
Learning Where To Go without Knowing Where That Is:

The Acquisition of a Non-reactive Mobot Behaviour by

Explicitation

Chris Thornton

Cognitive and Computing Sciences

University of Sussex

Brighton BN1 9QN

Email: Chris.Thornton@cogs.susx.ac.uk

Tel: (44)273 678856

December 14, 1994

Abstract

In the path-imitation task, one agent traces out a path through a second agent's sensory �eld.

The second agent then has to reproduce that path exactly, i.e. move through the sequence of

locations visited by the �rst agent. This is a non-trivial behaviour whose acquisition might be

expected to involve special-purpose (i.e., strongly biased) learning machinery. However, the present

paper shows this is not the case. The behaviour can be acquired using a fairly primitive learning

regime provided that the agent's environment can be made to pass through a speci�c sequence of

dynamic states.

Introduction

In reactive mobot behaviours such as wall-followingand pursuit, speci�c stimuli evoke speci�c responses.

As a result, the input/output pro�le for the behaviour shows marked correlations. The existence of

these means that the behaviour can be straightforwardly acquired using any one of the wide range

of reinforcement, neural-network and evolutionary methods | in fact anything capable of exploiting

statistical e�ects. In non-reactive behaviours, responses are reactions to hidden states, i.e., states

which are temporally, physically or logically inaccessible to the agents sensors. Such a behaviour's

input/output pro�le does not show marked correlations and thus cannot be straightforwardly acquired

using conventional techniques.

Path-imitation is a case in point. In the path-imitation task, one agent traces out a path through a

second agent's sensory �eld. The second agent then has to reproduce that path exactly, i.e. move

through the sequence of locations visited by the �rst agent. This is a non-trivial and clearly non-

reactive task since the behaving agent's moves are `reactions' to temporally remote (i.e., in-the-past)

states of the environment. The acquisition of path-imitation behaviour might be expected to involve

special-purpose (i.e., strongly biased) learning machinery. However, this turns out not to be the case.

1

The behaviour can be acquired using a fairly primitive learning regime provided that the behavioural

environment can be made to pass through a speci�c sequence of dynamic states.

The paper breaks down into four main sections. First, I describe the acquisition experiment performed.

Second, I analyze the resulting architecture of the acquisition agent. Third, I review the theoretical

background and motivation for the work. (Theoretically oriented readers may prefer to read the third

section �rst.) The fourth and �nal section is a discussion.

1 The acquisition experiment

The acquisition experiment involved subjecting a simulated mobot (mobile robot) to a sequence of envi-

ronmental scenarios. Learning accomplished by the mobot in the earlier scenarios had an impact on the

character of later scenarios. Thus, the developmental process involved an ongoing interaction between

learner and environment. The ultimate success of the process relied on there being a tight-coupling

between the `developmental trajectory' (changes in the learner) and the `environmental trajectory'

(changes in the environment). The learner mobot was equipped with two proximity sensors (shown as

dashed-lines in Figure 1). Each one of these sensed the proximity of the nearest obstructing surface

along a particular ray. Proximity values were normalized in the range 0..1, with lower values indicating

lower sensed proximities. All sensor inputs were noisy with noise increasing linearly with measured

range. The boundary of the space, shown here as a solid line, was not sensed by the mobot.

Figure 1: The learner mobot.

2 The acquisition method

For reasons that will become clear, I call the acquisition process used in this experiment `explicitation'.

It is essentially the competitive learning regime of Rumelhart and Zipser (1) with three modi�cations.

The �rst modi�cation enables the regime to operate incrementally. With this modi�cation, competitive

learning adds nodes to the network as and when they are needed. The process comes to an end when

2

each node is fully tuned to the inputs that it has captured.

1

The second modi�cation associates a signi�cance value with each weight in the network. In standard

competitive learning, each weight is equally signi�cant in the computation of node response and nodes

thus have no way to discount particular inputs. As a result there is no straightforward way for them

to capture a statistical e�ect which does not involve all the inputs (2). In the explicitation regime, all

weights for all competitive units have an associated signi�cance value whose value re
ects the accuracy

of the weight as an input-value predictor. Node response is computed taking the signi�cance values

into account, and thus weights with low accuracies (signi�cance values) are e�ectively discounted where

appropriate.

The third modi�cation enables the regime to operate recursively. The capture of some e�ects by a

set of competitive nodes triggers a further round of competitive learning in which the input data are

descriptions of the nodes themselves. For each grouping identi�ed by this process, an internal variable is

created and a link made so that the variable's value shows which of the nodes in its group is most active.

New data are then derived by presenting the original data and reading o� the values of the internal

variables. These new data permit the re-application of the entire regime, and thus the production of

another `layer' of internal variables, and so on.

2.1 Initial environment

In the initial scenario, the environment was empty except for the learner itself and a second simulated

mobot which moved through the learner's sensor �eld in a �gure-of-eight pattern. The facilitator's

trajectory crossed the learner's proximity rays in four di�erent places, see Figure 2. The learning

Figure 2: Environment-1.

mechanismwas given access to four variables: two of these were pure input variables and were connected

to the learner's proximity sensors. The other two operated as hybrid input/output variables and were

connected to the motors for the learner's drive system. In the initial environment, the motor variables

remained uninstantiated by either the environment or the learner itself. Thus the learner remained

entirely static.

1

A node is considered to be fully tuned when its signi�cance weights (see next paragraph) satisfy either an upper or

a lower threshold.

3

The proximity inputs tended to show di�erent patterns depending whether the facilitator's motion was

crossing the right proximity ray or the left. With the facilitator on the left, the left (�rst) proximity

input would oscillate between a high (close) value and a medium (far) value while the right proximity

input would show a low, relatively noisy value.

2

With the facilitator on the right the complementary

situation would hold.

Application of the learning regime to these input data produced the initial network shown in Figure 3.

In this �gure the four input variables are represented as four rectangles in the lower part of the �gure.

Figure 3: Competitive nodes in net-1.

The competitive nodes are shown as circles in the upper part. The shading of the circles represents

the nodes activity level (darker = more active) but in this �gure the levels are randomly chosen. Only

connections with a high signi�cance value are shown. Connections which intersect an input variable

further to the right represent weights with higher values. Connections which intersect further to the

left represent lower values. The shading division within the variables shows the current instantiation

of the variable. All instantiations were normalized in the range 0..1.

From the �gure we see that just four competitive nodes have been created and each one of these has

a single, signi�cant weight. Note how the weights have captured all four combinations of near/far,

left/right proximity values. Thus there is exactly one node for each prototypical input pattern. Appli-

cation of competitive learning to (descriptions of) these nodes divides them into two similarity groups

and thus creates the �rst two variables in a new layer. This layer is extended in two ways: �rst,

by raising-up those variables from the original layer which have no connections (i.e., the two motor

outputs) and, second, by adding a memory bu�er of four variables. The instantiations of these (in

any given cycle) are obtained by copying over the previous instantiations of the main variables. The

combination of variables and nodes now assembled is called `subnet-1', see Figure 4. The original input

variables form subnet-1's input variables. The internal variables created are subnet-1's output variables.

The assembly comprising subnet-1's leftmost two input variables, its four nodes and its leftmost two

output variables e�ectively provides a noise �lter. As they pass through the net, the proximity inputs

are recoded in terms of four, prototypical proximity values. Thus the leftmost two output variables for

subnet-1 behave as prototypical-proximity detectors.

The input data are now recoded using the instantiations of subnet-1's output variables. Application of

competitive learning to the recoded data leads to the creation of six more nodes. The input variables for

these nodes are subnet-1's output variables. They are shown in a layer above those variables, see Figure

5. Note how all these nodes have connections to the proximity-detector units and to their partners in

the memory bu�er. Recall that the partner variables hold the instantiations which existed in the main

variables in the previous time cycle. The main variables are the prototypical-proximity detectors. Thus

these nodes have captured 1-cycle changes in the perceived prototypical proximity of the facilitator.

They e�ectively provide unilateral (i.e., side-speci�c) detectors for mobot-approach and mobot-retreat.

2

Noise on the proximity inputs varied inversely with the measured proximity. Thus higher readings (closer proximities)

were more reliable than lower readings.

4

Figure 4: The structure of subnet-1.

Figure 5: Competitive nodes in subnet-2.

The �rst node, for example, detects the situation in which the facilitator mobot is moving away from

the learner on the left hand side.

When competitive learning is applied to the descriptions of the competitive nodes in subnet-2, two

main groupings are recovered. In one group we have the two nodes which detect facilitator motion

away (on left and right). In the other group we have the two nodes which detect facilitator motion

towards. The two internal variables generated thus form bilateral approach and retreat detectors. Each

one measures the degree to which the facilitator is moving towards, or away from the learner on either

side. This subnet appears in the bottom, right corner of Figure 6, which shows the sequence of subnets

produced up to this point.

As we will see, these subnet-2 output variables will turn out to play a crucial role in the production of

path-imitation behaviour. Their values encode the relative motion of the facilitator and can thus be

straightforwardly used to drive the motors of the learner during path replication.

5

(3)

(1)

(4)

(5)

(2)

Figure 6: Subnet construction sequence.

2.2 The second environment

In the second environment the facilitator behaves in much the same way as it did in the initial environ-

ment | now executing an S-shaped trajectory in the area of space in front of the learner (see Figure 7)

| but the learner's motor variables are now instantiated in each cycle. The aim of this is to ensure that

the learner tracks the facilitator, thus keeping it `inside' the learner's sensor rays. This direct instanti-

ation process is, of course, an explicit teaching stimulus provided by the environment. The character of

the learning scenario thus shifts from unsupervised to supervised. Application of competitive learning

to the new, four-variable input data adds two nodes to subnet-1. These capture the two main patterns

of motor-variable instantiation and the proximity inputs they are associated with; i.e., motor outputs

for a leftwards move associated with a high proximity input on the left sensor and motor outputs for

a rightwards move associated with a high proximity input on the right sensor. The learning process is

carried forward no further than this due to the presence of the memory bu�er in the output layer for

subnet-1 (see below).

As a result of this supervised learning phase, the learner acquires the tendency to �ll-in motor-variable

instantiations in a particular way. This, in e�ect, enables the learner to track an object moving across

its sensory �eld. Thus when a third environment is presented in which the facilitator `demonstrates' a

6

333333333

33 3 3 3 33 3 33 33 3 3

33333333

Figure 7: Environment-2.

path, the learner responds by tracking the facilitator across the space, see the upper-left box in Figure

8. As the learner tracks the facilitator across the space, the output variables in subnet-2 are instan-

tiated with values which re
ect the relative motion of the facilitator. The bilateral approach/retreat

detectors encode the left/right motion of the facilitator. The raised motor variables encode the for-

wards/backwards motion.

By storing the sequence of instantiations produced in subnet-2's output variables, we thus acquire a

sequence of relative-motion descriptions which can be used to regenerate the path executed by the

facilitator. Feeding this program (after suitable post-processing) into the learner's motor system, we

e�ectively obtain the desired path-imitation, see the lower two boxes in Figure 8 . In the lower-right

box, the facilitator's path is shown using a light dashed line. The learner's imitation of it is shown

using a heavier, dashed line.

3 The architecture: a guided tour

In Figure 9 we see the �nal network architecture produced by the learning process. The various

shaded areas correspond to functional components. In the lower, left part of the architecture we have

the `Prototypical proximities detection subsystem'. Recall that this essentially serves to clean-up the

relatively noisy proximity inputs. This cleaning-up process is actually an essential part of the overall

acquisition process since it paves the way for the development of the unilateral motion detectors which

emerge in subnet-2. It is only thanks to the lack of noise in the proximity measures (produced in

subnet-1's output variables) that subnet-2's node are able to capture the relevant approach/retreat

patterns. In the right-hand part of subnet-1 we have the motor-control subsystem. This is perhaps

the simplest component in the entire architecture. The nodes have captured the two main re
exes

introduced through the supervisory process of environment-2, namely, move right when right-hand

proximity input is high, move left when left-hand proximity input is high.

3

The column-shaped central region embodies the raised motor-variables. This subsystem emerges due

3

These e�ects are not represented clearly since negative motor-values are involved in one of the cases.

7

Figure 8: Immitation of a simple path.

to the fact that, throughout the initial development, the motor-variables are uninstantiated and thus

remain unconnected from any node. However, the raising-up (`exheriting') process is vital for the �nal

outcome. Following the supervisory process of environment-2, the motor-variables are �lled-in by the

learner thus enabling tracking moves to be executed. The values that are �lled-in are of course accessible

at the output layer of subnet-2. Since the learner mimics the left/right motion of the facilitator exactly,

these values serve to encode that motion. Taken together with the bilateral motion detectors, these

raised motor-variables yield the full encoding of the facilitators relative motion which provides the basis

for the imitation behaviour. Note how action on the environment and cognizing of the environment is

wound together here in a seamless interaction.

4 The theoretical background

I now turn attention to the theoretical motivation for the work described above. It is widely accepted

that any learning problem can be de�ned in terms of a (possibly notional) target, input/output mapping.

The learner's goal is viewed as the mapping of any input taken from the target mapping onto its

associated output. If the learner is to have any chance of achieving this goal, it must receive some sort

of `feedback', i.e., information about what the target mapping contains. In the degenerate case where

the feedback provided is actually an explicit listing of the entire target mapping, the acquisition task

8

Unilateral, relative-motion

Motor-control

Bilateral, relative motion

detectors

detectors

Raised motor variables

Memory-buffer

detection subsystem

subsystem

Prototypical proximities

Figure 9: Final network architecture and subsystems.

is reduced to a memory task. In a non-degenerate variant of this case the learner is given access to

a part of the mapping and this e�ectively necessitates generalization. If the access is explicit (i.e., if

input/output examples are presented) we have the familiar supervised learning scenario. If access is

only obtained implicitly, i.e., via some reward function, then the scenario is a form of reinforcement

learning.

4

Given this formalization of learning, a task analysis can be derived by enumerating the ways in which

the learner's output guesses may be justi�ed by the feedback source [3]. The feedback is, of course,

ultimately derived from the target mapping. Thus guesses that are justi�ed by the feedback must, at a

deeper level, be justi�ed by the contents of the target mapping. The guess that y is the correct output

for some input x, i.e., that the probability of y is 1 is therefore only justi�ed if, in the target mapping,

it is the case that

(1) P (y) = 1, i.e., the unconditional probability of seeing output y is 1, or if

4

Typically, reinforcement learning scenarios impose additional constraints on the availability of rewards.

9

(2) P (yjx

0

) = 1, where x

0

is either the current input or some part of it, or if

(3) P (yjg(x)) = 1, where g is some arbitrary function and x is the current input.

This taxonomy is derived simply by enumerating the possible syntactic forms for the justi�cation.

It is invariant with respect to the probability value selected (we do not have to use p = 1). It is

also exhaustive since there is no alternative way of characterizing the conditional or unconditional

probability of y being the right output for input x. The interesting consequence of this is that any

learning method which produces justi�ed output guesses, must exploit (i.e., use in the generation of

guesses) some combination of these three forms of justi�cation.

The cash value of this becomes clear when we consider the ways in which each of the three forms

can be exploited. Exploiting a justi�cation in this context means `�nding' the probability in a given

distribution. Thus the complexity of exploiting a particular justi�cation is related to the size of the

relevant distribution. This prompts us to split the justi�cation forms up according to whether the

relevant distribution is �nite. In particular, we must distinguish between what I call the direct forms

P (y) and P (yjx) which are associated with �nite probability distributions, and the indirect form

P (yjg(x)) which is associated with an in�nite one. The distribution P (yjg(x)) is in�nite due to the

in�nite number of choices to be made regarding g, which is de�ned as any computable function.

This analysis of justi�cation sources leads directly to a fundamental insight concerning the complexity

of learning problems. Problems which involve exploiting either of the two direct forms involve the

equivalent of sampling a �nite distribution while problems which involve exploiting the indirect form

involve the equivalent of sampling an in�nite distribution. Other things being equal, the task of

exploiting direct forms thus has a lower theoretical complexity than the task of exploiting the indirect

form. Note that this is a qualitative distinction similar to the one between polynomial and exponential

time complexity. However, it has a �rm, mathematical basis in the enumeration of syntactic forms for

probability values.

4.1 Statistical v. relational problems

It is important to note that values of the function g (which I call the recoding function below) must

depend on relative argument values. In other words, the function must compute or evaluate a relational

property of its arguments. Were we to have an indirect justi�cation in which values of the recoding

function depended on the absolute values of its arguments, then we could specify the same justi�cation

purely in terms of those absolute values, i.e., by deleting the g and associated parentheses. Thus, all

indirect-form justi�cations necessarily involve functions which e�ectively compute relationships of their

arguments.

In recognition of this, I call the class of higher-complexity problems which involve exploiting indirect

justi�cations relational and the class of lower-complexity, direct-justi�cation problems statistical

(since exploiting a direct-form justi�cation involves sampling for a statistical e�ect in the form of an

observed probability). If it was not obvious before, the introduction of this new terminology should

drive home the point that this analysis gives a foundation to the well-known Machine Learning heuristic

which states that `learning relationships is hard' [4].

10

5 Example

To illustrate this notion of indirect justi�cation, consider the following training set. This is based on

two input variables (x1 and x2) and one output variable (y1). There are six training examples in all.

An arrow separates the input part of the example from the output part.

x1 x2 y1

1 2 --> 1

2 2 --> 0

3 2 --> 1

3 1 --> 0

2 1 --> 1

1 1 --> 0

A variety of direct justi�cations are to be found in these training data. For example, we have the

unconditional probability P (y1 = 1) = 0:5, and the conditional probability P (y1 = 1jx1 = 2) = 0:67.

These probabilities, and in fact all the probabilities directly observed (i.e., obtainable by sampling) in

these data, turn out to be close to their chance values. Indirect justi�cations are to be found via some

function g. In the case at hand imagine that the function e�ectively substitutes the input variables in

each training pair with a single variable whose value is just the di�erence between the original variables.

This gives us a set of derived pairs as shown below (the value of x4 here is the di�erence between the

values of x1 and x2).

Original pairs Derived pairs (x4 = |x1-x2|)

x1 x2 y1 x4 y1

1 2 --> 1 1 --> 1

2 2 --> 0 0 --> 0

3 2 --> 1 1 --> 1

3 1 --> 0 2 --> 0

2 1 --> 1 1 --> 1

1 1 --> 0 0 --> 0

Note how the recoding has produced data in which we observe a number of extreme probabilities relating

to the output variable y1, namely P(y1=0|x4=0)=1, P(y1=1|x4=1)=1 and P(p1=0|x4=2)=1. The

recoding thus provides us with indirect justi�cation for predicting y1=0 with a probability of 1, if the

di�erence between the input variables is 1. It also provides us with indirect justi�cation for predicting

y1=1 with a probability of 1, if the di�erence between the input variables is either 2 or 0. In short, we

have indirect justi�cation for the output rule `y1=1 if x4=1; otherwise y1=0'.

The task analysis has implications for the way in which we carry out behaviour acquisition research.

We know that acquisition problems will divide up into statistical and relational types, and that the

latter will tend to be harder than the former. Being able to tell the di�erence between statistical and

relational tasks is thus an important goal. To identify a task as statistical we have to show that the

underlying input/output mapping yields direct-form justi�cations, i.e., exhibits correlations between

input and output variables. Thus, to identify a task as statistical we should attempt to analyze the

correlation structure of its associated input/output mapping.

11

In some cases, the absolute size of the relevant mapping may make this process rather long-winded.

However, the presence of strong input/output correlations can often be demonstrated using qualitative

reasoning. As a general rule of thumb a task is likely to be statistical (i.e., to exhibit strong correlation

structure in its input/output mapping) if it can be implemented using a reactive (i.e., re
ex-based)

system. If the behaviour can be implemented on the basis of re
ex reactions to direct stimuli, then

any given input (stimulus) must contain clear cues as to which output (response) is appropriate. If

these cues are unambiguous | which they must be | then they will tend to co-occur with the relevant

responses in the target mapping and thus naturally yield a strong correlation e�ect.

5.1 Use of alternative acquisition methods

The acquisition of path-imitation is an interesting topic for investigation since it is a simple but man-

ifestly non-statistical task. The fact that the target behaviour has to be produced after the entire

path-presentation process is �nished implies that it could not possibly have a straightforward reactive

implementation. And even if we leave the behavioural delay on one side, a reactive approach seems

out of the question since the learner must be able to observe the path-tracing agent from any angle,

meaning that the production of a path-replicating action by the learner is essentially a reaction to a

`hidden state' of the environment, i.e., a relative motion within the path's coordinate system.

Attempting to solve this acquisition problem using conventional learning methods such as C4.5 (5,6)

and backpropagation (7) produces no useful results (application of `windowing' notwithstanding). Such

methods work with a single set of exemplars taken from the target. Thus, in order to present the path-

imitation problem it is necessary to concatenate together all the relevant inputs from all the various

environments and to map each one onto an associated `target output', which is the entire control

program for the relevant path. Given the rather baroque nature of this setup, it is perhaps not

altogether surprising that conventional methods do not produce any performance on this problem.

The path-imitation experiment performed demonstrates that explicitation is, in at least one case,

capable of relational learning. But its generality on relational tasks is still not fully established. On the

most optimistic view, the prototype-recruitment process, which is the core of the method, will turn out

to be a universal method for relational acquisition, i.e., one which is capable, given su�cient iterations,

of capturing any relational e�ect whatsoever. On the least optimistic view, this method will turn out

to be applicable to path-imitation only.

6 Discussion

In this �nal section I will brie
y summarize some of the advantages and disadvantages of the proposed

acquisition model. A principal disadvantage is the fact that the path-imitation behaviour produced by

the acquisition model is actually not particularly accurate. The relative-motion encoding provided by

the output variables of subnet-2 are only capable of re
ecting motion towards or away from the learner.

Thus in replicating the path the learner is only able to align itself on one of two di�erent `latitudes'.

The scale of the path is also only very weakly �xed within the model. The path size is e�ectively

derived from the number of times the learner is `nudged' left or right during path-observation. This of

course varies according to the orientation of the proximity rays. The stage-management of the path-

replication process introduced fortuitous assumptions regarding the relationship between the number

of nudges and the amount of space to be traversed for each nudge.

A second disadvantage involves the fairly arbitrary blocking of recursive learning following presentation

12

of environment-2. This is achieved in the model via a rule which states that input vectors cannot be

extended once memory variables are in play. This rule preempts the lengthy task of restructuring the

data structures representing the input and output bu�ers of the various nets. It also has the happy

consequence of preventing further, environment-2 based learning which, in the present case, would not

be of advantage. However, it cannot be claimed as a principled part of the model, especially in view of

the fact that the selection of memory-size in the �rst place is essentially arbitrary.

Finally, there is the worrisome fact that the path-imitation control program is collected up and de-

livered in an almost entirely arbitrary way. The values of the �nal output variables are stored in a

separate memory resource and then re-processed. The learner is then forcibly moved to the starting

position for the path and the control program is `executed' (i.e., the learner's motor-variables are re-

peatedly instantiated with values derived from the control program). This aspect of the model is most

unsatisfactory but no obvious remedy presents itself at the present time.

Principal among the advantages of the model has to be the fact that it shows how a hard relational

acquisition task can be accomplished using a very weakly biased, theoretically well-motivated mech-

anism. Although the model in its present form is not particularly plausible as a model of a neural

process, no part of it would seem to be beyond a neural interpretation. The basic competitive process

has a well known neural interpretation (8) and the creation and management of internal variables can

almost certainly be accounted for in terms of the creation of small subnets.

One of the interesting features of the `explicitation net' is that it exhibits two distinct types of process.

Firstly we have the phase in which activation
ows forwards through the networks. In this phase the

activation of competitive nodes creates the instantiation of output variables and thus further inputs

creating further activations etc. Following this, input values may be �lled-in (e.g., in the case where

a signi�cant input for a strongly active node remains uninstantiated) and this provides the potential

for a backwards propagation of activity. Thus, the architecture responds to the presentation of a new,

partially complete input by e�ectively assimilating it to those structural and statistical properties of

the environment which it has already captured.

In the learning phase, additional competitive nodes, internal variables and subnetworks are generated

on the
y. These seek to account for statistical and possibly structural and relational properties of

the environment that are not currently captured by the network. In this way the network seeks to

accommodate new features of its environment. This process, in which the network oscillates between an

assimilation process and an accommodation process, may have explanatory potential for the Paigetian

picture of development (9). Of course, the nature of the accommodation process is well viewed in terms

of the development of new recodings at various levels of description. Thus we might also seek to make

a link with Karmilo�-Smith's theories of representational redescription (10,11,12).

Developmental psychologists might perceive a link between the acquisition model and the process

known as `sca�olding'. In the model, the path-imitation behaviour is acquired by subjecting the

learner to a stage-managed sequence of environments. The general scenario would seem to be an

acceptable approximation of the way in which sca�olding is thought to occur in human contexts. As

Rutkowska says, `Sca�olding involves more able humans manipulating the infant's transactions with the

environment so as to foster novel abilities. ... It can be thought of as a form of supervised learning that

exploits temporarily engineered emergence of function to support permanent adaptive change' (13).

Philosophers may also be able to extract something of interest. The constructivist nature of the

explicitation process o�ers a detailed picture of the way in which sensory stimuli might provide the

underpinnings for higher-level, weakly representational

5

structure. It also �lls in some of the details

5

The word `representational' is used in the following sense: R represents property P of environment E for agent A if R

constitutes a measure of property P and values of the measure play a functional role in the production of A's behaviour

13

regarding the way in which an environment might drive a cognizer from one cognitive level `up' to the

other. The implication may be that the hard-and-fast distinction we make between classical, symbolic

accounts of cognition and connectionist, neural accounts may not be quite so uncrossable as it seems.

References

[1] Rumelhart, D. and Zipser, D. (1985). Feature discovery by competitive learning. Cognitive Science,

No. 9 (pp. 75-112). ((N-R)).

[2] Thornton, C. (1994). Unsupervised learning with the soft-means algorithm. Proceedings of the

World Congress on Neural Networks. Vol. IV (pp. 20-205). San Diego.

[3] Thornton, C. (Forthcoming). Unsupervised Constructive Learning.

[4] Dietterich, T., London, B., Clarkson, K. and Dromey, G. (1982). Learning and inductive inference.

In P. Cohen and E. Feigenbaum (Eds.), The Handbook of Arti�cial Intelligence: Vol III. Los Altos:

Kaufmann.

[5] Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1 (pp. 81-106).

[6] Quinlan, J. (1993). C4.5: Programs for Machine Learning. San Mateo, California: Morgan Kauf-

mann.

[7] Rumelhart, D., Hinton, G. and Williams, R. (1986). Learning representations by back-propagating

errors. Nature, 323 (pp. 533-6).

[8] Kohonen, T. (1989). Speech recognition based on topology-preserving neural maps. In I. Aleksander

(Ed.), Neural Computing Architectures (pp. 26-40). Cambridge, Mass.: MIT Press.

[9] Boden, M. (1979). Piaget. Fontana Modern Masters, Fontana Press.

[10] Karmilo�-Smith,A. (1990). Constraints on representational change: evidence from children's draw-

ing. Cognition, 34 (pp. 57-83).

[11] Karmilo�-Smith, A. (1992). Beyond modularity: a developmental perspective on Cognitive Science.

Cambridge,Ma.: MIT Press/Bradford books.

[12] Karmilo�-Smith, A. and Clark, A. (1993). What's special about the development of the human

mind/brain?.Mind and Language, 8, No. 4 (pp. 569-581).

[13] Rutkowska, J. (1994). Emergent functionality in human infants. In D. Cli�, P. Husbands, J. Meyer

and S.W.Wilson (Eds.), Proceedings of the Third International Conference on Simulation of Adap-

tive Behaviour (SAB-94) (pp. 179-188). Brighton, UK.

but are not statistically correlated with any sensory input to A.

14

