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Abstract. Arti�cial evolution can operate upon recon�gurable electronic circuits to pro-

duce e�cient and powerful control systems for autonomous mobile robots. Evolving physical

hardware instead of control systems simulated in software results in more than just a raw

speed increase: it is possible to exploit the physical properties of the implementation (such as

the semiconductor physics of integrated circuits) to obtain control circuits of unprecedented

power. The space of these evolvable circuits is far larger than the space of solutions in which

a human designer works, because to make design tractable, a more abstract view than that

of detailed physics must be adopted. To allow circuits to be designed at this abstract level,

constraints are applied to the design that limit how the natural dynamical behaviour of the

components is re
ected in the overall behaviour of the system. This paper reasons that these

constraints can be removed when using arti�cial evolution, releasing huge potential even

from small circuits. Experimental evidence is given for this argument, including the �rst

reported evolution of a real hardware control system for a real robot.
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1 Introduction | What is Evolvable Hardware?

Evolvable hardware [4, 10, 8, 9, 20, 24] is a recon�gurable electronic circuit, which can be changed

by an adaptive process such as a genetic algorithm. This paper considers the evolution of hardware

to control an autonomous mobile robot; initially by examining exactly what evolvable hardware

is, and what its advantages over software systems are, and then by concentrating on one of these

bene�ts: the exploitation of the physics of the implementation, and how this may be maximised.

Finally, early results are presented for the �rst ever evolution of real hardware to control a real

robot, which bene�ts from the change of perspective that I claim evolvable hardware justi�es.

A type of commercially available VLSI chip called a Field Programmable Gate Array (FPGA)

[25] will provide a good illustration of how hardware may be subject to adaptation, although

many other evolvable hardware architectures (both analogue and digital) are possible. A typical

FPGA consists of an array of hundreds of recon�gurable blocks that can perform a variety of

digital logic functions, and a set of wires to which the inputs and outputs of the blocks can be

connected (Figure 1). What logic functions are performed by the blocks, and how the wires are

connected to the blocks and to each-other, can be thought of as being controlled by electronic

switches (represented as dots in the diagram). The settings of these switches are determined by

the contents of digital memory cells. For example, if a block could perform any one of the 2

4

boolean functions of two inputs, then four bits of this \con�guration memory" would be needed to

determine its behaviour. The blocks around the periphery of the array have special con�guration

switches to control how they are interfaced to the external connections of the chip (its pins).

The con�guration memory of an FPGA can be conceptualised as its genotype, which determines

what the blocks do and how they are wired together. If an FPGA is the control system of a
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Fig. 1. Part of a simpli�ed typical FPGA architecture.

robot, then arti�cial evolution can manipulate an encoding of the con�guration memory (genotype)

according to the robot behaviour induced by the corresponding circuit implemented on the FPGA:

the hardware is evolvable. Commercial FPGAs have more features than I have mentioned, but the

principles are the same.

There is often no clear distinction between software and hardware, however. The contents of an

FPGA's con�guration memory can be thought of as causing it to instantiate a particular circuit by

means of setting its con�guration switches, but also the contents of the con�guration memorymight

be viewed as the \program" of a parallel computer that happens to be called an FPGA. Which of

these viewpoints is adopted is a matter of deciding on the most appropriate style of description for

the particular system in question: a conventional personal computer could be envisaged as evolvable

hardware, but it is usually more useful to think of it as a �xed piece of electronics that operates upon

data and instructions held in a memory. An intimately linked consideration is whether the evolving

system is viewed as a computational one (performing calculations or manipulating symbols), or

whether it is seen from the much wider perspective of dynamical systems theory. Later, I shall

advocate robot control systems that are appropriately described as non-computational dynamical

systems evolving in hardware.

There are two ways in which arti�cial evolutionmay be applied to a recon�gurable hardware sys-

tem. In the �rst (sometimes known as \extrinsic evolvable hardware"), an evolutionary algorithm

produces a con�guration based on the performance of a software simulation of the recon�gurable

hardware. The �nal con�guration is then downloaded onto the real hardware in a separate imple-

mentation step: a useful approach if the hardware is only capable of being recon�gured a small

number of times. In the second (\intrinsic"

2

) method, each time the evolutionary algorithm gener-

ates a new variant con�guration, it is used to con�gure the real hardware, which is then evaluated

at its task. Consequently, an implemented system is evolved directly; the constraints imposed by

the hardware are satis�ed automatically, and all of its detailed (di�cult to simulate) characteristics

can be brought to bear on the control problem. This second method is much more powerful than

the �rst and is what I mean by \evolvable hardware" in this paper.

I shall use the term \evolution" to mean any arti�cial evolution-like process, and the genetic

algorithm in particular [11]. Much of the discussion also applies to a broader class of adaptive

processes, including learning techniques, which may usefully be used in conjunction with arti�cial

evolution, or even instead of it.

Next, Section 2 examines the motivations behind the evolution of hardware systems. One of the

possible objectives | the maximal exploitation of hardware resources | is singled out as being

particularly interesting; to facilitate this, a new approach is proposed. Section 3 consolidates some

2
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of the ideas put forward, by means of a simulation study using a highly abstract model of an FPGA.

Finally, Section 4 describes a new evolvable hardware architecture, which is easy to build, but yet

takes many of the important ideas on-board. The bene�ts of this architecture, and the underlying

approach, are demonstrated by the real-world performance of this machine in controlling a robot.

2 Why Evolve in Hardware?

Under what conditions is the use of evolvable hardware bene�cial, when compared with systems

evolved in software simulation? This section identi�es three areas: the �rst two are related to the

raw speed of hardware, while the third is more profound and suggests powerful new kinds of system

that have not been seen before.

2.1 Speed of Operation

Currently, much of the research on evolved control systems for autonomous agents is centred around

simulations of neuro-mimetic networks performed on a general purpose computer. As expertise in

the evolution of complex systems advances, so the size and complexity of these networks will

increase, with a corresponding decrease in the speed with which they can be simulated in this

way. If the speed increase in general purpose computers does not keep pace with improvements

in evolutionary techniques, then general purpose computers will have to be abandoned, and more

specialised parallel machines used to perform the simulations. Initially, coarse-grain parallel multi-

processor computers will be su�cient, but if the complexity of the networks increases still more,

progressively �ner grained parallelism will have to be utilised, until eventually there is one special

purpose processor for each neural node. We would then have arrived at a recon�gurable hardware

implementation for arti�cial neural networks | evolvable hardware.

The assumption that our ability to evolve control systems will outstrip the speed of simulating

computers is not necessarily true. Nevertheless, it is interesting to observe that if our aspirations

for building the most complex technically-possible brain-like systems are ful�lled, then the result

will be an evolvable hardware implementation of the system. In that case, would it not be possible

to evolve hardware in its own right (as an electronic circuit, and not as an implementation of

anything else) and obtain an even more powerful system, better suited to silicon than other kinds

of architectures like neural networks? I shall return to this question soon.

2.2 Accelerated Evolution

When evolving a robot control system to achieve some task, the time taken before a satisfactory

controller is obtained is usually dominated by how long it takes to evaluate each variant controller's

e�cacy at that task (�tness evaluation). The genetic operations take a small amount of time in

comparison.

The obvious way to evaluate a control system is to connect it to the robot and see how well

it performs in the real world, in real time. Even for tasks that take a short length of time to

perform (a minute or two), the large number of �tness evaluations normally required can make

this highly time-consuming. Consequently, there is a case for interfacing the evolving hardware

control system to a high-speed simulation of the robot and its environment, in order to accelerate

the entire evolutionary process.

It is suggested by de Garis[4] that the environment simulation could be implemented in special

purpose electronics situated next to the evolving hardware control system on a VLSI chip. The

implementation of the simulator in hardware is made feasible by modern automatic synthesis

techniques, which can derive a circuit from a textual description resembling a computer program.

Implementing the environmental simulator in hardware rather than software makes it faster, but

does not solve the problem that it is extremely di�cult adequately to simulate the interactions

between a control system and its environment, such that a control system evolved in the simulated

world behaves in a satisfactory way in the real world. This is especially the case when vision is

involved [2]. Nevertheless, it is possible that environment simulation in special purpose hardware

will be an important tool as new techniques are developed [13, 23].



When a circuit that has been rapidly evolved for behaviour in a high-speed simulated world is

ready for use in the real world, all of its dynamics that in
uence the robot's behaviour must be

slowed down by the same factor by which the real world is slower than the simulation. (Imagine

a controller that was evolved for a high-speed simulated world and was then let loose in the real

world without being slowed down. Everything in the environment would then be happening slower

than it \expected," and the motor signals produced would tend to be too fast for the robot's

actuators and the world. It would probably no longer perform the task.) This means that the

acceleration of evolution through the use of a high-speed simulated environment is at the cost of

the e�ciency of the control circuit produced. The �nal circuit cannot be making maximal use of

the available hardware when it is operating in the real world, because it is capable of producing

the same behaviour in a world that is running faster: the resources needed to allow for this could

be being used for real-world performance. This may, however, be a sensible use of some of the high

speed available from electronic hardware.

The fact that it must be possible to adjust the speed of all of the control circuit's dynamics

that a�ect the behaviour of the robot restricts the set of control circuits that could be produced by

evolution in a high-speed world. Either the time-scales of all of the semiconductor physics must be

adjustable by large amounts (this is not practical), or the aspects of the control circuit's dynamics

that make a di�erence to the robot must be restricted such that they are more easy to control.

The latter can be arranged by restricting evolution to use pre-de�ned indivisible modules that

have adjustable time-constants, or by applying the restriction of discrete-time dynamics through

the use of an adjustable clock. Each of these possibilities diminishes the degree to which evolution

can exploit the resources available from the recon�gurable hardware. Again, this may often be a

sensible sacri�ce to make for accelerated evolution, but the remainder of this paper deals with an

interesting alternative.

2.3 Exploitation of Semiconductor Physics

Work with the \gantry robot" at the University of Sussex [7] suggests that it may be feasible to

carry out arti�cial evolution in a real-world environment with �tness evaluations taking place in

real time. If, in addition, evolution is given control over the recon�gurable hardware at the lowest

possible level (for example the \con�guration bits" of the FPGAmentioned in Section 1) to produce

an electronic circuit as a type of control system in its own right (and not as an implementation

of anything else), then circuits of unprecedented power and e�ciency will be produced. These

systems can exploit every facet of the characteristics of the recon�gurable hardware on which they

are developed, because all of the natural real-time behaviours of its components (their physics) are

allowed potentially to a�ect the robot's behaviour, and detailed control is provided to tune their

collective action to achieve the task.

In nature, control systems are always adapted to the manner in which they are implemented,

because their evolutionary success is determined by their e�ectiveness as real implemented systems.

If engineering success is the objective, then implementations of neural networks (that evolved for

an implementation allowing slow, highly unconstrained connections between slow units) may be a

bad use of integrated circuits, which are very fast, but have severe constraints on interconnections

(because of their planar nature). Perhaps it will be possible to evolve an architecture that is better

suited to silicon than neural networks, but yet induces intelligent (\brain-like") behaviour into a

robot. The �ne-grained control over the hardware that is required implies a vast search-space for

a system of any complexity, so techniques need to be developed cope with this. One possibility

is the use of developmental genetic encoding schemes for genetic algorithms [12], which allow the

evolution of re-usable building blocks (analogous to neurons?), permitting �ne-grained tuning of

the building blocks, but yet reducing the search space to systems built out of them.

The space of circuits of the type I propose is very much larger than the space of solutions

available to a human designer. The designer works with high-level models of how components or

higher-level building blocks behave and interact. Design constraints are adopted to prevent the

imperfections of these models from a�ecting overall behaviour. One such constraint is the modu-

larisation of the design into parts with simple, well de�ned interactions between them. Another

is the use of a clock to prevent the natural dynamics of the components from a�ecting overall



behaviour: the clock is used so that the components are given time to reach a steady state be-

fore their condition is allowed to in
uence the rest of the system. I suggest (with the aid of the

empirical evidence presented in the following sections) that such constraints should be abolished

whenever they are a limitation on the potentially useful behaviour of an evolving hardware system.

A designer carefully avoids \glitches," \cross-talk," \transients" and \meta-stability," but all of

these things could be put to use by arti�cial evolution.

Evolution could also put to use properties of the hardware that the designer could never know

about. For instance, a circuit may evolve to rely on some internal time-delays of an integrated circuit

that are not externally observable. Even if there is a silicon defect, the system could evolve to use

whatever function the \faulty" part happened to perform. This raises a fundamental problem:

a circuit that is evolved for a particular evolvable hardware system (a certain FPGA chip, for

example) may not work on a di�erent system that is nominally identical | no two silicon chips

are the same. There are several ways in which this could be avoided. The circuits could be evolved

to be robust to perturbations in some properties that vary from chip to chip (by altering the

chip's temperature or power supply during evolution, for example). Evolution could be forced to

produce building blocks that are repeatedly used in the circuit, and would therefore be insensitive

to characteristics that varied across one chip. Evolution could evaluate a con�guration on more

than one piece of recon�gurable hardware when judging its quality (this can also be done using

a single recon�gurable chip that can instantiate the same circuit in several di�erent ways, e.g.

by using an FPGA's rotational symmetry). Finally, it could be accepted that further adaptation

will have to take place each time a con�guration is transferred from one recon�gurable device to

another [14, 15, 16, 17].

The next two sections of this paper will provide experimental evidence for the ideas I have

put forward here. Firstly, I present a simulation of the evolution of an FPGA con�guration, which

demonstrates that evolution can produce circuits optimised for a particular implementation, and

in the absence of modularisation and clocking constraints. Then I describe a real evolved hardware

control system that controls a real robot, and was produced according to the above rationale,

demonstrating its bene�ts.

3 A Millisecond Oscillator from Nanosecond Logic Gates

Abandoning the external clock can reap even more rewards than were mentioned above. A clocked

digital system is a �nite-state machine, whereas an unclocked (asynchronous) digital system is not.

To describe the state of an unclocked circuit, the temporal relationships between its parts must be

included. These are continuously variable analogue quantities, so the machine is not �nite-state.

This theoretical point gives a clue to a practical advantage: in an unclocked digital system, it

is possible to perform analogue operations using the time dimension, even when the logic gates

assume only binary values (see for example, the pulse stream technique [21, 22]).

In the previous section, I argued that when producing circuits by evolution rather than design,

the use of a clock is often an unnecessary limitation on the way in which the natural dynamics of

the components can be used to mediate robot behaviour. This is not always the case | electronic

components usually operate on time-scales much smaller than would be useful to a robot; unless

the system can evolve such that the overall behaviour of the components (when integrated into

the sensorimotor feedback loop of the robot) is much slower than the behaviour of individual

components, then a clock (perhaps of evolvable frequency) will be required to give control over

the time-scales. (Sometimes, the use of a clock can expand the useful dynamics possible from the

evolving circuit.)

A simulation has been performed to investigate whether a genetic algorithm can evolve a

recurrent asynchronous network of high speed logic gates to produce behaviour on a time-scale

that would be useful to a robot. The number of logic nodes available was �xed at 100, and the

genotype determined which of the boolean functions of Table 1(a) was instantiated by each node

(the nodes were analogous to the recon�gurable logic blocks of an FPGA), and how the nodes were

connected (an input could be connected to the output of any node, without restriction). The linear

bit-string genotype consisted of 101 segments (numbered 0::100 from left to right), each of which

directly coded for the function of a node, and the sources of its inputs, as shown in Table 1(b).



(Node 0 was a special \ground" node, the output of which was always clamped at logic zero.)

This encoding is based on that used in [2]. The source of each input was speci�ed by counting

forwards/backwards along the genotype (according to the `Direction' bit) a certain number of

segments (given by the `Length' �eld), either starting from one end of the string, or starting from

the current segment (dictated by the `Addressing Mode' bit). When counting along the genotype,

if one end was reached, then counting continued from the other.

BUFFER

NOT

NOR

OR

AND

SymbolName

NAND

NOT-XOR

XOR

(a)

Bits Meaning

0-4 Junk

5-7 Node Function

Pointer to First Input

8 Direction

9 Addressing Mode

10-15 Length

Pointer to Second Input

16 Direction

17 Addressing Mode

18-23 Length

(b)

Table 1. (a) Node functions, (b) Genotype segment for one node.

At the start of the experiment, each node was assigned a real-valued propagation delay, selected

uniformly randomly from the range 1.0 to 5.0 nanoseconds, and held to double precision accuracy.

These delays were to be the input-output delays of the nodes during the entire experiment, no

matter which functions the nodes performed. There were no delays on the interconnections. To

commence a simulation of a network's behaviour, all of the outputs were set to logic zero. From that

moment onwards, a standard asynchronous event-based logic simulation was performed [19], with

real-valued time being held to double precision accuracy. An equivalent time-slicing simulation

would have had a time-slice of 10

�24

seconds, so the underlying synchrony of the simulating

computer was only manifest at a time-scale 15 orders of magnitude smaller than the node delays,

allowing the asynchronous dynamics of the network to be seen in the simulation. A low-pass �lter

mechanism meant that pulses shorter than 0.5ns never happened anywhere in the network.

The objective was for node number 100 to produce a square wave oscillation of 1kHz, which

means alternately spending 0:5 � 10

�3

seconds at logic `1' and at logic `0'. If k logic transitions

were observed on the output of node 100 during the simulation, with the n

th

transition occurring

at time t

n

seconds, then the average error in the time spent at each level was calculated as :

average error =

1

k � 1

k

X

n=2

�

�

(t

n

� t

n�1

) � 0:5� 10

�3

�

�

(1)

For the purpose of this equation, transitions were also assumed to occur at the very beginning

and end of the trial, which lasted for 10ms (but took very much more wall-clock time to simulate).

The �tness was simply the reciprocal of the average error. Networks that oscillated far too quickly

or far too slowly (or not at all) had their evaluations aborted after less time than this, as soon as

a good estimate of their �tness had been formed. The genetic algorithm used was a conventional

generational one [5], but used elitism and linear rank-based selection. At each breeding cycle, the 5

least �t of the 30 individuals were killed o�, and the 25 remaining individuals were ranked according

to �tness, the �ttest receiving a fecundity rating of 20:0, and the least �t a fecundity of 1:0. The

linear function of rank de�ned by these end points determined the fecundity of those in-between.

The �ttest individual was copied once without mutation into the next generation, which was then

�lled by selecting individuals with probability proportional to their fecundity, with single-point

crossover probability 0.7 and mutation rate 6:0� 10

�4

per bit.



The experiment succeeded. Figure 2 shows that the output after 40 generations was approx-

imately 4

1

2

thousand times slower than the best of the random initial population, and was six

orders of magnitude slower than the propagation delays of the nodes. In fact, �tness was still

rising at generation 40 when the experiment was stopped. The �nal circuit (Figure 3) was ex-

ploiting the characteristics of its \implementation" | if the propagation delays were changed, it

reverted to behaviour similar to that at the �rst generation. A spike-train, rather than the desired

square-wave was produced, allowing the phenomenon of spike trains of slightly di�erent frequen-

cies beating together to produce a much lower frequency (but it is di�cult to gain the massive

reduction in frequency required and yet produce a regular output). The entire network contributes

to the behaviour, and meaningful sub-networks could not be identi�ed.

Two millionths of a second.

of a second.Two thousandths

logic ‘1’

logic ‘0’

~~

~~

18MHz

4kHz

logic ‘1’

logic ‘0’

Fig. 2. Output of the evolving oscillator. (Top) Best of the initial random population of 30 individuals,

(Bottom) best of generation 40. Note the di�erent time axes. A visible line is drawn for every output spike,

and in the lower picture each line represents a single spike.
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Fig. 3. The evolved 4kHz oscillator (unconnected gates removed, leaving the 68 shown).



This simulation, although quite an unrealistic model of the evolution of a real FPGA con�gu-

ration, has shown how evolution can assemble high speed components to produce behaviour on a

time-scale that approaches that useful to a robot. It exploits the characteristics of the implementa-

tion, and does not require the imposition of spatial or temporal constraints such as modularisation

or clocking. The style of solution adopted (the beating of spike trains) is an analogue operation

over the time axis, and would have been more di�cult in a discrete time system.

4 A Real Evolved Hardware Robot Controller

In this experiment, a real hardware robot control system was evolved for wall-avoidance behaviour

in an empty 2.9m�4.2m rectangular arena, using sonar time-of-
ight sensing. The two-wheeled

robot (\Mr Chips," Figure 4(a)) has a diameter of 46cm, and a height of 63cm. For this scenario,

its only sensors were a pair of �xed sonar heads pointing left and right.

(a)

1 1 16101

Sonar

Motors

MM
Clock

Evolved

10 Address inputs 8 Data outputs

1k by 8 bits RAM

Evolved RAM Contents

G.L.

G.L.

(b)

Fig. 4. (a) The \Mr Chips" Robot. (b) The evolvable Dynamic State Machine. \G.L." stands for \Genetic

Latch": which of the bits are latched according to the clock, and which are passed straight through is under

genetic control.

Consider how this control problem might traditionally have been solved using �nite-state ma-

chines (FSMs). Firstly, a pair of FSMs would be used to measure the time of 
ight of the sonar

\pings." When the sonar echoes returned, each timer would deliver a binary code representing

the time of 
ight to a central \control" FSM, which would compute a motor response on the ba-

sis of its current internal state and these inputs. The control FSM would then deliver a binary

code representing desired motor speed to each of a pair of pulse-width-modulation FSMs, which

would drive the d.c. motors with the appropriate waveforms. Notice that there is a very strict

sensory/control/motor functional decomposition inherent in this architecture, and the system is a

computational one, in which the control FSM deals in binary codes and is totally divorced from

the dynamics of the sensorimotor systems and the environment. It would be possible to evolve the

control FSM in hardware, but there would be no bene�t: exactly the same behaviour would be

obtained from an implementation of the FSM in software. A hardware implementation would use a

clocked register to hold the current state, and a random-access memory (RAM) chip with evolvable



contents would hold the next-state and output variables corresponding to each present-state and

input combination (this is the well known \direct-addressed ROM" implementation of an FSM [3]).

The hardware control system used in this experiment is super�cially similar to an FSM, but

fundamentally di�erent. Call it a Dynamic State Machine (DSM). As its input, it directly takes the

echo signals from the sonars. There is one wire from each sonar, on which pulses arrive: the lengths

of these pulses are equal to the time of 
ight for that sonar. (The sonars �re, and the pulses

begin, simultaneously, with a pulse repetition rate of 5Hz. The sonar �ring cycle is completely

asynchronous to the DSM.) The output of the DSM goes directly to the motor drivers; if the motors

are to go at an intermediate speed, then the DSM must pulse them itself. Like the FSM, the DSM

implementation is centred around an RAM chip with evolvable contents, but which of the input,

state and output variables are clocked, and which are free running (asynchronous) is genetically

determined. For those that are clocked, the clock frequency is also genetically determined. The full

arrangement is shown in Figure 4(b).

The sensory/control/motor functional decomposition has now been removed, and the control

system is intimately linked to the dynamics of the sensorimotor signals and the environment,

with time now able to play an important role throughout the system. The possibility of mixing

asynchronous state variables with state variables being clocked at an evolved frequency endows

the system with a rich range of possible dynamical behaviour: its actions can immediately be

in
uenced by the input signals, but at the same time it is able to keep a trace of previous stimuli

and actions over a time-scale that is under evolutionary control. It is able to exploit special-purpose

tight sensorimotor couplings because the temporal signals can quickly 
ow through the system,

being in
uenced by, and in turn perturbing, the DSM on their way.

The presence of asynchronous state variables means that this is not a �nite-state machine

(their continuous-valued temporal relationships need to be included in a description of the ma-

chine's state). It would not be possible to simulate this machine in software, because the e�ects

of the asynchronous variables and their interaction with the clocked ones depend upon the char-

acteristics of the hardware: meta-stability and glitches will be rife, and the behaviour will depend

upon physical properties of the implementation, such as propagation delays and meta-stability

constants. Similarly, a designer would only be able to work within a small subset of the possible

DSM con�gurations | the more predictable ones.

For the simple wall-avoidance behaviour, only the two state variables that also go to the motors

were used | the others were disabled, and can be introduced incrementally as the di�culty of the

task is increased. The genetic algorithm was the same as that described in the previous section,

with the contents of the RAM (only 32 bits required for the machine with two state variables),

the period of the clock (16 bits, giving a clock frequency from around 2Hz to several kHz) and the

clocked/unclocked condition of each variable all being directly encoded onto the linear bit-string

genotype. The population size was 30, probability of crossover 0.7, and the mutation rate was set

to be approximately 1 bit per string. (It can be shown that this small DSM is statistically likely to

visit all of its possible states: DSMs with more state variables are likely to visit a smaller fraction

of their possible states, and the mutation rate needs to be higher, because many mutations will

have no immediate phenotypic e�ect.) If the distance of the robot from the centre of the room in

the x and y directions at time t was c

x

(t) and c

y

(t), then after an evaluation for T seconds, the

robot's �tness was a discrete approximation to the integral:

�tness =

1

T

Z

T

0

�

e

�k

x

c

x

(t)

2

+ e

�k

y

c

y

(t)

2

� s(t)

�

dt where s(t) =

�

1 when stationary

0 otherwise

(2)

k

x

and k

y

were chosen such that their respective Gaussian terms fell from their maximum values

of 1.0 (when the robot was at the centre of the room) to a minimum of 0.1 when the robot was

actually touching a wall in their respective directions. The s(t) term is to encourage the robot

always to keep moving. Each individual was evaluated for four trials of 30 seconds each, starting

with di�erent positions and orientations, the worst of the four scores being taken as its �tness [6].

For the �nal few generations, the evaluations were extended to 90 seconds, to �nd controllers that

were not only good at moving away from walls, but also staying away from them.

For convenience, evolution took place with the robot in a kind of \virtual reality." The real

evolving hardware controlled the real motors, but the wheels were just spinning in the air. The



wheels' angular velocities were measured, and used by a real time simulation of the motor charac-

teristics and robot dynamics to calculate how the robot would move. The sonar echo signals were

then arti�cially synthesised and supplied in real time to the hardware DSM. Realistic levels of noise

were included in the sensor and motor models, both of which were constructed by �tting curves to

experimental measurements, including a probabilistic model for specular sonar re
ections.

Figure 5 shows the excellent performance which was attained after 35 generations, with a good

transfer from the virtual environment to the real world. The robot is drawn to scale at its starting

position, with its initial heading indicated by the arrow; thereafter only the trajectory of the centre

of the robot is drawn. The bottom-right picture is a photograph of behaviour in the real world,

taken by double-exposing a picture of the robot at its starting position, with a long exposure of

a light �xed on top of the robot, moving in the darkened arena. If started repeatedly from the

same position in the real world, the robot follows a di�erent trajectory each time (occasionally very

di�erent), because of real-world noise. The robot displays the same qualitative range of behaviours

in the virtual world, and the bottom pictures of Figure 5 were deliberately chosen to illustrate this.

Fig. 5. Wall avoidance in virtual reality and (bottom right) in the real world, after 35 generations. The

top pictures are of 90 seconds of behaviour, the bottom ones of 60.
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Fig. 6. A representation of one of the wall-avoiding DSMs. There is more to its behaviour than is seen

immediately in this state-transition diagram, because it is not entirely a discrete-time system, and its

dynamics are tightly coupled to those of the sonars and the rest of the environment.



When it is remembered that the DSM receives the raw echo signals from the sonars and directly

drives the motors (one of which happens to be more powerful than the other), with only two internal

state variables, then this performance in surprisingly good. It is not possible for the DSM directly

to drive the motors from the sonar inputs (in the manner of Braitenberg's \Vehicle 2" [1]), because

the sonar pulses are too short to provide enough torque. Additionally, such na��ve strategies would

fail in the symmetrical situations seen at the top of Figure 5. One of the evolved wall-avoiding

DSMs was analysed (see below), and was found to be going from sonar echo signals to motor

pulses using only 32 bits of RAM and 3 
ip-
ops (excluding clock generation): highly e�cient use

of hardware resources, made possible by the absence of design constraints.

Figure 6 illustrates the state-transition behaviour of one of the wall avoiders. This particular

individual used a clock frequency of 9Hz (about twice the sonar pulse repetition rate). Both sonar

inputs were asynchronous, and both motor outputs were clocked, but the internal state variable

that was clocked to become the left motor output was free-running (asynchronous), whereas that

which became the right output was clocked. In the diagram, the dotted state transitions occur

as soon as their input combination is present, but the solid transitions only happen when their

input combinations are present at the same time as a rising clock edge. Since both motor outputs

are synchronous, the state can be thought of as being sampled by the clock to become the motor

outputs. This state-transition representation is misleadingly simple in appearance, because when

this DSM is coupled to the input waveforms from the sonars and its environment, its dynamics

are subtle, and the strategy being used is not at all obvious. It is possible to convince oneself that

the diagram is consistent with the behaviour, but it would have been very di�cult to predict the

behaviour from the diagram, because of the rich feedback through the environment and senso-

rimotor systems on which this machine seems to rely. The behaviour even involves a stochastic

component, arising from the probabilities of the asynchronous echo inputs being present in certain

combinations at the clocking instant, and the probability of the machine being in a certain state

at that same instant (remember that one of the state variables is free-running).

Even this small system is non-trivial, and performs a di�cult task with minimal resources,

by means of its rich dynamics and exploitation of the real hardware. Only time will tell whether

the DSM architecture will be capable of more sophisticated behaviour, using more state variables.

The success of this particular architecture in the long term is less important than the powerful

demonstration of the principles which inspired it, given here.

5 Conclusion

This paper has been a manifesto for an approach to evolving hardware for robot control. This

approach aims fully to exploit the potential power of recon�gurable electronic hardware by re-

laxing the constraints on the spatial and temporal organisation of the system that are necessary

for a human designer. The resulting systems may seem extraordinary to engineers at �rst, but

experimental evidence has been presented to corroborate the claim that this may be a route to

electronic control systems of unprecedented power and e�ciency. A particular architecture | the

Dynamic State Machine | has been proposed as a recon�gurable system that is easier to build

than the more sophisticated alternatives based around Field Programmable Gate Array (FPGA)

technology, but yet contains the essential ingredients. Its successful use in the �rst reported evolved

hardware control system for a real robot demonstrates the viability of the new framework, but the

long term goal must be to evolve systems as hardware that cannot be made in any other way |

it could be that this is possible even with currently available FPGAs.

6 Acknowledgements

This research is funded by a D.Phil. scholarship from the School of Cognitive and Computing

Sciences, for which I am very grateful. Special thanks are also due to Phil Husbands, Dave Cli�

and Inman Harvey for their kind, expert and tireless help.



References

1. Valentino Braitenberg. Vehicles : Experiments in Synthetic Psychology. MIT Press, 1984.

2. Dave Cli�, Inman Harvey, and Phil Husbands. Explorations in evolutionary robotics. Adaptive Be-

haviour, 2(1):73{110, 1993.

3. David J. Comer. Digital Logic & State Machine Design. Holt, Rinehart and Winston, 1984.

4. Hugo de Garis. Evolvable hardware: Genetic programming of a Darwin Machine. In C.R. Reeves

R.F. Albrecht and N.C. Steele, editors, Arti�cial Neural Nets and Genetic Algorithms - Proceedings of

the International Conference in Innsbruck, Austria, pages 441{449. Springer-Verlag, 1993.

5. David E. Goldberg. Genetic Algorithms in Search, Optimisation & Machine Learning. Addison Wes-

ley, 1989.

6. I. Harvey, P. Husbands, and D. Cli�. Genetic convergence in a species of evolved robot control archi-

tectures. CSRP 267, School of Cognitive and Computing Sciences, University of Sussex, 1993.

7. Inman Harvey, Phil Husbands, and Dave Cli�. Seeing the light : Arti�cial evolution, real vision. In

Dave Cli�, Philip Husbands, Jean-Arcady Meyer, and Stewart W. Wilson, editors, From animals to

animats 3: Proceedings of the third international conference on simulation of adaptive behaviour, pages

392{401. MIT Press, 1994.

8. Hitoshi Hemmi, Jun'ichi Mizoguchi, and Katsunori Shimohara. Development and evolution of hard-

ware behaviours. In Rodney Brooks and Pattie Maes, editors, Arti�cial Life IV, pages 317{376. MIT

Press, 1994.

9. Tetsuya Higuchi, Hitoshi Iba, and Bernard Manderick. Massively Parallel Arti�cial Intelligence, chap-

ter \Evolvable Hardware", pages 195{217. MIT Press, 1994. Edited by Hiroaki Kitano.

10. Tetsuya Higuchi, Tatsuya Niwa, Toshio Tanaka, Hitoshi Iba, Hugo de Garis, and Tatsumi Furuya.

Evolving hardware with genetic learning: A �rst step towards building a Darwin Machine. In Proceed-

ings of the 2nd Int. Conf. on the Simulation of Adaptive Behaviour (SAB92). MIT Press, 1993.

11. J. H. Holland. Adaptation in Natural and Arti�cial Systems. Ann Arbor: University of Michigan Press,

1975.

12. Philip Husbands, Inman Harvey, Dave Cli�, and Geo�rey Miller. The use of genetic algorithms for

development of sensorimotor control systems. In P. Gaussier and J-D. Nicoud, editors, From Perception

to Action Conference, pages 110{121. IEEE Computer Society Press, 1994.

13. Nick Jakobi, Phil Husbands, and Inman Harvey. Noise and the reality gap: The use of simulation in

evolutionary robotics. In To appear: Proceedings of the 3rd European Conference on Arti�cial Life

(ECAL95), Granada, June 4-6 1995. Springer-Verlag.

14. D. Mange. Wetware as a bridge between computer engineering and biology. In Proceedings of the 2nd

European Conference on Arti�cial Life (ECAL93), pages 658{667, Brussels, May 24-26 1993.

15. Daniel Mange and Andr�e Stau�er. Arti�cial Life and Virtual Reality, chapter \Introduction to Embry-

onics: Towards new self-repairing and self-reproducing hardware based on biological-like properties",

pages 61{72. John Wiley, Chichester, England, 1994.

16. P. Marchal, C. Piguet, D. Mange, A. Stau�er, and S. Durand. Achieving von Neumann's dream: Ar-

ti�cial life on silicon. In Proc. of the IEEE International Conference on Neural Networks, icNN'94,

volume IV, pages 2321{2326, 1994.

17. P. Marchal, C. Piguet, D. Mange, A. Stau�er, and S. Durand. Embryological development on silicon.

In Rodney Brooks and Pattie Maes, editors, Arti�cial Life IV, pages 365{366. MIT Press, 1994.

18. Carver A. Mead. Analog VLSI and Neural Systems. Addison Wesley, 1989.

19. Alexander Miczo. Digital Logic Testing and Simulation. Wiley New York, 1987.

20. Jun'ichi Mizoguchi, Hitoshi Hemmi, and Katsunori Shimohara. Production genetic algorithms for

automated hardware design through an evolutionary process. In IEEE Conference on Evolutionary

Computation, 1994.

21. A. F. Murray et al. Pulsed silicon neural networks - following the biological leader. In Ramacher and

R�uckert, editors, VLSI Design of Neural Networks, pages 103{123. Kluwer Academic Publishers, 1991.

22. Alan F. Murray. Analogue neural VLSI: Issues, trends and pulses. Arti�cial Neural Networks, (2):35{

43, 1992.

23. Stefano Nol�, Orazio Miglino, and Domenico Parisi. Phenotypic plasticity in evolving neural networks.

In P. Gaussier and J-D. Nicoud, editors, From Perception to Action Conference, pages 146{157. IEEE

Computer Society Press, 1994.

24. David P.M. Northmore and John G. Elias. Evolving synaptic connections for a silicon neuromorph.

In Proc of the 1st IEEE Conference on Evolutionary Computation, IEEE World Congress on Compu-

tational Intelligence, volume 2, pages 753{758. IEEE, New York, 1994.

25. Trevor A. York. Survey of �eld programmable logic devices. Microprocessors and Microsystems,

17(7):371{381, 1993.


