence of infor-

mation processing ability; that is, the possibility of transmitting information allowed by

the
uidity of chaos, and the possibility of storing it due to the stability provided by

ordered regimes.

Edge-of-chaos dynamics has been the focus of intense research in various aspects, as

discussed in [Adami 1994], [Crutch�eld 1991], [Crutch�eld 1992], [Hanson and Crutch�eld

1991], [Kanebo and Suzuki 1993], [Li and Nordahl 1992], and [McIntosh 1990b]. In

particular, there is an intense activity going on at this moment on the relation between

computation in cellular automata and complex dynamics; in particular a major reappraisal

of results presented in [Packard 1988] involving GKL's rule are casting new light on the

issue, as can be seen in [Crutch�eld and Mitchell 1994], [Das et al. 1994], [Mitchell et al.

1993b], [Mitchell et al. 1993a], and [Mitchell et al. 1994].

Couching this notion in terms of cellular automata, complex dynamical regimes have

been associated with their ability to perform non trivial computations, and being char-

acterized by, among other properties, the existence of propagating structures

6

. When

the design of Enact was still in its early stages I thought its dynamical behaviour would

have to be \tuned" in the complex regime. As will be discussed in Chapter 3, this fea-

ture turned out to be a natural consequence in the system, the tuning process having

become in fact the adjusting of a particular world set-up so as to prevent extinctions and

deadlocks in the cellular space due to its over-population.

2.5.6 Parameterisations of Cellular Automata Rule Spaces

This subsection has a di�erent connotation from the others. My intention here is to report

on a piece of research that I started, very much linked to the topic that has just been

presented, but which will not be included in the thesis itself. Due to the suplementary role

it plays in the provision of background material on some of the relations between cellular

automata and computations, it is undoubtedly pertinent to this chapter; however, its

presence can only be fully justi�ed for what it represents as a register of the research that

was started, at least in the form of a short preliminary report on its status.

6

Such as the so called glider, that appears in the game-of-life.

16

The relationships between dynamical behaviour of cellular automata and computations

led me to question how it would be possible to have an estimate of the dynamical behaviour

of a cellular automaton directly from its state transitions, without having to run it. In

particular, how well the estimation of the complex dynamics would �t in the scheme.

It had been proved that the general answer to that question is undecidable. However,

it would still be possible to come up with an estimate that could be helpful in some cellular

automata rule spaces. In fact, the smallest non trivial rule space, the so-called \elementary

space" de�ned by the one-dimensional CA with binary states and three neighbours has

2

2

3

= 256 rules, while the one immediately larger (with �ve neighbours) has 2

2

5

> 4� 10

9

rules; hence, any estimate on large spaces would be really helpful.

In most studies carried out in CA rule spaces parameters have been devised, either

empirically or from a more formal point of view, that might help in establishing corre-

lations between the de�nition of a particular automaton and its dynamical behaviour.

This is the case of [Li 1989], [Li and Packard 1989], [Li 1991], and [Binder 1993], where

the elementary space was extensively studied. From a di�erent perspective [Wuensche

and Lesser 1992] provided extensive data on basins of attraction in the elementary space,

although the enumerative algorithm used therein can also be applied in higher spaces;

additionally, parametric analyses were also performed in that piece of work.

Analyses of a non-local version of the elementary space have also been a matter of

attention ([Li 1992] and [Wuensche 1994]).

Other studies have been made with the concern of scanning CA rule spaces in order

to probe their properties, such as the existence of phase transitions, which has been a

matter of great attention because of its supposed relation with computability of CA. For

discussion on the latter, see, for instance, [Li et al. 1990]; for an interesting mechanism

to scan CA rule spaces by imposing only small variations in the global behaviour of the

CA (in a close to continuous way), see [Pedersen 1990].

The approach I pursued to the problem was to search the space of parameters whose

de�nition would re
ect some sort of local activity with the individual state transitions.

The reference was the elementary space, where the classi�cation of the rules I used split

it in six classes of dynamical behaviour: null (rules that lead to a fully homogeneous end

con�guration), �xed-point, periodic with cycle 2, periodic with higher cycles, complex,

and chaotic. The search was undertaken as an extensive empirical process in which I

could de�ne a parameter, and obtain an analysis of the degree of discrimination it would

induce over the classes of dynamical behaviour of the space. For instance, one of the

parameters I found was an excellent discriminator between null and chaotic rules; two

others provided good discrimination between �xed-point rules and rules with cycles of

length 2. The idea was then to search for a group of parameters that jointly could

provide a good discrimination between the various dynamical behaviours, but bearing in

mind that the identi�cation CA with complex behaviour was the main target.

The parameter space I searched turned out to have some important members. Lang-

ton's � parameter ([Langton 1990]), for instance, belonged to the space. And so did the

Z-parameter of [Wuensche and Lesser 1992]; in fact, in personal contact with the �rst

author, it came out that the parameter had been de�ned and started to be used inde-

pendently by us at about the same time (although we had di�erent interpretations for

it).

As I realised that this \parameter-hunt" enterprise was pushing me much farther away

from my main research than I thought I should go, I decided to stop it at the �rst halting

point I could see ahead. That should be when I had found the group of parameters with

a good joint discrimination power, as mentioned above; this was exactly what I did. I

ended up with three parameters plus another that had two slight variations, thus yielding

17

in fact two very similar groups of four parameters. In either case, for any quadruple of

their values, there was only one rule; in other words, in this 4-D space there was only one

elementary rule in each valid coordinate.

The next steps in this research direction that would be worth taking would be the

following. First, to �nd a way to visualise this 4D space, in order to �gure out how do the

various dynamical behaviours cluster, in particular the complex rules; 3D slicings with

adequate colouring seem to be the natural way. Second, to select a set of rules from the

space of one-dimensional CA with 2 states and 5 neighbours, work out the value of the

group of parameters for them, and check whether their discrimination power is preserved

in this larger space. In this respect, two sets of functions are promptly available: the

totalist rules of the space { i.e., the ones whose state transitions depend only on the

number of cells of the neighbourhood that are in state 1 {, originally studied by Wolfram

[1986b]; and a set of complex rules empirically discovered by Wuensche [1993].

2.6 The Journey

With the latter paragraph we concluded this chapter. Speci�c points of the thesis are now

linked to related pieces of research found in the literature, and also to subsequent chapters

where the topic at issue will be addressed in more detail. What follows, therefore, is the

core of the thesis, the detailed account we provided of non-intrinsic computations within

Enact, a cellular-automata-based arti�cial-life world.

18

Chapter 3

ENACT: ARTIFICIAL LIFE IN CELLULAR

AUTOMATA

1

3.1 Introduction

This chapter describes Enact, a cellular-automata-based architecture of autonomous agents

which this thesis rests upon. The level of approach we are interested in is the organis-

mic level based on a population of agents that undergoes a coevolutionary process. By

autonomous agents I do not mean autonomy in its technical sense as discussed for in-

stance in [Bourgine and Varela 1992]. Autonomy will be used in the context of Enact in

its informal connotation, so as to imply the lack of centralised control in the population

of agents, and the fact that each agent is an individual with its own characteristics, in

particular, with its individual role in the global dynamics of the system.

In the following sections we go through all aspects of the de�nition of Enact. From a

high-level perspective, by relying on metaphorical concepts suggested by the arti�cial-life

type processes it supports { namely, movement, selection, environmental interaction, mat-

ing, reproduction and development { down to the details of the processes and mechanisms

involved. Then, the overall qualitative dynamics of the system is considered, and the as-

pects underlying its coevolutionary activity are discussed. Next, we trace a brief history

of Enact's unnamed predecessors, showing how they paved the way to the inception of

Enact. Appendices show the complete set of state transitions that de�ne the system,

and also give the commented C-code that was used to implement it. This chapter has

a descriptive emphasis; more elaborate considerations about the system { including how

particular world set-ups can be created within it, or how its arti�cial-life activity can be

viewed as a computing machine { will be done in the following chapters.

3.2 Overview

Enact is a family of non-deterministic cellular automata whose basic dynamics can be

described in terms of the metaphor of an arti�cial-life world where a population of worm-

like agents of arbitrary length undergo a coevolutionary process. During their lifetime,

the agents roam around, sexually reproducing, interacting with the environment, and

being subjected to a developmental process which includes ageing and death.

The arti�cial-life type activity takes place over an inactive background de�ned by

environmental regions which are \free", so to speak, for occupation by any agent; we

represent the background by the 0-state.

The cellular space that de�nes Enact is two-dimensional, its edges being wrapped

around in a toroidal geometry. The neighbourhood used for the state transitions is the

1

This chapter draws mostly from [de Oliveira 1992a] and [de Oliveira 1994a].

19

tl t : top tr

l : left c : centre r : right

bl b : bottom br

) c

new

Figure 3.1: Moore neighbourhood and the notation used according to the geographic

position of the cells.

Moore neighbourhood, de�ned by the cell itself and the 8 adjacent cells that surround it

in a square lattice, as Figure 3.1 shows. Throughout the thesis we use the term cell with

two di�erent meanings: the de�ning unit of the cellular space, and the structural unit

of the agent. While the former refers to the level of the de�nition of the automata, the

latter refers to the high-level description of their dynamics.

3.3 Structure and Morphology of the Agents

Each agent can have arbitrary length and is de�ned by a sequence of contiguous cells, as

depicted in Figure 3.2. The two cells at each end of an agent can be thought of as its

head and tail, whereas the cells in between constitute its body. Head and tail are de�ned

by one category of states, the terminal T -state, which encapsulates the agent's body. For

the time being it is su�cient to think of a category of states simply in terms of a range of

state values, di�erent categories implying distinct, non-overlapping ranges; more details

will follow in the next chapter.

One single cell of the agent constitutes its genotype; accordingly, its state does not

change during the agent's lifetime and is de�ned by the state category referred to as G.

All the other cells have a phenotype-like nature, in the sense that they are subjected

to change through environmental interaction, during the agent's lifetime. But while the

initial adult state of the cells on the left-hand side of the agent's gene are, by design,

directly dependent on this gene, the cells on the right are not, being initially determined

through direct parental inheritance (Section 3.7 will make these points clearer). For this

reason, we identify the latter cells as memetype-like, in an explicit reference to the notion

of memes, the units of evolution that { following [Dawkins 1976] { are acquired by the

o�spring directly from the parents, such as knowledge and culture. Although still largely

unexplored in computational systems, the importance of memetic evolution has been put

forward not only in arti�cial life ([Farmer and d'A Belin 1992]) but also in cognitive

science ([Dennett 1991]).

The morphological distinction between head, body and tail is a design artifact in order

to make Enact's implementation and use easier. The tail provides a clear identi�cation

for the end of an agent, making some implementational details much easier. The head,

even more signi�cantly than its enabling the identi�cation of the beginning of the agent,

is ultimately responsible for the agent's ability to move. The body is to be the repository

of the evolution-related components.

Therefore, considering that the body is e�ectively where Enact's evolutionary aspects

are to be probed, for all practical purposes, it is convenient to think of the e�ective phe-

notype and e�ective memetype of an agent as only the cells of each type that are con�ned

to the agent's body, and whose corresponding states are represented here, respectively,

by the state categories P and K . Hence, throughout this thesis whenever phenotype or

memetype are mentioned, the reader should bear in mind they really stand for the e�ective

type con�ned to an agent's body.

20

?

?

Genotype

Phenotype

z }| {

T P G K

1

K

2

� � � K

n

THead Tail

Body

Memetype

z }| {

Figure 3.2: Structure and morphology of an agent in Enact. Phenotype and memetype

may change through environmental interactions, but while the initial adult state of the

former directly depends on the genotype, the latter is initially determined through direct

parental inheritance. For practical purposes however, only the P -state is considered the

agent's phenotype, and only the K-states its memetype (see Section 3.3).

Head Body Tail

T B

1

B

2

B

3

� � � B

n

T

Figure 3.3: Alternative, simpli�ed representation of an agent. The B-states represent the

states of the body cells, with no reference to its internal structure.

What justi�es the way I am denoting the internal components of an agent { in terms of

genotype, phenotype and memetype { is the way each one of them is created in a newborn,

as well as the way they are allowed to be modi�ed during the agent's lifetime. These are

details about the reproduction and development of the agents that will be discussed later

on in this chapter.

It is worth advancing, however, that the (e�ective) phenotype will always be related to

the way an agent moves. Beyond that, later on we will be referring to computations being

performed out of the arti�cial life activity; in these contexts not only the phenotype, but

also the memetype will represent elements of the computation, such as input or output.

In the right context these details will be appropriately spelled out.

3.4 Movement

Enact's agents are inveterate wanderers. Whenever possible they move, one cell at a

time; the head �rst, followed by each of their body cells, and �nally by the tail. Two

modes of movement are possible, leftwards or diagonally, an agent taking one of the

directions according to its head starting to move to the left or to the top-left cells of its

neighbourhood. Typically, the start of a movement is non-deterministic.

The basic fact about movement is that either leftward or diagonal movement can only

start towards a region of the cell space that is mostly vacant; also, once started, the

movement will always be completed even if the moving agent has started a reproduction

process. In addition, a movement will never proceed if another agent enters the neigh-

bourhood of its left-hand side terminal (its head); this prevents agents from \bumping"

into each other.

2

2

The closer they get to bumping is a particular situation in which two agents are allowed to touch each

21

t

0

� � � T B

i

B

j

T �

t

1

� � M T B

i

B

j

T �

t

2

� � T M B

i

B

j

T �

t

3

� M T B

i

M B

j

T �

t

4

� T M B

i

B

j

M T �

t

5

� T B

i

M B

j

T � �

t

6

� T B

i

B

j

M T � �

t

7

� T B

i

B

j

T � � �

Figure 3.4: Succession of snapshots of the same set of cells as a 4-cell-long agent moves 2

cells leftwards in successive iterations. The dots represent the background state.

Because of the toroidal geometry of the cellular space, leftward and diagonal move-

ments are su�cient to ensure that the agents have the ability to cover the entire world.

In this way the agents are able to approach any other in the world and, when two of them

reach a prede�ned mating con�guration, they mate and reproduce; after each mating,

they begin wandering again and so does their o�spring.

As the cells of the agent move, a new state comes into play so as to occupy the

empty place of the cell that has just vacated, thus preserving the spatial continuity of the

agent; this state de�nes in fact, another category, and is represented here by the M-state.

Figure 3.4 and Figure 3.5 show agents moving respectively to the left and diagonally,

illustrating the action of the M-state. Note that a new M-state is created whenever the

head of the agent moves one step in any direction. It then propagates along the agent,

\pulling" the cells of the agent in the direction of its movement, one at a time; as the tail

is �nally pulled, the M-state disappears. Thus, the M-state exists within an agent only

while the movement is taking place, disappearing as soon as the agent stops.

In order to start a movement, the head of the agent �rst \senses" its neighbourhood,

in order to `check' whether the way ahead is `free'. If this is the case, then it `casts'

a movement state along the available direction, `trying' to start the movement. This

situation can be seen in Figure 3.4 during the transitions from time t

0

to t

1

and from t

2

to t

3

, and also in Figure 3.5 during the transitions from time t

2

to t

3

and from t

4

to t

5

. If

only one direction is available, only one movement state is cast out, which automatically

starts the movement according to the mechanism described above. However, if both

directions are available two M-states are cast out, an impasse is established which is

solved by a random choice not only among the competing directions, but also including

the possibility that the agent discontinue its movement by \withdrawing" both M-states

that have been cast out. More details about movement can be seen in Appendix A.2,

where the corresponding state transitions are listed.

If an agent could not carry on its movement because of some obstacle in its way, soon

after all its M-states disappeared its body would remain in a position determined by the

path it went through. To compensate for that, we allow an additional kind of movement

which is an upward movement of the body, whose e�ect is, whenever possible, to set the

body in the horizontal position; Figure 3.6 shows one such situation. As will be made clear

in Section 3.8, the body's upward movement has an e�ect on the reproduction process,

other in order to avoid a \head collision", that is, the situation in which there are two leftward-moving

agents, one just above the other, and, at a certain moment, the one on the bottom tries to move

diagonally; in this case, preference is given to the latter. The agent on the top then stops, and, for

some iterations, its head is allowed to touch the body of the agent that moved. The details are not

important for present purposes.

22

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

t

0

� � � � � � �

t

1

7! � � M � � � �

� � � T B

i

B

j

T � � � T B

i

B

j

T

� � � � � � � � � � � � � �

� � � � � � � � M � � � � �

t

2

7! � � T � � � �

t

3

7! � � T � � � �

� � � M B

i

B

j

T � � � B

i

M B

j

T

� � � � � � � M � � � � � �

� T � � � � � � T � � � � �

t

4

7! � � M � � � �

t

5

7! � � B

i

� � � �

� � � B

i

B

j

M T � � � M B

j

T �

T � � � � � � T � � � � � �

� M � � � � � � B

i

� � � � �

t

6

7! � � B

i

� � � �

t

7

7! � � M � � � �

� � � B

j

M T � � � � B

j

T � �

T � � � � � � T � � � � � �

� B

i

� � � � � � B

i

� � � � �

t

8

7! � � B

j

� � � �

t

9

7! � � B

j

� � � �

� � � M T � � � � � T � � �

Figure 3.5: Successive snapshots from the same region of the cellular space as a 4-cell-long

agent moves 3 cells diagonally, after being in a horizontal position. The dots represent

the background state, and the B-states are a generic representation of any kind of body

cell.

since it allows the increase of the rate of preservation of (non-deleterious) parental cell

con�guration in the o�spring; in other words, its e�ect is to decrease the randomness

associated with the process. The upward movement is also interesting in itself due to

the extra appeal it adds to the activity of the agents without the need of an extra state.

Perhaps most of all, since movement is the most fundamental aspect of Enact's dynamics,

and since the system's dynamics is programmable, the upward movement provides a

further way to control the dynamics of the world set-ups. We will return to Enact's

programmability in Chapter 4, and to the importance of movement in Subsection 3.10.2.

Although the �gures of this section show situations characterised by each individual

form of movement, in typical situations the agents move in a composition of all three

forms, with di�erent cells of an agent moving in one of the three directions at the same

time. The overall spatial disposition of the body cells on the space of the automaton is

then always monotonically descending from the left, in a worm-like, wiggly fashion. The

complete list of the state transitions for movement can be found in Appendix A.2.

The de�nition of the way in which the heads move depends on parameters that con-

23

� T � � � � � � T M � � � �

t

0

� � B

i

B

j

� � �

t

1

7! � � B

i

B

j

M � �

� � � � B

k

T � � � � � B

k

T �

� T B

i

� � � � � T B

i

M � � �

t

2

7! � � � B

j

B

k

� �

t

3

7! � � � B

j

B

k

M �

� � � � � T � � � � � � T �

� T B

i

B

j

� � � � T B

i

B

j

M � �

t

4

7! � � � � B

k

T �

t

5

7! � � � � B

k

T �

� � � � � � � � � � � � � �

� T B

i

B

j

B

k

M � � T B

i

B

j

B

k

T �

t

6

7! � � � � � T �

t

7

7! � � � � � � �

� � � � � � � � � � � � � �

Figure 3.6: Subsequent snapshots of the same set of cells showing the body adjustment of

a 5-cell-long agent, from an arbitrary initial position. The dots represent the background

state.

trol how often an agent will attempt to make a single move leftwards (or diagonally) in

opposition to not moving, and how a con
ict of movement is to be solved. These param-

eters allow for the behaviour of each head to be de�ned, both in standard and con
ict

situations. Furthermore, they make it possible to de�ne agents endowed with any kind

of movement behaviour, and with any degree of determinism. All parameters work by

de�ning the probabilities of each state involved in a non-deterministic state transition.

3.5 Environmental Interactions

In addition to the agents, it is possible to design environmental con�gurations which the

agents are able to interact with. These con�gurations de�ne another state category which

we call E-states.

What supports this idea is that environmental con�gurations can be approached and

eventually \touched" by the agents, unlike what happens among the agents themselves,

which do not touch each other.

3

By designing con�gurations of E-states, which we refer

to as interaction sites, and speci�c state transitions to be active in these sites, it is

possible to have speci�c, controlled interactions taking place between the E-states and

the agents present at the site. Note that, with this scheme, it becomes possible for any

agent to interact with any other in the world, through the environment. In fact, as

the next chapters will make clear, the agent-environment interaction, and consequently,

agent-agent interaction can be made arbitrarily complex.

Figure 3.7 shows an example of an interaction site; the active situation that triggers

the interaction is when the agent passes through the cross that de�nes the site. Note that

3

Note that in this respect, the background state is special, since it is \occupied" rather than being

touched.

24

this interaction site never blocks the movement of an agent, since the agent is always able

to pass alongside it touching its top or its bottom, when it does not pass through the

site. As a matter of fact, con�gurations of E-states arranged horizontally or diagonally

can always be bypassed, while a vertical arrangement of two or more E-states is the only

con�guration able to block the way ahead of an agent.

The constraint imposed by interaction sites become evident by realising that Figure 3.7

is essentially Figure 3.5 with the interaction site at issue added. The trajectory described

by the agent is evidently the same in both situations. But while in the former the agent

is totally guided by the interaction site, in the latter it is totally dependent on the agent's

ability (or chance behaviour) of making only diagonal moves at each step.

It should also be noted there is nothing that prevents the de�nition of a dynamic

interaction site, i.e., a region of E-states with a dynamics of its own, independently of

whether it is interacting with an agent. Again, such a dynamics can be made arbitrarily

complex.

Another consequence of the introduction of the class of environmental states is that the

background 0-state { over which all activity takes place { becomes conceptually integrated

into the environment as a special kind of environmental state, one that can be traversed,

or occupied, by an agent.

3.6 Selection

Selection takes place in the following way: if for some reason the state of any cell of an

agent changes to the background state, in a mostly vacant neighbourhood (i.e., with most

of the cells being at the backgound state), the entire agent vanishes; the process occurs

in a stepwise way, during the next set of iterations. This feature is equivalent to saying

that agents which lose (at least) one cell, lose their contiguity, and cannot be considered

to be proper, well-formed agents; therefore they must die out. Appendix A.3 presents the

complete list of state transitions for selection; note there what is meant here by a `mostly

vacant' neighbourhood.

Therefore, in order to specify the selection process of a particular world set-up within

Enact, it is necessary to design appropriate state transitions whose action is to switch the

state of an agent's cell to the background state; as soon as the agent at issue happens to

be in a mostly vacant neighbourhood it will eventually die out. For example, suppose one

wishes to create selection against all agents that present some body cell in a di�erent state

from its two neighbouring cells; a state transition would then have to be added to the ones

already existing, so as to \detect" the state con�guration described, and \delete" { i.e.,

change to background state { the one associated with the centre cell of the neighbourhood.

As a consequence, newborn agents with this deleterious feature would necessarily die out.

Enact incorporates a selection process that is strong enough to enable the generation

of a random population of agents and environmental con�gurations from scratch. In

other words, by initialising Enact's cellular space with a random initial con�guration,

the built-in selection process �lters out all non-valid state con�gurations, leaving only

environmental states and well-formed agents (see the corresponding state transitions in

Appendix A.3.1). This feature is of a major practical usefulness as it rules out the previous

necessity of editing the cellular space so as to generate a valid initial con�guration of states.

Important here is that selection as described above is not an adaptationist process,

i.e., the agents are not selected for by some concept of �tness. The emphasis is not on

preserving the �tter agents but on killing o� the ones which have deleterious state con�gu-

rations in a particular situation. The emphasis thus is on concepts such as viability rather

than �tness, and evolution by satisfying world constraints, rather than evolution towards

25

� E � � � � � � E � � � � �

E � E � � � � E � E � � � �

t

0

� E � � � � �

t

1

7! � E M � � � �

� � � T B

i

B

j

T � � � T B

i

B

j

T

� E � � � � � � E � � � � �

E � E � � � � E M E � � � �

t

2

7! � E T � � � �

t

3

7! � E T � � � �

� � � M B

i

B

j

T � � � B

i

M B

j

T

� E � � � � � M E � � � � �

E T E � � � � E T E � � � �

t

4

7! � E M � � � �

t

5

7! � E B

i

� � � �

� � � B

i

B

j

M T � � � M B

j

T �

T E � � � � � T E � � � � �

E M E � � � � E B

i

E � � � �

t

6

7! � E B

i

� � � �

t

7

7! � E M � � � �

� � � B

j

M T � � � � B

j

T � �

T E � � � � � T E � � � � �

E B

i

E � � � � E B

i

E � � � �

t

8

7! � E B

j

� � � �

t

9

7! � E B

j

� � � �

� � � M T � � � � � T � � �

Figure 3.7: Illustration of the notion of interaction site, represented here by the set of

four E-states in a cross-like fashion. The dots represent the background state, a special

form of environmental state that does not obstruct an agent in its way.

solving prede�ned problems. We return to this topic later on, in Subsection 3.10.1.

In order to keep coherence with the view of selection implicit to Enact, we should

replace the notion of an useful building block { the typical parlance within the context of

evolutionary computation techniques { by a non-deleterious one. Incidentally, it is worth

remarking that whenever we use the expression building block in this work all we mean

is a sequence of contiguous body cells, pairs or triplets, of the memetype. In the current

approach what is guaranteed is that any agent that is selected has some non-deleterious

building block, even though it may be useless for any preconceived role.

3.7 Development

As will be discussed later on in this chapter, the major shortcoming of a precursor of Enact

was a blur in the distinction between genotype and phenotype. Until then, both were

simply valid interpretions of the agent's body cells, according to the world set-up being

used. It is precisely such a problem that led to the inclusion of a developmental process

26

. . .
-

. . .

. . .

.

.

-

�

�

�

�

��

P

P

P

P

Pq

�

�

�

��

-

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Pq

-

�

- -

�

-

- -

.

.

.
.

.

.

.

.
.

.
.

.
. .

.

.
.

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

.
.

.
.

.

. .
.

.
.

.

.

.

.

.

.

.

.
. .

.

.

.

.

.

.

.
.

.

.

.

. .

.

.

.

.

.

.
.

.

.

.

.

..
.

.

.

.

.

.

.
.

.

.

.

. .
.

.

.

.

.

.
.

.

.

.

.

.

.

.
.
.
.

.
..
..
.
.
.

.

.
.
.
.

.
..
..
.
.
.

.

.
.
.

.
.
..
.
..
.
.

M

2

P

1

T

0

Ageing and

Head-Development

T

2

T

1

Development

Adult

M

1

P

2

Genotype

Memetype

Parent

j

Memetype

Genotype

Parent

i

Development

Neonatal

P

0

B

Phenotypic

Development

Development

Memetic

Figure 3.8: The stages of the developmental process. Only the newborn's genotype

is exclusively dependent on the parents; all the other steps may have the in
uence of

the environment. Ageing is the only developmental aspect that only depends on the

\clock-tick" of the automaton. The index 1 refers to the beginning of adulthood, and the

symbol M represents the full memetype of the developing agent.

that the agents undergo; the complete list of state transitions that allow development is

in Appendix A.5.

Development in Enact has two stages, as shown in Figure 3.8: neonatal and adult.

When a newborn is created it has two non-standard states T

0

and P

0

, respectively, the

neonatal states of its head and phenotypic cell. These are the states that characterize the

neonate and triggers o� its development, but have no e�ect on movement or reproduction,

i.e., a neonate is immobile and sterile.

As state transition 1 in Appendix A.5.1 shows, the �rst step in the neonate's develop-

ment is a state change in the phenotypic cell, replacing the neonatal state by an initial

adult state; the state change depends on the gene state of the newborn and naturally

can only occur after the latter has been created. The neighbourhood involved in such a

step also includes parental cells which can then in
uence which phenotypic state will be

initially created.

After the adult phenotypic cell has been formed, the second step of the neonate's

development can then take place, which corresponds to a change of the head state of the

newborn, according to state transition 2 in Appendix A.5.1. Again, parental features

can also directly in
uence the formation of the new state, but in the presence of the

phenotypic state that has been just created in the newborn.

As an adult, development happens in two distinct ways. On the one hand, the states

of the head, the phenotype and the memetype can change in the lifetime of the agent by

means of environmental interactions that are specially added into the world, according to

a particular use of Enact. According to the type of cell involved in this process, we refer to

head, phenotype or memetype development. Such a crafted development is supposed to

be a systematic feature in Enact's use, and in fact, it will be exempli�ed in the experiment

27

to be discussed later on.

On the other hand, there is another facet of adult development which is a built-in

process supported by Enact, independently of any particular way the system is being

used. This facet a�ects the state of the head and is referred to as ageing. It takes place

throughout the lifetime of an agent and can eventually end up with its dying out. Hence,

whatever the agent is doing, it gets older, or at least, as currently implemented, there

is a chance of its getting older. The way it happens is by the head going through a

sequence of states, in a deterministic or non-deterministic fashion, the sequence length

being de�ned by the world set-up in consideration. The ageing process carries on up

to the point that the agent reaches the �nal possible state of the head, which entails

its dying. It should be noted that the reference to ageing is simply a metaphor for the

built-in process of continuous modi�cation of the head state at each clock-tick of the state

updating of Enact's cellular space; in fact, in the experiment described in Section 3.9, we

use the metaphor of energy loss instead of ageing.

3.8 Reproduction

Any two agents mate if they vertically align their heads and phenotypic cells, leaving a

layer of cells in the background state in between. In this mating con�guration, one of

the parental agents is on top of the layer and the other below, their heads being in the

same column of the cellular space (see state transition 1 in Appendix A.4). Reproduction

then goes on so that the new agent is produced in between the parents, starting from

the matching heads and stretching to the right. Although there are deterministic state

transitions that are triggered during reproduction, the o�spring are created basically

by means of non-deterministic state transitions, as Appendix A.4 (that depicts all state

transitions involved in reproduction) makes it clear.

Just after reproduction has started, as soon as the parent on the top �nds its way

ahead \free", it may resume moving; when the way ahead is free for the newborn it too

may move, even if reproduction has not yet �nished. Eventually the same thing happens

to the parent on the bottom.

The o�spring's gene is created non-deterministically according to the parental genes.

It may be the case that, at the moment the new gene is to be created, there are no

parental genes in the neighbourhood; in this situation, the o�spring's gene is randomly

taken out of the range of possible genes available in the world set-up under consideration.

In order to support memetic evolution, reproduction of the memetic cells is based on

the preservation of non-deleterious spatial sequences of their states. Since any agent that

is able to exist in Enact is viable, in order to preserve non-deleterious sequences it is

su�cient to allow the probability distribution of the non-deterministic state transitions

to favour the reappearance (in the newborn) of con�gurations of memetic cells already

present in the parental agents.

3.8.1 Sexual Reproduction

In Subsection 2.5.2 we discussed the issue of self-reproduction and sexual reproduction

in cellular automata in general, and provided a comparative table between Enact and

similar e�orts.

Under the light of the details of the system provided so far it is worth including here

a summary of the features involved in Enact in respect to reproduction. In fact, the

standpoint adopted in Enact was one of achieving sexual-reproduction, with a signi�cant

28

degree of complexity, that would allow the satisfaction of a number of constraints such as

the

� necessity of a mating con�guration for the parental agents;

� requirement that agents of any size can reproduce;

� necessity of coping with the movement of the parents and of the o�spring as repro-

duction takes place;

� preservation of the programmability of the system;

� virtual unboundedness of the number of possible initial con�gurations; and

� premise of being able to describe the activity of the agents from a high-level per-

spective.

3.8.2 Crowding E�ect

In running experiments, even though selection is killing o� agents all the time, because

the cellular space is �nite it may get overpopulated. As a consequence, we experience a

crowding e�ect which implies that, after some degree of crowding is achieved, it becomes

less likely that a reproduction involving long parents will be able to produce a similarly

long o�spring. The point is that less and less background cells become available, and

consequently, once reproduction starts, it is normally curbed by a moving agent that gets

into the background layer in which the newborn is being created. But then the parental

agents start moving again, and similarly the newborn; as soon as the newborn's last body

cell also moves, reproduction necessarily stops, as mentioned earlier. The e�ect then is

that, as the cellular space gets more and more crowded, an increasing bias towards shorter

length agents takes place.

Note however that the real cause of the bias is the last state transition in Appendix A.4,

the one that adds the tail to the newborn as soon as it moves. To some extent, therefore,

there is an intrinsic selective pressure { towards smaller individuals { de�ned by the state

transition. Nonetheless, the crowding e�ect itself is due to the global behaviour of the

automaton, which ampli�es the selective pressure already implicit in the transition. One

way to minimize such an e�ect would be to allow a background selective process which

would randomly set cells to the background state with a small probability; naturally, its

value would have to be worked out empirically, according to the domain concerned, and

the size of the cellular space being used.

3.8.3 Further Details of the Reproduction Process

The cells of the newborn are created one at a time, both the ones from the body and the

terminal states. In addition to two special state transitions that create the neonatal states

of an agent, there are four basic classes of state transitions for reproduction: deterministic

rules leading to a T -state; non-deterministic rules leading only to a B-state or only to a T -

state; and further non-deterministic ones leading to either of them. Reproduction starts

by creating a head for the newborn whenever the situation described above takes place.

Then it proceeds in a non-deterministic fashion by creating its body cells; the creation of

the genotype and the neonatal phenotype are handled as special cases at this stage (the

latter being created, in fact, deterministically). Finally, it creates the newborn's tail in a

non-deterministic way, unless one of the following happens: �rst, the newborn has \moved

too much" even before completely born (i.e., an M-state reached its right-hand extremity,

29

as the last transition in Appendix A.4 shows); or, second, there is no more possibility for

the newborn to acquire a body cell from its parents (as shown in state transitions 6, 7

and 8).

What follows are details primarily involving the creation of the newborn's memetype.

The fundamental point about designing state transitions for reproduction is that it must

be able to provide variability without being disruptive, i.e., it should allow for the preser-

vation of the non-deleterious (viable) con�gurations of body cells already existing in the

neighbourhood. Since in the current approach any agent that is able to exist in the cel-

lular space has viable building blocks, what we have to do is to allow the probability

distribution of the non-deterministic rules to favour the reappearance of building blocks

of the parents, which are de�ned in the newborn by its most recently created cell and

by the cell that is about to be created; this is accomplished by equally distributing the

probability of the state transitions accordingly.

If there are no building blocks to be preserved, we just randomly choose any of the

parental body cells present in the neighbourhood. Because reproduction is not prevented

from taking place while the parental body cells are in movement, it may be the case

that no parental cell is present in a neighbourhood (see transition 3 in Appendix A.4

for clari�cation). In this situation, the newborn body cell to be created is randomly

chosen from all the available cells of the world set-up at issue. Moreover, even when there

are building blocks to be preserved in the neighbourhood, a body cell can also be created

through the latter process, thus giving a minimal uniform bias towards all possible B-states

of the world set-up, equivalent to the maintenance of a residual background mutation.

The B

�

-state which appears in Appendix A.4 refers to a B-state created in the newborn in

the way we have just described. In particular, the length of the newborn's body is never

more than one cell longer than the length of its longest parent.

Returning to the additional motivation for having the upward movement of the body

(as hinted at in Section 3.4), let us recall that the emphasis of reproduction is on the

preservation of the parental building blocks. So, if the agents did not have the upward

movement the chance that a body cell in the newborn were created from a neighbourhood

with few or no parental body cells would be greater. The consequence would be that

the rate of preservation of viable parental body cell con�gurations would be smaller.

Therefore, the exploration of the space of possible body-cell con�gurations would be

more random, less oriented by the current state of the process.

3.9 Qualitative Dynamics

In this section we illustrate the qualitative dynamics of Enact by providing an overall

description of the changes in population size, through the e�ect of varying ageing rates.

Although a particular world set-up was used, the points made here are not dependent

upon its particular characteristics.

3.9.1 Scanning the Dynamical Regimes by Varying Life Expectancy

The results presented here are from runs in which the initial con�guration of a 32�32

cellular space contains 13 agents with random genotypes, and approximately the same

length. The initial position of the agents on the cellular space is the same throughout the

runs, although the agents themselves are di�erent from each other.

Data from the evolution of the cellular automaton for about 24000 iterations is shown

in Figure 3.9; the plot is compressed, each point having been plotted at each 20 itera-

tions. The vertical axis represents the population size, the numbers attached to the graph

30

Effect of life expectancy on population size

5

20
40

50
100

3

Time (number of iterations) →

Po
pu

la
tio

n
si

ze
→

Figure 3.9: E�ect of the expected life span of the individuals on the dynamics of the

overall population. The origin of the graph is the bottom of the left-hand corner. The

horizontal axis is time (number of iterations), and the vertical is population size. The

graph spans through about 24000 iterations and is compressed, each point being plotted

at each 20 iterations. The numbers attached to the graph provide a measure of the

expected life span of the individuals, and were manually changed during the run; more

details explained in the text.

being the normalized values of the nominal, expected life span of the individuals in the

population. The normalisation factor is 1/60, and the nominal, expected life span of the

individuals is directly derived from the ageing rate that was set up for the population.

Therefore the graph starts with life expectancy of 5 (5�60=300 iterations) and is progres-

sively increased up to 100 (100�60=6000 iterations), from which it is directly decreased

down to 3.

For nearly half of the period the population expectancy is kept at value 5, the higher

values occurring only in the second half. Such a division identi�es two distinct dynamics.

The �rst half is characterized by a quickly-changing population whose average size is

however kept low. An indication of this highly active dynamics is the \spiky" nature of

the graph during the period.

The second half is marked by an increase in the average population size, since the agents

are able to live longer, thus having a higher number of o�spring. Note that the increase in

population is initially very sharp (at value 20), indicating that the agents are exploiting

their new, longer life span in a world that, at that moment, was underpopulated; note also

that the maximum population size reached in the run occurs at life expectancy 40. After

the initial abrupt change, the variation in the population size becomes smoother, thus

31

suggesting that the dynamics has also slowed down. The reason is that the cellular space

has become more crowded, which decreased the mobility of the agents, thus decreasing

the chance of mating.

If the mobility of the agents continues to decrease, they can even reach mobility dead-

locks, in which the movement of one is precluded by others, to the point that reproduction

rate is eventually brought down to zero for long periods. Since the condition to break

the deadlock is to clear the way ahead for an agent, if the agents are living too long,

the periods of deadlock also increase. Therefore, as the expected life span reaches some

particular high value, the deadlocks tend to prevail. This is what we see for the case

shown, from life expectancy 50 onwards. This new dynamical regime is characterized by

the presence of plateaux, which become longer as life span increases.

Note that a �xed population size can also be reached without mobility deadlocks.

This is the transient situation in which the population size has decreased so much that

the agents are moving in such a way that they do not reach the mating con�guration;

their mobility is indeed maximum since not even stops for reproduction would be taking

place. This case can be seen in the graph in the form of the small plateaux that appear

just before the population vanishes, at the near end of the graph.

If we �nally decrease life expectancy to a very low value, the reproduction rate becomes

lower than the death rate and the population is eventually extinguished. This is what

happens when we decrease life expectancy from 100 down to 3.

3.9.2 Two Attractors: Extinctions and Deadlocks

Experiments have suggested the existence of two kind of critical population sizes, so that,

beyond the highest, the dynamics becomes marked by deadlocks; below the lowest, the

population quickly becomes extinct. Whenever a population has managed to avoid such

an extinction, we observe self-maintaining populations with stable dynamics that are

preserved for very long periods. For any life expectancy the condition for the population

to be mantained is naturally that reproduction rate be balanced, on average, by death

rate. But the condition that supports the balance varies for di�erent values of life span.

Hence, during the �rst half of the evolution shown, the degree of mobility of the agents

is such that they manage to keep a high reproduction rate. For progressively higher life

spans reproduction is kept at progressively lower rates; in the extreme, immortal agents

would live in an eternal deadlock, but bringing the reproduction rate down to zero.

Figure 3.10 summarizes the causal links between the parameters that determine the

basic dynamics in Enact. Note that, except for the expected life span, all the other

parameters are only implicitly de�ned; note also that the chance of reproduction is a

parameter that a�ects the o�spring of an agent, while the chance of death a�ects the

agent itself. The positive links represent a direct dependence between the parameters

involved, i.e., both increase or decrease together (although at di�erent rates); analogously,

a negative link represents reverse dependence between them.

From the points above we can identify three qualitative dynamical regimes that we

pass through by varying life expectancy from a very low to a very high value:

1. with high mobility and low reproduction rate (which in the graph shown is typi�ed

by life expectancy 3);

2. with high reproduction rate and high mobility (as happens for value 5); and

3. with low reproduction rate and low mobility (as for all values � 20).

Experimental evidence has shown that the dynamics in the �rst regime has a high chance

of leading to extinction of the population, while the dynamics in the third is marked by

32

+

+

+

-

-

+

Reproduction

Chance of

Chance of

Life Span

Free

Space

Expected

Death

Mobility

Figure 3.10: Causal links between the parameters that determine Enact's basic dynamics.

Only the expected life span is an explicit parameter, e�ectively controlled.

frequent deadlocks. Therefore it seems fair to say that the basic dynamics of population in

Enact is dominated by two attractors: extinction and deadlocks. Even though extinction

is the only formal attractor. By referring to the deadlock regime as another attractor, we

mean to highlight the fact that, in practical terms, once the deadlocks start, it becomes

very di�cult for the dynamics to be driven away from it, although such a possibility

always exists.

In Enact, free cellular space equals resource: for reproduction, which can bring about

novelty; and for movement, which allows environmental interactions. From the point of

view of \tuning" Enact for an arti�cial-life use, the second dynamical regime is the natural

option. Eventually, the population may fall into extinction or into frequent deadlocks,

but very likely, only after a very long transient characterized by a long-lasting, dynamic

population, marked by genotypic novelty and environmental interactions.

3.9.3 Enact's Regime of Operation

As discussed in Chapter 2 the studies on cellular automata dynamics presented in [Langton

1990] suggest that, as far as the emergence of life and computation in natural and arti�cial

systems is concerned, the \interesting" dynamics lies at a phase transition between order

and disorder. In the case of cellular automata rule spaces, this means the region of the

space between cellular automata that typically converge to limit points and cycles, and

others that lead to chaotic regimes. Although the characterisation of this region is not

precise some recurring features (to be presented below) have been accepted as necessary.

It happens that, by setting up Enact such that it is tuned at the dynamical regime

between extinctions and deadlocks { its natural dynamical regime, as discussed above {

all these features are typically observed in the system. Namely, the following parallel can

be readily established:

� Existence of very long transients. The existence of long-lasting populations associ-

ated with Enact's natural regime of operation does not mean the population will

last forever. It may eventually lead to either of the two attractors referred to above.

� Dependence of the transients on the size of the cellular space. As the size of the

cellular space increases, the chance of reproduction decreases pulling the dynamics

away from the deadlocks. On the other hand, extinction becomes likelier.

� High, but not maximal, temporal and spatial correlation between the cell states.

This a direct consequence of the agents having the ability to move about, and also

33

a structure. As they move, the collection of cells that make up their bodies are

displaced in a well-de�ned, but not predetermined range of possibilities.

� Existence of propagating structures. In this respect it is worth adding that the

agents in Enact have a soliton-like behaviour: they propagate as a well-de�ned

unity; according to well-de�ned laws; and can preserve their identity after their

\collision" with environmental cells of an interaction site.

4

� Ability to support universal computation. It has been conjectured in [Wolfram 1986b]

that all cellular automata with the ability of universal computation would be char-

acterised by the so-called \complex dynamics", essentially the same one identi�ed

in [Langton 1990]. It will be a recurring theme in forthcoming chapters that Enact

has universal computation capability.

It is remarkable that all the features above turned out to hold in Enact, even though

they were not preconceived, design premises.

5

3.10 Evolutionary Activity

In this section we examine the fundamentals underlying the evolutionary activity in

Enact.

6

3.10.1 Selection: The pathways rather than the ends

In the standard use of evolutionary computation { genetic algorithms (GAs), for instance {

in optimisation problems, selection is based on the de�nition of an explicit �tness function.

In these cases, its typical role can be allegorically envisaged as the establishing of a set of

beacons in the search space, that the search process would then try to reach. As there is

no explicit concept of �tness function in Enact, a better image would be the exploration

of a space where a set of beacons tells the exploration mechanism where are the forbidden

points of the space. So, whereas in typical applications of GAs in optimisation problems

selection is bound to rule out most regions of the search space, selection in Enact would

not be so strict, as most of the space being explored would be in principle acceptable.

Consequently, selection in genetic algorithms is typically selection for: the emphasis

is on the environmental interactions preserving the �tter individuals of the population,

according to a �tness function prede�ned for the particular application.

What enables one to refer to selection for is either a hindsight analysis of a particular

evolved trait, or the previous knowledge of the evolutionary pathway that has to be taken.

But in the natural world selection operates against features that are incompatible with

reproduction and survival; this is the only true statement that can be made in real-time,

that is, during the span of time selection is still operating. Such a perspective is the one

adopted in Enact, although, for short, we will simply refer to selection, omitting the word

\against". In Enact, therefore, the agents that have deleterious features (state con�g-

urations) in a particular world set-up are the ones eventually killed o�. The emphasis

4

Or with a head collision with another agent, the situation mentioned in Section 3.4.

5

Naturally, the movement of the agents was thought of in advance, but not its connection with the issue

of propagating structures in cellular automata.

6

This section revises previous material published in [de Oliveira 1994c]. The di�erence is that adaptations

are explicitly recognised herein as a real possibility in Enact (even if in a constrained form, as will be

discussed), whereas in that previous work adaptations had not been considered possible at all.

34

thus is on concepts such as viability rather than �tness, and evolution by satisfying world

constraints, rather than evolution towards solving prede�ned problems.

This approach to selection then stresses the point that, in general, it is not possible

to drive evolution in Enact to a prede�ned end-point. All that is possible is to prevent

some evolutionary pathways in advance. Of course, if all evolutionary pathways to a

particular end-point are known in advance, it becomes possible to precisely reach that

point; however, this is not the general case. Therefore, what matters the most in the

system are the pathways, not the ends.

Hence, selection in Enact is not only in tune with biological reality in terms of its

focussing on the elimination of un�t agents, but also in the sense that, insofar as it does

not stress the end-points of evolutionary paths, it opens up space for the exploration of

its evolutionary processes beyond the scope implied by selection for.

3.10.2 Movement is Enact's power-house

Movement is the primary source of interaction between the agents. The movement of an

agent has a local e�ect on the movement of its neighbours, and may propagate over the

cellular space due to the whole sequence of perturbations of movement to other members

of the population in its lifetime.

The amount of perturbation that a newborn is able to introduce into the organisation

of the population depends on the size of the population, the current dynamics of the world,

and the size of the cellular space. Essentially, the e�ect depends on the density of free

space currently available. If the population is close to extinction, a great many free cells

are available, and the newborn's in
uence is bound to be locally damped. The consequence

is the same for the case in which the cellular space is overcrowded; in this situation, the

lack of movement of the population due to lack of available free cells, leaves very little

room for any perturbation to propagate through the population. However, in Enact's

dynamical regime of operation, i.e., away from extinction or deadlocks, it is likely that

the newborn's presence will be felt in a large extension of the cellular space.

7

Also, we can

expect a certain critical population density in this regime for which the perturbation will

be maximal, even reaching, in some cases, the entire population. Empirical observations

have con�rmed these expectations.

Except for ageing, which depends only on the clock-tick of the cellular space updat-

ing, all the other processes embedded in Enact are powered by movement. Even more

importantly, through movement all processes become coupled to each other. Movement

is therefore the \power-house" of Enact. Life, death and reproduction of the agents are

dependent, through movement, on their being in the right place at the right time.

3.10.3 The Genotype Only Provides Initial Conditions for Development

The head, taking on the states that determine how the agent is going to move at each step

of its lifetime, has the ultimate responsibility for an agent's movement. The initial adult

state of the head depends on the agent's initial adult phenotypic state, which in turn,

depends on the agent's genotype. As development unfolds and the initial adult phenotypic

state is replaced, the genotype then becomes ine�ective in regard to the individual's

movement.

The role of the genotype is then evident: since an agent's movement is coupled to the

movement of other members of the population, the genotype cannot fully determine the

7

Precisely to which extension the newborn's presence will be felt is, however, a question that will not be

addressed herein.

35

pattern of movement; it only constrains an individual's movement by providing initial

conditions. Hence, it is through the genotype that the initial pattern of movement of an

agent is established.

In analogy to searching a genotype space, similarly to the search performed in genetic

algorithms, we can refer to a process of \genetic search" as also taking place in Enact.

In terms of this supposed notion, the genetic search in Enact is the search for a viable

genomic pool in the population that, by having contributed to the various agents moving

in a certain joint pattern, has prevented the population from dying out.

Although there is a mapping between genotype and the initial state of the phenotype,

there is no mapping between the former and the long-term phenotype of the agent. The

reason is that the latter depends much more on the agent's history of interactions than

on its genotype.

A similar process happens in relation to the memetype. While there is direct memetic

transmission of parental features to the newborn, its long-term status, again, is only con-

strained by the original memetype; the latest states of the memetype are more dependent

on the agent's history of environmental interactions and its coupled movement with the

other members of the population.

Therefore, from the point of view of phenotype and memetype, the role of the genotype

is the speci�cation of an initial trend in phenotypic and memetic spaces.

3.10.4 Coevolution with Constrained Adaptation

The actual sequence of phenotypic and memetic transformations of the agents is thus far

from being fully speci�ed in their genotypes. Depending on the global con�guration of

the cellular space, and in particular, the actual physical location where the agents are

born, the long-term development of two agents may signi�cantly vary, regardless of their

having the same genotype; analogously, two agents having distinct genotypes may reach

the same long-term developmental state.

Although this lessened role of genotype in development (and consequently, in evo-

lution) is certainly not the common view, it is a central tenet for a minority (though

eloquent) group of researchers. Lewontin, for one, has strongly put this point forward,

as in [Lewontin 1983]. In this reference he discusses the relations between organism, en-

vironment and ontogeny, and supported by a great number of illustrative examples from

biology, draws conclusions (page 71) such as that

\: : :there is a many-to-many relationship between gene and organism. The

same genotype gives rise to many di�erent organisms, and the same organism

can correspond to many di�erent genotypes."

With the inheritance of non-deleterious features { from parents to their o�spring {

playing a minor role in the formation of the agents, and consequent predominance of

movement in the determination of the individual's lifetime interactions, it turns out that,

for all practical purposes, as a new agent is born its parental lineages can simply be

thought of as discontinued (even though, in fact, they are not). Hence, there is not much

room for progressive, phylogenetic improvement of characters to occur. In other words,

natural selection can only occur in a very limited form. Naturally, an additional aspect

of this point is the fact that the genotype of the agents, being made up by a single gene,

entails that genetic variance becomes very constrained.

This situation is somewhat analogous to a GA-like process in which reproduction

occurs with very high mutation rate, or in which epistasis

8

is too high. In both cases,

8

Epistasis is the biological phenomenon through which a phenotypic trait depends on various genes,

36

as far as the search for viability is concerned, each new generation corresponds to a

breakdown in relation to the previous one: high mutation entailing the actual disruption

of viable building blocks that may have been formed (regardless of the interdependence

between their associated genes); and high epistasis provoking too much interference of the

epistatically linked genes (no matter how viable they are). As discussed in [Davidor 1990],

in either cases only random search of the space would be possible. In Enact, development

being the result of a history of complex interactions during the agent's lifetime, to a great

extent is unpredictable in the beginning. Consequently, development has a somewhat

random component which entails that only random exploration of the space of possible

developments becomes feasible.

A deeper way of envisaging the roots of the constrained role of adaptations in Enact is

to remind of an usually non-explicit premise in the theory of natural selection; one that,

for having systematically been left implicit, has very often led to a misunderstanding

of the theory. The point is that for adaptations to come about, not only some form of

\transgenerational stability"

9

is required for the organisms, but also for the environment.

10

We could even say that not only reproduction of organisms is needed, but also of their

environment. Oyama [1985, page 22] makes this point very precisely when writing that

\What is required for evolutionary change is not genetically encoded as op-

posed to acquired traits, but functioning developmental systems: ecologically

embedded genomes."

Also, in [Varela et al. 1991, page 199] the same idea is expressed when the authors state

that

\Genes are, then, better conceived as elements that specify what in the envi-

ronment must be �xed : : : In every successful reproduction an organism passes

on genes as well as an environment in which these genes are embedded."

In a more intuitive way, such an aspect can be readily accepted by imagining what would

happen if the fecunded egg of some animal were transplanted into the womb of another

animal of a very di�erent species.

Two consequences of the preceding points can then be taken, which jointly provide

the underlying aspects of Enacts' evolutionary activity:

� First, any evolution in Enact is indeed, coevolution, any evolutionary process then

becoming the process of coevolving coupled movement among the members of the

population.

� Second, all coevolutionary activity happens with a low emphasis on progressive

improvement of characteristics that natural selection induces along agents' lineages

in the form of adaptations.

which are then considered to be epistatically linked. The higher the epistatic links associated with the

trait, the higher the interdependence between traits, if any, that are individually de�ned by each gene.

9

This term is due to [Maturana and Varela 1987].

10

As stated above, in general the perturbation entailed by a newborn does not reach a degree that might

lead to a total reorganisation of the population. Therefore, there may be preservation of order across

the generations; that is, some transgenerational stability of the population's pattern of movement.

However, up to this point, it is an open question which are the consequences of such a feature for the

long-term development of the individuals. It is not possible, in advance, to ensure how disruptive a new

agent will be for the population. All that is guaranteed is that, provided the system is tuned in Enact's

dynamics of operation, the newborn's presence will have a local e�ect on the population, which will, to

some extent, spread out.

37

3.11 Implementation

Enact and its predecessors have been implemented on a Sun workstation using Cellsim

2.5, a public domain cellular automata simulator ([Langton and Hiebeler 1990].

11

The

commented C code for Enact's state transitions is presented in Appendix B. In the current

implementation the system has 29 state transitions for movement, 14 for reproduction, 9

for development, and about 37 for selection.

Each one of the six possible state categories is de�ned by a range of state values

speci�ed by the user, out of a total of 256 states. Additionally, there is a set of parameters

that can be manually set up to specify details of the movement of the agents (such as

the preferential direction of movement of an agent); the ageing rate of the population;

the rate of background mutation; etc. Other details about the implementation are made

explicit as comments in the code shown in the appendix.

3.12 An Historical Perspective of the System

This section is aimed at providing an historical perspective on the development of Enact.

However, as a contrasting point it would be worthwhile to wind back in time even before

the �rst steps towards Enact, and have a glimpse of the �rst attempt that was pursued.

3.12.1 Before Enact

As I started evaluating the use a cellular-automata-based architecture that could be ap-

propriate to support the emergence of functions, the �rst direction that was taken was

to try to insert, somehow, Lisp objects (S-expressions, i.e., lists and atoms) into cellular

automata. The idea was the possibility of observing the emergence of Lisp functions.

There were two strong appeals for using this language. An empirical reason was

that Lisp code had been used with great success in Koza's [1990] technique of genetic

programming mentioned earlier (also in [Koza 1992], which I had read a preprint of).

This technique is essentially a search method in the space of Lisp functions that �nds a

particular function to solve a prede�ned problem. Another suggestion one would get from

the literature would be the use of an assembly-like language, as in [Harvey 1991], but I

thought the higher-level of Lisp might be an advantage since shorter programs would be

possible that would code for more complex functions.

The other reason for the choice was that there was a Lisp de�nition that was es-

sentially the original proposition of a pure-Lisp, with some minor additions to make it

more amenable for implementation and use. This Lisp was presented in the monograph

[Chaitin 1987], where extensive formal analysis also made, from which one could work out,

for instance, the number of well-formed S-expressions of a certain size. This analytical

possibilities, might be an extra advantage when analysing the outcomes of the system I

was trying to design.

In parallel with this enterprise, I undertook a series of experiments with Cellsim in

order to learn about the behaviour of cellular automata in general; as a way to probe

their applicability as computing devices; and third, to evaluate the possibilities of Cellsim

as a platform for the system I wanted to implement.

Having learned that Fontana [1990] had implemented AlChemy to study the emergence

of functions in the Turing gas, this piece of work acted as a reinforcement to the approach

11

This version was implemented using the Sunview package, which is no longer available with Sun's

latest environment (Solaris 2.x). An X11R5-based implementation was performed by Felicity George

(fawg@epcc.ed.ac.uk) and is available from her upon request; however, it does not support colour

processing.

38

I was pursuing. First, because of the common conceptual ground they shared to some

extent. Additionally, the implementation of AlChemy was derived precisely from Chaitin's

Lisp, and fundamentally for the same reasons that the latter had become a reference for

me. And since Fontana had publicly o�ered his code { which was in C, the requirement

for using it in conjunction with Cellsim { it seemed as though some of my problems with

my own system would be solved.

But they were not. First, because I never managed to get hold of AlChemy's code.

Second, my practical experience with Cellsim soon made it evident how computationally

intensive would a cellular automaton be if its state transitions were to be based on the

outcomes of a Lisp interpreter. And third, as a matter of fact, I never really came up with

a Lisp-integrated architecture that I considered appropriate. The integration schemes I

could think of always seemed overly ad hoc. Because of all that, there was no alternative

than changing the approach.

3.12.2 Enact's Lineage

Enact is in fact the name of the last version in a trilogy of cellular automata embedding

an architecture of autonomous agents from an arti�cial-life perspective. The level of

approach we were interested in was the organismic level, based on a population of agents

that should undergo a coevolutionary process. Small modi�cations were systematically

performed throughout Enact's history, in order to account for its conceptual evolution,

and to progressively improve the already existing processes at each moment. What follows

is the main line of Enact's history of developments, which can be traced in three stages:

1. In [de Oliveira 1992a] the �rst version was introduced, presenting the basic con-

cepts of movement of the agents, selection and reproduction, and showing how these

processes could account for a simple form of evolutionary mechanism.

The motivation at this stage was to embed some form of evolutionary mechanism

into cellular automata, but with no optimisation concern.

It turned out that the temporal evolution of the cellular automata that were devel-

oped had a number of interesting features from the point of view of arti�cial-life,

to the extent that, by conveniently extending their de�nition and improving on the

conceptual issues underlying their use, it was possible that a framework to support a

class of arti�cial-life worlds could be developed. On pursuing this target the second

stage was reached.

2. In [de Oliveira 1993] environment was introduced, with which we showed the imple-

mentation of a Turing machine, stressing the methodological issues involved in the

use of the system as a programmable machine.

As an arti�cial-life world, its major drawback was the provision of interaction be-

tween the agents, which was very poor, since the only kinds of interaction provided

were reproduction, and the ones derived from movement. This problem led to the

notion of the interaction sites { by means of the environmental E-states { with which

the interactions among the agents could then be achieved with virtually unbounded

richness. In comparison with the �rst stage, Enact's second stage had incorporated

the following major improvements:

� The original notion of a \genotype", represented by the state category G, was

replaced by the notion of a body state B , in the sense of generic, active states

of the body cells which, depending on their use, could be regarded either as a

genotype or a phenotype.

39

� The original movement m-state was replaced by the state category M .

� The environmental category, represented by the E-states, was created, the

background 0-state becoming conceptually encompassed by the environment,

as a special kind of environmental state.

However, as hinted at above, there was yet a major problem associated with the

framework, as it stood. Namely, the distinction between genotype and phenotype

of the agents was blurred. On one hand, reproduction could directly act over the

B-states as if they were the genotypes of the agents. On the other, in some world

set-ups the B-states could well be interpreted as a phenotype, even featuring a

transformational change in them, during an individual's lifetime, that could be

interpreted as its development. With this problem in the foreground the third,

current stage was then reached.

3. The current version, which is referred to as Enact, came from the re-evaluation

of its unnamed predecessors, so as to provide a clearer account of the distinction

between genotype and phenotype; this led to the introduction of a developmental

process that the agents undergo, and to a reformulation of the internal structure

of the agents, which entailed splitting an agent's body into three parts, genotype,

phenotype and memetype.

With these three state categories, the blur between genotype and phenotype was

wiped out. Consequently, related achievements were incorporated in the system such

as a more powerful account of genotypic evolution, which revises the limited notion

of \genetic search" explored in [de Oliveira 1992a], and that brings the concept of

coevolution to the foreground of the evolutionary process. Also, the support to

memetic evolution, which allows exploration of the e�ects of genotypic evolution on

the state of the agent's memetype.

More precisely, I used the term genetic search in [de Oliveira 1992a] to refer to

the exploration of viable con�gurations of body cells. But since the concept of

environmental states was absent at that point, the con�gurations were directly due

to the reproduction process, without the possibility of also being the outcome of

environmental interactions, as is now the case. Furthermore, since in that paper

there was no distinction between the states of the body cells, any parental body cell

could be directly passed on to the o�spring; as a result, the genetic search meant

there was, in fact, memetic (without the environment playing any role, though).

Therefore the notion of genetic search in Enact completely supersedes its equivalent

in that previous work.

It is also worth mentioning that in Enact's predecessors the built-in selection process

was simpler than it currently is such that the arti�cial life activity could only be

observed for apropriately crafted initial con�gurations.

Finally, in the former versions of the system the agents were referred to as organisms.

But as the elements of the system became more sophisticated and their usage more

abstract, the original term lost its appeal, the more abstract notion of agent appear-

ing more appropriate. Also, my own realisation of the central role of movement to

the outcomes of a system run, made the reference to agents seem more appropriate

to emphasize the active role of the individuals as they move in the cellular space.

All in all, movement is Enact's most fundamental process. In order for selection,

reproduction and development to occur, it is necessary for the agents to move; but

movement itself does not require them. And while movement can be in
uenced by

40

the environment, it does not need the latter either. The ability to move on their

own is the primary attribute of the agents' autonomy.

3.13 Summary

In this chapter we described the arti�cial-life processes and overall dynamics involved

in Enact, a cellular-automata based architecture of autonomous agents that forms the

basis of this thesis. Enact is a family of two-dimensional, non-deterministic cellular au-

tomata, whose temporal evolution on a periodic background can be described in terms of

the metaphor of an arti�cial-life world where a population of worm-like agents undergo a

coevolutionary process. During their lifetime, the agents roam around, sexually reproduc-

ing, interacting with the environment, and being subjected to a developmental process

which includes ageing and death.

An agent is formed by a sequence of contiguous cells, so that the cells at each end

can be thought of as its head and tail, whereas the cells in between constitute its body.

A single cell of the body forms the agent's genotype. Another cell, whose initial state

just after neonatal development depends on the agent's gene, represents the phenotype.

The remaining cells of the body are fully determined through direct parental inheritance,

constituting what we call the agent's memetype.

As a consequence, the coevolutionary process supported in Enact is in general both

genetic and memetic. Since the phenotype is what determines the local direction of

movement of an agent at each time, and since its initial state depends on the agents'

genotype, the genetic coevolutionary process meant above refers, in fact, to the evolution

of a coordinated movement of the population. On the other hand, the memetic coevolu-

tionary process is the exploration of the e�ects of genotypic coevolution, as re
ected in

the changes that the agent's memetype undergoes.

The mechanics of the processes underlying the system was described in detail, and

qualitative issues related to its dynamics were discussed. In particular, it was shown that

the overall qualitative dynamics depends primarily on the ageing rate of the individu-

als, this being very straightforward to tune so as to prevent extinction of the agents or

deadlocks due to over-population, and guaranteeing the existence of very long transients.

Enact's rule { its complete set of state transitions { is fairly complex if compared

to standard cellular automata in the literature. It should be clear however, that our

interest here is not on the emergence of the arti�cial life activity it supports, but on

what can follow assuming its existence as a primitive we can rely on, and to a certain

extent, manipulate. In fact, as we will see in the next chapter, Enact can be regarded as

a programmable, virtual machine de�ned by its arti�cial-life processes, and relying upon

its six categories of states.

41

Chapter 4

ENACT AS A VIRTUAL PROGRAMMABLE MACHINE

1

4.1 Introduction

As mentioned at the end of the last chapter, the second version of Enact was motivated

by the development of a framework to support a class of arti�cial-life worlds. In that

context, framework was meant to be the complete description of the cellular automata,

together with the methodology stating how to use it, and a suggestion of the kind of

questions that it might be used to address. In the context of this thesis, however, the

latter will only be sketched (in Chapter 6), since our emphasis is on the exploration of

Enact as a computing machine.

The description of the system was given in su�cient detail in the last chapter. In the

current chapter we present the methodology underlying Enact, that is, how to use it in

order to set up particular worlds. As will be clear later on, ultimately this corresponds

to regarding the system as a virtual machine that can be programmed.

In the next section we provide an in-depth example of its use, namely, the implementa-

tion of a Turing machine as a result of agent-environment interaction. With the example

in mind, it is then possible to analyse the idea of Enact as a programmable virtual ma-

chine, which the Turing machine is implemented on. In this respect, details are given

of how to go about using the system, that is, how to program it. A general discussion

on the possibilities of the system is then presented. Finally, some issues relating Turing

machines to the context of the present thesis are sketched out, paving the ground for the

subsequent chapters.

4.2 Using Enact: Implementation of a Turing Machine

4.2.1 Introduction

In order to illustrate how to go about using Enact, in this section we analyse a particular

application, namely, the implementation of a Turing machine. This will serve to pin-

point not only practical aspects about how to use the system, but also conceptual issues

concerning which kind of applications seems to be appropriate to it.

Basically a Turing machine is constituted by a mobile reading-and-writing head that

can travel along an arbitrarily long tape, according to a prede�ned set of instructions. As

the machine obeys one instruction, the head reads the tape symbol it is pointing at and,

according to the machine's current state, writes another symbol, possibly the same one

just read; then it performs a single movement to the left or to the right. The importance

of Turing machines lies in the fact that, despite their simplicity, they de�ne the widest

1

Most of this chapter was published as [de Oliveira 1993].

42

class of computations that can be performed by a computing device. Following [Hopcroft

and Ullman 1979, page 148] we de�ne a Turing machine as the tuple

(Q;�; B;�; q

0

; F; �)

where

Q is the �nite set of states of the head;

� is the �nite set of tape symbols used in the computation;

B is the blank symbol (B 2 �);

� is the set of input symbols (� � f�� Bg);

q

0

2 Q is the start state;

F � Q is the set of �nal states; and

� is the function specifying the behaviour of the head (� : Q�� ! Q���fL;Rg).

Note that the function � is nothing more than the \program" the machine is executing,

each application of the function being equivalent to one step of computation. After each

step of computation a symbol has been written on the tape, the head has entered a new

state, and has moved one tape-position to the left (L) or to the right (R).

4.2.2 The Implementation

First of all let us make it clear that in this chapter we will be dealing with only four state

categories, using the simpli�ed structure of the agents, as depicted in Figure 3.3.

The idea behind the implementation of the Turing machine is to represent the tape

by a sequence of environmental E-states, and the state of the head by an agent (or

more precisely, by the �rst B-state of an agent). We then de�ne a particular agent-

environment con�guration such that, when it is reached, then one step of computation

will be performed. Using the terminology of the preceding section, the computation is a

consequence of the state transitions that occur at the (carefully designed) interaction site

de�ned by the agent and the tape. It should be clear that the implementation refers to a

single agent interacting with a single tape; therefore, reproduction does not play any role

in this context (we return to this point in Subsection 4.3.4).

In order to facilitate the explanation of the implementation it is useful to think in

terms of the \hardware" and the \software" of the Turing machine, the former referring

to the mechanism that allows the head to move right or left, and the latter referring to

the behaviour of the head according to the speci�cation in the function �.

When thinking about a way to implement the mechanism so as to move the head,

one might be led to associate the (moving) agent with the head. However, this is not

possible due to the design constraint on Enact that an agent cannot move to the right.

To circumvent this problem the implementation uses the idea of placing a marker on the

tape representing the head of the machine; incidentally, the same kind of technique is

used in [Minsky 1967]. In this way, when an agent is in the appropriate position relative

to the marker, a step of computation is performed.

If the computation leads to a rightward movement of the head, the only way the

computation can proceed is by the agent returning to a position that it has already

passed. Naturally, this can be achieved through the toroidal geometry of the cellular

space, i.e., the periodic background it supports.

It is worth observing at this point that the realisation of a Turing machine requires

that the tape can be inde�netely extensible, that is, di�erent computations may require

arbitrarily long tapes. The way this requirement is dealt with herein is by allowing the

size of the cellular array to increase as required by the speci�c computation at issue.

43

Turing Machine Cellular Automaton

Tape Sequence of E-states

Position of the head E

�

Blank symbol (B) E

b

Additional tape symbols (��B) E

s

(or E

ss

)

States of the TM (Q) B

s

(or B

ss

)

Mechanisms to move the head Interaction agent-environment

and to perform the computation (�) + Periodic background

Table 4.1: Correspondence between the constituent elements of a Turing Machine and

the states currently being used to implement it.

Accordingly, the sequence of environmental cells that constitute the tape also acquire

the necessary length for the computation to be performed. Although an in�nitely long

cellular array is not realisable, for all practical purposes it can be as large as required by

every particular computation.

There is, yet, the additional problem of dealing with the marker: how do we place it on

the tape? This is solved by imposing the requirement that the symbols to be used in the

computation be separated on the tape, by single blank symbols; these blanks then provide

a `free' space in the tape which can be occupied by the marker. The situation described

is illustrated in Figure 4.1; the correspondences between the constituent elements of a

Turing machine (according to the preceding subsection) and their implementation in the

current case are shown in Table 4.1. Refer also to the Table for explanation about the

notation used in the �gure.

Figure 4.1(a) shows snapshots of the same set of the cells as a 3-cell-long agent interacts

with the constituent E-states of the tape, performing one step of computation that results

in the head moving left; Figure 4.1(b) refers to a step of computation resulting the head

moving right. Note, in each �gure, the modi�cation of the position of the symbol E

�

which

is the head-marker. Other features to be noted include:

� It is assumed that the marker E

�

is placed on the left-hand side of the next tape

symbol to be read by the head.

� The various snapshots represent the stages that are needed for the various operations

associated with a step of computation. It is clear that it takes longer to complete

the step leading to a leftward move than the step leading to a rightward move.

� The con�guration agent/tape that initiates one step of computation is the same in

both cases.

� In the sequence of con�gurations shown, the agent starts moving forward whenever

the way ahead is free. But since in general, such a movement is non-deterministic,

the con�gurations are not meant to be immediately consecutive to each other as the

�gures might suggest.

� Also due to the non-deterministic start of the agent's movement the con�guration

that triggers a computation step may not be achieved in one passage of the agent

44

� � � � � �

E

b

E

j

E

�

E

i

E

b

E

k

� � � T

0

B

i

T

0

+ T

0

7! T

L

� � � � � �

E

b

E

j

E

�

E

i

E

b

E

k

� � M

0

T

L

B

i

T

0

+

� � � � � �

E

b

E

j

E

�

E

i

E

b

E

k

� � T

L

M

0

B

i

T

0

� 7! M

L

+

� � � � � �

E

b

E

j

E

�

E

i

E

b

E

k

� M

L

T

L

B

i

M

0

T

0

T

L

7! T

0

E

b

7! E

�

E

�

7! E

b

+

B

i

7! B

ii

E

i

7! E

ii

� � � � � �

E

�

E

j

E

b

E

ii

E

b

E

k

� T

0

M

L

B

ii

T

0

�

(a)

� � � � � �

E

b

E

j

E

�

E

i

E

b

E

k

� � � T

0

B

i

T

0

+ T

0

7! T

R

� � � � � �

E

b

E

j

E

�

E

i

E

b

E

k

� � M

0

T

R

B

i

T

0

M

0

7! M

R

T

R

7! T

0

+

� � � � � �

E

b

E

j

E

�

E

i

E

b

E

k

� � T

0

M

R

B

i

T

0

M

R

7! M

0

E

b

7! E

�

E

�

7! E

b

+

B

i

7! B

ii

E

i

7! E

ii

� � � � � �

E

b

E

j

E

b

E

ii

E

�

E

k

� � T

0

B

ii

M

0

T

0

(b)

Figure 4.1: Representation of the stages involved in one step of computation of the Turing

machine. Each step is de�ned by the symbol E

ii

being written on the tape, the machine

entering the new state B

ii

, and the head then moving to the left (a) or to the right (b).

The dots represent the background state; refer to Table 4.1 for additional information on

the notation being used.

along the tape. In this case the agent has to return to this triggering con�guration

by traversing the toroidal cellular space.

� Whenever a computation step has �nished, leading the head-marker to move right,

the agent has to return to the con�guration that triggers a new step. On the other

hand, if the computation step has moved the marker to the left, the agent still has

the chance to perform another computation step in the same passage. Note this

possibility in the last snapshot of Figure 4.1(a).

� All state transitions to take place in the cellular automata at each stage are shown

beside the downward arrows that link successive stages.

45

� The state transitions on the left-hand side of the downward arrows refer to the

transitions which are necessary to implement the hardware of the Turing machine.

The transitions represented on the right-hand side of the arrows refer to the program

being executed.

The list of state transitions of the cellular automata required to implement the hard-

ware of the Turing machine can be seen in the �rst column of Table 4.3 (shown at the

end of this chapter). This column is subdivided into two others, the left-hand subcolumn

showing the 4 transitions that are necessary to support the computation step that leads

the head to the left, and another subcolumn showing the 5 necessary transitions so that

the head can move rightward.

On the other hand, the state transitions which are necessary to characterize one step

of computation are shown in Table 4.4 (also at the end of the chapter); note that the table

is arranged in three sets of rows. As mentioned above, the 3 transitions involved within

each set specify the direction the head will move (L or R), the symbol to be written on

the tape (E

ii

), and the next state of the machine (B

ii

). The triplet that makes up the

�rst set of rows supports the computation step that moves the head to the left, whereas

the triplet in the second set of rows supports the move to the right.

If for a particular input the computation reaches any of the �nal states, the agent would

carry on moving in the cellular space inde�nitely. In order to prevent this behaviour, we

simply introduce a set of state transitions for selection (according to Section 3.6) which

kills o� the agent as it leaves the contact with the tape. The last row of Table 4.4 deals

with this \halting condition" by de�ning the state transition as shown. The complete list

of state transitions coding for the software of the TM is given in the Appendix C.

Two �nal observations. First, although an agent with a single B-state was used in

the simulation of the Turing machine, it can be seen that the state transitions used for

both hardware and software contain no restriction on the number of B-states an agent

may have. Second, the design constraint for the actual `algorithm' used to implement

the machine was that it should use the four categories of states, and that it should entail

a minimum of new state transitions to be added. However, we are neither making the

point that this is the only possible implementation with all the four categories, nor that

it would not be possible to implement it with a subset of the four.

4.2.3 The Turing machine in Action: Recognition of a Language

In order to test the implementation, we programmed the Turing machine to recognise the

language � = f0

n

1

n

j n � 1g;

2

this subsection is based on [Hopcroft and Ullman 1979]:

the recognition problem was introduced in page 148, and Table 4.2 and Figure 4.2 were

adapted from page 150.

The Turing machine is de�ned by:

Q = fB

0

; B

1

; B

2

; B

3

; B

4

g;

q

0

= B

0

;

F = fB

4

g;

B = E

b

;

� = f0

E

; 1

E

g;

� = f0

E

; 1

E

;X

E

;Y

E

; E

b

g;

�: de�ned by Table 4.2.

2

It can be seen that this is a context-free language. As a consequence, its recognition does not require all

the computational power of a Turing machine, a deterministic push-down automaton being su�cient.

We use this example just as a matter of convenience.

46

Current Symbol Read

State 0

E

1

E

X

E

Y

E

E

b

B

0

(B

1

;X

E

; R) � � (B

3

;Y

E

; R) �

B

1

(B

1

; 0

E

; R) (B

2

;Y

E

; L) � (B

1

;Y

E

; R) �

B

2

(B

2

; 0

E

; L) � (B

0

;X

E

; R) (B

2

;Y

E

; L) �

B

3

� � � (B

3

;Y

E

; R) (B

4

; E

b

; R)

B

4

� � � � �

Table 4.2: Transition function (�) of the Turing machine that recognizes the language

� = f0

n

1

n

j n � 1g.

Table 4.2 speci�es the ten di�erent possible steps of computation. For example, if the

machine is in state B

0

and the head reads the symbol 0

E

on the tape, it writes the symbol

X

E

on the tape, the machine goes to state B

1

and the head moves right; on the other

hand, if the current state is B

2

and the symbol being read is 0

E

, the machine remains in

the same state, the same symbol 0

E

is written on the tape, and the head of the machine

moves one tape-position to the left. Whenever the input string present in the tape belongs

to the language �, the sequence of steps computed by the machine will necessarily lead

it to its �nal state.

Because 10 distinct steps of computation are necessary for the recognition of the lan-

guage, we then need 3 � 10 = 30 state transitions in order to program this task in the

cellular automata. For example, the set of 6 state transitions necessary to support the

2 `instructions' described in the preceding paragraph are shown in the middle column of

Table 4.4. Also in the middle column of the same Table, the last element shows the state

transition required for killing o� (`selecting against', we might say) the agent after it has

reached the �nal state B

4

.

The result of running the Turing machine with the input string 0

E

0

E

1

E

1

E

is shown in

Figure 4.2. After performing the sequence of operations shown there, the machine reaches

its �nal state while the �nal con�guration of the tape is X

E

X

E

Y

E

Y

E

; at this point, the

agent vanishes due to the selection process, indicating that the original input string has

been recognised as belonging to the language �. Due to the non-deterministic fashion in

which the agent's movement starts, there may be a number of time steps before an agent

is able to start its movement ahead; therefore, the sequence of con�gurations shown in

Figure 4.2 should not be considered as immediately consecutive in time.

B

0

0

E

0

E

1

E

1

E

E

b

7! X

E

B

1

0

E

1

E

1

E

E

b

7! X

E

0

E

B

1

1

E

1

E

E

b

7! X

E

B

2

0

E

Y

E

1

E

E

b

7!

B

2

X

E

0

E

Y

E

1

E

E

b

7! X

E

B

0

0

E

Y

E

1

E

E

b

7! X

E

X

E

B

1

Y

E

1

E

E

b

7! X

E

X

E

Y

E

B

1

1

E

E

b

7!

X

E

X

E

B

2

Y

E

Y

E

E

b

7! X

E

B

2

X

E

Y

E

Y

E

E

b

7! X

E

X

E

B

0

Y

E

Y

E

E

b

7! X

E

X

E

Y

E

B

3

Y

E

E

b

7!

X

E

X

E

Y

E

Y

E

B

3

E

b

7! X

E

X

E

Y

E

Y

E

E

b

B

4

Figure 4.2: Computation involved in the recognition of the string 0011 which is

represented here by 0

E

0

E

1

E

1

E

. The sequence shows, at each step, the symbol

con�guration of the tape and the state of the Turing machine. The position of the machine

state relative to tape symbols represents the position of the head at the corresponding

computation step. It is assumed that the head is able to read the tape symbol which is

on its right-hand side.

47

4.3 Methodological Issues

In this section methodological issues are considered associated with the use of Enact. We

stress the general aspects of how to use the system in order to set up particular worlds,

which leads to the view of Enact as a \programing environment".

4.3.1 Programming Issues

As we have already discussed Enact is family of cellular automata whose common thread

is the same overall dynamics that characterizes the arti�cial-life world. The programming

issue in the context of the system is then really one of adding a new behaviour to the

family without disrupting the basic arti�cial-life dynamics already present.

In general, any attempt to add, in a controlled fashion, a new behaviour to cellular

automata by adding new state transitions can be a very frustrating task, since the side-

e�ects of a modi�cation of this sort can be very di�cult to predict. In the current case,

in which we want to preserve the original dynamics, these side-e�ects may be even more

critical. In order to give the reader a hint of what is at issue, I should state that my

own experience in programming cellular automata calls to mind the mixed experience of

writing programs in a low-level, assembly-like language, with the di�culties of foreseeing

all possible outcomes usually associated with a large computational system that has a lot

of interdependence between its modules. Naturally, in the context of cellular automata

the latter problem arises because the space of possible neighbourhood con�gurations is

so vast, that it becomes extremely di�cult to foresee the joint e�ect of state transitions

that have only been individually considered. The consequence is that, very often, spe-

cial treatment has to be provided to neighbourhood con�gurations that have not been

previously expected.

As a consequence, the only guaranteed, controllable way to add a new behaviour with

no undesired side-e�ects is the process of instantiation of the general state categories that

appear in an existing state transition, by means of speci�c states in the category, but that

bear relevance to the desired behaviour.

The addition of these transitions, which we refer to as instantiated transitions, is the

essence of how to use Enact. All state transitions that support the hardware and the

software of the Turing machine are examples of instantiated transitions. In terms of their

integration with the existing state transitions, they can work either by substitution of

their equivalent, more general transitions, or by precedence over the latter, in which case

they are placed before the general ones in the actual code of the cellular automata.

Note that the dynamics supported by the set of existing transitions of the system is

equivalent to the concept of a virtual machine, like a programming language together with

its compiler. Similarly, adding an instantiated transition is analogous to a program that

is written on the virtual machine, which has to satisfy the constraints imposed by the

constructs of the programming language. In particular, the introduction of an instantiated

transition requires knowledge about which state transitions are available; this is like the

necessity of having to know the syntax of a programming language before one goes about

writing a program in this language.

4.3.2 Implicit and Explicit Instantiated State Transitions

Let us say that a state transition that does not alter the state category of the cell at

issue is a category-preserving transition; otherwise, we would have a category-changing

transition. Enact can be thought of as a collection of two kinds of state transitions: an

explicit set, composed of both category-preserving and category-changing transitions, and

48

an implicit, or default set, composed of only state-preserving transitions. Accordingly,

in order to add a new behaviour to Enact it is necessary to know the details of what

is encoded in the category-preserving and the category-changing state transitions of the

system. As Appendix A shows, most state transitions in Enact are category-changing;

only the developmental process presents some category-preserving transitions.

The process of adding a new state transition to Enact only has to abide by two criteria:

1. If the state transition is identi�ed as belonging to the explicit set of transitions, it

can only be included in the system if it is crafted in such a way that it becomes a

perfect instantiation of the more general transition already present in the system.

2. Dealing with the implicit state transitions is easier. All that is necessary is to be

sure that a supposedly implicit state transition that is about to be added in, does

not really belong to Enact's explicit set. For instance, in Enact any state transition

having in the centre cell of its associated neighbourhood an E-state distinct from

the background state, is by design implicit.

Let us now turn to the information presented in the rightmost column of Tables 4.3

and 4.4, under the heading of Instantiated role. This column simply provides a charac-

terization of \what" is being instantiated by each instantiated transition that is added to

the world set-up used to implement the Turing machine. When the new state transition

is an instance of an explicit transition, the general transition already present in Enact is

expressed in the table. Otherwise (i.e., if the new state transition refers to the implicit

set), what is expressed is the typical role that the new state transition plays in a world

set-up using Enact.

For instance, the state transitions that have a non-background E-state in the centre

cell, are labelled \environmental dynamics" since they are used whenever one wishes to

add some state change to these environmental states. Note, in particular, the instantiated

role \adult body development" that appears in the second row of Table 4.4. This is an

interesting case insofar as it suggests an extension to Enact that could well be imple-

mented. Namely, an extension of the current built-in developmental process { currently

involving only the head of an adult agent { so as to also include the development of the

adult body. This is a suggestive addition for a future version of Enact.

It is worth observing some aspects about the process of crafting an instantiated tran-

sition. For instance, the transition that appears, say, in the �rst row of Table 4.4 is a

deterministic instantiation of a non-deterministic one. Also, no matter how contradictory

it may look like at �rst glance, note that the instantiated state transition at the �fth

row of the table is apparently not an instance of the one in the rightmost column. But

in fact it is. The point is that the double occurrence of the M-state that the right-hand

side transition is explicitly avoiding, never occurs in the situation required for the Turing

machine. Hence, for the sake of conciseness of the implementation, the neighbourhood

cell involved in the case { the left cell { was allowed to take on the don't care symbol.

4.3.3 Revisiting a Previous Work

In [de Oliveira 1992b] we stated that some issues addressed in [de Oliveira 1993] were

being revisited. Subsection 4.3.2 was the result of such a revision. What follows is the

set of points that were revisited:

� In that paper we referred to the explicit set as non-quiescent state transitions, and

to the implicit set as formed by quiescent state transitions; that is, we de�ned the

49

concept of quiescence as related to the preservation (or not) of the state category

of the centre cell of the neighbourhood in a state transition. Such an association

is not preserved in this thesis and should, therefore, be considered a revision of the

notion of quiescence used in that paper; as a matter of fact, a return to the way we

�rst used the term, in [de Oliveira 1992a].

� The notion of \instantiated role" here replaces the notion of \typical role" there.

With this substitution, together with the reformulation of the item above, a clearer

account of the instantiation process of a state transition was achieved.

� At the time the paper was written, Enact did not yet have a developmental process.

Hence, the third column of Table 4.4 had to be revised in order to accommodate

the new fact.

4.3.4 On the Possibilities of Enact

Enact has been designed to be fairly general in terms of its being used to set up arti�cial

life worlds; there are, however, several design constraints which would certainly be a

burden. For example, only one species is supported by the basic arti�cial-life world; also,

the movement of the agents is very limited. On the other hand, the
exibility provided

by the state categories can be explored so as to enrich the basic dynamics in a number

of ways by the addition of instantiated transitions; by keeping the latter available for

use, they could be seen as libraries of functions, similar to the ones usually available in

standard programming languages.

There are, also, two practical problems associated with Enact. First, it is intrinsically

expensive in computational terms. Second, as hinted at earlier, programming it may

require a great deal of e�ort, particularly in the sense that it requires the user to be

aware of the all neighbourhoods the world set-up at issue will yield. But note that this is

not di�erent from a standard programming language, in which very rarely does a program

run as expected, without any \bug".

In setting up worlds with the system I have experimented with several options, such

as the ones mentioned below:

� A number of direct variations, including agents with distinct states for head and tail,

agents whose movement starts deterministically or whose upward body movement

is deterministic.

� Introduction of di�erent kinds of heads, with distinctive properties, such as di�erent

rates at which they start their movement, or specialisation towards the directions

the movement can start.

� Selective mating, for instance from parents whose head movement-properties are

somehow related (e.g., being the same). The point here is that, in the basic arti�cial-

life dynamics, mating is in principle just a matter of chance, since it occurs whenever

any two agents reach the mating con�guration. However, it is possible to create

selective mating among the agents; all that is needed to write an instantiated state

transition with the parental features that should allow reproduction to start.

� Inheritance manipulation, such as the imposition that the o�spring from parents

that possess the same feature { e.g., the same movement specialisation { would nec-

essarily inherit this parental feature. Note that in the basic dynamics, reproduction

would necessarily imply this kind of inheritance.

50

� Alternative kinds of interaction sites, such as the one depicted in Figure 3.7. In that

case, depending on the \speed" an agent traverses the interaction site, a wealth of

outcomes are possible, as will be mentioned in Subsection 6.5.1.

� Various forms of ageing, either unconstrained (i.e., at each iteration of the cellular

automaton), or constrained by the occurrence of a prede�ned situation, such as

whenever the agent moves ahead, whenever it is unable to move ahead, or only

when it reproduces. In all these cases, death is a natural consequence as the agent

reaches an old age.

It is important to note that two agents, with the same initial state con�guration of

the body cells, may reach completely di�erent con�gurations after a certain time, because

they may have had distinct histories of interaction with the environment and the other

agents. And while the agents themselves are very simple, their history of interactions, as

we have shown with the Turing machine, can be arbitrarily complex. This feature has an

interesting consequence: by characterising the history of agent-environment interactions

in terms of computable functions, and constraining the setting of the arti�cial-life world

so that the histories can be mapped to a tractable region of the space of computable

functions, it becomes possible for the agents, through their body cells, to act as probes

into the emergence of new functions. Such an aspect of emergent computation associated

with Enact will be addressed in Chapter 6.

4.4 Turing Machines and Enact

Since the theme of Turing machines in the context of cellular automata will reappear in the

following chapters, it is useful to look already at some issues raised by the implementation

described above.

But beforehand, it is worth recalling that earlier in Subsection 2.5.3 we made a general

discussion on the issue of computability in cellular automata. Also, at that point of the

thesis we provided in Table 2.2 the number of states in Enact that would be necessary to

implement Minsky's [1967] universal Turing machine { with 4 tape symbols and 7 internal

states. Bearing in mind the implementation we have just discussed, in order to implement

the former universal Turing machine we can now make it clear that 20 states are then

needed, as follows: 4 + 1 + 1 + 1 E-states; 7 B-states; 1 + 1 + 1 M-states; and 1 + 1 + 1

T -states.

From a theoretical point of view, the implementation of the Turing machine in itself

is of little relevance, since, as Table 2.2 shows, the literature abounds with examples of

cellular automata capable of universal computation. But if we consider the current TM

from the perspective { mentioned at the end of the previous section { of using Enact to

address the issue of the emergence of computable functions, some aspects of the simulation

become theoretically relevant. Firstly, as we hinted at in Chapter 2, because it is couched

in an arti�cial-life system, which is novel, and not in an abstract setting whose relevance

would be constrained by the formal aspects it is related to.

Secondly, the simulation of the Turing machine represented the tape as a sequence

of E-states, and the agent's �rst B-state as the state of the machine. One might think

however, about the alternative implementation in which the tape would be in the agent as

a sequence of B-states, while the state of the machine would be part of the environment.

Although this latter scheme was not tried, the experience we acquired in the simulation

described strongly suggests that it is very much feasible. We will return to this aspect in

Chapter 6.

51

Thirdly, note that the simulation requires the use of only one agent, the one that will

represent the state of the Turing machine. In fact, we could have used a population of

agents, but their �rst B-state would all have to be di�erent from the ones representing the

set of states of the machine; in this sense the population would be completely ine�ective

in terms of the computation being performed. As a matter of fact, not only the concept

of (an e�ective) population is absent from the simulation, but also the built-in concept

of reproduction; and, to some extent, the selection process was only partially used. Note

also that Turing machines are models of serial computation, whereas cellular automata

are essentially parallel devices. The situation of simulating serial computation with a

parallel one seems somewhat contradictory, as if resources were being badly used. The

point these considerations are driving at is the suggestion that, if it is at all possible to

embed some kind of parallel model of computation within Enact, the system itself seems

to be providing the clues towards this achievement, namely, the integration of the concepts

of population and reproduction with that of agent-environment interaction. This point

will be addressed in detail in Chapter 5.

4.5 Conceptual Issues

Arti�cial-life worlds have been created in various kinds of cellular worlds, as can be seen in

[Langton et al. 1992]. However, cellular automata have a very distinctive characteristic:

the clear notion of space provided by the cellular space. Naturally, it is always possible

to provide a clearer notion of space in other cellular schemes, but while it would have

to be implemented in these schemes, it is intrinsic to the de�nition of cellular automata.

Now, from our point of view, the major achievement of the system is its provision for a

uni�cation of all these distinct processes which are necessary for the arti�cial-life activity.

In other words, all processes mentioned previously, namely,

� reproduction;

� selection;

� agent-environment interaction;

� agent-agent interaction;

� dynamical environment, and

� development;

are all integrated through the same underlying dynamics. And the primary reason for

that is that all processes are mediated by the same space, the cellular space. It would

have been much more di�cult to achieve such a feature in another conceptual framework,

where the notion of space would not be as distinctively clear as in cellular automata. A

promising possibility of this uni�cation is that the mathematical analyses of the processes

going on in a world set-up may become signi�cantly more tractable.

As advanced in Chapter 2 Enact has been inspired by the work of Varela, such as

in [Varela 1989], in terms of some high-level notions implied by the latter, which Enact,

as an arti�cial world attempted to re
ect. These include: the dynamic nature of the

processes involved in natural phenomena; order arising from the self-organising properties

of the dynamics, rather than from the concept of a prede�ned problem whose solution

is evaluated by some, similarly prede�ned, �tness measure; and the non-separability of

agents and their environment, due to their joint historical coupling. Implicitly these

themes will reappear in the forthcoming chapters. But only in the background.

52

4.6 Summary

In this chapter we showed how Enact can be conceived of as a programmable virtual

machine, and how to go about programming it.

By providing an in-depth discussion on the implementation of a Turing machine as

a result of the interaction agent-environment, all necessary issues involved in the use of

the system for setting-up arti�cial worlds have been addressed. In particular, we have

discussed the central concept underlying its use, namely, the addition of instantiated state

transitions. As far as I am aware, Enact is the �rst cellular-automata-based system to

support the aspect of programmability in such an explicit way.

As pointed out earlier, in order to use the system knowledge of the high-level issues

discussed is not su�cient; an understanding of the role of the state transitions in the

global dynamics is also important. In this respect, it should be clear that we did not

intend to provide an \user's manual" about the set of state transitions of the system.

Based on the implementation of the Turing machine we then started the discussions

involving Enact and computations, paving the way for the next chapters.

53

State Transitions Supporting the Hardware Instantiated Role

E E E

E M

L

T

L

E E=T

br

) T

0

E E E

E M

0

T

R

E E=T

br

) T

0

E E E

E M T

r

E E=T

br

) T

r

#

E

b

#

M

L

) E

�

#

E

b

#

M

R

#

) E

�

#

E

�

#

M

L

#

) E

b

#

E

�

#

M

R

) E

b

Environmental

Dynamics

E E E

�

E 0 T

L

E E E=T

d

) M

L

=0

E E E

E 0 T

E E E=T

d

) 0=M

def

E

�

E #

M

0

T

R

B

#

) M

R

E E #

M T #

#

) M

def

#

M

R

B #

#

) M

0

#

M B #

#

) M

def

Table 4.3: State transitions supporting the hardware of the Turing Machine. The

transitions in the �rst subcolumn of the �rst column support the mechanism that allows

the head to move leftward, while the transitions in the other subcolumn allows the

rightward move of the head. The cells marked with the symbol # mean that their state

is irrelevant in these neighbourhoods. The subscript def refers to the default value used

in the cellular automata. The subscripts r and br refer to the geographic position of the

cell in its neighbourhood. The background state is represented by 0.

54

General Transitions Example Instantiated Role

E

�

E

i

#

0 T

0

B

i

#

) T

L

E

�

0

E

#

0 T

0

B

2

#

) T

L

E # #

E T

�

c

M=B

#

d

) T

c

=(T

+

c

=0)

E

�

E

i

#

T

L

B

i

M

0

#

) B

ii

E

�

0

E

#

T

L

B

2

M

0

#

) B

2

Adult Body

Development

#

E

�

E

i

#

T

L

B

i

M

0

) E

ii

#

E

�

0

E

#

T

L

B

2

M

0

) 0

E

Environmental

Dynamics

E

�

E

i

#

0 T

0

B

i

#

) T

R

E

�

0

E

#

0 T

0

B

0

#

) T

R

E # #

E T

�

c

M=B

#

d

) T

c

=(T

+

c

=0)

E

i

#

M

R

B

i

#

) B

ii

0

E

#

M

R

B

0

#

) B

1

#

6= M M B

r

#

) B

r

#

E

i

#

M

R

B

i

) E

ii

#

0

E

#

M

R

B

0

) X

E

Environmental

Dynamics

0 0 0

T

0

B

F

T

0

0 0 0

) 0

0 0 0

T

0

B

4

T

0

0 0 0

) 0 Selection

Table 4.4: General representation of the state transitions of the Turing machine. The rows

are shown in three sets; the �rst set refers to the head moving left, while the next refers

to the rightward movement. The isolated transition on the bottom shows the halting

condition, which should apply to each and every �nal state B

F

. The cells marked with

the symbol # mean that their state is irrelevant in these neighbourhoods. The subscript

r refers to the geographic position of the cell in its neighbourhood. The background state

is represented by 0.

55

Chapter 5

COLLAPSING A COEVOLUTIONARY PROCESS INTO

A COMPUTABLE FUNCTION

1

5.1 Introduction

Aligned with the recent tendency towards the conception of computational systems gleaned

from biology, and the use of computational explanations in biological reality, a model of

computation was developed that is deeply entrenched in the concepts typically associated

with evolutionary computation. This chapter will present this result.

Expanding on the Turing machine implemented in Chapter 4, this chapter rebuilds it,

but now relying on the entire population of agents. The intent is to show how the entire

arti�cial life activity of the system could be considered as a computational machine.

Although the model will be presented in the context of Enact, its conceptual basis

is not restricted to the current implementation. In addition, without loss of generality

the presentation will be centred on the computation of a function, that is, a computation

that requires an input and such that, each valid input always yields a uniquely determined

output. In this chapter, any computation will be considered misperformed if, for a valid

input (a \question" that has a \correct" answer), the corresponding output is not returned

(the \correct" answer is not entailed). Finally, since the model of computation will be

based on a modi�ed Turing machine, it should be clear that any computation will be

performed by means of a sequence of computational steps, represented by each triplet of

the state transition table of the corresponding machine.

The chapter is organised as follows. The next section and the subsequent present the

model; �rstly, as an overview, and secondly, in detail. The latter is the implementation

of the model in Enact, realised by a mechanism based on the components of the same

Turing machine from Chapter 4. Finally, we sum up the discussions by emphasising the

most signi�cant features of the model, in particular how it can give rise to a model of

coupled computations.

5.2 The Model of Computation at a Glance

The model of computation will be presented by implementing a particular function that

will be de�ned in terms of a modi�ed Turing machine. The process can be roughly

described as follows. Initially the cellular space contains a population of identical agents

and a set of interaction sites. Each agent's memetype represents the input of the function

being computed; the phenotype represents the state of the Turing machine, and is also

related to the way the agent moves. Each interaction site provides the integration between

1

A version of this chapter was accepted as [de Oliveira 1995].

56

Current Symbol Read (K

�

i

) 7! (E

ii

;K

ii

; LR)

State (E

ii

) 0

K

1

K

X

K

Y

K

K

b

K

f

E

0

(E

1

;X

K

; R) (�; 0;�) (�; 0;�) (E

3

;Y

K

; R) (�; 0;�) (�; 0;�)

E

1

(E

1

; 0

K

; R) (E

2

;Y

K

; L) (�; 0;�) (E

1

;Y

K

; R) (�; 0;�) (�; 0;�)

E

2

(E

2

; 0

K

; L) (�; 0;�) (E

0

;X

K

; R) (E

2

;Y

K

; L) (�; 0;�) (�; 0;�)

E

3

(�; 0;�) (�; 0;�) (�; 0;�) (E

3

;Y

K

; R) (E

f

;K

b

; R) (�; 0;�)

E

f

(�; 0;�) (�; 0;�) (�; 0;�) (�; 0;�) (�; 0;�) (�;�;�)

Table 5.1: Transition table governing the sequence of steps of computation that allow

the associated Turing machine to recognise the language � = f0

n

1

n

j n � 1g. The

0-state corresponds to Enact's background state and should be distinguished from 0

K

,

the memetype state that represents the character 0 of the language. The third element

of the triplets stands for the head moving to the left or to the right in the corresponding

step of computation.

the TM state and the tape con�guration, thus enabling the computation to be performed.

At each interaction site one step of computation can be performed. In parallel to this

process the way the agents move may be altered at each site.

Depending on the world set-up, as de�ned by the experimenter, it may be that the

computation is not correctly performed; by including appropriate transitions for selection,

all the agents related to these incorrect computations are killed o�. Analogously, if an

agent is subjected to the correct computation, it becomes immortal, and therefore, insen-

sitive to any further interaction site. Therefore, there is an unescapable interdependence

on each other's pattern of movement in the sense that, whenever an agent has survived

it must have gone through a coupled history of movement that allowed its being in the

right interaction site at the right step of computation. Whenever an agent has survived

and is no longer a�ected by any interaction site, the function has been computed and its

result is to be found in the agent's current memetype.

If the initial population eventually becomes extinct, a new trial has to be started, with

a di�erent initial condition, i.e., di�erent number of interaction sites or initial agents;

di�erent spatial disposition of sites or initial population; or a di�erent set of interaction

sites. It should be remarked that the computation is only performed in the limit, that

is, as a population vanishes another has to be tried, and so on, without any a priori

guarantee of when (at least) one immortal agent (as de�ned above) will be found. But if

the computation is correctly performed, the immortal agent will be found.

5.3 The Model of Computation in Detail

In this section we provide a detailed description of the model of computation underlying

Enact. We go about it by implementing a mechanism that computes a particular function

in terms of a Turing machine computation; the generalisation to an arbitrary function

is straightforward. Initially we describe the mechanism that enables a state change of

the TM; and then, the mechanism that supports the manipulation of the TM tape and

head. Afterwards, these mechanisms are applied to the implementation of the function

that recognises the language � = f0

n

1

n

j n � 1g. It is worth observing that this function

is the same one used in Chapter 4, where it was used in the context of exemplifying the

57

Turing Machine Implementation in Enact

Tape Memetype

States of the TM Phenotype

Position of the head K

�

Blank symbol of the tape K

b

Mechanisms to move the head Agent-environment interaction

and to perform the computation in periodic background

Table 5.2: Correspondence between the constituent elements of a Turing Machine and

the states currently being used to implement it.

usage of Enact.

2

5.3.1 Transforming the State Transition Table

In order to implement a TM according to the requirements of the current implementation,

the original state transition table of the function being implemented (as presented in

[Hopcroft and Ullman 1979]) has to undergo a transformation. Table 5.1 shows the

outcome of the transformation. The main aspects to be noted are as follows.

First, all state transitions that do not belong to the state transition diagram of the

original function are represented by (�; 0;�). They represent the steps of computations

that do not belong to the pathways that lead to the correct computation of the function.

When an agent performs one of these steps of computation, the agent has gone through

a developmental pathway that will not lead to the end of the computation; therefore,

the agent should be killed o�. For this reason the written state on the tape is \0", the

background state, which, by means of the built-in selection, automatically exterminates

the agent.

Second, there is an extra column in the table when compared with the original state

transition table (from [Hopcroft and Ullman 1979]). It corresponds to the additional

tape symbol K

f

, that is linked to E

f

. E

f

is the unique �nal state of the TM. K

f

is a

tape symbol that should be already in the tape, which will be reached when the �nal

state E

f

is achieved. When the computation reaches this combination of symbols the

computation has �nished, and therefore neither the TM state nor the content of the tape

should be allowed to be modi�ed further. This situation is represented in Table 5.1 by

the occurrence of (�;�;�) at the intersection of K

f

and E

f

.

5.3.2 General Aspects

The implementation presupposes that the state of the Turing machine is represented

by the agent's phenotype, whereas the agent's memetype represents the tape; this and

other correspondences between a TM and its current implementation in Enact is shown

in Table 5.2.

2

Which was done by implementing a Turing machine where a single agent, representing the state of the

machine, interacted with a tape which was built out of a sequence of environmental states. In addition,

the agents were much simpler, since their bodies were made-up of an undi�erentiated type of cell.

58

� � � � �

� E

i

E � �

T M P

i

G K

+ E 7! E

ii

� � � � �

� E

i

E

ii

� �

T P

i

M G K

E

i

7! E

ii

E

ii

7! E

LR

+ P

i

7! P

ii

� � � � �

� E

ii

E

LR

� �

T P

ii

G M K

. &

Figure 5.2.a Figure 5.2.b

Figure 5.1: Representation of the �rst phase of a step of computation. The phase is

characterised by a state change in the associated Turing machine of the computation.

The dots represent the background state.

The requirement for inde�nitely extensible tape { as �rst discussed in Subsection 4.2.2

{ also has to be raised herein. In the current context this requirement is achieved by using

an arbitrarily long agent (with consequent arbitrarily long memetype), according to the

speci�c computation at issue. Naturally, there is no problem in achieving that, since the

dynamics of Enact can handle agents with arbitrary size.

As the computation is performed it is necessary to mark the position of the head in an

agent's memetype. Unlike the way we proceeded in Chapter 4 (where a special symbol

moved along the agent's body so that its position at any time indicated the next tape

symbol to be read), in the current case we point at the symbol to be read by means of

the association of each K

i

-state of the memetype, to a corresponding K

�

i

-state that marks

the head position on that memetype cell.

3

In order to make the explanation clearer we divide the operation of the machine into

two phases: one, where the state of the associated Turing machine is changed; and the

other, where a symbol is written on the tape and the position of the head is modi�ed.

The former is illustrated in Figure 5.1 and the latter in Figure 5.2. For present purposes,

not each and every detail of the implementation is relevant; the reader is recommended

to �nd in Chapter 4 all the information needed to fully understand the details of the

3

Such a change of approach yields a neater implementation because it illustrates another style of pro-

grammimg, and because it is clearer than the one the former approach would have led to; however, it

is less economical due to the increased number of states.

59

Figure 5.1

. &

� � � �

� E

ii

E

LR

�

K

s

M K

j

K

�

i

+ E

LR

7! E

L

� � � �

� E

ii

E

L

�

K

s

K

j

M K

�

i

E

L

7! E +

K

�

i

7! K

ii

K

j

7! K

�

j

� � � �

� E

ii

E �

M K

�

j

K

ii

M

� � � � �

� E

ii

E

LR

� �

K

s

M K

j

K

�

i

K

k

+ E

LR

7! E

R

� � � � �

� E

ii

E

R

� �

K

s

K

j

M K

�

i

K

k

+

� � � � �

� E

ii

E

R

� �

M K

j

K

�

i

M K

k

+

� � � � �

� E

ii

E

R

� �

K

j

M K

�

i

K

k

M

+

� � � � �

� E

ii

E

R

� �

K

j

K

�

i

M K

k

K

n

E

R

7! E +

K

�

i

7! K

ii

K

k

7! K

�

k

� � � � �

� E

ii

E � �

K

j

M K

ii

K

�

k

M

(a) (b)

Figure 5.2: The second phase of a step of computation, where a symbol is written on the

tape of the Turing machine and the head of the machine moves a step on the tape. The

dots represent the background state.

60

implemented mechanisms. Therefore, it is su�cient to note the following:

� Both �gures feature snapshots of the same set of cells as an agent interacts with a

set of E-states. The various snapshots represent the stages that are needed for the

various operations associated with a step of computation.

� All alterations that occur in the agents take place at interaction sites composed of

a horizontal pair of contiguous environmental cells. The state (E) of the right-hand

cell is the same for all sites and, although it is modi�ed as one step of computation

is performed, the cell returns to the original state after the end of this step. The

state of the left-hand cell may be modi�ed as a result of the step of computation.

The right-hand cell of the interaction site will be referred to here as the template

cell.

� All state transitions to take place at each stage are shown beside the downward

arrows that link successive stages. The state transitions on the left-hand side of the

downward arrows refer to the ones which are necessary to implement the \hardware"

of the Turing machine. The transitions represented on the right-hand side refer to

the \program" being executed.

� All bold-faced environmental states refer to state transitions de�ned by the experi-

menter. All the others are auxiliary states used as part of the machinery that allows

a step of computation to be performed.

� Whenever a memetype state becomes the next tape symbol to be read, it becomes

\starred", e.g., K

i

becomes K

�

i

.

� Whenever a a doubled letter is used as the subscript of a state (as in P

ii

), this

means that the original state, before the state transition, was characterised by the

equivalent state with a single letter subscript (i.e., P

i

).

5.3.3 State Change of the Turing Machine

Figure 5.1 shows the state change of the TM. Whenever an interaction site relates to an

agent in a state con�guration as shown at the �rst step of the �gure, the state change

process of the TM is triggered.

According to the agent's phenotype, E is changed into E

ii

and eventually substitutes

the original E

i

of the interaction site. The former state change should take place according

to a prede�ned mapping which should preserve the diversity of E

i

states originally present

in the space; the actual mapping used in the current implementation is shown in Table 5.3.

At the same moment, the template cell changes into the state E

LR

, setting the conditions

for a move of the TM head later on. The latter will happen, or not, depending on the

step of computation in consideration.

P

i

E 7! E

ii

P

0

E

0

P

1

E

1

P

2

E

2

P

3

E

3

P

f

E

f

Table 5.3: Environmental

dynamics from E to E

ii

. E

ii

is a mirror of P

ii

.

61

P

i

7! P

ii

E

i

P

0

P

1

P

2

P

3

P

f

E

0

P

1

P

2

P

2

P

f

P

f

E

1

P

3

P

1

P

0

P

3

P

f

E

2

P

1

P

2

P

2

P

f

P

f

E

3

P

3

P

1

P

0

P

3

P

f

E

f

P

0

P

1

P

2

P

3

P

f

Table 5.4: Adult phenotypic development

of the agents P

i

7! P

ii

. The new

phenotypic state P

ii

is given for each value

of E

i

and P

i

. Note that E

0

and E

1

are respectively equivalent to E

2

and E

3

;

also, that P

f

is always preserved, i.e., not

a�ected by E

i

.

The state change of the TM also occurs during the last stage shown in the �gure. This

is the state change of the agent's phenotype, by virtue of its current state and the original

E

i

of the interaction site. Table 5.4 shows the details of such a state change as used in

the implementation. In order to prevent too strong a selective pressure over the agents,

the actual state transitions were chosen so that all of them are circumscribed to the state

transition diagram of the TM; therefore, the actual state transitions of the P -states, as

expressed by the columns of the table, conform to the state transition diagram of the TM,

as shown in Figure 5.3.

Since it is under the presence of E

ii

that all actions on the tape are performed (includ-

ing the displacement of the head), E

ii

has to unequivocally mirror P

i

; otherwise, those

actions would not be performed as they should, according to the step of computation in

consideration. For this reason the mapping in Table 5.3 is one-to-one.

3 f

0

1 2

Figure 5.3: Representation

of all the possible state

transitions.

.

-

-

-

-

-

-

P

P

P

P

Pq

�

�

�

�

�

��

�

��

X

X

X

X

X

X

Xz

G

i

T

i

K

�

i

P

i

E

i

P

0

i

E

ii

K

�

j

K

ii

P

ii

T

ii

Figure 5.4: Dependence between the

states involved in two successive steps

of computation.

5.3.4 Tape and Head Manipulation

Figure 5.2 shows the details of the manipulation of the TM tape and head. Figure 5.2.a

refers to a leftward movement of the head, while Figure 5.2.b refers to a rightward move-

ment. The former case is characterised by the symbol E

L

which E

LR

is changed into, while

in the latter case E

LR

gives rise to E

R

.

We see that both situations depicted in the �gure present a high degree of analogy

with each other. Both processes start with the same kind of state transition, the one that

triggers the head movement in the appropriate direction. Also, after a step of computation

has �nished, E is restored in both cases, as mentioned earlier in this section. Finally, only

62

at the last stage of the process is the new position of the TM head de�ned, and the new

symbol written on the tape. It takes longer to accomplish the right-hand side process

because the agent has to be in an adequate position with respect to the template cell, so

as to create the conditions for the desired actions on the tape.

The state transitions that implement the mechanisms described above are summed

up in Tables D.1 and D.2 (both shown in Appendix D.1), which respectively account for

the hardwired mechanisms and for the state changes that are speci�cally determined by

the state transition table of the function being computed. The state transitions which

are centred in the �rst column of those tables apply to both the rightward and leftward

movement; the ones the appear only on one side (right-hand or left-hand) uniquely apply

to the movement corresponding to this side. The occurrence of the symbol E

LR

which

has been omitted here so far, should be noticed in the tables. It is a state of the template

cell that results from E

LR

, when the head of the TM should not move in either direction

(left or right), corresponding to the cases (�; 0;�) and (�;�;�) as shown in Table 5.1.

The dependences among the state changes associated with an agent and with the

interaction sites, as discussed in the current and the previous subsections, are shown in a

compact form in Figure 5.4. The �gure displays those states according to the others they

depend upon. For instance, P

ii

is represented as depending on E

i

and P

i

, following the

details of Table 5.4.

5.3.5 Halting Condition

At each environmental interaction the action on the tape will always be performed ac-

cording to the current state of the agent, as de�ned by its phenotype. But the state

change is determined by the E

i

-state of the interaction site. If the latter state is one that

leads to a phenotype state that does not match the corresponding actions of the tape and

head, then this step of computation will have been misperformed. The next environmen-

tal interaction of the resulting agent will therefore correspond to the (�; 0;�)-triplet of

the state transition table; consequently, selection will wipe out the agent as a result of

that interaction.

The only way an agent can survive an interaction with an arbitrary site is the situation

where its phenotype state is one of the �nal states of the computations, and the position of

the head is in the memetype �nal state. In Table 5.1 those states correspond, respectively,

to E

f

and K

f

, and the situation itself corresponds to the (�;�;�)-triplet.

T P

0

G

i

0

�

K

0

K

1

K

1

K

K

b

K

f

T

Output agent

Input agent

T P

f

G

i

X

K

X

K

Y

K

Y

K

K

b

K

�

f

T

Figure 5.5: State con�guration

of agents that represent a correct

input and the corresponding

output of the computation. The

input agent represents a string

that is recognised as belonging to

the language �.

From this it becomes clear that, whenever the computation has �nished, some agent

has become \immortal". But it may be the case that one or more agents reaches a pattern

of movement that keeps them away from visiting any interaction site. Even if these agents

are not related to the end of a computation, in these situations they become immortal;

63

but it should be remarked that this in fact a condition of pseudo-immortality, insofar as

the agent would not survive another interaction. The �nal test for checking the end of

the computation is, therefore, to subject the \suspected" agent to any interaction site.

Figure 5.5 shows an agent that represents an input string that belongs to the language

�, and the same agent after it has been subjected to a successful computation, i.e., the

string was accepted as belonging to �. We denote that input a correct input; and the

corresponding agent, the input agent. Whenever an output agent, like the one shown,

appears, its initial con�guration has necessarily been that of the input agent; however,

the opposite does not hold: the existence of an agent with the correct input does not

imply that it will always \develop" into the output agent shown. Naturally, the latter

will depend on its lifetime history of interactions. Hence, the only way to perform a

computation is by continuously re-initialising the cellular space, so that, at a certain

time, an immortal agent is given rise to. At each re-initialisation the possibilities are the

modi�cation of the initial number of agents and interaction sites, their spatial distribution,

or the sites themselves. Evidently, at each re-initialisation the initial agents are preserved,

since they constitute the input data for the computation.

The previous issue leads to the matter of making explicit in which situations should

the experimenter re-initialise the cellular space. There are two of them:

4

� Environmental Damage. There may be irreversible damage of the environment, a

suggestive metaphor for the situation that would block the agents' development in

such a way that none of them would ever be able to develop into the immortal

individual that characterises the end of the computation. In the context of the

implementation this may occur because, as a result of the state transitions, the

initial set of E

i

states may change in such a way that can preclude a certain P

ii

,

required for a particular step of computation, from appearing in an agent.

� Population extinction. An entire population may disappear due to the individuals

following computational pathways that do not lead to the end of the computation.

This is due to the di�culty of an agent visiting the right sequence of environmental

sites in the right order.

Summing up, the computation is achieved if and only if, for some initial con�guration

of the cellular space, at least one immortal agent emerges, one that is able to survive to

a sequence of interaction sites of an arbitrary number. As long as that individual is not

found the cellular space has to be re-initialised.

5

There is no way to know beforehand,

for an arbitrary input agent, when the immortal individual will be found, that is, when

the computation will �nish. In other words, the computation is only achieved in the limit

of successive re-initialisations of the cellular space.

5.4 The Character of Reproduction

5.4.1 Impossibility of Automatic Generation of Inputs

Re-initialisations are necessary only to provide input agents that represent a correct input.

In these occasions one could be led to think that reproduction could be adequately set up

4

The condition of pseudo-immortalily mentioned earlier requires the system to be re-initialised. However,

this situation can be avoided by properly designing the cellular space, being su�cient to place the

interaction sites in such way that each line and each row of the cellular space have at least one interaction

site. Because this situation can be totally avoided it has no major implications.

5

It is not really necessary to wait for the entire population to vanish before adding new input agents

to the process; an alternative strategy is to keep feeding them into the cellular space, analogously to a

steady-state genetic algorithm.

64

in order to allow any newborn to be created with the required input con�guration; this

would provide an automatic means for generating input agents, freeing the experimenter

from the task. The process would carry on until an immortal agent came about.

6

Reproduction would act by alleviating the problem of population extinction mentioned

above. The more e�ective its action would become, the less frequent the population would

get extinct prior to the emergence of an immortal individual.

With the ability to continuously re-initialise itself, the autonomy facet of the computa-

tional process would signi�cantly increase. In Enact, however, such an idealised situation

is not generally possible. This is a consequence of the way reproduction takes place: for

example, the locality constraint imposed by the neighbourhood being used avoids more

than three adjacent body cells of an agent appearing in any state transition. If, on the

contrary, the neighbourhood of the cellular automaton did not have such a kind of re-

striction, reproduction could be arbitrarily directed towards the creation of any prede�ned

newborn.

In a generalisation of the model, so as to remove this particularity (among others) of

the implementation, the role of reproduction could be extended as above. But despite

the gain in autonomy that would accrue, the manual action of the experimenter would

still be needed. After all, the problem of environmental damage, being fully due to the

history of interactions between the agents with themselves and with the environmental

sites, is beyond the experimenter's control.

5.4.2 Automatic Generation of Non-Intermediate Steps of Computation

Notwithstanding the impossibility aforementioned, it is possible, however, to ensure the

automatic generation of newborn agents that will have, among them, others that represent

the correct input. Even stricter than that, it is possible to guarantee that, additionally,

no newborn will be generated that represent an intermediate step of computation. The

latter condition is already partially guaranteed by selection insofar as the (�; 0;�)-triplets

ensure the pruning of all computational pathways that do not belong to the computation.

What is still lacking is a way to also prune all pathways that belong to the computation

but that did not start at its initial con�guration.

Consequently, all newborn agents whose state con�guration does not conform to the

initial state-tape con�guration of the corresponding TM should not be able to survive.

In terms of Table 5.1, the speci�c conditions that would have to be guaranteed are that

it must be possible to create any newborn with state con�guration corresponding to

the topmost, leftmost element; and that all the others must not survive a visit to any

interaction site.

In order to ensure that the newborn's phenotype has the initial TM state, it is su�cient

to instantiate the reproductive state transition that creates the phenotype, so as to impose

that only the initial TM state be created. In order to ensure that the tape is allowed to

have the initial (correct) con�guration, it su�ces to guarantee that the initial tape symbol

that the TM head should read at the start of the computation, be created in a uniquely

determined way. For example, let us consider the recognition problem discussed so far.

The latter condition can be translated into the state transitions shown in Figure 5.6.

The �rst is the instantiated form of another, original from Enact, that creates the �rst

memetype cell; the state transition means the corresponding cell can only take on the state

0

�

K

, which represents the head position at the start of the computation. All the other

memetype cells can assume any state, except the \starred" ones, since they represent

the initial head position being on another state di�erent from 0

�

K

. Note that the state

6

The immortal agent should be made sterile to prevent reproduction from being pushed any further.

65

transitions shown do not guarantee that all newborn agents will represent the correct

input. But the ones that do not, will certainly be killed o� as they visit an interaction

site.

K=M 6= E

G 0 E

6= E K=M #

) 0

�

K

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

All the other state transitions

that lead to K

i

.

) f0

K

; 1

K

,K

b

,K

f

g

Figure 5.6: Speci�cation of

a reproductive process that

would yield newborn agents

that represent the initial state

of the computation. All

the ones representing inter-

mediate steps are prohibitted.

The # represents any state

category.

This aspect of reproduction can be generalised for an arbitrary computation. The

rationale is the same as for the example above. The remaining point is how to ensure

that the initial tape symbol the TM head should read, be created in a uniquely determined

way. The �rst state transition of Figure 5.6 ensures this condition for the example above

because the presence of the genotype leaves no room for any ambiguity to occur. A fact

that can be veri�ed for this example is that the leftmost position of the TM head is

precisely the position of the �rst symbol being read at the beginning of the computation;

this is the feature that is really being explored here. Although this feature does not hold

true for an arbitrary computation, it is always possible to modify the state transition table

of the original computation, so as to re
ect that; it is this modi�cation that allows the

generalisation meant above. The fact that the new, modi�ed table will have additional

states or tape symbols is just of a practical consequence, in terms of the computational

process becoming more ine�cient. But the ability to perform the computation is not

altered.

5.5 Implication

5.5.1 From a Model of Computation to a Model of Coupled Computations

We have discussed the implementation of a population of movable agents that undergoes

an individual dynamical process of development, whose main feature is the dependence

upon their lifetime history of interactions with each other and with the interaction sites

present in their world. Some developments are prohibited by means of a prede�ned,

built-in selection process; any agent that follows these developmental pathways is killed

o�. The ones that manage to avoid them, become immortal. Whenever a population

vanishes, another has to be created, and the process iterated until an immortal agent

emerges. When this happens we can say that the surviving agent was subjected to a

dynamical process that can be interpreted as a computation. If the computation is a

function, then its result is to be found in the agent's memetype. This function is nothing

more than a collapsed representation for the entire dynamical process de�ned by the

arti�cial-life processes and the action of the experimenter.

But there is another possibility. Instead of �xing the state transition table and the

inputs in order to obtain appropriate outputs, one could take the alternative perspective

of trying to infer the function that can be associated with a set of outputs, given a prior

knowledge of the inputs. Putting it in other terms, by collecting a number of outputs

66

{ agents that have been detected as having completed a computation { and by having

an unique description of the possible inputs, one may be able to infer a function that

consistently links output to input.

7

But a further step can be given. Suppose now that the state transition table is mod-

i�ed by adding some extra triplets, that is, by changing some of the (�; 0;�)-triplets to

others that represent valid steps of a computation. Additionally, assume that each step

of computation is made dependent also on the actual interaction sites, much like the sit-

uation described earlier in the chapter. With this procedure, pathways that would have

been pruned in the original situation, will now be preserved; hence, alternative pathways

towards the �nal states become available. And what determines which pathway will be

laid down by an agent is its lifetime history of interactions.

The bad consequence is that the original model of computation that this chapter

described will have been lost. The good news is that a model of coupled computations

will have been established. One that is based on a clear notion of space, and integrated

with the processes of an arti�cial-life world. It is worth remarking, however, that it is

not being implied that any arbitrary Enact world can demonstrate computations. In fact,

only in restricted, well-de�ned worlds can we refer to computations in some useful way.

This point will be made clearer in Chapter 6.

5.5.2 Coupled Computations

The important aspect of space is that it can be used to integrate the coupled computations,

with a substantial gain in the autonomy of the process. The point is that the need for any

sort of centralised process { that would be in charge of determining which components of

the system would have to be used at a certain moment { becomes unnecessary. In fact,

since it is the movement of the agents that determines the outcome of the computational

coupling, and movement directly depends on the availability of space, it is clear that

space is the ultimate determinant of the emergence process. So, the coupling is achieved

without any preconceived target in mind; it is the dynamics of the system itself that

determines what comes up, in a totally autonomous way.

Since the system is an arti�cial-life world, the process of emergence is couched in

terms of the arti�cial-life processes it supports, like development, selection, and so on.

The advantages of this approach are: an increased autonomy (due to space providing the

support for coupling); robustness (due to using Turing machines); the possibility of incor-

porating evolutionary themes into the coupling scheme; the ability to explore functional

self-organisation in limited regions of the space of computable functions (by carefully

crafting the changes in the state transition tables); the support for linking functional

self-organisation to the issue of phase-transitions (like the study of critical phenomena

involved in the pathways that lead to one computation or another); among others. These

themes are analysed in greater depth in the next chapter.

5.6 Conclusion

We have presented a model of computation that is couched in terms of arti�cial-life

processes de�ned in a space. The computations are de�ned through the developmental

process of an agent's lifetime history of interactions with its environment, and with the

population of agents in its world. The issue of using well-de�ned notions of space as an

7

The use or not of reproduction is only related to the degree of autonomy that we associate to a run;

as we have seen in the previous section, the unique description of the inputs can be achieved in both

cases.

67

intrinsic part of a process of evolutionary computation has been used before, although

from other perspectives. For instance, [Sannier II and Goodman 1987] demonstrates a

technique for doing arti�cial evolution using computations such that their outputs are

expressed as patterns of movement of agents on a two-dimensional space; and in [Whitley

1993] an architecture was proposed to integrate the notion of space in cellular automata

with standard genetic-algorithms, but which is still under development.

The implementation that provided the basis for the explanation of the model has

cast the computational process in terms of its performance by the elements of a Turing

machine. Such an approach served to characterise the main model of computation in

Enact; yet, while the discussions were made in this particular context, all conclusions and

conceptualisations should be regarded as general. We have shown how to code the input

data in the agents; how to transform the state transition table of the original computation

into an appropriate format that makes it amenable to the model's features; and how to

identify that the computation has �nished. For this implementation, it was described

how to go about allowing reproduction to autonomously create a population of newborn

agents so that, whenever an immortal agent has emerged, it has necessarily been the

result of a developmental process over a newborn that represented a correct input (and

never an intermediate triplet of the computational pathway).

Because the model of computation relies upon a population, it is essentially parallel;

but we have not explored this alley in the chapter. Other features worth remarking include

its emphasis on the notion of computation as a dynamical process (linking phenotype and

memetype); and its stress on computation as taking place precisely at the interaction

between agents and environment. Most signi�cant of all, the model has the appealing

feature of being cast in terms of a biological metaphor that integrates such concepts as

population, genotype, phenotype, memetype, development, selection and environmental

interactions.

This integration is possible because all the processes share the same notion of space,

the cellular space, which is explored via the coupled movement of the population. Based

upon such a feature we showed that the model of computation discussed can serve the

basis for a model of coupled computations, an issue that will be addressed in detail in the

next chapter.

5.7 Summary

It was shown how the entire dynamics of a class of evolutionary systems can be used to

perform a computation. The argument was constructive by presenting a Turing-machine-

based set-up implemented in Enact. As a byproduct, the chapter also served to charac-

terise the main model of computation underlying Enact.

This model is essentially parallel, and relies upon the machinery de�ned by the arti�cial-

life processes. According to the model, a particular computation is considered to have

been performed, if and only if, for some initial population and environmental con�gu-

ration, at least one agent has developed into a state con�guration that is insensitive to

any further environmental interactions; in this situation, if the computation involved is a

function, this individual has the result. If the population ever vanishes, or if the environ-

ment becomes short of the resources needed for development, the cellular space has to be

re-initialised, and the process iterated.

The presentation relied on the implementation of a function that recognises a particular

context-free language. Implications of the model of computation were then discussed, in

particular the model of coupled computations suggested by it.

68

Chapter 6

COUPLING COMPUTATIONS THROUGH SPACE

1

6.0.1 Introduction

In the previous chapter the main model of computation in Enact has been identi�ed. It

was then suggested that models of coupled computations could be developed out of it.

This chapter describes what these models of coupled computation could be.

Basically they are de�ned in terms of a set of Turing machines that share with each

other one of their components (the tape symbols; their internal states; or their state

transition table). The chapter discusses in more detail the model in which the state

transition table is the shared component among the various machines. This model, if

conveniently constrained, provides a way to address the issue of coupled computations in

the context of Enact's coevolutionary activity; also, it opens the possibility of addressing

the issue of criticality phenomena in constrained spaces of computable functions.

6.1 Coupled Computations

Complex dynamical behaviours can arise out of the coupling of even a small number

of systems of the same kind, in particular when they are iterating. A variety of such

systems have been reported in the literature, such as coupled maps of various kinds,

cellular automata, etc. An interesting class of these systems is the one obtained as a

result of coupled computations.

Parallel computations normally refer to the cooperation of computational processes

towards the accomplishment of a well-known, prede�ned task. In coupled computations

however, the interest is on the emergent computation that comes out of it.

As we discussed in Subsection 2.3.2, depending on the model of computation being

used di�erent coupling schemes can be obtained. In particular, depending on the way the

components of a model of computation are partitioned, di�erent modes of coupling can be

established. For instance, by sharing memory between various von-Neumann machines,

a coupling scheme is de�ned that is distinct from another built up by sharing, say, one

of their internal registers. In the case of Turing machines, the natural partition would be

the following set of components: internal states, tape symbols, and state transition table.

In this chapter a conceptual framework for models of coupled computations is devel-

oped based upon the assumption that the computations are performed by a population of

processing agents whose structure is derived from Turing machines (TM). As a fundamen-

tal premise, the agents are embedded in a well-de�ned space which ultimately provides

constraints on the individual movements, thus enabling their autonomous behaviour. The

framework takes the form of a taxonomy, according to which Turing-machine components

1

A version of this chapter was published as [de Oliveira 1994b].

69

are shared among the processing agents. Following the presentation of the taxonomy, the

STA coupling model { the one that keeps the internal states and the tape as parts of

the processing agents { is picked out and further developed, its features and advantages

being stressed in relation to the other models. A key aspect of this model is that its

notion of computation can only be made sense of at the interaction between the agents

and their environment. Weak and strong versions of the STA model are then identi�ed.

Subsequently, a particular implementation of the latter is brie
y discussed so as to clarify

issues that appear in the context of the model; the actual implementation that is men-

tioned should be regarded as future work to be done. The resulting model { that also

has embedded in it the features of development and coevolution inherent to Enact { is

then discussed, in particular by contrasting its features with those possessed by some

well-known systems. The aim of the chapter is to discuss the issues that its theme gives

rise to; therefore, no actual computer run derived from a particular set-up of the resulting

model is shown.

6.2 The Role of Space

The implications of di�erent coupling schemes can be seen from various perspectives,

such as, the degree of perturbation one machine has onto another (for instance, sharing

a register versus sharing the entire memory space); or the adequacy of the scheme, when

it is considered as a model of some phenomenon (the model of computation used in the

Turing gas �ts nicely into the analogy of the Lisp-functions being the particles or objects

of the world, and the capability of evaluating the functions being the underlying physics).

Another perspective is the role of the space in which the coupling takes place.

Explicitly or not, some notion of space is embedded in any coupled computation

scheme. For instance, the notion of space used in systems that rely on coupled executions

of assembly-like languages, like Tierra ([Ray 1992]) and the Venus family ([Rasmussen et

al. 1990] and [Rasmussen et al. 1992]), is de�ned by the memory space of the computer

involved. The Terrestris system presented in [Davidge 1994] uses a population of register

machines that inhabit points on a two-dimensional memory, where they also exchange

data with each other. The space inhabited by the two-dimensional Turing machines de-

scribed in [Rucker 1993] is a lattice on the surface of a torus. Even in the context of

other applications rather than coupled computations, a number of systems have used

well-de�ned notions of space, such as in arti�cial life ([Werner and Dyer 1992]), neural

netwoks ([Roska and Vandewall 1993]), genetic algorithms ([Sannier II and Goodman

1987] and [Whitley 1993]) and robotics. In contrast, although the activity in the Turing

gas ([Fontana 1992]) has been metaphorically described as taking place in a \volume",

this is in fact an abstract, rather ill-de�ned space.

The crucial point about space is that it can be used as a very natural way to integrate

the coupled computations, the upshot of it being a substantial gain in autonomy for

the process. This is the alley to be explored herein. By autonomy I mean the lack of

centralised control, an intrinsic parallellism, and the fact that the agents involved have an

individual ability to act. It should be clear that this notion of autonomy I am subscribing

to is a simple, \intuitive", and non-technical notion; [Bourgine and Varela 1992] is a good

pointer to deeper, more technical aspects on the topic.

70

6.3 Coupling Turing Machines through Space

6.3.1 Assumptions and De�nitions

In this section and the next, models for coupling Turing-machine-based computations will

be discussed. All these models are based on a population of TMs such that:

� They are embedded in a space, thus making it possible to distinguish a TM from

its environment, that is, the rest of the space, apart from them.

� They have the autonomy to move in the space.

� Most of the environment is free for the TMs to move through.

� There is a special part of the environment, denoted by interaction site, that can be

reached by the TMs but not traversed by them.

� The only direct interaction between the TMs is one obstructing the way of another

as they move.

Let us consider the situations in which any of the main components of a TM (tape,

state transition table and internal state) is taken out of each member of the population,

and ascribed to the interaction site. This situation yields a coupling scheme between all

TMs in the population, insofar as any computation that is performed at them depends

on the content of the interaction site, which is shared among all the machines. Let us

denote the shared component as the coupling unit.

As a consequence of \disabling" a TM as above, the entities that are formed by the

remaining components can no longer be characterised as Turing machines; let us term

these moving entities { that can take part in a computation de�ned in terms of Turing

machines { agents.

6.3.2 Models of Coupling

Although the action of a state transition table only makes sense, by de�nition, at the

interaction between tape and head states, in a coupling scheme the table could well be

con�ned to the environment, to the agent, or to both at the same time (in which case it

can be thought of as being a part of the entire space in which environment and agents

are de�ned). In [Rucker 1993], for instance, the state transition table of the Turing

machines are internally de�ned in the organisms as a code in their genotypes (while the

two-dimensional tape is the entire environment inhabited by the organisms).

Depending on the choice of which one of the three components of a Turing machine

is shared among the others, nine distinct coupling models can be obtained. Figure 6.1

features three of them; the others are irrelevant for present purposes but can be envisaged

by considering the state transition table either in the environment or in the agent. In the

models shown the state transition table plays the role of the \physics" of the world that

creates the condition for a step of computation to be performed involving an agent. In

other words, the state transitions can be thought of as belonging to both the agent and

the environment. The unit of coupling resides in the interaction sites. One possibility

is the interaction site representing either the tape or the state of the TM; another is to

keep the tape and state as part of the same agent, while allowing the interaction site to

act as the \physical support" for the computations to be performed. These three models

of coupling are named, respectively, ToA (tape-only in the agent), SoA (state-only in the

agent) and STA (state and tape in the agent).

71

Tape

E

E

Tape

�

�

�

�

6

?

STT

TM state

STA Model

(State and Tape in the Agent)

E

Tape

�

�

�

�

6

?

STT

TM state

ToA Model

(Tape-only in the Agent)

�

�

�

�

6

?

(State-only in the Agent)

STT

TM state

SoA Model

Figure 6.1: The three models of coupled Turing machines, in which the state transition

table (STT) is part of both the environment and the agent; that is, it is part of the space

they are de�ned in. The agents are represented at the bottom and the interaction sites

at the top.

The essence of all models of interest here is that the coupling will happen according

to the coordinated movement of the population of agents in the space they are de�ned in.

As they move about, they interfere with each other's trajectories, leading di�erent agents

to di�erent interaction sites at di�erent times, in a totally autonomous and decentralised

fashion.

Because the ToA and SoA models fully share so fundamental parts of the structure of

a TM { its internal state and the tape con�guration { two major problems arise:

� Both models become too brittle in terms of their ability to support coupled com-

putations in any practical way. The outcome of the couplings would too often lead

to meaningless computations, much like the e�ect of arbitrarily putting together

pieces of code from a standard programming language.

� The process of identi�cation of the end of a computation becomes irremediably

impaired. The end of a computation requires that not only a �nal state is reached,

but also that the TM head points at a prede�ned symbol at the tape. Because the

internal state and the tape are always disconnected in both ToA and SoA, there is

no straightforward way to identify when a computation has been completed. The

only possibility is by fully inspecting the state of the world at each iteration; but

this is a trivially uninteresting situation.

So far we have considered the interaction site as a singleton. This has been done

because it is easier to convey the idea of coupling with a unique coupling unit. However,

multiple interaction sites could alternatively be used. The major consequence is that the

resulting coupling scheme would be even tighter, insofar as the interference possibilities

between agents and sites would certainly increase. Naturally, the problems mentioned

above for the ToA and SoA models would become even more critical.

6.4 The STA Model

Because of the problems aforementioned a case will be made in this section for the advan-

tages of using the STA model. First of all, let us assume that multiple interaction sites

72

are in use.

The role of the interaction sites is really twofold: they are an essential part of the

computation (for instance, by being the repository of the tape in the ToA model), and

they provide a spatial reference for when the coupling should e�ectively take place.

While in ToA and SoA the interaction sites already possess one of the de�ning com-

ponents of the TMs, in STA they do not, since tape and TM state are con�ned to the

agents. From this observation it is clear that the coupling in STA is not as as tight as

it is in the other two. Brittleness therefore has decreased, thus leaving room for multiple

interaction sites to be used. It is worth noting that this scheme is indeed more appeal-

ing than a single interaction site, insofar as it explores the parallel nature of the various

coupled computations.

Another consequence is that the problem mentioned above of the identi�cation of the

end of a computation is now solved. Whenever the individual has reached a �nal state

and the head of the corresponding TM is pointing at the appropriate last symbol, the

computation has �nished and the corresponding tape represents its outcome.

Finally, the STA model necessarily leads to a modi�ed Turing machine where, in addi-

tion to the standard TM components, the new dependence on the state of the interaction

sites would have to be made explicit.

2

In fact, two (equivalent) possibilities for creating

the new state transition table would be: the addition of the site state as a new entry

variable, thus yielding a three-dimensional table; or the modi�cation of the original table,

by replacing the TM state entry by a new entry formed by pairs of the two kinds of states.

The model thus has a \hint" of the ToA model, in the sense that the coupling scheme

works as though the interaction site would be the repository of a new state which the

steps of computation become dependent upon.

Depending on the extent of these table modi�cations, which are related to the degree

of coupling that is allowed for the interaction site, two distinct possibilities for the STA

model can be distinguished: the weak and the strong versions.

6.4.1 The Weak STA Model: only the form of the table is modi�ed

In the weak STA model the role of the interaction site states is to enable or not a step of

computation. That is, some sites would allow the step of computation to normally occur,

as de�ned in the state transition table, and some would prevent it, leaving the state-tape

con�guration unchanged at that point. At the same time, the state of the interaction

site might be modi�ed, according to the agents' con�guration. But no new entries in the

table would be created, keeping its original content the same. They would only have to

be modi�ed to re
ect the new table format.

Hence, coupling in the weak STA refers only to the fact of whether it is possible

for a step of computation to be performed as the result of an interaction. What is at

stake is the speed at which the (entire) computation will be performed, or whether it

will be completed at all (not getting stuck at some entry of the transition table). For

di�erent runs, any computation that starts with the same initial state-tape con�guration

will lead to a �nal con�guration that will be the same in all runs. In other words, all

computational pathways (sequences of steps of computation as de�ned by the entries

in the state transition table) are unique, regardless of their being related to a correct

computation or not. Naturally, this behaviour is nothing more than the one normally

expected from functioning programs written in standard programming languages.

By contrasting this weak version of the STA model with SoA and ToA models, it is

2

Naturally, it is possible to think of table modi�cations also in SoA and ToA; but while this would be a

deliberate action in them, it is a necessity in STA.

73

clear that while the coupling provided by the latter two is too tight (too much coupling),

in the weak STA scheme it is too loose (too little coupling). So, while the interaction

sites in ToA and SoA are primary agents of the coupling, insofar as they incorporate

fundamental components of the computations, the role of the interaction site in the weak

STA is simply one of enabler of a computation step. The desired degree of coupling should

be somewhere between the two extremes; one that would allow the computation steps to

become dependent, in a stronger way, on the state of the interaction sites.

6.4.2 The Strong STA Model: the table content is modi�ed

This stronger dependence means that the result of an interaction should be expressed not

only in terms of the possibility or otherwise of the corresponding step of computation

performed, but also in terms of which one it will actually be. That is, new entries should

be created in the state transition table with new actions corresponding to the new possible

interactions.

With such a kind of modi�cation of the transition table, a coupling scheme is achieved

that, depending on the sequence of interaction sites the agent comes across, the agent may

be led into a distinct sequence of computational steps, that is, into distinct computational

pathways. The major consequence is that, for di�erent runs, the same initial state-tape

con�guration may lead to distinct �nal con�gurations. And �nally, no computational

pathway is uniquely determined by its corresponding initial con�guration.

Assuming the table has been modi�ed, there is no unique way to traverse it. Naturally,

the model presupposes that it will take place through the coordinated movement of the

population of agents.

So, even though an experiment can be run with a single state transition table various

distinct functions can be identi�ed. How the transition table should be modi�ed is a

matter of implementation, the possibilities being the composition of state transition tables

from distinct, well-formed functions; the addition of arbitrary state transitions to the

state transition table of a well-formed function; or the mixing-up of state transitions from

whatever origin. The new table formed as above then has the potential to yield not only

the original functions that might have been used, but also others that are the result of

\interferences" between the individual contents of each one of the primitive tables, or the

individually added state transitions.

Summing up, what we have gained with the strong STA model is a tighter model of

coupling than the weak version, one that opens up the possibility of distinct functions to

emerge. But at the same time, the coupling is loose enough to provide us with a way to

identify the end of a computation.

6.5 The STA Model Embedded in Enact

Enact is a system that embeds the models of computation discussed here, in particular

the STA model, in either of its versions. In fact, the Turing machine implementation

described in Chapter 4 essentially uses the idea of the SoA model as it keeps the state

of the head in agent and the tape in the environment; also, in Chapter 5 we showed the

implementation of a population of Turing machines that would be able to act along the

lines of the strong version of the STA model.

The main feature of embedding the STA model in Enact is that it casts the issue of

coupled computations in terms of an arti�cial-life world. In this context, it is the lifetime

history of coupled movement of the population that determines what an individual agent

74

will develop into. And it is an agent's development that is interpreted as a function, the

�nal state of the agent being the outcome of the function.

In this section we discuss what is gained by implementing the strong version of the

STA model within Enact. No actual computer run derived from a particular set-up of the

resulting model will be shown; only the conceptual issues that come out of it will be of

interest for present purposes. It should be said that, in fact, we will rely on a generalised

version of the STA model, which will be characterised below.

6.5.1 Towards Probing a Region of the Space of Computable Functions

It should also be remarked that, as I made clear at the end of Subsection 5.5, that only

conveniently constrained world set-ups, provide a useful way to address the issue of cou-

pled computations in the context of Enact's coevolutionary activity. This subsection hints

at one such Enact world that is currently under analysis, but whose details are beyond

the scope of this thesis. In addition to clarifying points that come out of embedding the

STA model within Enact, this section should also be regarded as a pointer to a world

set-up that is yet to be e�ectively probed in the follow-up to the work reported in this

thesis.

6.5.1.1 Beyond the STA Model

Before explaining the world set-up, let us �rst generalise the STA model by going beyond

its de�nition in terms of Turing-machine-based computations, which is done by using

another model of computation. The point here is: let us assume that the initial state

con�guration of an agent's memetype is input data for a computation; let us also assume

that we know how to detect that a computation has �nished. When an output is observed

that is indicative of the end of a computation, the computed function { that we interpret

the agent having been subjected to { can then be inferred. This process can be regarded

as a generalisation of the STA model insofar as the following features are preserved:

� the input and output of the computations are con�ned to the agents;

� the interaction sites only de�ne a locus for the steps of a computation to take place;

� the physics of the world contains the process that is in the root of the computational

process (the \algorithm", so to speak); and

� the robustness of the scheme, with several functions being potentially able to emerge.

6.5.1.2 Rationale of the World Set-Up

The set-up relies on six state transitions and two interaction sites, as shown in Table 6.1.

Note that at each kind of interaction site only three of the state transitions can be trig-

gered, and also that, basically, the state transitions simply entail local operations over

pairs of states of the agent's memetype. While some of these operations are due to

individual state transitions, others require that a pair of state transitions be triggered

together.

Each time an agent traverses an interaction site it is subjected to a succession of those

local operations. As the agent successively traverses the various interaction sites of the

cellular array these compositions \accumulate" and eventually may converge and become

stable. Along this line it can be seen, for instance, that for any combination of state

transitions of only the E

+

-type, only monotonically increasing sequences converge and

become stable.

75

Instantiated State Transitions

[1]

K

i

j

K

i

>K

j

E

+

#

E K

j

#

#

) K

i

[2]

K

i

j

K

i

<K

j

E

�

#

E K

j

#

#

) K

i

[3]

K=G E 0

E K

i

E

+

0 E K

j

j

K

j

<K

i

) K

j

[4]

K=G E 0

E K

i

E

�

0 E K

j

j

K

j

>K

i

) K

j

[5]

M E 0

E K

i

E

+

0 E K

j

j

K

j

<K

i

) K

j

[6]

M E 0

E K

i

E

�

0 E K

j

j

K

j

>K

i

) K

j

Table 6.1: The complete set of instantiated state transitions for the world set-up

mentioned in the text. There are two types of interaction sites, characterised by a

cross-like shape, its rightmost cell being the one that di�erentiates the two types,

according to its state being E

+

or E

�

. As the interaction sites are traversed by the

agents, the latter become subjected to the instantiated state transitions.

By inspection of the cellular space, it becomes possible to determine when a systematic

pattern of activity has been established, in which case a function can be identi�ed.

The state transitions that use the E

+

-state provide a local bias in the dynamics of the

system towards monotonically increasing sequences appearing in the sequence of state-

values of an agent's memetype cells; analogously, the ones with the E

�

-state locally

bias the development of the agent towards monotonically decreasing ones. Naturally, at

a certain point in an agent's development, sorted sequences should come about in its

memetype, from which it would then become possible to refer to a sorting function that

was \applied" to the original memetype. This is indeed the case and, in fact, various

other functions can also be identi�ed, which are \close" { in the function space { to the

sorting function.

It should be observed, however, that all that there is in the system is a dynamical

process whose e�ect { the development of the agents { can, with hindsight, be equated

to functions being performed.

In general, at each iteration of the automaton two possibilities may happen in respect

to each interaction site: either there is an M-state at the position in which it appears in

state transition [5], or that position of the neighbourhood has not an M-state. Whichever

the case, naturally only one pairwise operation is performed.

But the presence of the (critical) M-state at each neighbourhood con�guration depends

on the mutual coupling in trajectory and speed that exists between the agents in their

lifetime. In other words, it is the result of the coupled history of interactions of the agent

76

with the rest of its world. Hence, although the operations over pairs of memetype cells

are local and prede�ned, their overall consequence in the full memetype depends, in a

long span of time, on the whole history of events of the world.

Now, di�erent subsets of the state transitions de�ne distinct { possibly overlapping {

subspaces of the space of possible emergent functions. But because of the coupled history

of the agents' developments, which functions e�ectivelly emerge out of a run depend on

the actual initial condition of the set-up.

6.5.1.3 Possible Consequence

I believe that the set-up hinted at above constitutes an appealing case in which the is-

sue of coupled computations { in the context of Enact's coevolutionary activity { may

yield fruitful consequences. In general, it is expected that it may prove to be useful in

addressing some issues that link dynamics and computations in the context of cellular au-

tomata (along the lines mentioned in Chapter 2), in particular in the context of criticality

phenomena.

3

More precisely, the following questions could be addressed in this context:

1. For which initial and boundary conditions could only monotonic functions be iden-

ti�ed?

2. For which conditions would it be possible to prevent the existence of critical inter-

actions that would rule out a particular kind of development of the agents (which

would prevent a particular function from emerging)?

3. By introducing a time-dependence on the movement of the agents, how would that

a�ect the overall dynamics of the system, for instance in terms of the two questions

above?

The main aspect of this world set-up is that it is characterised by a simple de�nition

that renders it tractable to formal analysis, and at the same time, is su�ciently rich in

terms of the space of computable functions that it entails. But despite all these features,

to address those questions is beyond the scope of this thesis. My intent here was only

their identi�cation in the context of the set-up we mentioned, taking some �rst steps

towards work to be done following the thesis.

6.5.2 Enact's Approach to Coupled Computations in Perspective

The issue of di�erent levels of descriptions of cellular automata have been recognised in

the literature. For instance, although recognising cellular automata as providing

\: : :a powerful approach to the study of the emergence of loops between ob-

jects and functions : : :",

Fontana ([Fontana 1992, page 198]) then remarks that it

3

Recently, there has been great interest in critical phenomena, as they bear relevance to the understand-

ing of various natural phenomena. See [Schroeder 1991] for examples of critical phenomena in various

physical and mathematical systems; [Bak et al. 1988] or [Bak et al. 1991] for a particular model,

applicable in avalanche-type phenomena; [Kau�man and Johnson 1992] for the use of criticality issues

in a coevolutionary model in theoretical biology; [Martin 1990] for an abstract account in the context

of a class of one-dimensional systems; [Adami 1993] for an arti�cial-life-based approach as a model to

living systems; and [Langton 1990] or [Langton 1992b] for their being invoked in the context of the

emergence of life and computation in natural systems.

77

\: : :becomes, however, di�cult to study the consequences of such a loop at

the same level of description that has been used to study its emergence."

From another perspective, in the context of a discussion on cellular automata as \self-

programmable" systems, it is in [Rasmussen et al. 1992, page 219] that the

\: : :main di�culty with the CA approach seems to be associated with : : : the

extreme low-level representation of interactions."

It is worth remarking that Enact has two levels of description. Accordingly, the use of a

population of autonomous agents { the processing units involved in the computations {

are realised at a higher level than the one Enact itself is implemented at. In other words,

while Enact is de�ned from basic state transitions, the population of processing agents is

mainly de�ned through the high-level concepts of the system (such as agents, phenotypes,

memetypes and so on.)

Several issues can be explored in a comparison between the STA model of coupled

computations in Enact and other approaches. What follows is an attempt to compare

some of the aspects, mainly with respect to the Turing gas and Tierra. The model just

discussed has the following features:

� Evolutionary capabilities. Just like Tierra, the model can be used within an evolu-

tionary context, even though the actual evolutionary possibilities is not the same

for each of them. The Turing gas however lacks this feature, which is even explicitly

recognised in [Fontana 1992].

� Focussed emergent computations. The model can be used to tackle the problem

of emergent computations (or, in particular, of emergent functions) even in small

regions of the function space. The point is that the function space which is implicitly

de�ned by the state transition table { that characterises the interactions between the

agents and the environment { can be controlled in an independent fashion. This is

possibly the most fundamental aspect of the system. The tractability that is gained

implies that it becomes possible to approach the issue of functional emergence by

looking at the actual functions that emerge. In fact, this feature can be inferred from

Subsection 6.5.1 for that particular set-up that enables the emergence of functions

over a sequence of integers.

� Ability to link functional emergence to the (apparently disconnected) concept of

\phase" transition. By enabling the process of functional emergence to be focussed

in a region of the function space, it becomes possible to create a link between the

issues of functional self-organisation and phase transitions in some dynamical spaces

(see [Langton 1990]).

4

For instance, it becomes possible to refer to criticality phe-

nomena by means of the situations in an agent's lifetime which are determinant of

its long term development. That is, the critical points that determine which com-

putable function the development of an agent will end up being characterised by.

Aspects of the reversibility of computations also come up in this context. As sug-

gested in Subsection 6.5.1 the world set-up mentioned therein also seems appropriate

to address these aspects.

4

The primary concern on phase transitions presented in [Langton 1990] was its characterisation in the

rule space of cellular automata. The fact that Enact is implemented as cellular automata is even more

appealing with this respect.

78

� Copying or reproductive function is not essential. A copy or reproduction function

does not play any major role in Enact as they do in various of the experiments dis-

cussed for the Turing gas, or in virtually all reported experiments performed with

Tierra. Indeed, all interesting reported outcomes from the latter system depend on

the existence of the so-called \Ancestor", a self-reproductive agent that is innocu-

lated in the Tierran soup at the start of a run. A step towards an exception was

reported in [Tackett 1992]; with the addition of a new register to Tierra, selective

pressure was allowed according to the processing of the content of the register. By

acting as a connection of Tierra with the outside world, the added feature provides

an additional way to drive Tierra's evolution beyond mere reproduction.

� Functions with any number of parameters. For the purposes of making AlChemy's

implementation easier, it can only handle functions of a single parameter. Naturally,

this is a strong constraint that restricts the sorts of emergence that can be observed;

Fontana (1992) himself recognises the problem. But again, it should be clear that

the problem is not a consequence of the model, but only of its implementation.

As this chapter made it clear, the approach that was discussed does not require a

limitation on the number of parameters of the functions involved.

� Robustness. The major problem when computer programs become the subject of

evolutionary and of self-organisation processes is how to achieve robustness, i.e., how

to escape from the brittleness of their semantics when arbitrarily putting chunks

of code together. One way or the other this problem has been solved in AlChemy,

Tierra and various other systems. Turing machines have a very robust semantics

because they simply handle states, which are indi�erentiable from each other. It

is such a robustness that enables the approach supported by the STA model. The

set-up mentioned in Subsection 6.5.1 does not use Turing machines, but since the

functions it deals with only requires pure integer values, the argument of robustness

still holds in that case.

� Autonomy. It is the movement of the agents that determine the outcome of the

functional emergence; but movement is part of the nature of the agents, constrained

by the availability of free space. Hence, there is no need for any sort of centralised

process that would be in charge of determining which components of the system

would have to be used at a certain moment. The latter is exactly what happens in

the Turing gas in regard to the necessity of arbitrating the pairs of Lisp-particles that

will collide at a given instant. In Enact, this \decision" is not only decentralised,

but also is just a natural consequence of the dynamics of the system.

6.6 Final Remark

The computer metaphor has been widely used to describe natural phenomena; its success,

however, is questionable. For instance, as [Varela et al. 1991] reminds us, two very

common misconceptions that come out of it can be perceived: in cognitive science, when

considering environment as data that is given to a program in the cognizer; and in biology,

when assuming the genome of an organism as a program that is run by the biomolecular

machinery. I believe that the main cause of these
aws is not in the approach itself.

Instead, it comes from the model of computation that is used to ground the metaphor. It

is expected that the issues raised in the context of the STA model of computation may

shed light on the track that leads to descriptions of natural phenomena in harmony with

the use of the computer metaphor.

79

Accordingly, the fact that the state transition table of the models discussed herein

were allowed to be shared by agents and interaction sites is meant to provide a notion

of computation that has to be regarded as taking place only at the interaction between

agents and environment.

In the strong STA model the role of the environment has been lessened, if compared

to the ToA and SoA models, and has been strengthened in relation to the weak STA. It

still has an active role in the computation, but became a mediator rather than an enabler

that it is in the latter model, or a primary agent of the computation that it is in the

former two. The environment's role has become the provision of active physical support

for the computation to occur.

In addition, the fact that the actual functions that are computed by the agents critically

depend on their lifetime history of interactions, strengthens the role of the interactions,

and consequently, the role of the agents, since the (local) movement of the latter crucially

depend on themselves. But since the agent itself provides the place where the outcome

of the computation is visualized, it is tempting to say that in the strong STA model the

agent has become the subject and the object of the computation, a notion that is based

on an idea originally developed in [Lewontin 1983] in the context of biological evolution.

Other aspects of the STA model of coupled computation which are worth bearing

in mind include its intrinsic parallellism, and the stress on the notion of computation

as a dynamical process. Even more fundamentally, the de�nition itself of the coupling

scheme, as well as its reliance on the notion of autonomy of the processing agents could

only be achieved by explicitly resorting to a well-de�ned notion of space that permeates

all activity.

6.7 Summary

A conceptual framework for models of coupled computations was developed based upon

the assumption that the computations are performed by a population of processing agents

whose structure is derived from Turing machines.

As a fundamental premise, the agents are embedded in a well-de�ned space which ulti-

mately provide constraints on the individual movements, thus enabling their autonomous

behaviour. The framework takes the form of a taxonomy, according to which Turing-

machine components { the tape, the state transition table, or the set of internal states {

are allowed to be shared among the processing agents.

Following the presentation of the taxonomy, the STA coupling model { the one that

keeps the internal states and the tape as parts of the processing agents { was picked out

and further developed, its features and advantages having been stressed in relation to the

other models. A key aspect of this model is that its notion of computation can only be

made sense of precisely at the interaction between the agents and their environment; in

other words, this means that the computing procedure (the state transition table, in the

case of Turing machines) becomes part of the \physics" of the world. Weak and strong

versions of the STA model were then identi�ed, and an implementation of the latter was

brie
y discussed in the context of Enact, thus allowing to explore the clear-cut notion of

space provided by cellular automata.

The resulting model { that also embeds into it the features of development and coevo-

lution inherent to Enact { was then discussed, in particular by contrasting its features

with those possessed by some well-known systems. It was �nally argued that, in order

for the resulting model to be used in a useful way, particular world set-ups would have

to be used; one such world was then hinted at so as to help to make it clear the general

advantages of the resulting model of coupled computations supported within Enact.

80

Chapter 7

CONCLUSION

This chapter is an evaluation of what has been done throughout the thesis, as well as

prospective in terms of what the achievements are pointing at. Having dealt with these

topics, I will then conclude with a personal statement on the historical pathways that led

me to the research reported in this thesis.

7.1 The Thesis in Retrospect

We have explored in this thesis a cellular-automata-based system which supports an

arti�cial-life activity that can be viewed as a computing machine.

This exploration was made possible because the development of an architecture for

this machine has been achieved, as well as a way to program it. A key issue that enabled

the creation of the machine was the way we explored the clear notion of space that is

intrinsic to cellular automata, coupled to the design imposition that the movement of the

agents should be constrained by the availability of free space. A related key issue in this

respect was the introduction of the concept of interaction site as a way to impose the

loci in space, where speci�c interactions would take place. These and other issues were

presented in Chapter 3. As for the programmability of this machine, the key issue was

the concept of instantiated state transitions that has been introduced in the thesis. We

discussed this topic in Chapter 4.

The way we progressed towards the exploration of that machine went through the

following steps. Firstly, in Chapter 4 we showed that the machine is capable of universal

computation. This step can be regarded as a mere existence proof of such ability, insofar

as it did not rely on all the processes that underlie the arti�cial-life activity.

The second step, given in Chapter 5, was to show that the universal computability

could also be de�ned in a more fundamental way that relies on all the arti�cial-life pro-

cesses together.

In the spirit of the latter, we then showed, as the third step, that together, all those

processes could also be regarded as a set of coupled computations. It turns out that the

issue of coupled computations within Enact has various interesting architectural features,

in particular when the coupling process is de�ned within a well-de�ned space of com-

putable functions. All these features we discussed in Chapter 6, which we can summarise

as follows: robustness; independence of the coupling process from the necessity of intro-

ducing copying functions into the system; autonomy; and ability of the coupling process to

handle functions with any number of parameters. Further to these architectural features

is what they jointly entail, which is the possibility of linking the evolutionary activity

within Enact with the issue of coupled computations; also, they open the possibility of

addressing issues such as criticality phenomena in the space of computable functions.

81

Naturally, its description in terms of coupled computations would not be bene�cial

from any arbitrarily de�ned world set-up as far as the latter two possibilities are concerned.

With this consideration in mind, we then complemented the third step by sketching out

one particular set-up within which those possibilities might be realised. This was the

set-up suggested { in a very preliminary way, I should say { in Subsection 6.5.1; it is

characterised by a simple de�nition, although being su�ciently rich in terms of the space

of computable functions that is entailed by it. It should be clear, however, that all the

issues related to this set-up were not developed in the thesis, and therefore remain as

future work to be done.

7.1.1 Open Issues

Due to their emergence-based nature, the process of interpreting the outcomes of arti�cial

life worlds usually have to face a problem of �nding a reference (or domain) upon which the

interpretations can be grounded. One of the facets of the problem is that a predetermined

domain { say, standard biological concepts { might not be able to account for the wealth

of possible dynamical behaviours that can come out of a run. Naturally, the usage of one

form of interpretation or another depend on the aim of the particular arti�cial life world

at issue. However, there would be advantages in the use of less informal approaches; one

of them could be the possibility of using knowledge about the dynamics of one particular

system onto another. One approach towards realising the former that can hold promise

is the characterisation of the outcome of these systems in terms of computable functions,

thus casting whatever has been learned about the dynamics of a particular system into

the solid grounds of computational theory.

The former problem was not at all a concern in this thesis; neither has the world set-

up hinted at in Subsection 6.5.1 been mentioned in the context of the previous purpose.

However, since that set-up is couched in a coevolutionary system, and an aspect of its

dynamics is well-de�ned in a space of computable functions, an extra open question

associated with it is left as to whether it could be an instance of a world set-up that could

ful�l the concern we have just expressed.

Another issue that has not been addressed in the thesis but which is worth recognising

is the exploration of Enact as a parallel machine, that is, the use of the coupled computa-

tion scheme in order to perform computations in a collaborative way. Having experienced

some rather complex implementations within Enact, my perception is that an account of

the system from this perspective is possible, although I have not taken any step in this

direction.

I have stated at the outset that the research described herein is inspired by, but not a

model of biological reality. In fact, that was the perspective we adopted throughout this

work. However, at some points of the thesis the reader might be tempted to consider the

possibility that the system, or another derived from it, might be useful for the acquisition

of some level of insight into the natural system it is inspired by. It should be clear,

however, that this is a completely open issue in the current context.

There is a caveat to be made in regard to the second step of the main thread of the

thesis, as mentioned above. Although the argument presented e�ectively leads to the

identi�cation of a model of computation that relies on the entire arti�cial life activity, it

should be observed that this process of computation was not fully autonomous. That is,

the actual implementation could not avoid the necessity of having an agent, external to

Enact, that would be in charge of re-initialising the system with a new population when

the individuals of the existing population have all died. This is due to the issue discussed

in Subsection 1.3.1 involving the reproduction process. Namely, since reproduction oc-

82

curs in a way that is limited by the locality constraint imposed by the neighbourhood,

it is not possible for reproduction to generate an arbitrarily speci�ed state con�guration

in the agent (in its memetype, to be precise). As a consequence, the automatic process

of continuous recreation of new inputs for the computation becomes impaired, thus ne-

cessitating the external introduction of new individuals that represent the input of the

computation.

7.2 The Balloonist Becomes a Driver: A Generalisation of Enact

A generalisation of Enact is currently under way, its rationale being the following: instead

of agents with a spatially distributed internal structure, they have become particle-like

agents in the new system, in a similar fashion to the one described in [Packard 1989]. The

upshot of this new design is that any neighbourhood involving an agent contains all the

information about its structure.

As for the internal structure of the agents, they still feature genotype, phenotype and

memetype, but head and tail are no longer necessary, since they were simply artifacts for

rendering Enact's implementation simpler.

It is worth spelling out some other features of the new architecture:

� Genotype, phenotype and memetype now have arbitrary length.

� The movement of the agents became isotropic, that is, the agents now have the

ability to move in any of the eight possible directions. As a consequence, agents can

touch each other arbitrarily, but subject to the condition that only one agent can

occupy one cell of the cellular array.

� The genotype speci�es the initial con�guration of the phenotype. The genotype is

created during sexual reproduction, its con�guration being given by the parental

genotypes, according to an arbitrary procedure, such as a standard genetic algo-

rithm.

� The phenotype speci�es the way an agent should move. The initial phenotype of an

agent depends only on its genotype, but may change arbitrarily during the agent's

lifetime.

� The initial con�guration of the memetype is fully inherited from the parents with

no locality constraint, and may change arbitrarily during the agent's lifetime.

Generally speaking, the major motivation behind the new system is that it provides

a much \cleaner" implementation of the arti�cial life world, insofar as all processes can

occur in a fully symmetrical and isotropic way. Among the immediate bene�ts we could

cite:

� A much smaller and simpler set of state transitions can be obtained, which at least

in principle may render much faster runs.

� A solution is given to the problem mentioned above regarding the role of reproduc-

tion in the model of computation.

� A much simpler way of going about setting up worlds becomes possible.

� The crowding e�ect mentioned in Chapter 3 can be eliminated.

83

Any generalisation of Enact should preserve the two following design principles, that

are implicit to Enact's architecture:

� Full Coupling. All the processes in the arti�cial life world should be fully coupled.

� Internally-driven Dynamics. The coupling process should be a consequence only of

its internal activity.

In the case of coupled functions, these principles entail that the outcome of the events

that lead to the emergence of a function becomes dependent on the full history of past

events in the world. To clarify this point it is worth remembering what this situation was

for the world set-up described in Subsection 6.5.1. In that context the speed of an agent,

as it traverses an interaction site, determines which local operation is applied over a pair

of memetype states; but its speed depends on the full history of past events in the world.

Naturally, it is through space-constrained movement that the two principles above can be

met.

The implementation of the system is intended to be with the SWARM package ([Lang-

ton 1993]), whose �rst release is expected in the current year (1994). This is a general

package for simulations of architectures of autonomous agents, with a number of built-in

tools, in an object-oriented environment. While this package is not available, a provisional

implementation is being done with Cellang ([Eckart 1994]), a cellular automata simulator

that has a very simple facility for dealing with agents based on [Stephenson 1992].

The �rst intended implementation is the world set-up hinted at in Subsection 6.5.1.

It will be used to address the issue of criticality phenomena in the space of computable

functions implicit in the set-up. Initial questions to drive this enterprise will be the ones

presented in Subsection 6.5.1.3. The practical di�culties that would have to be faced in

order to perform such a study within Enact as it stands would be to so serious that the

most sensible alternative is to building a new tool. Among these di�culties one seems

unsurmountable: the package in which Enact has been developed is based on a windowing

system that is no longer available in its host machine.

In conclusion, and using the allegory I introduced in the preface of the thesis, it seems

clear that in the next leg of the journey that will follow the completion of this thesis, the

balloonist that started this journey will resume it as a driver.

7.3 Personal Statement

This section will �nish at the point this thesis started. Here I will allow myself to take

a rather personal stance in order to trace the origins of this thesis, from its deepest

motivations to the paths I followed while trying to bring it into reality. It is a personal

testimony of my own history in this research programme.

Behind the steps I have taken, the quest for understanding the emergence of meaning

and function in natural and arti�cial systems has been the primary motivation. Due to

a mix of historical contingencies and personal choice, I ended up approaching that issue

in the context of intelligence, which, most researchers would agree, is the phenomenon

that enables the creation and manipulation of meaning in an apparently open way. My

particular trajectory started with arti�cial intelligence.

Soon after my �rst degree in Electronics Engineering I joined the arti�cial intelligence

group (of the Brazilian Institute for Space Research) I am still with, and for about six years

I worked with machine learning and knowledge acquisition, from a cognitivist perspective.

By the end of my Master degree I found myself deeply dissatis�ed with the cognitivist

over-emphasis on representations (i.e., symbols with prede�ned meanings) that my work

84

had been related to, and in searching for alternatives, started getting acquainted with

computational evolutionary biology. At this period I had my �rst contact with genetic

algorithms and classi�er systems in [Holland 1986], where a learning model was couched

in evolutionary terms; the essence of classi�er systems, really. Particularly important

for me was a very interesting paper by Lenat [1983] where he speculated on the possible

advantages that natural evolution might be taking from having learnt how to search the

space of species.

My search continued until 1987, when I attended a talk by F.Varela, during a Brazilian

scienti�c meeting. In this talk he presented a comparative analysis of approaches to

cognition, which was published as [Varela 1989]. His own view of cognition, named

enaction had a strong biological slant, and, although I could not understand exactly what

he was hinting at, I felt allured by it. What attracted me was not so much the point

he made about cognitive processes themselves, but the associated world view that the

enactive perspective was apparently suggesting; one in which the world would not be a

pregiven, independent, and prede�ned entity. One, as a consequence, from within which

the possibility would be open for the emergence of meaning to be observed in a genuine

way; that is, without the constraints and determinants that standard knowledge-based

approaches to learning featured at that time.

Varela's talk put everything I had read about cognitive science { learning in particular

{ into context and I could, for the �rst time, see the whole and have a glimpse of a

direction I was willing to go in. But I could only see very dim lights
ickering in that

direction. Enaction still seemed to me an overly philosophic standpoint that I did not

quite understand. I needed more ground, a way to link those concepts to computational

systems as a whole.

A few months later, during the �rst half of 1988, I then came across two special is-

sues of Physica D, proceedings of two conferences held in the USA: [Farmer et al. 1984],

from Cellular Automata: an Interdisciplinary Workshop; and [Farmer et al. 1986], from

the conference Evolution, Games and Learning: Models for Adaptation in Machines and

Nature mentioned earlier in the thesis. Particularly the latter, with its breadth of scope

and the explicit reference to learning provided the light that would guide me in the sub-

sequent couple of years. In those volumes I found a wealth of computational approaches

that looked very solid. My concern from that point onwards became the clari�cation of

the shapes and forms that were being suggested to me, as well as the straightening of the

light beam that had been switched on.

With that frame of mind, I eventually arrived at Sussex at the end of 1988 as a

research student for the DPhil in Cognitive Studies. The stated multidisciplinarity of the

programme; permeability to new ideas; and explicit interest { on the part of the faculty

member who accepted me as his research student { in the \conceptual relations between

cognitive science, biology and arti�cial intelligence", were the key factors underlying my

choice.

While still in Brazil I had read a report on the �rst Workshop on Arti�cial Life, also

held at Los Alamos, in 1987. As I started to look for bibliography for my research proposal

outline, with the Internet at my �ngers (a facility I did not have formerly), it was a natural

step to get hold of the proceedings of that event, [Langton 1989]. It became clear that

this emerging new discipline would provide my systematic focus from that point onwards,

giving deep roots to the issues presented in [Farmer et al. 1986]. And it really did.

At the beginning of 1989 I attended a symposium in France, where one of the invited

speakers was Varela. His talk was basically a deepened version of the one I had heard

earlier. But this time I had more conceptual tools to help me follow his arguments. In

particular, [Varela 1989], his \petit bouquin" (his words) had just been published and

85

reading it was fundamental to clarify a bit further my understanding of his thought. Also

very helpful in this regard was [Winograd and Flores 1986], who widened various obscure

philosophical points somewhat further. It is worth remarking that, having come from

a purely symbolicist tradition in arti�cial intelligence { and not even fully aware of it!

{ all those philosophical discussions were very much a novelty for me. The chapter on

\Cognition as a biological phenomenon" was particularly relevant as it drew from previous

work of Varela, mainly his joint work with Maturana on autopoiesis, already referred to

in the thesis. The latter eventually led me to read [Maturana and Varela 1987], but my

concern remained in enaction itself.

Around the middle of 1989, I submitted my research proposal outline, which had made

its motivation clear in its title, Probing the emergence of a new function: A computational

account based on evolutionary genetics. I presented the theme in terms of the metaphor

of \crossing the barrier of meaning" developed in a little paper by Rota [1986], at the

opening of the aforementioned [Farmer et al. 1986]. The conceptual orientation was also

fairly coherent. The ideas concerning the likely computational model, however, turned

out to be premature. In fact, I still thought of it in terms of production systems and

genetic algorithms. Cellular automata were not even considered. And the stance of

looking at evolutionary processes in an intertwined fashion with learning (as in [Harley

1981], [Draper 1987], [Hinton and Nowlan 1987], and [Smith 1987]) was still very much

present. Also, the way I had approached the issue put too much emphasis on biological

concepts, as if I was going to model some aspect of biological reality. Finally, the research

proposal also had elements of a view of evolution from a developmental psychology point

of view, as in [Bateson 1985] and [Scaife 1989].

As a whole, the research outline made clear the motivation underlying the thesis.

Namely, looking at the emergence of functions with an enactive orientation, where the

emphasis on the issue of self-organisation would be fundamental.

However, I soon came to realise that, on the one hand, I did not have the right tools,

or at least, I did not know enough about the new ones I had come across, such as cellular

automata. On the other, it also became clear that I was overly committed to a biological

account just because of the original basis of genetic algorithms, and also that I was being

unecessarily in
uenced by high-level notions derived from my former background; both

biases, by the way, were echoed in the background of my then supervisor, a developmental

psychologist who had been formerly a biologist. And �nally, the notion of function I was

explicitly subscribing to (the utilitarian sense), was blurred with the one I had implicitly

in mind (the formal sense of computable functions).

Conceptually, those perceptions were pointing towards more abstraction; and in im-

plementation terms, towards the use of a more fundamental framework. And cellular

automata seemed to be at the convergence between the two. It was then a matter of

evaluating their possibility. With this impulse, the journey started. And what happened

afterwards has already been told...

86

Appendix A

The Complete list of State Transitions in Enact

A.1 Introduction

This appendix presents the complete list of non-quiescent state transitions for Enact. For

all sections the following conventions hold:

� The B-states refer to the cells in the agent's body, i.e., either P -, G- or K-state.

� The E-state refers to any environmental state, including the background state.

When it is necessary to refer uniquely to the latter, the 0-state representation is

used.

� The symbol # is a don't care referring to either of the six possible state categories:

T , M , P , G, K , and E.

� When the symbol \/" appears in a neighbourhood separating two state categories

(as in B/T), the corresponding cell can take on either of the state categories involved.

� When the states of two or more cells of the same neighbourhood refer to the same

state category, in general no distinction is made between them. The only exception

is when the transition also leads to a state of the same category. This situation of

ambiguity is resolved by subscripting the state categories involved, with the geo-

graphic location of their corresponding cells, according to the notation of Figure 3.1.

� The same rationale applies for the neighbourhoods which have more than one cell

in a state represented by #.

� The transitions characterized by the symbol

d

) are non-deterministic; the ones with

) are deterministic.

� The index def used in some cases is an implementation detail de�ning the \default"

state-value to be used.

� The special states T

0

and P

0

are the initial states of neonatal development. For the

sake of conciseness we denote by T

�

a T -state that is di�erent from T

0

.

An additional remark: the way we present the state transitions directly re
ects the way

they are currently implemented, i.e., as a set of successive if 's, each one corresponding

to the state transition shown. Evidently, this is not the most e�cient way to implement

them but we have kept it because its modularity provides clarity, as well as making

debugging much easier. In a similar vein, we also have not been concerned with the

87

e�ciency of the implementation in terms of avoiding redundancies and inconsistencies

between di�erent transitions. Noteworthy in this respect is the redundancy expressed by

transitions A.3.18 and A.3.19, and the intrinsic inconsistencies due to transition A.4.14

in relation to A.2.11 or A.2.27. In practice such an inconsistency is solved by letting

transition A.4.14 occur after the ones it is con
icting with, which means that precedence

is given for the transitions occurring during movement. What these points suggest is that

it is possible to express the set of transitions in a signi�cantly more optimized way not

only in terms of their not presenting internal con
icts or redundancies, but also in terms

of a more concise representation which would signi�cantly speed up its computation at

each iteration.

A.2 State Transitions for Movement

[1]

E E E

E 0 T

�

E E E=T

d

) 0=M

def

[2]

E E E

E 0 E

E E T

�

d

) 0=M

def

[3]

E M E

E M T

6= E E E=T

) 0

[4]

E M E

E M T

E E E=T

d

) 0=M

def

[5]

6= E E #

E M E

E M T

) 0 [6]

E T =B

E M E

E M T

) 0

[7]

E E E

E M E

E M T

d

) 0=M

def

[8]

B M E

E T E

#

) 0 [9]

E E T

E M T

E E=T

) 0

[10]

#

6= M M M

#

br

) #

br

[11]

E=M

6= M M E

E B

br

) B

br

[12]

#

6= M M B

r

#

) B

r

[13]

#

B M T

r

#

) T

r

[14]

6= E # #

E M T

r

#

) T

r

[15]

#

M B #

#

) M

def

[16]

#

B M E

E T

b

E

) T

b

[17]

#

M M #

#

) 0 [18]

M M E

E B #

#

) M

def

[19]

#

M T E

E=T

) 0 [20]

#

M T E

6= E B=M

) 0 [21]

M # #

E T E

E=T

) 0

[22]

M 6= T #

E T E

6= E B=M

) 0 [23]

E E #

M T

�

#

#

) M

def

[24]

M E #

E T

�

=B #

#

) M

def

88

[25]

6= E 6= E #

M T

�

#

#

) M

def

[26]

E E

B=T 0 E

E B B=T

d

) 0=M

def

#

B=T M E

E B

b

B=T

) B

b

[28]

B=T M E

E B B=T

#

) 0 [29]

E E

B 0 E

E T E

d

) 0=M

def

A.3 State Transitions for Selection

[1]

E E E

6= E B E

E E E

) 0 [2]

6= E E E

E B E

E E E

) 0 [3]

E E #

E T E

E=T E

) 0

[4]

T # #

E T E

E E

) 0 [5]

E E #

E T E

T

) 0 [6]

E E #

E B #

#

) 0

[7]

E M E

E 6= E E

E E E

) 0 [8]

E

E M E

E E

) 0 [9]

E E #

M E

E E E

) 0

[10]

E E #

E M E

6= T

) 0 [11]

E E #

E M 6= T

E

) 0 [12]

E E E

E M E

E B=T #

) 0

[13]

E E E

B M E

E B E

) 0 [14]

6= B

M B E

T =E E

) 0 [15]

E B #

E B #

#

) 0

[16]

M T #

E B=M #

#

) 0 [17]

E M B=T

E B #

#

) 0 [18]

T =E E E

T =E B T =E

E E T =E

) 0

[19]

T =E E #

T =E G=K #

#

) 0

A.3.1 Selection from Random Initial Con�guration

[20]

E E #

E T E

T=B

) 0 [21]

#

T T

#

) 0 [22]

T

E T E

E E

) 0

89

[23]

#

B T B

#

) 0 [24]

E

E M E

E M

) 0 [25]

#

E M E

E E=M E

) 0

[26]

M E #

E M #

#

) 0 [27]

E T =B #

E T =B E

E E E

) 0 [28]

E T #

E B=M #

#

) 0

[29]

#

E 6= 0

E 6= 0

) 0 [30]

T =B

E B #

#

) 0 [31]

E

T

0

#

#

) 0

[32]

#

G P =G

#

) 0 [33]

#

K G=P

#

) 0 [34]

#

P K=P

#

) 0

[35]

#

G E

E P =G

) 0 [36]

#

K E

E G=P

) 0 [37]

#

P E

E K=P

) 0

A.4 State Transitions for Reproduction

� The state B

�

is a very concise representation for a B-state that is non-deterministically

generated in the o�spring in order to: recreate a con�guration of two consecutive

B-states that is already present in its parents; if this is not possible, recreate any

individual B-state of the parents; otherwise, create any B-state. Naturally, any of

these conditional actions must conform to the de�nition of a well-formed agent,

according to Figure 3.2.

[1]

E T

�

t

P

E 0 0

E T

�

b

P

) T

0

[2]

T P=M 6= E

T

0

0 0

T P=M #

) P

0

[3]

B=M 6= E

B 0 E

6= E B=M #

d

) B

�

[4]

T

t

E

B 0 E

6= E B=M #

d

) B

�

=T

t

[5]

B=M 6= E

B 0 E

M=B T

b

E

d

) B

�

=T

b

T

t

E

B 0 E

M=B T

b

E

d

) T

t

=T

b

[7]

T

t

E

B 0 E

E E

) T

t

[8]

E=T E E

B 0 E

M=B T

b

E

) T

b

B=M 6= E

B 0 E

E E

d

) B

�

=T

def

[10]

E=T E E

B 0 E

6= E B=M #

d

) B

�

=T

def

[11]

B=M 6= E

B E

E M

) 0 [12]

E M

B E

B=M

) 0

90

[13]

B=M

E T E

E T B

) 0 [14]

#

B M E

#

) T

def

A.5 State Transitions for Development

� The superscript +, as in T

+

c

, means the aged T -state.

� The death of an agent is implicit to ageing. It takes place through the built-in

selection process when the state of the agent's head becomes the background state.

Therefore, the outcome of ageing can be another T -state or the 0-state; hence the

notation \T

+

=0" being used.

A.5.1 Neonatal Development

[1]

#

T

0

P

0

G

#

) P

def

[2]

#

T

0

P 6= P

0

#

) T

def

A.5.2 Adult Development: Ageing and Death

[3]

E # #

E T

�

c

M=(P 6= P

0

)

#

d

) T

c

=(T

+

c

=0) [4]

E E #

E T

�

c

E

E M=(P 6= P

0

)

d

) T

c

=(T

+

c

=0)

[5]

M B=T #

E T

�

c

P 6= P

0

#

d

) T

c

=(T

+

c

=0) [6]

M E #

M T

�

c

P 6= P

0

#

d

) T

c

=(T

+

c

=0)

[7]

M E #

M T

�

c

E

E P 6= P

0

d

) T

c

=(T

+

c

=0) [8]

E E E

E M T

�

r

E E=T

br

d

) T

r

=(T

+

r

=0)

[9]

E=M

6= M M E

E T

�

br

d

) T

br

=(T

+

br

=0)

91

Appendix B

The C code that implements Enact in Cellsim 2.5

#include "nborhood.h"

#include <stdio.h>

#include <values.h>

#define ON 1

#define OFF 0

#define Tmin 1 /* minimum value for a Terminal-state */

#define Tmax 7 /* maximum value for a Terminal-state */

#define Dmin 8 /* minimum value for a boDy_state */

#define Dmax 20 /* maximum value for a boDy-state */

#define E00 0 /* Background environment-state */

#define Emin 21 /* minimum value for an Environment-state */

#define Emax 24 /* maximum value for an Environment-state */

#define Mmin 25 /* minimum value for a Movement-state */

#define Mmax 255 /* maximum value for a Movement-state */

#define PGK ON

#define MUT_R 2 /* rate of D_star in relation to D_mutant during repr. */

#define DST_R MAXINT /* rate of D_star in relation to T during reproduct. */

#define BTAIL_UP_R MAXINT /* rate of body movement (in relation to no movement) */

#define Mdef Mmin

#define Ddef Dstar()

#define Tdef Tmin+2

#define Pdef Pmin+1

#define T00 Tmin

#define TLmin 3 /* TL represents the agents

#define TLmax 4

#define TDmin 5

#define TDmax 6

#define P00 Pmin

#define Pmin 8

#define Pmax 12

#define Gmin 13

#define Gmax 16

#define Kmin 17

#define Kmax 20

92

#define DEATH ON

/*

The parameter "parm1" sets the probability that, at each iteration, the

agents will NOT age (thus having the chance of living longer). The

probability of an agent getting older at each iteration is given by:

1 1

P(ageing) = --------- * 100% * -------

parm1 + 1 parm2

"parm2" is just a scaling parameter to allow a wider range of

expected life spans.

The "expected life span" is: (TLmax - TLmin) * (parm1 + 1) * parm2

or: (TDmax - TDmin) * (parm1 + 1) * parm2

*/

byte alife_dynamics(), Rand2(), Dstar(), Older(), Dev_T(),

get_bblock(), get_any_in_Neighb(), get_any_at_all(), get_mutant(),

D(), T(), M(), E(), P(), G(), K(), TD(), TL();

int L_MV(), D_MV(), L_MV_CONF(), D_MV_CONF();

static int i;

static byte s;

void init_function()

{

update_function = alife_dynamics;

parm1 = 29;

parm2 = 5;

}

byte alife_dynamics(nbors)

moore_nbors *nbors;

{

Get_moore_nbors;

/**/

/************* SELECTION ******************/

/**/

/* sel_0: Just to speed up computation */

if(!tl && !t && !tr &&

!l && !c && !r &&

!bl && !b && !br) return (byte)0;

/* sel_1 */

if(E(tl) && E(t) && E(tr) &&

!E(l) && D(c) && E(r) &&

E(bl) && E(b) && E(br)) return (byte)0;

if(!E(tl) && E(t) && E(tr) &&

E(l) && D(c) && E(r) &&

E(bl) && E(b) && E(br)) return (byte)0;

if(E(tl) && E(t) &&

E(l) && T(c) && E(r) &&

(E(b) || T(b)) && E(br)) return (byte)0;

/* sel_4 */

93

if(T(tl) &&

E(l) && T(c) && E(r) &&

E(b) && E(br)) return (byte)0;

if(E(tl) && E(t) &&

E(l) && T(c) && E(r) &&

T(br)) return (byte)0;

if(E(tl) && E(t) &&

E(l) && D(c)) return (byte)0;

/* sel_7 */

if(E(tl) && M(t) && E(tr) &&

E(l) && !E(c) && E(r) &&

E(bl) && E(b) && E(br)) return (byte)0;

if(E(t) &&

E(l) && M(c) && E(r) &&

E(b) && E(br)) return (byte)0;

if(E(tl) && E(t) && E(tr) &&

M(c) && E(r) &&

E(bl) && E(b) && E(br)) return (byte)0;

/* sel_10 */

if(E(tl) && E(t) &&

E(l) && M(c) && E(r) &&

!T(br)) return (byte)0;

if(E(tl) && E(t) &&

E(l) && M(c) && !T(r) &&

E(br)) return (byte)0;

if(E(tl) && E(t) && E(tr) &&

E(l) && M(c) && E(r) &&

E(bl) && (D(b) || T(b))) return (byte)0;

/* sel_13 */

if(E(tl) && E(t) && E(tr) &&

D(l) && M(c) && E(r) &&

E(bl) && D(b) && E(br)) return (byte)0;

if(!D(t) &&

M(l) && D(c) && E(r) &&

(T(b) || E(b)) && E(br)) return (byte)0;

if(E(tl) && D(t) &&

E(l) && D(c)) return (byte)0;

/* sel_16 */

if(M(tl) && T(t) &&

E(l) && (D(c) || M(c))) return (byte)0;

if(E(tl) && M(t) && (D(tr) || T(tr)) &&

E(l) && D(c)) return (byte)0;

/************ WITH "PGK" AGENTS ******************/

/* sel_18: */

if((T(tl) || E(tl)) && E(t) && E(tr) &&

(T(l) || E(l)) && D(c) && (T(r) || E(r)) &&

E(bl) && E(b) && (T(br) || E(br))) return (byte)0;

if((T(tl) || E(tl)) && E(t) &&

(T(l) || E(l)) && (G(c) || K(c))) return (byte)0;

/************* FROM RANDOM CONFIGURATIONS ******************/

/* sel_20 */

if(E(tl) && E(t) &&

E(l) && T(c) && E(r) &&

(T(b) || D(b))) return (byte)0;

if(T(c) && T(r)) return (byte)0;

94

if(T(t) &&

E(l) && T(c) && E(r) &&

E(b) && E(br)) return (byte)0;

/* sel_23: */

if(D(l) && T(c) && D(r)) return (byte)0; }

if(E(t) &&

E(l) && M(c) && E(r) &&

E(b) && M(br)) return (byte)0;

if(E(l) && M(c) && E(r) &&

E(bl) && (E(b) || M(b)) && E(br)) return (byte)0;

/* sel_26 */

if(M(tl) && E(t) &&

E(l) && M(c)) return (byte)0;

if(E(tl) && (T(t) || D(t)) &&

E(l) && (T(c) || D(c)) && E(r) &&

E(bl) && E(b) && E(br)) return (byte)0;

if(E(tl) && T(t) &&

E(l) && (D(c) || M(c))) return (byte)0;

/* sel_29: prevents agents from being blocked by a "stack" of E-states (E>0). */

if(E(c) && c && E(b) && b) return (byte)0;

if((D(t) || T(t)) &&

E(l) && D(c)) return (byte)0;

if(E(t) && T(c)==T00) return (byte)0;

/********** WITH "PGK" AGENTS, AND FROM RANDOM CONFIGURATIONS *********/

/* sel_32 */

if(G(c) && (P(r) || G(r))) return (byte)0;

if(K(c) && (G(r) || P(r))) return (byte)0;

if(P(c) && (K(r) || P(r))) return (byte)0;

/* sel_35 */

if(G(c) && E(r) &&

E(b) && (P(br) || G(br))) return (byte)0;

if(K(c) && E(r) &&

E(b) && (G(br) || P(br))) return (byte)0;

if(P(c) && E(r) &&

E(b) && (K(br) || P(br))) return (byte)0;

/* sel_38 */

/* if(T(l)==T00 && M(c)) return (byte)0; */

/**/

/************* MOVEMENT *******************/

/**/

/* mov_1 */

if(E(tl) && E(t) && E(tr) &&

E(l) && !c && T(r) &&

E(bl) && E(b) && (E(br) || T(br))) return Rand2(Mdef, L_MV(r), 0);

if(E(tl) && E(t) && E(tr) &&

E(l) && !c && E(r) &&

E(bl) && E(b) && T(br)) return Rand2(Mdef, D_MV(br), 0);

if(E(tl) && M(t) && E(tr) &&

E(l) && M(c) && T(r) &&

!E(bl) && E(b) && (E(br) || T(br))) return (byte)0;

/* mov_4 */

if(E(tl) && M(t) && E(tr) &&

E(l) && M(c) && T(r) &&

E(bl) && E(b) && (E(br) || T(br))) return Rand2(Mdef, L_MV_CONF(r), 0);

95

if(!E(tl) && E(t) &&

E(l) && M(c) && E(r) &&

E(bl) && M(b) && T(br)) return (byte)0;

if(PGK)

{

if(E(t) && (T(tr) || D(tr)) &&

E(l) && M(c) && E(r) &&

E(bl) && M(b) && T(br)) return (byte)0;

}

else

{

if(E(t) && !E(tr) &&

E(l) && M(c) && E(r) &&

E(bl) && M(b) && T(br)) return (byte)0;

}

/* mov_7 */

if(E(tl) && E(t) && E(tr) &&

E(l) && M(c) && E(r) &&

E(bl) && M(b) && T(br)) return Rand2(Mdef, D_MV_CONF(br), 0);

if(D(tl) && M(t) && E(tr) &&

E(l) && T(c) && E(r)) return (byte)0;

if(E(tl) && E(t) && T(tr) &&

E(l) && M(c) && T(r) &&

E(b) && (E(br) || T(br))) return (byte)0;

/* mov_10 */

if((!M(l)) && M(c) && M(r)) return br;

if((E(t) || M(t)) &&

(!M(l)) && M(c) && E(r) &&

E(b) && D(br)) return br;

if((!M(l)) && M(c) && D(r)) return r;

/* mov_13 */

if(D(l) && M(c) && T(r)) return r;

if(!E(tl) &&

E(l) && M(c) && T(r)) return r;

if(M(l) && D(c)) return (byte)Mdef;

/* mov_16 */

if(D(l) && M(c) && E(r) &&

E(bl) && T(b) && E(br)) return b;

if(M(l) && M(c)) return (byte)0;

if(M(tl) && M(t) && E(tr) &&

E(l) && D(c)) return (byte)Mdef;

/* mov_19 */

if(M(l) && T(c) && E(r) &&

(E(br) || T(br))) return (byte)0;

if(M(l) && T(c) && E(r) &&

!E(b) && (D(br) || M(br))) return (byte)0;

if(M(tl) &&

E(l) && T(c) && E(r) &&

(E(br) || T(br))) return (byte)0;

/* mov_22 */

if(M(tl) && (!T(t)) &&

E(l) && T(c) && E(r) &&

!E(b) && (D(br) || M(br))) return (byte)0;

if(E(tl) && E(t) &&

M(l) && T(c) && T(c)!=T00) return (byte)Mdef;

if(M(tl) && E(t) &&

96

E(l) && ((T(c) && T(c)!=T00) || D(c))) return (byte)Mdef;

/* mov_25 */

if(!E(tl) && !E(t) &&

M(l) && T(c) && T(c)!=T00) return (byte)Mdef;

if(E(t) && E(tr) &&

(T(l) || D(l)) && !c && E(r) &&

E(bl) && D(b) && (T(br) || D(br))) return Rand2(Mdef, BTAIL_UP_R, 0);

if((T(l) || D(l)) && M(c) && E(r) &&

E(bl) && D(b) && (T(br) || D(br))) return b;

/* mov_28 */

if((T(tl) || D(tl)) && M(t) && E(tr) &&

E(l) && D(c) && (T(r) || D(r))) return (byte)0;

if(E(t) && E(tr) &&

D(l) && !c && E(r) &&

E(bl) && T(b) && E(br)) return Rand2(Mdef, BTAIL_UP_R, 0);

/***/

/************* REPRODUCTION ****************/

/***/

/* rep_1 */

if(PGK)

{

if(E(tl) && T(t) && T(t)!=T00 && P(tr) &&

E(l) && !c && !r &&

E(bl) && T(b) && T(b)!=T00 && P(br)) return T00;

if(T(tl) && (P(t) || M(t)) && !E(tr) &&

T(l)==T00 && !c && !r &&

T(bl) && (P(b) || M(b))) return P00;

}

else

{

if(E(tl) && T(t) && D(tr) &&

E(l) && !c && !r &&

E(bl) && T(b) && D(br)) return Rand2(t, 1, b);

if(T(tl) && (D(t) || M(t)) && !E(tr) &&

T(l) && !c && !r &&

T(bl) && (D(b) || M(b))) return Rand2(Ddef, DST_R, Ddef);

}

if((D(t) || M(t)) && !E(tr) &&

D(l) && !c && E(r) &&

!E(bl) && (D(b) || M(b))) return Rand2(Ddef, DST_R, Ddef);

/* rep_4 */

if(T(t) && E(tr) &&

D(l) && !c && E(r) &&

!E(bl) && (D(b) || M(b))) return Rand2(Ddef, DST_R, t);

if((D(t) || M(t)) && !E(tr) &&

D(l) && !c && E(r) &&

(M(bl) || D(bl)) && T(b) && E(br)) return Rand2(Ddef, DST_R, b);

if(T(t) && E(tr) &&

D(l) && !c && E(r) &&

(M(bl) || D(bl)) && T(b) && E(br)) return Rand2(t, 1, b);

/* rep_7 */

if(T(t) && E(tr) &&

D(l) && !c && E(r) &&

E(b) && E(br)) return t;

if((T(tl) || !tl) && E(t) && E(tr) &&

97

D(l) && !c && E(r) &&

(M(bl) || D(bl)) && T(b) && E(br)) return b;

if((D(t) || M(t)) && !E(tr) &&

D(l) && !c && E(r) &&

E(b) && E(br)) return Rand2(Ddef, DST_R, Tdef);

/* rep_10 */

if((T(tl) || !tl) && E(t) && E(tr) &&

D(l) && !c && E(r) &&

!E(bl) && (D(b) || M(b))) return Rand2(Ddef, DST_R, Tdef);

if((M(t) || D(t)) && !E(tr) &&

D(c) && E(r) &&

E(b) && M(br)) return (byte)0;

if(E(t) && M(tr) &&

D(c) && E(r) &&

(M(b) || D(b))) return (byte)0;

/* rep_13 */

if((D(t) || M(t)) &&

E(l) && T(c) && E(r) &&

E(bl) && T(b) && D(br)) return (byte)0;

if(D(l) && M(c) && E(r)) return (byte)Tdef;

/**/

/************* DEVELOPMENT ****************/

/**/

/* NEONATE DEVELOPMENT */

/* dev_1 */

if(T(l)==T00 && P(c)==P00 && G(r)) return (byte)Pdef;

if(T(c)==T00 && P(r) && P(r)!=P00) return (byte)Tdef;

/* ADULT DEVELOPMENT: AGEING AND DEATH */

/* dev_3: While not moving */

if(E(tl) &&

E(l) && T(c) && T(c)!=T00 &&

((P(r) && P(r)!=P00) || M(r)))

return Rand2(c, parm1*parm2, Older(c));

if(E(tl) && E(t) &&

E(l) && T(c) && T(c)!=T00 && E(l) &&

E(b) && ((P(br) && P(br)!=P00) || M(br)))

return Rand2(c, parm1*parm2, Older(c));

if(M(tl) && (D(t) || T(t)) &&

E(l) && T(c) && T(c)!=T00 &&

(P(r) && P(r)!=P00))

return Rand2(c, parm1*parm2, Older(c));

/* dev_6: While trying to move in BOTH directions...*/

if(M(tl) && E(t) &&

M(l) && T(c) && T(c)!=T00 && P(r) && P(r)!=P00)

return Rand2(c, parm1*parm2, Older(c));

if(M(tl) && E(t) &&

M(l) && T(c) && T(c)!=T00 && E(r) &&

E(b) && P(br) && P(br)!=P00)

return Rand2(c, parm1*parm2, Older(c));

/* dev_8: ...or just in EITHER of them. */

if(E(tl) && E(t) && E(tr) &&

E(l) && M(c) && T(r) && T(r)!=T00 &&

98

E(b) && (E(br) || T(br)))

return Rand2(r, parm1*parm2, Older(r));

if((E(t) || M(t)) &&

!M(l) && M(c) && E(r) &&

E(b) && T(br) && T(br)!=T00)

return Rand2(br, parm1*parm2, Older(br));

/**/

/*********** OTHERWISE... *****************/

/**/

else return c;

}

/***/

/* Predicate returning state "s" if it is a D-state, and 0 if not. */

byte D(s)

byte s;

{

if (s>=Dmin && s<=Dmax) return s;

else return (byte)0;

}

/***/

/* Predicate returning state "s" if it is a T-state, and 0 if not. */

byte T(s)

byte s;

{

if (s>=Tmin && s<=Tmax) return s;

else return (byte)0;

}

/***/

/* Predicate returning state "s" if it is an M-state, and 0 if not. */

byte M(s)

byte s;

{

if (s>=Mmin && s<=Mmax) return s;

else return (byte)0;

}

/***/

/* Predicate returning state "s" if it is an E-state, and 0 if not. */

byte E(s)

byte s;

{

if (s>=Emin && s<=Emax) return s;

else if(s==E00) return 1; /* any number>0 actually */

else return (byte)0;

99

}

/***/

/* Predicate returning state "s" if it is a P-state, and 0 if not. */

byte P(s)

byte s;

{

if (s>=Pmin && s<=Pmax) return s;

else return (byte)0;

}

/***/

/* Predicate returning state "s" if it is a G-state, and 0 if not. */

byte G(s)

byte s;

{

if (s>=Gmin && s<=Gmax) return s;

else return (byte)0;

}

/***/

/* Predicate returning state "s" if it is a K-state, and 0 if not. */

byte K(s)

byte s;

{

if (s>=Kmin && s<=Kmax) return s;

else return (byte)0;

}

/***/

/* If rate>0: returns state s1 "rate" times as often as s2.

If rate<0: returns state s2 "|rate|" times as often as s1.

If rate=0: returns s2.

ND: In terms of probability, if rate>0, it returns state s1 with

rate 1

probability ------ x 100% and s2 with prob. ------ x 100%

rate+1 rate+1

*/

byte Rand2(s1, rate, s2)

int s1, rate, s2;

{

if (rate==0) return (byte)s2;

if (rate>0) { if (random() % (rate+1)) return (byte)s1;

else return (byte)s2; }

if (rate<0) { if (random() % ((-rate)+1)) return (byte)s2;

100

else return (byte)s1; }

}

/***/

/* Returns a D-star state. If PGK=1, the body of the agents has to be

considered as formed by P_G_K states. If PGK=0, the body cells are made

of the ordinary, general D-states. */

byte Dstar()

{

byte D_star, D_mutant, Rand2(), Xmin, Xmax,

get_bblock(), get_any_in_Neighb(), get_any_at_all(), get_mutant();

if(PGK)

{

if(P(l)) { Xmin=(byte)Gmin; Xmax=(byte)Gmax;

D_star=get_any_in_Neighb(G); }

else if(G(l))

{ Xmin=(byte)Kmin; Xmax=(byte)Kmax;

D_star=get_any_in_Neighb(K); }

else if(K(l))

{ Xmin=(byte)Kmin; Xmax=(byte)Kmax;

D_star=get_bblock(K);

if(D_star==0) D_star=get_any_in_Neighb(K); }

}

else { Xmin=(byte)Dmin; Xmax=(byte)Dmax;

D_star=get_bblock(D);

if(D_star==0) D_star=get_any_in_Neighb(D); }

if(D_star==0) D_star=get_any_at_all(Xmin, Xmax);

D_mutant=get_mutant(Xmin, Xmax);

return Rand2(D_star, MUT_R, D_mutant);

}

/***/

/* Randomly choose a D-state of the parents, from the ones that

recreates in the offspring an existing, non-deleterious building blocks

in them. */

byte get_bblock(X)

byte (*X)();

{

byte X_star, bblock[4];

int i;

for(i=0; i<4; i++) bblock[i]=0;

X_star=0;

if (l==tl && (*X)(t)) bblock[0]=t;

if (l==t && (*X)(tr)) bblock[1]=tr;

if (l==bl && (*X)(b)) bblock[2]=b;

if (l==b && (*X)(br)) bblock[3]=br;

if(bblock[0] + bblock[1] + bblock[2] + bblock[3] > 0)

while((X_star=bblock[random() % 4])==0);

return X_star;

}

101

/***/

/* If no building blocks can be created again, randomly choose any of the

D-state of the parents. */

byte get_any_in_Neighb(X)

byte (*X)();

{

byte X_star, neigh_Xs[6];

int i;

for(i=0; i<6; i++) neigh_Xs[i]=0;

X_star=0;

if((*X)(tl)) neigh_Xs[0]=tl;

if((*X)(t)) neigh_Xs[1]=t;

if((*X)(tr)) neigh_Xs[2]=tr;

if((*X)(bl)) neigh_Xs[3]=bl;

if((*X)(b)) neigh_Xs[4]=b;

if((*X)(br)) neigh_Xs[5]=br;

if((neigh_Xs[0]+neigh_Xs[1]+neigh_Xs[2]+

neigh_Xs[3]+neigh_Xs[4]+neigh_Xs[5])!=0)

while((X_star=neigh_Xs[random() % 6])==0);

return X_star;

}

/***/

/* If there are no D-states in the parents, just get any of the

possible D-states. */

byte get_any_at_all(Xmin, Xmax)

byte Xmin, Xmax;

{

byte X_star, Rand2();

if(Xmax-Xmin==0) X_star=Xmin;

else if(Xmax-Xmin==1) X_star=Rand2(Xmin, 1, Xmax);

else X_star=(random() % (Xmax-Xmin+1)) + Xmin;

return X_star;

}

/***/

/* During reproduction there's always chance of a mutation to occur. */

byte get_mutant(Xmin, Xmax)

byte Xmin, Xmax;

{

byte X_mutant, Rand2();

if(Xmax-Xmin==0) X_mutant=Xmin;

else if(Xmax-Xmin==1) X_mutant=Rand2(Xmin, 1, Xmax);

else X_mutant=(random() % (Xmax-Xmin+1)) + Xmin;

return X_mutant;

}

102

/***/

/* Defines the amount of leftward movement for each kind of head,

AFTER the agent HAS TRIED to move in BOTH directions.

It returns the rate at which an agent will make an attempt to move

leftwards, independently of the diagonal movement. */

int L_MV_CONF(s)

byte s;

{

byte TL(), TD();

if (TL(s)) return MAXINT;

else if (TD(s)) return 0;

else return 1;

}

/***/

/* Defines the amount of diagonal movement for each kind of head,

AFTER the agent HAS TRIED to move in BOTH directions.

It returns the rate at which an agent will make an attempt to move

diagonally, independently of the leftward movement. */

int D_MV_CONF(s)

byte s;

{

byte TL(), TD();

if (TL(s)) return 0;

else if (TD(s)) return MAXINT;

else return 1;

}

/***/

/* Defines the amount of leftward movement for each kind of head, by

returning the rate at which an agent will make an attempt to move

leftwards, independently of the diagonal movement.

With all cases returning 1, it means that an attempt to move in either way

is equally likely to not making an attempt at all (i.e., M or 0 have the same

probability). The existence of these new routines is handy

because they allow to control the movement rates in each direction

independently; it is even possible to approach the deterministic case

in which, for example, TD would always move diagonally except when the

only possibility is the leftward movement. */

int L_MV(s)

byte s;

{

byte TL(), TD();

if (TL(s)) return MAXINT;

else if (TD(s)) return MAXINT;

else if(s==T00) return 0; /* T00 is immobile */

else return 1;

}

103

/***/

/* Defines the amount of diagonal movement for each kind of head, by

by returning the rate at which an agent will make an attempt to move

diagonally, independently of the leftward movement. */

int D_MV(s)

byte s;

{

byte TL(), TD();

if (TL(s)) return MAXINT;

else if (TD(s)) return MAXINT;

else if(s==T00) return 0; /* T00 is immobile */

else return 1;

}

/***/

/* Predicate returning T-state "s" if it moves leftwards, and 0 if not. */

byte TL(s)

byte s;

{

if(s>=TLmin && s<=TLmax) return s;

else return (byte)0;

}

/***/

/* Predicate returning T-state "s" if it moves diagonally, and 0 if not. */

byte TD(s)

byte s;

{

if(s>=TDmin && s<=TDmax) return s;

else return (byte)0;

}

/***/

/* An agent gets older according to the following "ageing" sequence:

TLmin (=Tmin) --> TL(1) ---> ... ---> TL(n) --> TLmax --> 0

TDmin (=TL+1) --> TD(1) ---> ... ---> TD(n) --> TDmax --> 0

*/

byte Older(s)

byte s;

{

if((s>=TLmin && s<TLmax) ||

(s>=TDmin && s<TDmax)) return (byte)(s+1);

else if((s==TLmax || s==TDmax) && DEATH) return (byte)0;

else return s;

}

/***/

104

/*

*/

byte Dev_T(s)

byte s;

{

byte TL();

switch(s)

{

case 9: return TL(c) ? (byte)TLmin : (byte)TDmin;

case 10: return TL(c) ? (byte)TLmin : (byte)TLmin;

case 11: return TL(c) ? (byte)TDmin : (byte)TDmin;

case 12: return TL(c) ? (byte)TDmin : (byte)TLmin;

}

}

/***/

105

Appendix C

Codi�cation of the State Transition Table of the Turing

Machine Implemented in Chapter 4

What follows is the list of state transitions in Enact that are necessary to code for

Table 4.2, the state transition table of the Turing machine implemented in Chapter 4.

The notation being used is explained in Appendix A.

C.1 State Transition Establishing the End of the Computation

0 0 0

T

0

B

4

T

0

0 0 0

) 0

C.2 State Transitions Coding for the Rightward Movement of the Head

E

�

0

E

#

0 T

0

B

0

#

) T

R

0

E

#

M

R

B

0

#

) B

1

#

0

E

#

M

R

B

0

) X

E

E

�

0

E

#

0 T

0

B

1

#

) T

R

0

E

#

M

R

B

1

#

) B

1

#

0

E

#

M

R

B

1

) 0

E

E

�

X

E

#

0 T

0

B

2

#

) T

R

X

E

#

M

R

B

2

#

) B

0

#

X

E

#

M

R

B

2

) X

E

E

�

Y

E

#

0 T

0

B

0

#

) T

R

Y

E

#

M

R

B

0

#

) B

3

#

Y

E

#

M

R

B

0

) Y

E

E

�

Y

E

#

0 T

0

B

1

#

) T

R

Y

E

#

M

R

B

1

#

) B

1

#

Y

E

#

M

R

B

1

) Y

E

106

E

�

Y

E

#

0 T

0

B

3

#

) T

R

Y

E

#

M

R

B

3

#

) B

3

#

Y

E

#

M

R

B

3

) Y

E

E

�

E

b

#

0 T

0

B

3

#

) T

R

E

b

#

M

R

B

3

#

) B

4

#

E

b

#

M

R

B

3

) E

b

C.3 State Transitions Coding for the Lefward Movement of the Head

E

�

0

E

#

0 T

0

B

2

#

) T

L

E

�

0

E

#

T

L

B

2

M

0

#

) B

2

#

E

�

0

E

#

T

L

B

2

M

0

) 0

E

E

�

1

E

#

0 T

0

B

1

#

) T

L

E

�

1

E

#

T

L

B

1

M

0

#

) B

2

#

E

�

1

E

#

T

L

B

1

M

0

) Y

E

E

�

Y

E

#

0 T

0

B

2

#

) T

L

E

�

Y

E

#

T

L

B

2

M

0

#

) B

2

#

E

�

Y

E

#

T

L

B

2

M

0

) Y

E

107

Appendix D

Details of the Implementation of the Turing Machine

Described in Chapter 5

D.1 State Transitions Used for the TM Machinery

Tables D.1 and D.2 present the state transitions required to implement, respectively, the

\hardwired" machinery of the Turing machine, and the \software" that implements a

particular function being computed, as de�ned by its state transition table. The cells

marked with the symbol # mean that their state is irrelevant in these neighbourhoods.

The subscript def refers to the default value used in Enact. The subscripts r and br

refer to the geographic position of the cell in its neighbourhood. The background state is

represented by 0.

Table D.2 is horizontally divided into two sections, the one on the top referring to the

state transition of the TM, and the second accounting for the movement of the head and

the manipulation of the tape symbols.

In both tables all occurrences of E

LR

are related to the occurrence of E

LR

. This is

a consequence of the fact that, by default, the agents move leftwards, and therefore the

neighbourhood required for the actions of E

LR

corresponding to (�;�;�) are the same

one required for E

LR

.

For present purposes the second collumn in both tables is simply a reference to the kind

of state transition that appears at each row, or to the original (built-in) state transition

from which the state transitions of the �rst collumn are an instance of. More details

about this aspect can be found in Subsection 4.3.2.

D.2 Movement of the Agents

While the preceding section was meant to provide additional details of the implementation

of the TM machinery, the current one gives details of the implementation of the agents,

with respect to the nature of their movement in the cellular space. This is an important

aspect, because a correct computation can only be performed provided the agents move

in certain ways, in
uenced by each other. This is the only criterion to be followed.

Evidently, there are several possibilities to meet that requirement. In the present

implementation we imposed that at least some of the agents should be allowed to change

their direction of movement from time to time. The actual details of how they should

change is partly expressed in Tables D.3, D.4 and D.5. Additionally, Figure D.1 depicts

the way the heads of the agents are modi�ed as a result of the environmental interactions.

One can note in that �gure that even when an agent is moving over a free background its

direction of movement is allowed to change.

108

State Transitions Supporting the Hardware Instantiated Role

#

E

i

E

ii

#

) E

ii

#

E

i

E

ii

#

#

) E

LR

Environmental

Dynamics

#

E

ii

E

L

=E

LR

#

#

) E

#

E

ii

E

R

#

K

�

#

) E

#

E

ii

E

R

#

6= M M T

) E

E

ii

E

L

G M

#

) 0

E

ii

E

R

#

M T

#

) 0

Instantiated

Selection

Table D.1: State transitions supporting the actions of the Turing machine that do not

depend on the state transition table of the function being computed.

M E #

M T

D

=T

L

P

r

6= P

0

#

) T

Lmin

=T

Dmin

j

fP

r

;T

c

g7!fT

Lmin

=T

Dmin

g

M E #

M T

D

=T

L

E

E P

br

6= P

0

) T

Lmin

=T

Dmin

j

fP

br

;T

c

g7!fT

Lmin

=T

Dmin

g

Figure D.1: State transitions specifying the way the heads of the agents are modi�ed as

a result of the environmental interactions. The states the transitions lead to are made

explicit in Table D.5.

109

State Transitions Supporting the Software Instantiated Role

#

E

i

E #

M P

i

G

) E

ii

Environmental

Dynamics 1

E

i

E

ii

P

i

M

#

) P

ii

Phenotypic

Development

#

E

ii

E

LR

#

M G=K K

�

) E

L

=E

R

=E

LR

j

(E

ii

;K

�

)

Environmental

Dynamics 2

E

ii

E

L

K

j

M

#

) K

�

j

E

ii

E

R

K

�

i

M

#

) K

ii

Memetic

Development

E

ii

E

L

=E

LR

#

6= M M K

�

i

#

) K

ii

E

ii

E

R

#

6= M M K

k

#

) K

�

k

#

6= K

�

M B

r

#

) B

r

Table D.2: State transitions supporting the actions of the Turing machine that are de�ned

by the state transition table of the function being computed.

G

i

P

0

7! P

i

G

0

P

0

G

1

P

1

G

2

P

2

G

3

P

3

G

4

P

f

Table D.3: Neonate development from P

0

to P

i

.

110

P

i

T

0

7! T

i

P

0

T

L

P

1

T

L

P

2

T

L

P

3

T

D

P

f

T

D

Table D.4: Neonate development from T

0

to T

i

.

T

i

7! T

ii

P

ii

T

L

T

D

P

0

T

L

T

L

P

1

T

D

T

D

P

2

T

D

T

L

P

3

T

D

T

L

P

f

T

L

T

D

Table D.5: Development of the heads of the agents according to their P

ii

- and T

i

-states.

The head is inactive for P

f

, and active otherwise.

111

BIBLIOGRAPHY

[Adami 1993] C. Adami. Self-organized criticality in living systems. W. K. Kellog Labo-

ratory, California Institute of Technology, December 1993. Preprint.

[Adami 1994] C. Adami. Learning and complexity in genetic auto-adaptive systems. W.

K. Kellog Laboratory, California Institute of Technology, December 1994. Preprint. To

be presented at Arti�cial Life IV, MIT, Boston, USA, July 1994.

[Agre and Rosenchein 1993] Phil Agre and Paul Rosenchein, editors. Computational The-

ories of Interaction and Agency, Special issue of the journal Arti�cial Intelligence, 1993.

[Bak et al. 1988] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality. Phys.

Rev., A 38:364{374, 1988.

[Bak et al. 1991] P. Bak, , and K. Chen. Self-organized criticality. Scienti�c American,

pages 26{33, January 1991.

[Banks 1971] E. R. Banks. Information processing and transmission in cellular automata.

PhD thesis, MIT, 1971.

[Bateson 1985] Patrick Bateson. Problems and possibilities of fusing developmental and

evolutionary thought. In G. Butterworth, J. Rutkowska, and M. Scaife, editors, Evo-

lution and developmental psychology, pages 3{21. Harvester, Brighton, E. Sussex, UK.

[Beer 1992] Randall D. Beer. A dynamical systems perspective on autonomous agents.

Technical Report CES-92-11, Dept. of Computer Engineering, Case Western Reserve

University, Cleveland, USA, 1992. Submitted to the Special Issue of the AI Journal on

Computational Theories of Interaction and Agency.

[Belew 1991] Richard Belew. Arti�cial life: A constructive lower bound for arti�cial

intelligence. IEEE Expert, pages 8{15, February 1991.

[Berlekamp et al. 1982] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy.

Winning Ways for your Mathematical Plays, volume 2. Academic Press, New York,

1982.

[Binder 1993] Philippe M. Binder. Parametric ordering of complex systems. Physical

Review E, 1993.

[Bourgine and Varela 1992] P. Bourgine and F. J. Varela. Introduction: Towards a prac-

tice of autonomous systems. In Francisco J. Varela and Paul Bourgine, editors, Toward

a Practice of Autonomous Systems: Proceedings of the First European Conference on

Arti�cial Life, pages xi{xvii, Cambridge, USA, 1992. MIT Press/Bradford Books.

112

[Brooks 1991a] R. A. Brooks. Intelligence without reason. MIT, Boston, USA, 1991.

Preprint. To appear in the Proceedings of IJCAI-91: Joint International Conference on

Arti�cial Intelligence.

[Brooks 1991b] R. A. Brooks. Intelligence without representation. Arti�cial Intelligence,

47:139{159, 1991.

[Byl 1989] John Byl. Self-reproduction in small cellular automata. Physica D, 34:295{299,

1989.

[Chaitin 1987] Gregory J. Chaitin. Algorithmic Information Theory. Cambridge Tracts

in Theoretical Computer Science. Cambridge University Press, 1987.

[Cli� et al. 1993] D. Cli�, I. Harvey, and P. Husbands. Explorations in evolutionary

robotics. Adaptive Behavior, 2(1):71{104, 1993.

[Cli� 1991] David T. Cli�. Computational neuroethology: A provisional manifesto. In J.-

A. Meyer and S.W.Wilson, editors, From Animals to Animats: Proceedings of The First

International Conference on Simulation of Adaptive Behavior, pages 29{39, Cambridge,

MA, 1991. MIT Press/Bradford Books.

[Cli� 1994] Dave Cli�, editor. AI and Arti�cial Life, Special issue of AISB Quarterly:

Newsletter of the Society for the Study of Arti�cial Intelligence and Simulation of

Behaviour, number 87, Spring 1994.

[Codd 1968] E.F. Codd. Cellular Automata. Academic Press, New York, 1968.

[Crutch�eld and Mitchell 1994] James P. Crutch�eld and Melanie Mitchell. The evolution

of emergent computation. 94-03-012, Santa Fe Institute, Santa Fe, NM, USA, 1994.

Submitted to Science.

[Crutch�eld 1991] James P. Crutch�eld. Knowledge and meaning... chaos and complexity.

Working Paper 91-09-035, Santa Fe Institute, Santa Fe, NM, USA, September 1991.

[Crutch�eld 1992] James Crutch�eld. Semantics and thermodynamics. Physics Depart-

ment, University of California, Berkeley, CA, 1992. Preprint.

[CSC 1991] CSC, editor. Workshop on Cellular Automata Proceedings. Centre for Scien-

ti�c Computing, Espoo, Finland, 1991.

[Das et al. 1994] R. Das, M. Mitchell, and J. P. Crutch�eld. A genetic algorithm dis-

covers particle computation in cellular automata. In Y. Davidor; H.-P. Schwefel and

R. Maenner, editors, Parallel Problem Solving from Nature, 3. Springer-Verlag, Oct.

1994. To appear.

[Davidge 1994] Robert Davidge. Computer Processors which Behave like Unicellular Or-

ganisms: A Thesis in Arti�cial Life. To appear as a Cognitive Science Research Report,

School of Cognitive and Computing Sciences, University of Sussex, Brighton, UK, 1994.

[Davidor 1990] Yuval Davidor. Epistasis variance: A viewpoint on representations, GA

hardness, and deception. Complex Systems, 4(4), 1990.

[Dawkins 1976] Richard Dawkins. The Sel�sh Gene. Oxford University Press, Oxford,

1976.

113

[De Jong and Spears 1993] Kenneth A. De Jong and W. Spears. On the state of evolu-

tionary computation. In Stephanie Forrest, editor, Proceedings of the 5th International

Conference on Genetic Algorithms, pages 618{623, San Mateo, CA, USA, 1993. Morgan

Kaufmann.

[De Jong 1985] Kenneth A. De Jong. Genetic algorithms: a 10 years perspective. In

J. Grefenstett, editor, Genetic algorithms and their application: Proccedings of an

International Conference on Genetic Algorithms, pages 169{177. Carnegie-Mellon Uni-

versity, 1985.

[de Oliveira 1989] Pedro P. B. de Oliveira. Towards the speci�cation of a freely evolving

system. Unpublished manuscript. Presented at the International Conference on Evolv-

ing Knowledge in Natural Science and Arti�cial Intelligence, University of Reading,

England, Sept. 1989.

[de Oliveira 1990a] Pedro P. B. de Oliveira. Parallel generation of combinations. Com-

puter Science Report 4, School of Cognitive and Computing Sciences, University of

Sussex, England, July 1990.

[de Oliveira 1990b] Pedro P. B. de Oliveira. The second workshop on arti�cial life. AISB

Quarterly: Newsletter of the Society for the Study of Arti�cial Intelligence and Simu-

lation of Behaviour, pages 30{32, number 72, Spring 1990.

[de Oliveira 1992a] Pedro P. B. de Oliveira. A cellular automaton to embed genetic search.

In L. Nadel and D. L. Stein, editors, 1991 Lectures in Complex Systems, Santa Fe Insti-

tute Studies in the Sciences of Complexity, Lectures Vol. IV, pages 389{408. Addison-

Wesley, 1992.

Also as: Cognitive Science Research Report CSRP-210, School of Cognitive and Com-

puting Sciences, University of Sussex, England, Dec. 1991.

[de Oliveira 1992b] Pedro P. B. de Oliveira. Enact: An arti�cial-life world in a family of

cellular automata. Cognitive Science Research Report CSRP-248, School of Cognitive

and Computing Sciences, University of Sussex, England, Sept. 1992. Presented at the

3

rd

Workshop on Arti�cial Life, Santa Fe, NM, USA, June 1992.

[de Oliveira 1992c] Pedro P. B. de Oliveira. Methodological issues within a framework to

support a class of arti�cial-life worlds in cellular automata. Cognitive Science Research

Report CSRP-237, School of Cognitive and Computing Sciences, University of Sussex,

England, May 1992. Presented at the British Computing Society Workshop on Cellular

Automata, Imperial College, London, England, Feb. 1992.

[de Oliveira 1993] Pedro P. B. de Oliveira. Methodological issues within a framework

to support a class of arti�cial-life worlds in cellular automata. In D. G. Green and

T. Bossomaier, editors, Complex Systems: From Biology to Computation, pages 82{96,

Amsterdam, 1993. IOS Press. (Abridged version of [de Oliveira 1992c]).

[de Oliveira 1994a] Pedro P. B. de Oliveira. Cellular automata for an approach to emer-

gent functionality. In Salvatore Di Gregorio and Giandomenico Spezzano, editors,

Proceedings of ACRI'94: Cellular Automata in Research and Industry, pages 99{111.

CRAI (Consorzio per la Ricerca e le Applicazioni di Informatica), S. Stefano di Rende,

CS, Italy, Sept. 1994.

[de Oliveira 1994b] Pedro P. B. de Oliveira. Coupling computations through space. In

W. Porod and G. Frazier, editors, Proceedings of the 3

rd

Workshop on Physics and

Computation. IEEE Press, Los Alamitos, CA, USA, Nov. 1994.

114

[de Oliveira 1994c] Pedro P. B. de Oliveira. Simulation of exaptive behaviour. In Y. Davi-

dor; H.-P. Schwefel and R. Maenner, editors, Parallel Problem Solving from Nature, 3,

Lecture Notes in Computer Science 866, pages 354{364. Berlin, Germany, Springer-

Verlag, Oct. 1994.

[de Oliveira 1995] Pedro P. B. de Oliveira. Collapsing a coevolutionary process into a

computable function. BioSystems: Journal of Biological and Information Processing

Sciences, 1995. To appear.

[Dennett 1991] Daniel C. Dennett. The evolution of consciousness. Chapter 7 from \Con-

sciousness Explained", Allen Lane: Penguin, 1991.

[Dennett 1992] Daniel C. Dennett. Book review: \The embodied mind: Cognitive science

and human experience". New Scientist, pages 48{49, 1992.

[Draper 1987] S. W. Draper. Machine learning and cognitive development. In

J. Rutkowska and C. Crook, editors, Computers, cognition and development, pages

255{279. John Wiley and Sons, Chichester, W. Sussex, UK.

[Eckart 1994] J. Dana Eckart. A Cellular Automata Simulation System. Computer Sci-

ence Department, Radford University, Radford, VA, 1994.

[Farmer and d'A Belin 1992] J. Doyne Farmer and Alleta d'A Belin. Arti�cial life: The

coming evolution. In C. G. Langton, J. D. Farmer, S. Rasmussen, and C. Taylor,

editors, Arti�cial Life: Proceedings of the second workshop on Arti�cial Life, pages

815{840. Addison-Wesley, 1992.

[Farmer et al. 1984] D. Farmer, T. To�oli, and S. Wolfram, editors. Cellular Automata:

Proceedings of an Interdisciplinary Workshop, Los Alamos, NM, 1983. Special issue of

Physica D 10(1-2), 1984.

[Farmer et al. 1986] J.D. Farmer, A. Lapedes, N. Packard, and B. Wendro�, editors. Evo-

lution, Games and Learning: Models for Adaptation in Machines and Nature, Proceed-

ings of the 5th Annual International Conference of the Center for Nonlinear Studies,

Los Alamos, NM, 1985, 1986. Special issue of Physica D, 22(1-3), 1986.

[Fogel and Atmar 1992] D. B. Fogel and W. Atmar, editors. First Annual Conference

on Evolutionary Programming, La Jolla, California, 1992. Evolutionary Programming

Society.

[Fogel 1992] D. B. Fogel. A brief history of simulated evolution. In David B. Fogel

and Wirt Atmar, editors, Proceedings of the First Annual Conference on Evolutionary

Programming, pages 1{16, La Jolla, California, 1992.

[Fontana 1990] Walter Fontana. Functional self-organization in complex systems. CNLS

Newsletter, Center for Nonlinear Studies, Los Alamos National Lab., (60):1{23, Novem-

ber 1990.

[Fontana 1992] Walter Fontana. Algorithmic chemistry. In C. G. Langton, J. D. Farmer,

S. Rasmussen, and C. Taylor, editors, Arti�cial Life: Proceedings of the second work-

shop on Arti�cial Life, pages 159{209. Addison-Wesley, 1992.

[Forrest and Miller 1990] S. Forrest and J. H. Miller. Emergent behavior in classi�er

systems. Physica D, 42:213{227, 1990.

115

[Forrest 1990] S. Forrest, editor. Emergent Computation: Self-organizing, Collective and

Cooperative Phenomena in Natural and Arti�cial Computing Networks, Proceedings

of the 9th Annual International Conference of the Center for Nonlinear Studies, Los

Alamos, N.M. Special issue of Physica D 42, June 1990.

[Goldberg 1989] D. E. Goldberg. Genetic algorithms in search, optimization, and machine

learning. Addison-Wesley, Reading, MA, 1989.

[Gould and Lewontin 1984] S. J. Gould and R. C. Lewontin. The spandrels of san marco

and the panglossian paradigm: A critique of the adaptationist programme. In E. Sober,

editor, Conceptual Issues in Evolutionary Biology: An Anthology, pages 252{270. MIT

Press: Bradford Books, Cambridge, MA.

[Gould and Vrba 1982] S. J. Gould and E. S. Vrba. Exaptation | a missing term in the

science of form. Palaeobiology, 8(1):4{15, 1982.

[Grefenstette 1985] J. J. Grefenstette, editor. Proceedings of an International Conference

on Genetic Algorithms and Their Applications, Hillsdale NJ, 1985. Lawrence Erlbaum

Associates.

[Gutowitz 1991] Howard Gutowitz. Cellular Automata: Theory and Experiment. MIT

Press/Bradford Books, Cambridge Mass., 1991. ISBN 0-262-57086-6.

[Gutowitz 1994] Howard Gutowitz. Frequently asked questions about cellular automata:

Contributions from the community. Available via anoynmous ftp from think.com,

1994.

[Hanson and Crutch�eld 1991] James E. Hanson and James P. Crutch�eld. The

attractor-basin portrait of a cellular automaton. Working Paper 91-02-012, Santa Fe

Institute, Santa FE, NM, USA, February 1991.

[Harley 1981] C. B. Harley. Learning the evolutionary stable strategy. Journal of Theo-

retical Biology, 89:611{633, 1981.

[Harvey 1991] Inman Harvey. The arti�cial evolution of behaviour. In J.-A. Meyer and

S.W.Wilson, editors, From Animals to Animats: Proceedings of The First International

Conference on Simulation of Adaptive Behavior, pages 400{408. MIT Press/Bradford

Books, Cambridge, MA, 1991.

[Harvey 1994] I. Harvey. The Arti�cial Evolution of Adaptive Behaviour. To appear as

a Cognitive Science Research Report, School of Cognitive and Computing Sciences,

University of Sussex, Brighton, UK, 1994.

[Hillis 1992] W. D. Hillis. Co-evolving parasites improve simulated evolution as an op-

timization parameter. In J.D. Farmer, C.G. Langton, S. Rasmussen, and C. Taylor,

editors, Arti�cial Life II, pages 311{324. Addison-Wesley, 1992.

[Hinton and Nowlan 1987] G. E. Hinton and S. J. Nowlan. How learning can guide evo-

lution. Complex Systems, 1((3)):495{502, June 1987.

[Ho�meister and B�ack 1991] F. Ho�meister and T. B�ack. Genetic algorithms and evo-

lution strategies: similarities and di�erences. In Hans-Paul Schwefel and R. M�anner,

editors, Parallel Problem Solving from Nature - Proceedings of 1st Workshop, PPSN 1,

volume 496 of Lecture Notes in Computer Science, pages 455{469, Dortmund, Germany,

1-3 Oct 1991. Springer-Verlag, Berlin, Germany.

116

[Holland 1986] John H. Holland. Escaping brittleness: The possibilities of general-

purpose learning algorithms applied to parallel rule-based systems. In R. S. Michalsky,

J. G. Carbonell, and T. M. Mitchell, editors,Machine learning: an arti�cial intelligence

approach, Volume II, pages 593{623. Morgan Kaufmann, Palo Alto, CA.

[Hopcroft and Ullman 1979] J.E. Hopcroft and J.D. Ullman. Introduction to Automata

Theory, Languages, and Computation. Addison-Wesley, Menlo Park, 1979.

[Hornby 1989] A. S. Hornby. Oxford Advanced Learner's Dictionary of Current English.

Oxford University Press, Oxford, UK, 4th. edition, 1989. Chief Editor: A. P. Cowie.

[Huberman 1994] Bernardo Huberman. Call for papers: Special issue of the journal

Arti�cial Intelligence on \Phase Transitions in Problem Spaces". Arti�cial Intelligence,

68: 201{202, 1994.

[Husbands 1993] P. Husbands. An ecosystems model for integrated production planning.

International Journal of Computer Integrated Manufacturing, 6(1-2):74{86, 1993.

[Jong 1994] Kenneth De Jong, editor. Evolutionary Computation, Cambridge, Mass,

1994. MIT Press.

[Kanebo and Suzuki 1993] Kunihiko Kanebo and Junji Suzuki. Evolution to the edge of

chaos in imitation game. Department of Pure and Applied Sciences, College of Arts

and Sciences, University of Tokyo, Tokyo, 1993. Preprint.

[Kau�man and Johnson 1992] Stuart A. Kau�man and Sonke Johnson. Coevolution

to the edge of chaos: Coupled �tness landscapes, poised states, and coevolutionary

avalanches. In C. G. Langton, J. D. Farmer, S. Rasmussen, and C. Taylor, editors,

Arti�cial Life: Proceedings of the second workshop on Arti�cial Life, pages 325{369.

Addison-Wesley, 1992.

[Kau�man 1991] Stuart A. Kau�man. The sciences of complexity and \origins of order".

Working Paper 91-04-021, Santa Fe Institute, Santa Fe, NM, USA, April 1991.

[Kau�man 1993] Stuart A. Kau�man. Origins of Order: Self-Organization and Selection

in Evolution. Oxford University Press, 1993.

[Koza 1990] John R. Koza. Genetic programming: A paradigm for genetically breeding

populations of computer programs to solve problems. STAN-CS-90-1314, Stanford

University, 1990.

[Koza 1992] John R. Koza. Genetic evolution and co-evolution of computer programs.

In C. G. Langton, J. D. Farmer, S. Rasmussen, and C. Taylor, editors, Arti�cial Life:

Proceedings of the second workshop on Arti�cial Life, pages 603{629. Addison-Wesley,

1992.

[Langton and Hiebeler 1990] Christopher G. Langton and David Hiebeler. Cellsim ver-

sion 2.5, 1990. Public domain software available via anonymous ftp from think.com or

santafe.edu.

[Langton et al. 1992] C. G. Langton, J. D. Farmer, S. Rasmussen, and C. Taylor, editors.

Arti�cial Life II, volume XI of Santa Fe Institute Studies in the Sciences of Complexity.

Addison Wesley, 1992. Proceedings of the Workshop on Arti�cial Life, held in Santa

Fe, NM, USA, Feb. 1990.

117

[Langton 1984] Christopher G. Langton. Self-reproduction in cellular automata. Physica

D, 10:134{144, 1984.

[Langton 1986] Christopher G. Langton. Studying arti�cial life with cellular automata.

Physica D, 22:120{149, 1986.

[Langton 1989] C. G. Langton, editor. Arti�cial Life: Proceedings of the Interdisciplinary

Workshop on the Synthesis and Simulation of Living Systems, Santa Fe Institute Stud-

ies in the Sciences of Complexity, Proceedings Volume VI. Addison-Wesley, 1989. Work-

shop held in Los Alamos, NM, USA, Sept. 1987.

[Langton 1990] Christopher G. Langton. Computation at the edge of chaos: Phase tran-

sitions and emergent computation. Physica-D, 42:12{37, 1990.

[Langton 1992a] Christopher G. Langton. Arti�cial life. In L. Nadel and D. L. Stein,

editors, 1991 Lectures in Complex Systems, Santa Fe Institute Studies in the Sciences

of Complexity, Lectures Vol. IV, pages 189{241. Addison-Wesley, 1992.

[Langton 1992b] Christopher G. Langton. Life at the edge of chaos. In C. G. Langton,

J. D. Farmer, S. Rasmussen, and C. Taylor, editors, Arti�cial Life: Proceedings of the

second workshop on Arti�cial Life, pages 41{91. Addison-Wesley, 1992.

[Langton 1993] C. G. Langton. The SWARM project. The Bulletin of the Santa Fe

Institute, 8, Spring-Summer(1):?{?, 1993.

[Langton 1994] Christopher G. Langton, editor. Arti�cial Life, Cambridge, Mass, 1994.

MIT Press.

[Lenat 1983] D. B. Lenat. The role of heuristics in learning by discovery: three case

studies. In R. S. Michalsky, J. G. Carbonell, and T. M. Mitchell, editors, Machine

learning: An arti�cial intelligence approach, pages 243{306. Tioga, Palo Alto, CA.

[Levy 1992] Steven Levy. Arti�cial Life: The Quest for a New Creation. Pantheon, New

York, USA, 1992.

[Lewontin 1983] R. C. Lewontin. The organism as the subject and object of evolution.

Scientia, 118:63{82, 1983.

[Lewontin 1984] R. C. Lewontin. Adaptation. In E. Sober, editor, Conceptual Issues

in Theoretical Biology: An Anthology, pages 234{251. MIT Press: Bradford Books,

Cambridge, MA, USA.

[Lewontin 1989] R. C. Lewontin. A natural selection. Nature, 339:107, 1989.

[Li and Nordahl 1992] Wentian Li and Mats Nordahl. Transient behavior of cellular au-

tomata rule 110. Physics Letters A, 166(5-6):335{339, 1992.

[Li and Packard 1989] Wentian Li and Norman Packard. The structure of the elemen-

tary cellular automata rule space. Technical Report CCSR-89-8, Center for Complex

Systems Research, Department of Physics, Beckman Institute, University of Illinois at

Urbana-Champaign, September 1989.

[Li et al. 1990] Wentian Li, Norman H. Packard, and Christopher G. Langton. Transition

phenomena in cellular automata rule space. Physica D, 45(1-3):77{94, 1990.

118

[Li 1989] Wentian Li. Problems in Complex Systems. PhD thesis, Center for Complex

Systems Research, Department of Physics, Beckman Institute, University of Illinois at

Urbana-Champaign, 1989.

[Li 1991] Wentian Li. Parameterizations of cellular automata rule space. Santa Fe Insti-

tute, Santa Fe, NM, August 1991. Preprint.

[Li 1992] Wentian Li. Phenomenology of non-local cellular automata. Journal of Statis-

tical Physics, 68(5-6), 1992.

[Lindgren and Nordahl 1990] C. Lindgren and M. Nordahl. Universal computation in

simple one dimensional cellular automata. Complex Systems, 4:299{318, 1990.

[Lipsitch 1991] Marc Lipsitch. Adaptation on rugged landscapes generated by iterated

local interactions of neighboring genes. In Richard K. Belew and Lashon B. Booker,

editors, Proceedings of the Fourth International Conference on Genetic Algorithms, San

Mateo, CA, 1991. Morgan Kaufmann.

[Martin 1990] O. Martin. Critical dynamics of 1-D irreversible systems. Physica D,

45:345, 1990.

[Maturana and Varela 1987] Humberto R. Maturana and Francisco J. Varela. The Tree of

Knowledge: The Biological Roots of Human Understanding. Shambhala Press, Boston,

1987.

[McCaskil 1989] John S. McCaskil. Polymer chemistry on tape: A computational model

for emergent dynamics. Max-Planck Institut f�ur Biophysikaliche Chemie, G�ottingen,

Germany, 1989. Preprint.

[McIntosh 1990a] Harold V. McIntosh. Linear cellular automata. Internal publication,

Universidad Autonoma de Puebla, Puebla, Mexico, May 1990.

[McIntosh 1990b] Harold V. McIntosh. Wolfram's class IV automata and a good life.

Physica D, 45:105, 1990.

[Meyer and Guillot 1991] Jean-Arcady Meyer and Agn�es Guillot. Simulation of adaptive

behavior in animats: Review and prospect. In J.-A. Meyer and S.W. Wilson, edi-

tors, From Animals to Animats: Proceedings of The First International Conference on

Simulation of Adaptive Behavior, pages 2{14. MIT Press/Bradford Books, Cambridge,

MA, 1991.

[Meyer and Wilson 1991] J-A. Meyer and S. W. Wilson, editors. From Animals to An-

imats: Proceedings of the First International Conference on Simulation of Adaptive

Behaviour, Cambridge, Mass, 1991. MIT Press/Bradford Books.

[Meyer 1993] Jean-Arcady Meyer, editor. Adaptive Behaviour, Cambridge, Mass, 1993.

MIT Press.

[Mikhailov 1992] A. S. Mikhailov. Arti�cial life: An engineering perspective. In

R. Friedrich and A. Wunderlin, editors, Evolution of Dynamical Structures in Com-

plex Systems, Springer Proceedings in Physics. Springer-Verlag. Submitted.

[Minsky 1967] Marvin Minsky. Computation: Finite and In�nite Machines. Prentice-

Hall, 1967.

119

[Mitchell and Forrest 1993] Melanie Mitchell and Stephanie Forrest. Genetic algorithms

and arti�cial life. Working Paper 93-11-072, Santa Fe Institute, Santa Fe Institute,

Santa Fe, NM, USA, November 1993.

[Mitchell et al. 1993a] M. Mitchell, P. T. Hraber, and J. P. Crutch�eld. Dynamic com-

putation, and the \edge of chaos": A re-examination. In G. Cowan, D. Pines, and

D. Melzner, editors, Integrative Themes, Santa Fe Institute, Proceedings Volume 19,

Reading, MA, 1993. Addison{Wesley.

[Mitchell et al. 1993b] M. Mitchell, P. T. Hraber, and J. P. Crutch�eld. Revisiting the

edge of chaos: Evolving cellular automata to perform computations. Working Paper 93-

03-014, Santa Fe Institute, Santa Fe, NM, USA, 1993. Submitted to Complex Systems.

[Mitchell et al. 1994] M. Mitchell, J. P. Crutch�eld, and P. T. Hraber. Evolving cellular

automata to perform computations: Mechanisms and impediments. Working Paper

93-11-071, Santa Fe Institute, 1994. Submitted to Physica D.

[Morowitz 1994] Harold Morowitz, editor. Complexity, New York, NY, 1994. John Wiley

& Sons.

[Oyama 1985] S. Oyama. The Ontogeny of Information. Cambridge University Press,

Cambridge, 1985.

[Packard 1988] Norman H. Packard. Adaptation toward the edge of chaos. Technical

Report CCSR-88-5, Center for Complex Systems Research and the Physics Department,

University of Illinois at Urbana-Champaign, 1988.

[Packard 1989] Norman Packard. Intrinsic adaptation in a simple model for evolution. In

C. G. Langton, editor, Arti�cial Life: Proceedings of the Interdisciplinary Workshop

on the Synthesis and Simulation of Living Systems, Santa Fe Institute Studies in the

Sciences of Complexity, Proceedings Volume VI, pages 141{155. Addison-Wesley, 1989.

[Pedersen 1990] John Pedersen. Continuous transitions of cellular automata. Complex

Systems, 4:653{665, June 1990.

[PhysComp-81 1982] PhysComp-81, editor. Proceedings of the First Conference on

the Physics of Computation, MIT, USA, 1981. International Journal for Theoretical

Physics, Vol 21, April, June and December issues, 1982.

[Piatelli-Palmarini 1989] M. Piatelli-Palmarini. Evolution, selection and cognition: From

`learning' to parameter setting in biology and in the study of language. Cognition,

31(1), 1989.

[Pinker and Bloom 1990] S. Pinker and P. Bloom. Natural language and natural selection.

Behavioral and Brain Sciences, 13:707{784, 1990.

[Rasmussen et al. 1990] Steen Rasmussen, Carsten Knudsen, Rasmus Feldberg, and

Morten Hindsholm. The coreworld: Emergence and evolution of cooperative struc-

tures in a computational chemistry. Physica-D, 42:111{134, 1990.

[Rasmussen et al. 1992] Steen Rasmussen, Carsten Knudsen, and Rasmus Feldberg. Dy-

namics of programmable matter. In C. G. Langton, J. D. Farmer, S. Rasmussen, and

C. Taylor, editors, Arti�cial Life: Proceedings of the second workshop on Arti�cial Life,

pages 211{254. Addison-Wesley, 1992.

120

[Ray 1992] Thomas S. Ray. An approach to the synthesis of life. In J.D. Farmer,

C.G. Langton, S. Rasmussen, and C. Taylor, editors, Arti�cial Life II, pages 371{408.

Addison-Wesley, 1992.

[Roska and Vandewall 1993] T. Roska and J. Vandewall. Cellular Neural Networks. Wi-

ley, 1993.

[Rota 1986] Gian-Carlo Rota. In memoriam of Stan Ulam: The barrier of meaning. In

J.D. Farmer, A. Lapedes, N. Packard, and B. Wendro�, editors, Evolution, Games

and Learning: Models for Adaptation in Machines and Nature, pages Special issue of

Physica D, 22(1{3):4{12, 1986.

[Rucker 1993] Rudy Rucker. Arti�cial Life Lab. Waite Group Press, Corte Madera, CA,

USA, 1993.

[Rutkowska 1990] Julie C. Rutkowska. Action, connection and enaction: A developmental

perspective. AI & Society: The Journal of Human and Machine Intelligence, 1990.

[Sannier II and Goodman 1987] A. V. Sannier II and E. D. Goodman. Genetic learn-

ing procedures in distributed environments. In J. J. Grefenstette, editor, Genetic Al-

gorithms and their Applications: Proceedings of the 2

nd

International Conference on

Genetic Algorithms, pages 162{169, Hillsdale, NJ, 1987. Lawrence Erlbaum Associates.

[Scaife 1989] M. Scaife. A framework for research in developmental cognitive science.

Report prepared for the human behaviour and development group of the esrc, School

of Cognitive and Computing Sciences, University of Sussex, Brighton, UK, 1989.

[Schroeder 1991] Manfred Schroeder. Fractals, Chaos, Power Laws. W. H. Freeman and

Company, New York, 1991.

[Schwefel and M�anner 1991] H. P. Schwefel and R. M�anner, editors. Parallel Problem

Solving from Nature { Proceedings 1st Workshop PPSN 1, volume 496 of Lecture Notes

in Computer Science, Berlin, 1991. Springer-Verlag.

[Serra and Zanarini 1990] R. Serra and G. Zanarini. Complex Systems and Cognitive

Processes. Springer-Verlag, Heidelberg, Germany, 1990.

[Smith III 1971] Alvy Ray Smith III. Simple computation-universal cellular spaces. Jour-

nal of the Association for Computing Machinery, 18:339{353, 1971.

[Smith 1987] John Maynard Smith. When learning guides evolution. Nature, 329:761{

762, 1987.

[Stephenson 1992] Ian Stephenson. Creature processing: An alternative cellular architec-

ture. Technical Report ASEG-92.04, Department of Electronics, University of York,

UK, 1992.

[Tackett 1992] Walter A. Tackett. Fitness and adaptation of digital organisms. Talk given

at Arti�cial Life III, Santa Fe, NM, USA, 1992.

[Thompson et al. 1991] E. Thompson, A. Palacios, and F. Varela. Ways of coloring:

Comparative color vision as a case study for cognitive science. Brain and Behavioral

Sciences, 15:1{74, 1991.

[To�oli and Margolus 1987] Tommaso To�oli and Norman Margolus. Cellular Automata

Machines: A New Environment for Modeling. MIT Press, Cambridge, Mass, 1987.

121

[van Gelder 1992] Timothy van Gelder. What might cognition be if not computation?

Research Report 75, Cognitive Science, Indiana University, 1992.

[Varela and Bourgine 1992] Francisco J. Varela and Paul Bourgine, editors. Toward a

Practice of Autonomous Systems: Proceedings of the First European Conference on

Arti�cial Life. Series: Complex Adaptive Systems. MIT Press, Cambridge, MA, 1992.

[Varela et al. 1991] F. Varela, E. Thompson, and E. Rosch. The Embodied Mind. MIT

Press, 1991.

[Varela 1989] F. Varela. Connâ�tre: les sciences cognitives, tendances et perspectives.

Seuil, Paris, 1989.

[Vitanyi 1973] Paul M. B. Vitanyi. Sexually reproducing cellular automata.Mathematical

Biosciences, 18:23{54, 1973.

[von Neumann 1966] John von Neumann. Theory of Self-Reproducing Automata. Uni-

versity of Illinois Press, Urbana-Champaign, 1966. Editor: A. W. Burks.

[Vose 1991] M. D. Vose. Formalizing genetic algorithms. Technical Report CS-91-127,

University of Tennessee, 1991.

[Weisbuch 1991] G�erard Weisbuch. Complex Systems Dynamics: An Introduction to Au-

tomata Networks. Lecture Notes Volume II, Santa Fe Institute, Studies in the Sciences

of Complexity. Addison Wesley, Redwood City, CA, USA, 1991.

[Werner and Dyer 1992] Gregory M. Werner and Michael G. Dyer. Evolution of commu-

nication in arti�cial organisms. In C. G. Langton, J. D. Farmer, S. Rasmussen, and

C. Taylor, editors, Arti�cial Life: Proceedings of the second workshop on Arti�cial Life.

Addison-Wesley, 1992.

[Whitley 1993] Darrell Whitley. Cellular genetic algorithms. In Stephanie Forrest, editor,

Proceedings of the 5

th

International Conference on Genetic Algorithms, page 658, San

Mateo, CA, USA, 1993. Morgan Kaufmann.

[Winograd and Flores 1986] T. Winograd and F. Flores. Understanding computers and

cognition: a new foundation for design. Ablex, Norwood, NJ, 1986.

[Wolfram 1986a] Stephan Wolfram. Statistical mechanics of cellular automata. In

Stephan Wolfram, editor, Theory and Applications of Cellular Automata. World Scien-

ti�c, Singapore. Reprinted from: Reviews of Modern Physics, 55:601{644, 1983.

[Wolfram 1986b] Stephan Wolfram. Universality and complexity in cellular automata.

In Stephan Wolfram, editor, Theory and Applications of Cellular Automata. World

Scienti�c, Singapore.

[Wuensche and Lesser 1992] Andrew Wuensche and Mike Lesser. The Global Dynamics of

Cellular Automata. Santa Fe Institute Studies in the Sciences of Complexity, Reference

Volume 1. Addison-Wesley, 1992.

[Wuensche 1993] Andrew Wuensche. The ghost in the machine: Basins of attraction

of random boolean networks. Cognitive Science Research Paper CSRP-281, School

of Cognitive and Computing Sciences, University of Sussex, Brighton, UK, 1993. To

appear in Arti�cial Life III, Santa Fe Institute Studies in the Sciences of Complexity.

122

[Wuensche 1994] Andrew Wuensche. Complexity in one-D cellular automata: Gliders,

basins of attraction and the Z parameter. Cognitive Science Research Papers CSRP

321, School of Cognitive and Computing Science, University of Sussex, Brighton, UK,

February 1994.

[Yao 1992] Xin Yao. A review of evolutionary arti�cial neural networks. Commonwealth

Scienti�c and Industrial Research Organisation, Division of Building, Construction and

Engineering, Australia, 1992. Preprint.

123

