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Abstract

The paper looks at how the hidden-vector cluster analyses associated with Elman and others

seemed to provide a potentially important link between the symbolically-oriented level of analysis

and the connectionist level of analysis | a link that might one day help to explain how higher

mental processes are grounded in neural architectures. The paper goes on to reconsider the im-

plications of these analyses in light of some recent work by Finch and Chater which shows that

linguistically meaningful categories (of the type derived from hidden-vector analyses) are directly

evidenced in the N-gram statistics of natural language. The implication of this work seems to be

that hidden-vector analyses do not primarily address the link between the symbolic and connection-

ist levels of explanation but rather tell us something about the statistical properties of the training

environments used. The consequences of this result for cognitive science are lightly sketched in.

1 Introduction

There has always been the hope that work in Arti�cial Intelligence (AI) would help to elucidate and

extend the philosophical study of the mind. But, paradoxically, the interface between AI and philosophy

appears to have become harder to negotiate as the years have gone by. In the early days links between

AI and philosophical studies were readily apparent. AI researchers tended to construct programs that

re
ected their introspections about mental processes or, in some cases, verbal protocols given by human

problem solvers [cf. 1]. This quite naturally produced systems populated with familiar landmarks.

But if the early research was relatively accessible to philosophical minds, developments in the �eld

soon seemed to be carrying AI o� into an `outer space' remote from both introspective experience and

philosophical conceptualisation. The e�ect was, perhaps, particularly noticeable in the area of vision

research. Vision researchers of the 1960s, e.g., Roberts [2], were largely concerned with systems which

sorted out neat, perspective drawings using rules whose good sense could easily be comprehended. cf.

Waltz �ltering [3]. But by the late 1970s researchers had begun to work with systems which dealt

primarily in abstruse mathematical constructs having nothing obvious to do with the mind or the real

world, cf. [4].
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It was perhaps inevitable that there would be some kind of reaction to AI's gradual descent into high

technology. And when it came, it came in a rush with the most obvious manifestation being John

Searle's vigorous attack on `strong AI'. Searle's aim was to demonstrate that AI-like systems could not

possibly have intentional states (such as understanding) regardless of their level of performance.

Of course, the status of the argument was and is the subject of debate. But in attempting to demonstrate

logical 
aws in Searle's argument [cf. 5], AI researchers were, perhaps, missing the point. Whatever

Searle demonstrated about the intentional properties of AI systems he did stimulate a much more

thorough scrutiny of the functionalist assumptions underlying strong (and not so strong) AI. This

scrutiny was, as Sloman pointed out at the time [6], urgently needed.

Functionalism is essentially the idea that intentional states have nothing to do with architectural

substrates. Being a functionalist implies believing that all that is required for intentional states is

the right program. The question of what machine (architectural substrate) the program is running on

is assumed to be irrelevant. Functionalism legitimizes the sort of AI research which attempts to model

mental processes on computers which do not even remotely resemble the brain. It suggests that the

important thing is to capture the phenomenon at a computational level of description. Later on the

algorithmic and implementation details can be worked out. Functionalism e�ectively urges a top-down

program of research. The image is that of a `triumphant cascade through Marr's three levels.' [7, p.

227]

But the validity of the functionalist stance is open to question. And, of course, it is not just a question

of computer simulations of mental processes: the issue is much more general than that. It has to do

with the validity of simulations in general. It has to do with abstractions and in particular, what

happens (ie. how properties are a�ected) when one moves from a real phenomenon to an abstraction

of it (i.e., a simulation, model or theory).

When we substitute some phenomenon X with a model of X, certain properties of X are carried over to

the model and some are inevitably lost. Otherwise, what sort of `abstraction' would it be? The model

| if it is genuinely a model rather than a duplication | will abstract away certain characteristics of

the original. If it is a good model it will abstract away the `less signi�cant' characteristics of X and leave

behind the `essential details'. But the point is, any properties associated with characteristics which

are abstracted away will necessarily be absent in the model. The point is sometimes illustrated using

the `typhoon' example. When we substitute a typhoon with a simulation of a typhoon, the property

of wetness is lost (unless it is a very realistic simulation). But the feedback property
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which plays a

central role in keeping the typhoon going is retained.

A more close-to-home example is the `Sunday market'. If we construct a simulation of a Sunday market

then we will have certain symbolic entities representing the people involved, the objects for sale and the

sums of money that change hands. Let us say that for some reason the market is fairly unstable (prices

rising and falling wildly). The market then has the property of `instability.' But so does the simulation

of the market. The physical `weightiness' of the money that is exchanged, on the other hand, is lost

as we move from the real market to the simulation. If we substitute the simulation with a high-level

theory which merely abstracts out the basic equations of supply and demand then we will lose both

`instability' and `weightiness'.

The point, then, is that there is always a wasting process when we move from real phenomena to

models, and on to higher-level abstractions and theories. Properties of the original phenomenon are

lost or �ltered out by the abstraction process. Exactly which properties are �ltered out by a particular

abstraction is a contingent issue which cannot be decided in general. And, of course, this applies directly
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Warm air being sucked in, releasing latent heat as it rises, causing more lift and more warm air to be sucked in.

2



to the case where we attempt to build computer simulations of mental processes. In simulating mental

processes we are simply trying to construct abstractions of the original phenomenon.
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No matter how

accurate our abstraction, some properties of the original phenomenon will necessarily be lost. This is,

after all, the essence of abstraction.

Since a computer simulation is just another form of abstraction, and since abstraction necessarily

wastes properties, computer simulations of mental processes potentially lose some of the properties of

real mental processes. The implication is that Searle was essentially correct: architecture may not be

irrelevant. The properties we are actually interested in (understanding, belief etc.) may be to do with

characteristics of the substrate.

2 Connectionism and the need for good grounding

Searle's attack on strong AI seems to have re
ected the onset of a general worry about AI's tendency

to ignore the need for `good grounding'. Certainly, in the years following the attack new approaches

began to emerge which were centrally concerned with issues of architecture and environment. Examples

include the develop of geneticism (genetic algorithms, classi�er systems etc.), the development of the

reactive systems movement stemming from Brooks work on robot creatures [8; 9] and �nally, of course,

connectionism, a paradigm whose stated aim was to take the low-level architecture of the brain seriously

[10].

The emergence of these new approaches seems, in retrospect, to have been something of a mixed blessing

for those on the philosophical side of the fence who, like Searle, believed AI to have over-extended the

functionalist position. Though the new approaches tended to have a better grounding in architecture or

environment, they typically had no better grounding in philosophical approaches than did the abstruse

engineering-oriented AI of the classical period.

Thus, though the emergence of connectionism etc. provided a response to the grounding problem, it did

very little to help the interface between AI and philosophy. The natural kinds of the new approaches

were just as remote from philosophical inquiry as were the natural kinds of Vision systems from the

1970s. A philosopher of the mind might reasonably be expected to be interested in the question,

say, of when a particular being can be said to have a belief. But the connectionist researcher would

be likely to be far more interested in the shape of an error surface. On a pessimistic reading, then,

the only value of the new approaches | from the philosophical point of view | was that Dennett's

triumphant cascade had been turned into a two-way street. Models could now be expected to bubble

up from below (bottom-up from connectionism) or trickle-down from above (top-down from classical

AI). Unfortunately, `bubble-up' looked like it was going to be just as elusive as `trickle-down'.

3 Enter the Hidden-Vector Analyses

Given this background, and the relatively poor prospects for a completion of the triumphant cascade

(in either direction), the emergence in the mid 1980s of techniques for anylysing the representational

properties of connectionist networks was a welcome innovation. The �rst widely-published usage of

these techniques was in Sejnowski and Rosenberg's [11] work on the NETtalk system. These two

researchers showed how a cluster analysis of the hidden-vectors of a backpropagation network (trained

to convert text to speech) showed up linguistically meaningful groupings. In particular, the analysis
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showed how the network had constructed an internal hierarchy which 
agged linguistically important

distinctions (e.g., consonant versus vowel.) The newsworthiness of this work was founded on the fact

that these distinctions were not given to the network a priori. Rather they were learned directly from

the data.

Sejnowski and Rosenberg's hidden-vector analysis method soon became part of the standard toolkit

of the connectionist researcher. Recently, it has been used to particularly good e�ect by Elman who

showed how a copy-back network trained to do word-prediction (given only a diet of raw English

sentences), formed an internal hierarchy that captured lexical and semantic categories [12].

For anyone dreaming wistfully of a bottom-up, `reverse-cascade', this new work by Elman and others

looked very promising. The notion that the behaviours of connectionist systems embodied tacit rules

was fairly well accepted especially in light of Rumelhart and McClelland's work on the learning of past

tenses [13]. But with the new hidden-vector analyses one could now say much more precisely what form

the terms of these rules might take. In e�ect, the hidden-vector analyses provided an initial step-up

on the reverse cascade. It built a small bridgehead that connected the mushy and remote world of

low-level connectionism (a world of `weights', `activation values', `links', `units', `energy levels' etc.)

with the rather more tractable world of symbols and class de�nitions.

Andy Clark was quick to see the potential of this new method. In discussing the implications of

hidden-vector analyses, he suggested that `a fully interpreted cluster-analysis . . . constitutes the

nearest connectionist analogue to a classical competence theory.' [14] Of course, by this date, cluster

analysis had only managed to `reify' fairly primitive types of class de�nition (eg. lexical categories)

but it was easy to imagine how it might be possible to build one cluster-analysis on top of another and

perhaps produce in the end a chain of connections linking the classical world with the connectionist.

This would constitute a reverse-cascade likely to satisfy all customers. It would certainly satisfy those

emphasising the need for �rm grounding. It would also satisfy those wanting to know how higher-level

mental objects such as rules and concepts correspond to lower-level neural processes.

4 Finch, Chater and the statistics of English

Unfortunately, some recent work by Finch and Chater [15] seems to suggest that such a cascade of

connections | were it ever to be derived | might not tell us any more than we could have found

out using GOFSA | good, old-fashioned statistical analysis. Finch and Chater's work uses cluster

analysis like the work done by Sejnowski, Rosenberg, and Elman. But instead of using it to analyse the

representational properties of hidden-vector spaces they used it to analyse the statistical properties of

ordinary English text. The main gist of their results is that the `linguistically meaningful' hierarchical

structures which can be obtained by clustering the hidden-vectors of, say, an Elman-style, copy-back

network trained to do word-prediction [12], can also be obtained by a fairly straightforward statistical

anylysis of a large corpus of English sentences.

Finch and Chater have carried out a whole range of experiments using a large corpus of text derived

from electronic `news' discussion groups. They tried various approaches and the details are described

in their various papers [15, 16; 17]. The method they used involved sampling N-gram statistics and

then using cluster analysis to discover groupings of words with similar probability distributions. The

analysis produced groupings and structures which have a very close correspondence to known syntactic

and semantic categories. In other words they were able to obtain cluster analyses that closely resembled

and in some cases improved upon the analyses obtained by Elman.
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4.1 A type-1 theory for copy-back networks?

What should we make of this work? Finch and Chater's own view is that statistical analysis provides us

with a better understanding of the performance and behaviour of certain sorts of networks (e.g., Elman,

copy-back networks). They conclude that their statistical work shows that the `copy-back scheme is

sampling these [N-gram] statistics successfully.' The go on to say that `these results suggest that the

hidden unit patterns that recurrent neural networks develop can be viewed as re
ecting quite directly

the statistical structure of the sequences learnt.' [17]

By showing that the internal structures formed by copy-back word-prediction networks closely resem-

ble the structures derived from a particular statistical analysis, they have e�ectively shown that the

networks are sampling the relevant statistic. In a sense, they have provided a type-1 theory [18] for the

behaviour of these networks. The theory says that the network is performing a particular computation

and it characterizes this computation without making any reference to implementation issues.

For those who want to believe that architecture and grounding are important, this is clearly a worrying

demonstration since it seems to eliminate the `ground' altogether. Surely, if all an Elman network is

doing is sampling a certain statistic then its `networkness' cannot be the origin of signi�cant properties.

A functionalist stance towards such networks, then, would seem to be perfectly appropriate. On the

other hand it might be argued that any retreat into functionalism must be premature. The statistical

work in question has only looked at one particular domain (natural language) and has produced results

which seem to bear directly on only one type of network (the Elman copy-back net). Our assumptions

about the importance of grounding and our hopes for the reverse cascade may then turn out | when

other systems are analysed more carefully | to be be fully justi�ed.

5 Is it statistics all the way up?

However things go for the `grounding' issue, one thing is clear: Finch and Chater's work suggests that

we should review our attitude to the value of statistical analysis. Classical AI made practically no use

whatsoever of it. New approaches such as reactivism and alife-ism have also tended to largely ignore its

potential. Connectionism has used it to a certain degree but typically only for the purposes of analysing

the behaviour of models. Finch and Chater's work suggests that it can play a much more direct role

in our attempt to understand the nature of concepts and classes. Of course, all that has been shown

to date is that certain linguistic classes show up directly in the N-gram statistics of ordinary text. But

the implication is that we may be able to �nd statistical justi�cations (explanations) for classes in all

sorts of domains by producing statistical analyses of the relevant data.

Naturally, the big question is, how many domains? I.e., how general is the method of statistical class-

recovery likely to be? We cannot hope to answer this without more empirical work but some progress

can be made purely by rational argument. Let us assume, for now, (1) that for any concept there is an

associated class and (2) that the set of all classes divides up into natural classes | whose boundaries

are evidenced in the world | and arti�cial classes | whose boundaries are arbitrary.
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One way for

a class to be evidenced in the world is via statistical regularities of the type discovered by Finch and

Chater's method. But how general is this? Are all classes evidenced this way? Or just some subset? If

so, which subset?

Finch and Chater directed their e�orts towards a relatively limited statistical analysis. In particular
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An example of an arbitrary class would be something like `the class of all blue things that have been within six feet

of someone singing Amazing Grace.'
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they concentrated on analysing 5-gram statistics of text. As they note, `an N-gram is an ordered

sequence of N symbols. The frequencies of occurrence of each N-gram in a continuous stream of data

constitutes the N-gram statistics of the data set.' [15]. Their aim was to look at the number of times

that particular words were observed to appear as the last-but-one, last-but-two, next-but-one and next-

but-two neighbours of every other, commonly occurring word. As we have seen, this approach was able

to show up important class divisions. However, it is far from being the only way of applying statistical

analysis to text.

Sticking with the basic idea of looking at N-gram statistics, we can envisage many variants of Finch

and Chater's method. One might look, for example, at N-gram statistics for bigger or smaller values

of N. One might look at statistics relating to `holey' N-grams; ie. non-continuous sub-sequences of the

original data stream. One might look at N-grams which are derived according to an algorithm or some

other dynamic, selection criterion. Having discovered class boundaries at some given level of analysis,

one might then look at the range of possible N-gram statistics that can be derived from a reconstructed

data stream in which class labels have been substituted for class members. And this process might be

repeated recursively through many levels of analysis.

The space of recognized statistical regularities is, then, rather large. There thus seems to be no a

priori reason for ruling out the possibility that statistical regularities of the type discovered by Finch

and Chater's method underpin all concepts, classes and natural kinds. If this is so then any cascade

connecting higher-level mental objects with lower-level architectural substrates must be mediated via

a chain of essentially statistical relationships. A central task, then, is to determine what these rela-

tionships might be, by what processes they can be derived from the world and how they can then be

represented by cognitive agents. Without good answers to these questions we cannot �nally decide

what the implications of the statistical language analyses truly are.

6 Concluding comments

The main aim of the paper has been to note the way in which Finch and Chater's work undermines

several central assumptions widely espoused in the connectionist community. The principle `victim' is

the assumption that hidden-vector cluster analyses could constitute the beginnings of a reverse cascade

(a `bubble-up'). However, a rather dark shadow is also cast over approaches which stress the importance

of architecture, grounding and environment. The essential point to draw out, though, is the fact that

cluster analyses such as Elman's do not primarily tell us anything about the networks in question but

rather something statistical about the environment in which the networks were trained. This conclusion

seems a little worrying at �rst. But if we dust o� our attitude to statistical analyses and accept the

premise that natural kinds are almost certainly rooted in statistical regularities it begins to seem much

more positive.
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