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Abstract

Neural network outputs are interpreted as parameters of statistical distri-

butions. This allows us to �t conditional distributions in which the parameters

depend on the inputs to the network. We exploit this in modelling multivari-

ate data, including the univariate case, in which there may be input-dependent

(e.g. time-dependent) correlations between output components. This provides

a novel way of modelling conditional correlation as well as providing input-

dependent (local) error bars.

1 Introduction

Neural networks provide a way of modelling the statistical relationship between a

dependent variable Y and an independent variable X. For example, X could be

�nancial data up to a certain time and Y could be a future stock index, exchange

rate, option price etc. Alternatively X could represent geophysical features of a

prospect and Y could represent mineralization at a certain depth. In general X and

Y can be vectors of continuous or discrete quantities.

Suppose that the conditional distribution of Y belongs to a family of distributions

characterised by a �nite set of parameters which are functions of conditioning values

of X. These functions, which in general will be non-linear, can then be modelled

by a neural network. For discrete distributions this approach has been known for

some time in the form of the softmax rule (Bridle, 1990). Bishop (1994) extends

this framework to absolutely continuous distributions, in particular to the case of

�nite Gaussian mixtures. The case of a single kernel is treated independently by

Nix and Weigend (1995). Bishop uses radial kernels though it is straightforward to

extend the approach to Gaussians with diagonal covariance matrices. The purpose
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of this paper is to consider the case of multivariate data in which the conditional

covariance matrix may be non-diagonal.

2 Multivariate data

The conditional distribution of the n-dimensional quantity Y given X = x is as-

sumed to be described by the multivariate Gaussian density

P (y jx) = (2�)

�n=2

j�j

�1=2

exp

n

�
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(y � �)
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o
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where �(x) is the vector of conditional means and �(x) is the conditional covariance

matrix. Both � and � are understood to be functions of x in a way that depends on

the outputs of a neural network when the conditioning vector x is given as input.

It is assumed that the network has linear output units and that � and � are

determined by the activations of these units. We now discuss the link between

network outputs and the components of � and �. The mean presents no problem.

The network will be required to have n output units whose activations, fz

�

i

g say,

are related to the n components of � by

�

i

= z

�

i

i = 1; : : : ; n: (2)

These units compute the components of the mean directly. It is less obvious how

to represent the covariance matrix. Being symmetric � has at most n(n + 1)=2

independent entries but it must also be positive de�nite.

1

The problem is to param-

eterise the class of symmetric positive de�nite matrices in such a way that (i) the

parameters can take any values independently in R

n

(ii) the determinant is a simple

expression of the parameters and (iii) the correspondence is bijective.

To solve this problem we recall the Cholesky factorisation of a symmetric positive

de�nite matrix as A

T

A where A is upper triangular with strictly positive diagonal

elements. The square root of the determinant of A

T

A is the product of the diagonal

elements of A. Conversely if A is any upper triangular matrix with strictly posi-

tive diagonal entries, A

T

A is symmetric positive de�nite and the correspondence is

unique.
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Applying this factorisation to the inverse covariance matrix when n = 4,

for example, gives
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We restrict to the proper case where � is invertible.

2

The diagonal entries ofA are the square roots of the pivots under Gaussian elimination (Strang,

1988; Horn & Johnson, 1985; Golub & Loan, 1989). Note that every positive de�nite matrix is

invertible, the inverse of a positive de�nite matrix is positive de�nite and every symmetric positive

de�nite matrix is the covariance matrix of some multivariate Gaussian.
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To represent the matrix A we stipulate that the network is provided with an addi-

tional set of dispersion output units whose activations fz

�

i

g and fz

�

ij

g are related to

the elements of A by

�

ii

= exp z

�

i

i = 1; : : : ; n (4)

�

ij

= z

�

ij

i = 1; : : : ; n � 1; j = 2; : : : ; n; i < j: (5)

In this way n network outputs (2) are needed for the mean, another n for the positive

diagonal entries (4) and n(n�1)=2 for the o�-diagonal entries (5) making n(n+3)=2

in all.

3

Every possible assignment of real values to these outputs corresponds to one

and only one multivariate Gaussian.

Note that � can be recovered by inverting �

�1

. This is easy to compute now

that �

�1

is known as the product (3) of lower and upper triangular matrices (Press

et al., 1992, Ch.2).

3 Likelihood

Suppose N pairs of corresponding observations f(x

p

; y

p

) : p = 1; : : : ; Ng have been

made on X and Y . The negative conditional log likelihood of the data is assumed

to factorise as
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N

X
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p
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where from (1) the negative log likelihood of an individual pattern is
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apart from a constant.

4

Maximum likelihood estimation would seek network weights

w that minimiseE. Whatever form of estimation is used, with or without some form

of regularisation, the gradient of (6) with respect to network weights is of interest.

Concentrating on (7) and omitting the su�x p we de�ne

�

i

= �

i

� y

i

i = 1; : : : ; n

�

i

=

n

X

j=i

�

ij

�

j

i = 1; : : : ; n:

The negative log likelihood for an individual pattern is then
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Network output activations are likely to be stored in a one-dimensional structure for most

implementations. It is left to the reader how to manage the two-dimensional indexing.

4

It will not be investigated under what assumptions this factorisation over patterns is justi�ed.

It is su�cient, but not necessary in the case of equispaced time series data for example, that the

observation pairs are jointly independent.
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and partial derivatives with respect to network outputs are easily seen to be
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These expressions can be used with backpropagation to calculate rE with respect

to network weights.

3.1 Constant dispersion

It is interesting to consider the special case in which the network weights attached

to the dispersion output units vanish. This would be appropriate if the noise distri-

bution were constant over the whole training set. However this case may arise, the

activations fz

�

i

g and fz

�

ij

g are then independent of network inputs and determined

just by the biases on the corresponding output units. It can then be shown that, at

any local minimum of E as a function of weights and biases, the dispersion output

biases must assume values such that the inverse of A

T

A is the sample covariance

matrix
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N

N
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� �
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)

T

where �

p

is the conditional mean for input x

p

as computed by the network at this

local minimum.
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Substituting S for each �

p

in (6) and (7) leads to

E =

1

2

N log jSj+ constant (8)

as the expression for the negative log likelihood, permitting dispersion output units

to be dispensed with. In the case of univariate data, or more generally of uncor-

related multivariate data, (8) can also be obtained by integrating out the diagonal

elements of the covariance matrix using an uninformative prior (Buntine & Weigend,

1991; Williams, 1995). The present approach, however, is more exible in allowing

dispersion to vary over the input domain and, even in the case of constant dispersion

for multivariate data, more e�cient than tackling (8) directly.

4 Examples

We consider simulated data for which the generating distribution is known.

5

The proof follows the lines of the usual treatment of maximum likelihood estimators of param-

eters of multivariate normal distributions, together with their invariance under invertible reparam-

eterisations (Anderson, 1958; Rao, 1973).
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4.1 Univariate data

Weigend and Nix (1994) discuss univariate data (n = 1) drawn from normal distri-

butions N(�; �) with means

�(x) = sin(2:5x) sin(1:5x)

and variances

�

2

(x) = 0:01 + 0:25 [1� sin(2:5x)]

2

:

1000 training examples were generated using this example with x drawn randomly

from a uniform distribution on [0; �]. The training set is shown in Figure 1. Results

are shown in Figure 2. These were obtained using a simple fully connected 3-

layer network with 1 input unit, 10 hidden units and 2 output units. Networks

were trained using the optimisation and regularisation algorithms of Williams (1991,

1995) which pruned the network to 6 hidden units with 23 remaining non-zero

weights and biases. Weigend and Nix in fact propose a considerably more complex

architecture and training regime. This seems not to be needed by present methods

which �t both �rst and second moments together and appear to give signi�cantly

improved results.
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4.2 Bivariate data

Continuing this example we consider data drawn from the bivariate normal distri-

bution (n = 2) with mean (�
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; �

2

) and covariance matrix
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where the means are given by
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the variances by
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and the correlation coe�cient by

�(x) = sin(2:5x) cos(0:5x):
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To investigate variability between local minima, 20 similar networks were trained and the

results averaged. For the mean this gives � = h�

k

i and for the variance �

2

= h�

2

k

i+

�

h�

2

k

i � h�

k

i

2

	

where �

k

(x) and �

2

k

(x) are the mean and variance for the kth network, k = 1; : : : ; 20, and h�

k

i is the

average of the means etc. The results for �(x) and �(x) for the mixture are indistinguishable at this

scale from those shown in Figure 2. Note that this form of averaging corresponds to rudimentary

integration of the predictive distribution over weight space (Buntine & Weigend, 1991; Neal, 1992,

1995).
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Figure 1: Training set for the univariate case showing the random distribution of

training data around the mean �(x) = sin(2:5x) sin(1:5x) for 0 < x < � with

variance �
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Figure 2: Neural network �t for univariate data using a 3-layer network.
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Figure 3: Neural network �t for bivariate data.

3000 training examples were generated with x randomly distributed over [0; �].

7

These were modelled using a fully connected 3-layer network with 1 input unit, 20

hidden units and 5 output units (2 for the means and 3 for the inverse covariance

matrix). As an e�ect of Laplace regularisation these were pruned to 12 hidden units

with 62 non-zero weights and biases. Results are shown in Figure 3. These show a

reasonable �t for most of the interval.
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Speci�cally y
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(1 � �) with �

1

, �

2

being independent standard normal deviates.
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5 Conclusion

Modelling correlation inevitably requires larger samples. For the speci�c bivariate

example considered, the �t to the covariance matrix is signi�cantly poorer for sam-

ples of less than around 2000. More data points are needed in the neighbourhood of

a given input x to obtain a reliable estimate of the local pairwise correlations than

to estimate just the means and variances. The extent of this need depends on the

smoothness of the functional dependence on x. Note that there is no di�culty in

�nding a neural network model for the �ve functions in Figure 3 if direct examples

of each are given. The problem is to extract the local values �(x) and �(x) from

input-dependent statistical properties of the sample when only the noisy data pairs

(x; (y

1

; y

2

)) are given.

For smaller samples a better estimate of the variance of individual components

might be obtained by modelling each component separately. This approach, how-

ever, would normally make the assumption, which in practice it is hard to avoid,

that the likelihood factorises over patterns as in (6). In order to achieve this factori-

sation it may be necessary, in the case of time series data for example, to train on

possibly correlated multivariate targets rather than on single items. This will be the

subject of a separate paper. The present paper shows how this can be achieved in an

e�cient way. Modelling conditional correlation is, in any case, a subject of interest

in its own right and the present methods provide a new and e�ective approach.
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