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Abstract

The paper presents the results of an empirical study in which supervised learning algorithms

were used to train an animat to perform a di�cult navigation task. The results of the study are

explained in terms of a theoretical distinction between two learning-complexity classes.

1 Introduction

Recently there has been increasing interest in the use of learning for the automatic acquisition of

animat behaviors. Such behaviours are typically `choicefull', which means that they entail (or allow

for) a variety of responses in some or all situations. With choicefull behaviours it is convenient to use

reinforcement learning regimes rather than supervised regimes, since without knowing each situation's

correct response it is di�cult to draw up a training set. With `choiceless' behaviours, on the other hand,

each situation does have a correct response. The derivation of a training set and implementation of a

supervised regime is thus possible. In fact, a supervised regime applied to a choiceless behaviour should

always perform at least as well as any reinforcement regime. The only di�erence between the supervised

regime and the reinforcement regime (applied to a choiceless behaviour) is the fact that the feedback

provided by the reinforcement regime is a degraded (e.g., noisy or intermittent) signal of the correctness

of a given action/response. Thus for a reinforcement regime to outperform a supervised regime on a

choiceless behaviour, it would have to be the case that the acquisition performance improves while the

quality of the feedback signal degrades. This is clearly absurd.

The present paper looks at the learning of a choiceless behavior dubbed `conditional-approach' by a

variety of supervised methods. No reinforcement methods were examined on the assumption that they

could not be expected to perform any better than the supervised methods. The behaviour was modeled

in an animat with a simple sensory system and a motor system enabling forward and rotational moves.

The behavior itself, which involves moving in on any small object in the sensory �eld but `standing

clear' of any large object, seems rather straightforward. However, it turns out to be poorly learned by

supervised methods. We explain this `failure-to-learn' using a statistical analysis.
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The paper is divided into six main sections. This, the �rst section, is an introduction. In the second

section we describe the comparative study, the simulation setup used, the training-data derivation

method and the results obtained. In the third section we review basic methods for analyzing statistical

properties of training sets and make a distinction between two types of generalization e�ect. In the

fourth section we analyze statistical properties of training sets for the conditional-approach behavior

and explain why it is hard to learn. In the �fth section we speculate on the form of general solutions

to the conditional-approach learning problem. In the sixth and �nal section we o�er a summary and

some concluding comments.

2 The comparative study

The empirical basis of the paper is a comparative survey that investigated a behavior called `conditional-

approach'. The production of this behavior in an animat requires a proximity sensing system of some

sort and motor abilities enabling forward and rotational movements. The behavior involves moving in

on any relatively small object in the sensory �eld but standing clear of (i.e., not moving in on) any

large object.

The behavior was investigated using computer simulations. The simulations used a 2-dimensional,

rectangular world and a single animat. This had two free-wheeling castors situated fore and aft and

two drive wheels situated along the central, latitudinal axis (see Figure 1). The animat was equipped

with a range-�nding system. This sensed the proximity of the nearest object | subject to 10% noise

| along seven rays, evenly spaced within a 100 degree, forwards facing arc. A ray intersecting an

object at point-blank range yielded the maximal input value (1) while a ray intersecting no object at

all yielded the minimal input value (0).

The plan view shown in Figure 2 illustrates the basic simulation setup. The animat, situated in the

lower part of the space, is represented as a small box with an arrow pointing in its direction of motion.

The seven dashed lines are its probe rays. The boundaries of the space | here shown as unbroken lines

| are actually transparent to the animat. Thus, in the situation shown, the animat senses only the

circular blob directly ahead of it. That is to say, within its seven proximity inputs, the two associated

with the rays intersecting the blob will be relatively high but the other �ve will be zeros indicating `no

object sensed'.

2.1 Control procedure

Within the training-set derivation process, the animat was driven using a set of four rules. These

implicitly assumed that the environment would contain no more than one object at any one time. The

animat controller had no internal state. Thus, the animat behavior in each time cycle was a�ected

solely by the current inputs. The rules were as follows.

(1) If all proximity inputs are at their minimal values (indicating no object sensed) then swivel ten

degrees to the right by driving the left wheel at 1/3 its maximum speed keeping the right wheel

stationary.

(2) Otherwise, calculate the ratio between the apparent width (i.e. number of rays intersected) and

the apparent proximity (i.e. maximum ray value) of the object in the sensory �eld.

(3) If this ratio exceeds a given threshold then stay still.
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Figure 1: The simulated animat.

(4) Otherwise, move towards center of the object, by an amount equal to the length of the animat.

Figure 3 illustrates a short sequence within a typical simulation. Initially, the animat is situated in the

lower part of the space. Its position corresponds to the lowermost rectangle in the �gure. To begin

with only the larger of the two round objects exists. The animat reacts to the presence of this object

by moving forwards. (The series of rectangles show the sequence of positions occupied.) Once it has

moved a little closer to the object, the width/closeness ratio exceeds the relevant threshold (see rule

2 above) and the animat halts. After a while the large object is removed and replaced with a smaller

object slightly to the right. The animat responds by moving in on the small object.

2.2 Training the animat

The aim of the empirical investigation was to see how well supervised learning algorithms performed

when used to train an animat to perform conditional-approach. To obtain training sets for the learning

we repeatedly sampled the animat's reactions during simulation runs. This involved interrupting our

simulation program in the middle of each time cycle and recording the sensory input received by the

animat at that point, and the amount of drive being sent to the two wheels. The input/output pairs

thus produced gave us the required training set.

The conditional-approach behavior entails producing three, basic behavioral responses to four scenarios.
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Figure 2: The simulation setup.

With no object appearing in the sensory �eld the animat must swivel right ten degrees. With an object

appearing at long-range, or a small object appearing at close-range the animat must execute a forwards

move towards that object. (This might or might not involve a change in direction.) With a large object

appearing at close-range the animat should remain stationary.

To ensure that each of these responses had an equal representation within the training data we used the

following initialization regime. Each time the animat arrived at a small object or remained stationary

for more than 20 cycles, we reinitialized the environment, changing the size of the single object, and

randomly choosing a new position for it. Thus, in each successive phase of the simulation, the animat

would be confronted by an object of a di�erent size and di�erent relative position. The sampled

stimulus-responses pairs thus contained roughly equal numbers of the four responses.

Our general strategy for testing the e�ciency of training (with a particular learning algorithm) was as

follows. Following derivation and presentation of the relevant training set (see above) we would re-run

the simulation program interrupting it in the middle of each cycle. The animat's current proximity

inputs would then be presented as a `test case' to the relevant learning algorithm. The output returned

would be used to drive the wheels of the animat. At the end of the simulation run, we would evaluate

the overall behavior as a reproduction of the desired behavior.

2.3 Format of training examples

The inputs from the sensory system were represented (for purposes of training) in the form of real

numbers in the range 0.0-1.0. The inputs formed a normalized measure of proximity and embodied
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Figure 3: Conditional-approach behaviour.

10% noise. The amount of drive applied to the two wheels in each simulation step was represented in

the form of two real numbers, also in the range 0.0-1.0. Thus, a full right turn with no forwards motion

would appear in the training set as the pair <1.0,0.0> (given the assumption that the �rst number sets

the drive on the left wheel and the second number the drive on the right wheel).

A sample of training pairs derived for the conditional-approach task is shown in Table 1. Note that

the �rst seven numbers in each row (training pair) are the noisy proximity inputs. These are labeled

v1, v2, v3 etc. The �nal two numbers in each row specify the required amount of drive to be applied

to the two drive wheels. These are labeled d1 (amount of drive to the left wheel) and d2 (amount of

drive to the right wheel). The �rst row shows a case of `standing o�' from a large object: the amount

of drive for both wheels is 0.00. The second row illustrates the default behavioral response (swivel ten

degrees to the right) produced whenever all the proximity inputs are zeros (indicating no object has

been sensed). The swivel e�ect is achieved by setting the amount of drive for the right wheel to be 0.3.

2.4 Algorithms and parameter settings

The use of standard-format training sets enabled us to test the performance of any supervised learning

algorithmon the conditional-approach problem. In practice we tested the performance of a wide range of

algorithms including ID3 [1] and C4.5 [2], feed-forward network learning algorithms of the backpropaga-

tion family including `vanilla' backpropagation [3], a second-order method based on conjugate-gradient

descent [4] and a second-order method based on Newton's method called `quickprop' [5]. We also tested

a constructive network learning method called `cascade-correlation' [5] and a classi�er/genetic-algorithm

combination based on Goldberg's `simple classi�er system' [6].
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v1 v2 v3 v4 v5 v6 v7 d1 d2

0.00 0.00 0.00 0.27 0.38 0.33 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.3 0.00

0.00 0.00 0.81 0.81 0.81 0.79 0.78 0.00 0.00

0.00 0.87 0.88 0.89 0.89 0.89 0.00 1.00 1.00

0.00 0.00 0.00 0.27 0.38 0.33 0.00 0.00 0.00

0.73 0.74 0.00 0.00 0.00 0.00 0.00 0.4 1.00

0.81 0.81 0.81 0.79 0.78 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.85 0.84 0.82 0.00 1.00 0.80

0.00 0.00 0.00 0.78 0.78 0.00 0.00 1.00 1.00

0.00 0.00 0.00 0.00 0.76 0.77 0.76 1.00 0.80

Table 1:

The standard ID3 algorithm has no user-de�nable parameters. Thus there is only one way to apply it

to a particular training problem. It produces as output a standard-format decision tree in which the

leaf nodes are labeled with speci�c output cases and each internal node tests the value of a particular

input variable. C4.5 is a more e�cient version of ID3 that enables various parameters to be set to

control tree-pruning actions. However, in all cases reported we used the program in unrestricted mode,

i.e., with parameters set so that it would perform no pruning whatsoever.

All the network algorithms tested operate by modifying the connection weights in a �xed, non-recurrent

network of arti�cial neurons (using the standard logistic activation function). The e�ciency of network

learning is determined by feeding in novel inputs to the network and seeing what outputs are generated

after the activation has propagated across all the relevant connections. When applying network learning

algorithms the user must decide the internal architecture of the network

1

and, in some cases, the learning

and momentum rate. When testing the various network learning algorithms we experimented with a

range of two-layered, feed-forward architectures (with complete inter-layer connectivity) but found

that the best performance was obtained using nine hidden units; i.e. we settled on a 7-9-2 feed-forward

architecture. All the results reported relate to this case.

When testing standard backpropagation we found that a learning rate of 0.5 and a momentum of 0.9

gave best results and these were the settings used in all the cases reported. When testing iterative

learning algorithms (i.e., the network learning algorithms) we ran the algorithms for a minimum of

100,000 epochs of training (i.e., 100,000 complete sweeps through the entire training set).

In testing the classi�er-system/genetic algorithm combination we used an implementation based closely

on Goldberg's `simple classi�er system'. The classi�er population was con�gured to include a 50/50

mixture of intermediate and �nal classi�ers. That is to say, the actions for half the classi�ers in any

population were output patterns and the actions for the other half were input patterns. The standard

bucket-brigade algorithm was used with standard defaults (e.g., as used in [6]). The codons in the

input and output messages of the classi�ers were single bytes encoding a real number in the range

0-1, with two decimal places of accuracy. The genetic algorithm used employed the crossover operator

with random bit-mutation applying with a probability of 0.1. A �xed population size of 250 was used

with 20% of the population being replaced by the genetic algorithm after every 5000 epochs (i.e., 5000

applications of the classi�er system to the entire training set).

1

The con�guration of input and output units is �xed by the learning problem.
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2.5 Results

The results can be roughly summarized by saying that C4.5 and nearest-neighbors performed better

on the learning task than the connectionist algorithms or the classi�er system, but that none of the

algorithms provided satisfactory performance on this problem. In general, following training the animat

would tend to either approach all objects (large or small) or no objects. It would only very occasionally

produce the desired discrimination between large and small objects.

We measured the success of the training in several ways. First of all we measured conventional error rates

(i.e. proportion of incorrect responses on unseens). However, these �gures give a misleading impression

of success. The majority of responses in the conditional-approach behavior do not entail making

the crucial discrimination between large and small objects. They merely involve continuing rotatory

behavior or moving further towards a small and/or distant object. A better performance measure is

provided by sampling the frequencies with which the animat actually arrives at large and small objects.

The former frequency we call the `nip frequency', the latter the `meal frequency'. These frequencies

tend to show the extent to which the animat's behavior embodies the necessary size discrimination.

Our main results are summarized in Table 2. The �gures in the `hand-sim' row show the performance

of the animat running under the control of the four rules shown above. The �gures in the `random'

row show the performance obtained using a random move generator. The �gures in the `quickprop'

row show performance after training with the `quickprop' version [5] of the backpropagation algorithm

[3]; the �gures in the row labeled `c4' show the performance after training with the C4.5 version of ID3

[2]; the �gures in the row labeled `NN' show performance after training with the nearest-neighbours

algorithm [7]; �nally, the �gures in the row labeled CS show performance after training with the simple

classi�er system/genetic algorithm. All the �gures are averaged over 10 di�erent runs. The results

reported were gathered using training sets containing 80 training examples since trial and error showed

that this size of training set was su�cient to achieve negligably low error on the training examples from

all of the algorithms tested.

Error rate Meal freq. Nip freq.

hand-sim 0.864 0.090

random 0.014 0.043

quickprop 0.221 0.201 0.321

c4 0.233 0.479 0.371

NN 0.161 0.117 0.191

CS 0.344 0.251 0.275

Table 2:

The lowest error rate on the testing cases was 0.161 (16.1%) and this was produced by the nearest-

neighbours algorithm (NN). This �gure seems low but actually reveals relatively poor performance

(for reasons explained above). The same goes for the other error rates shown. The columns headed

`Meal freq.' and `Nip freq.' show the `meal' and `nip' frequencies respectively for the various simulated

animats. Note that the hand-coded animat achieves a high meal-to-nip ratio while the trained animats

do quite poorly, with the quickprop, NN and CS animats achieving nip-frequencies in excess of the

meal-frequencies. As is to be expected, the randomly driven animat also achieves a nip-frequency in

excess of its meal-frequency since the probability of randomly bumping into a large object is larger

than the probability of randomly bumping into a small object.
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2.6 Comparison with other behaviors (obstacle-avoidance and pursuit)

In view of the possibility that the poor performance obtained from the learning algorithms was due

to some aw in the overall methodology, we carried out some additional experiments. These aimed to

discover if we could use the same algorithms and the same methodology to learn more familiar animat

behaviors. In particular, we tested the learning algorithms on `obstacle-avoidance' and `pursuit'.

For these experiments we used the parameter settings for the learning algorithms described above except

in the case of network learning algorithms applied to the obstacle-avoidance task, where we used feed-

forward architectures containing just two hidden units with complete connectivity between layers. We

also used the same simulation setup but with a modi�ed animat in the case of the obstacle-avoidance

training. This animat had the usual two-wheel drive system but it used a simpli�ed sensory system

embodying just two proximity probes arranged in a 10 degree, front-facing arc (i.e., it had one probe ray

o�set �ve degrees on each side of the forwards direction). The environment for the obstacle-avoidance

training was also modi�ed so as to contain three, oval or rectangular objects. The environment was also

con�gured so that the boundaries of the space appeared opaque to the animat. Thus, the simulated

animat was able to `see' both the edges of the objects and the edges of the world.

The control procedure for the obstacle-avoidance simulations was as follows.

(1) Find the higher of the two proximity inputs.

(2) If this value exceeds 0.8 then swivel ten degrees to the right.

(3) Otherwise move forwards by an amount proportional to the length of the animat.

In Figure 4 we see a short trace of a simulated animat producing obstacle-avoidance behavior. The

animat's position in each simulation step is shown as a small, arrow-topped box as before. Thus the

sequence of boxes shows the animat's trajectory around the environment. Note how the trajectory

steers clear of all the obstacles and the boundaries of the space.

2.6.1 Pursuit

The second behavior examined was `pursuit'. For this behavior we used exactly the same experimental

setup as for conditional-approach; i.e., we used a simulated animat with seven probe rays arranged in

a 100-degree arc. The environment contained no objects and its boundaries were transparent.

Within the training simulation, the animat tracked a second simulated animat. The shape of this

second animat was rectangular and its size was arranged such that it would just intersect two of the

seven probe rays at 75% of the maximum animat-to-animat distance. The second animat (henceforth

the `leading animat') moved around the environment according to the following probabilistic regime.

In each cycle, there was a probability of 0.3 of the leading animat moving forwards, a probability of

0.35 of it making a forwards+left move and a probability of 0.35 of it making a forwards+right turn.

The step size for the leading animat (i.e., the total amount of drive that could be applied to the wheels)

was arranged to be 125% that of the pursuing animat. Thus the leading animat had a small speed

advantage over the pursuing animat. In Figure 5 we see a trace of a simulated animat producing the

pursuit behavior. The pursuing animat is shown here using dashed lines. The leading animat is shown

using unbroken lines.
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Figure 4:

2.7 Results for obstacle-avoidance and pursuit

The results for this second phase of experiments can be summarized by saying that all the learning

algorithms looked at were able to learn the two behaviors rather easily. The main performance �gures

are shown in Table 3. The column headed `avoidance-CF' shows the crash frequencies for the various

animats performing obstacle-avoidance while the column headed `pursuit-AD' shows the `average dis-

tance to target' for the animats executing the pursuit behavior. (The distances are proportional to the

size of the space.) The row labels are the names of the relevant learning algorithms as before. Note

that the crash frequencies and the average distances for all the trained animats are low when compared

with the randomly moving animat.

avoidance-CF pursuit-AD

hand-sim 0.000 0.048

random 0.780 0.246

conjgrad 0.006 0.076

ID3 0.006 0.041

NN 0.002 0.081

CS 0.009 0.088

Table 3:
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Figure 5:

2.8 Why is conditional-approach hard?

Our results with respect to obstacle-avoidance and pursuit are as per expectation. Behaviors of this

type are known to be learnable by a variety of methods [8; 9; 10]. But the fact that we were able

to obtain successful training using our simulation-based methodology shows that the failure of the al-

gorithms to deal satisfactorily with conditional-approach is not necessarily due to a aw in the basic

methodology. The failure of the network learners on conditional-approach thus begins to seem increas-

ingly paradoxical, especially in view of the fact that as a behavior it appears to be little more than an

amalgam of obstacle-avoidance and pursuit.

To explain our results we will develop an analysis of the three behaviors. This will involve looking

at the statistical properties of the training sets generated from the simulations. It will show that the

conditional-approach behavior di�ers from obstacle-avoidance and pursuit in that its underlying rule is

not strongly represented within the statistical regularities of a typical, simulation-derived, training set.

As we will show, this tends to have the e�ect of making conditional-approach hard to learn by methods

that rely primarily on exploiting statistical regularities.
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3 Learning as the exploitation of justi�cation

The process of learning implemented by some arbitrary learner mechanism can be conceptualized as

the acquisition of a target input/output mapping.

2

To have any chance of success the learner requires

some source of feedback regarding the mapping to be acquired. In the much studied supervised learning

scenario, this feedback takes the form of a set of examples taken from the target mapping. The learner's

aim is to arrive at the point at which it is able to map any input taken from the mapping onto its

associated output. In more general terms, the learner's aim is to be able to give a high probability to

the correct output for an arbitrary input taken from the mapping.

If the learner is to have any chance of achieving this goal, the feedback it receives must contain in-

formation which justi�es the assigning of particular probabilities to particular outputs. Thus we see

that learning is essentially the process of discovering and exploiting such justi�cations. To understand

the nature of the process we need to analyze the ways in which supervisory feedback can provide

justi�cations for assignments of particular probabilities to particular outputs.

There are two main cases to consider. Supervisory feedback (i.e., sets of examples) can justify prob-

ability assignments either directly or indirectly. Direct justi�cation is provided if the probabilities in

question are observed directly within the training examples (in the form of frequencies). They are

justi�ed indirectly if they can be derived from those examples, either by a recoding of the original

examples or by some other analytic process.

The distinction between the direct and indirect forms of justi�cation can be illustrated with an example.

Consider the following training set. This is based on two input variables (x1 and x2) and one output

variable (y1). There are six training examples in all. They are laid out with one example per line.

An arrow separates the input part of the example from the output part. The values of the two input

variables appear on the left of the arrow. The value of the output variable appears on the right.

x1 x2 y1

1 2 --> 1

2 2 --> 0

3 2 --> 1

3 1 --> 0

2 1 --> 1

1 1 --> 0

A wide variety of probabilities can be observed in these training examples. To begin with we have the

probabilities for �rst-order cases (i.e., instantiations of a single variable). These are shown in Table 4.

The `C' column shows the case in question and the `P(C)' column shows the observed probability of

that case.

We can also observe the probabilities of many second-order cases | cases involving the instantiation

of two variables. These are shown in Table 5.

Note that the probabilities for the third-order cases (i.e., the cases that specify values for all three

variables) are degenerate. Assuming there is no duplication in the training data, each third-order case

occurs exactly once. Thus its probability is necessarily 1/n where n is the size of the training set.

The probabilities introduced so far are all unconditional. Conditional probabilities can also be observed.

2

The mapping for a choicefull behaviour is one-to-many.
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C P(C)

1

x2=2 0.5

x2=1 0.5

y1=1 0.5

y1=0 0.5

x1=3 0.33

x1=2 0.33

x1=1 0.33

Table 4:

C P(C)

x2=2, y1=1 0.33

x2=1, y1=0 0.33

x1=3, x2=2 0.17

x1=2, x2=2 0.17

x1=3, y1=1 0.17

x1=3, x2=1 0.17

x1=1, x2=2 0.17

x1=2, y1=1 0.17

x1=2, x2=1 0.17

x2=1, y1=1 0.17

x1=1, y1=1 0.17

x1=1, x2=1 0.17

Table 5:

For example, we can observe the conditional probability of observing a particular instantiation of the

output variable for given �rst-order cases of the input variables. These probabilities are shown in Table

6. By the argument used previously, the second-order conditional probabilities here are degenerate

since there is necessarily exactly one occurrence of each second-order case of the constrained variables.

In the supervised learning scenario, it is, of course, the conditional and unconditional probabilities re-

lating to the output variable(s) which are of interest. Thus, Table 6 in conjunction with the table listing

the �rst-order unconditional probabilities for the output variable, provide an exhaustive enumeration

of all directly observed, probability-assignment justi�cations. A quick perusal of the two tables shows

that none of the output-variable probabilities are particularly extreme. Thus the training examples do

not contain directly observable justi�cation for strong output predictions (i.e., predictions made with

a probability close to 1).

What, then, of the indirectly observed justi�cations? These are obtained via recoding or analysis of the

original examples. Imagine that we recode our training examples by substituting, in each training pair,

the original input variables with a single variable whose value is just the di�erence between the original

variables. This gives us a set of derived pairs as shown below (the value of x4 here is the di�erence

between the values of x1 and x2).

12



C P(C) P(y1=0|C) P(y1=1|C)

1 0.5 0.5

x2=2 0.5 0.33 0.67

x2=1 0.5 0.67 0.33

x1=3 0.33 0.5 0.5

x1=2 0.33 0.5 0.5

x1=1 0.33 0.5 0.5

Table 6:

Original pairs Derived pairs (x4 = |x1-x2|)

x1 x2 y1 x4 y1

1 2 --> 1 1 --> 1

2 2 --> 0 0 --> 0

3 2 --> 1 1 --> 1

3 1 --> 0 2 --> 0

2 1 --> 1 1 --> 1

1 1 --> 0 0 --> 0

The probabilities we directly observe in these derived training data are, by de�nition, indirectly ob-

served probabilities in the original training data. However, they are still probabilities. Thus we can

derive tables of conditional and unconditional probabilities in the usual way. The unconditional and

conditional output probabilities for the derived training set are shown in Table 7.

C P(C) P(y1=0|C) P(y1=1|C)

1 0.5 0.5

x4=1 0.5 0.0 1.0

x4=0 0.33 1.0 0.0

x4=2 0.17 1.0 0.0

Table 7:

Note how the recoding we applied to the training examples has produced data in which we observe a

number of extreme probabilities relating to the output variable y1. The recoding thus provides us with

indirect justi�cation for predicting y1=0 with a probability of 1, if the di�erence between the input

variables is 1. It also provides us with indirect justi�cation for predicting y1=1 with a probability of

1, if the di�erence between the input variables is either 2 or 0. In short, we have indirect justi�cation

for the output rule `y1=1 if x4=1; otherwise y1=0'.
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4 Complexity implications for type-1 problems

As I noted above, the aim in supervised learning is to be able to identify target outputs with high

probability. We have now seen how the justi�cations for such assignments contained within the learner

feedback (i.e., training examples) are either directly or indirectly observed. Discovering direct forms

involves deriving probability statistics. Discovering indirect forms involves (1) deriving a recoding of

the training examples and (2) deriving probability statistics within the recoded data.

From this we can draw a preliminary conclusion regarding the generic complexity of learning problems.

Finding a solution to a particular learning problem necessarily entails discovering some combination

of two forms of justi�cation. The number of direct (henceforth `type-1') justi�cations is exponentially

related to the number of variables and values involved in the training examples. Thus it is typically

large but �nite.

The number of indirect (henceforth `type-2') justi�cations is the number of direct justi�cations (deriv-

able from the relevant recoded data) plus the number of possible recodings of the data. The number of

possible recodings is simply the number of distinct Turing machines we can apply to those data. There

are in�nitely many of these. Thus the space of indirect justi�cations is in�nitely large.

The task of discovering justi�cations is naturally viewed as a search. In the case of direct justi�cations

the search takes place in a �nite space while in the case of indirect justi�cations the search takes place

in a space that is in�nitely large. Thus, other things being equal, learning problems which necessitate

the discovery of indirect justi�cations are `harder' than problems which do not do so. This is the �rst

and most fundamental observation to be made regarding generic learning-problem complexity.

Unfortunately, translating the observation into a computable measure of learning-problem complexity is

not straightforward. The di�culty of a learning problem with a solution based on type-1 justi�cations

(henceforth a `type-1 problem') can be measured in terms of the di�culty of discovering the relevant

type-1 justi�cations. This is a function of (1) the number of justi�cations involved and (2) the size

of the space in which they exist.

3

It is a straightforward matter to calculate the size of the space.

But counting the number of type-1 justi�cations required involves working out what they are. Thus,

measuring the degree of di�culty of a type-1 learning problem requires solving that problem (i.e.,

�nding its type-1 solution).

This is not necessarily a disadvantage. Even when the search for type-1 e�ects is executed exhaustively,

it may still be tractable. But, in fact, by using learning algorithms which perform a close approximation

of the type-1 discovery task, we can e�ectively measure type-1 complexity much more e�ciently than

is done via exhaustive search.

The well-known ID3 algorithm [1] is perhaps the most obvious candidate for our purposes here.

4

This

supervised algorithm builds a solution by recursively splitting the training cases into subsets until the

point is reached where each subset is associated with a unique output. The splits are arrived at by

dividing up the relevant set of cases according to their value on a particular input variable. Target

outputs are generated by �nding which output is associated with the leaf node accessed by the relevant

input.

The e�ciency of the algorithm derives from the fact that, at each state, a split is selected which

maximizes the output uniformity (minimizes the entropy) of the subsets produced. In the initial case

| where a split is sought for the complete training set | the process is e�ectively identifying the input

variable which correlates most strongly with the outputs. This variable is the one which participates

3

There is no commitment in this to the idea that the learning method actually carries out a search.

4

See also the latest variant of ID3 called C4.5 [2].

14



in the most pronounced conditional probability e�ects with the output variable(s). ID3's initial aim,

therefore, is to identify the input variable which participates in the most informative set of �rst-order,

type-1 justi�cations. In cases where these justi�cations provide a satisfactory solution to the problem,

the algorithm is guaranteed to �nd the ideal type-1 solution.

If the type-1 solution involves higher-order probability e�ects then ID3 is not guaranteed to �nd the ideal

type-1 solution. But in many cases this does not diminish the algorithm's suitability as an approximate

type-1 discovery method. Supervised learning problems are typically prepared so as to ensure statistical

independence of input variables. If this property is obtained, then higher-order justi�cations will not

exist and any type-1 solution will necessarily be the �rst-order solution identi�ed by ID3.

Various other learning algorithms exist which provide e�ective methods for accessing type-1 justi�ca-

tions. Such methods are often biased towards �rst-order justi�cations (cf. the Least-Mean-Squares [11]

and Perceptron [12] methods) and are thus subject to the same reservations | and recommendations

| as the ID3 algorithm. Methods related to backpropagation [3], which do not have such an obvi-

ous �rst-order bias, can potentially be used to �nd higher-order type-1 solutions (se further discussion

below).

5

5 Complexity implications for type-2 problems

Type-2 justi�cations are probability e�ects which are only brought to light via a recoding of the original

training data. (Intuitively, they are e�ects which are discovered via an `analytic' process.) The fact

that there are typically in�nitely many possible recodings that might be applied to any given training

set means that measuring the di�culty of a type-2 problem (a problem whose solution is based purely

on type-2 e�ects) is impossible unless we set constraints on the nature of the recoding that can be

applied.

Before looking at what this means, I will make some preliminary observations about the nature of type-2

e�ects. Recall that a type-1 e�ect is an output probability which is either unconditional or conditional

on the absolute state of one or more input variables. A type-2 e�ect is an output probability which is

`associated' in some way with the states of input variables. But it cannot depend in any way on the

absolute states of input variables since this would make it a type-1 e�ect! Thus it must be associated

with the relative states of input variables. Putting it more simply, a type-2 e�ect must be based on a

relational property of the input variables.

6

This provides us with a rule-of-thumb for deciding whether a learning problem has a type-1 or a type-2

solution. If the problem is based on a relational input/output rule, then probability e�ects a�ecting

the output variable(s) cannot be based on absolute values of the input variables. Thus the solution can

be expected to be comprised of type-2 e�ects. If the problem is based on a non-relational input/output

rule, then the probability e�ects applying to the output variable must be based on absolute values of

the input variables. Thus the solution can be expected to be comprised of type-1 e�ects.

Of course, in reality, nothing is this simple. Learning problems which are based on relational in-

put/output rules typically have training sets which exhibit `spurious' type-1 e�ects. The training set

5

The Perceptron learning algorithm is, of course, a method which can only be successfully applied to linearly separable

problems, i.e., discrimination problems which can be solved by identifying a linear hyperplane separating the relevant

classes. Where the hyperplane is aligned with one of the axes of the input space, there will be marked correlations between

values of the corresponding input variable and the output variable, and thus pronounced type-1 e�ects. However, where

the hyperplane is unaligned such e�ects may disappear.

6

In fact this is not quite true. The argument stated allows it to be based on a non-relational property of a single input

variable provided that property e�ectively masks any type-1 e�ect.
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shown above is a case in point. The input/output rule is relational and yet the type-1 analysis reveals

that the training set does exhibit type-1 e�ects a�ecting the output variable.

Be this as it may, the basic rule-of-thumb for classifying learning problems does give us a possible

explanation for the apparent di�culty of conditional-approach. The input/output rule for conditional-

approach is clearly a relational one: it is, after all, based on the calculation of a ratio between two values,

namely the apparent width and the apparent closeness of the object.

7

The rules for obstacle-avoidance

and pursuit, on the other hand, are both based on establishing a direct correspondence between the

apparent closeness of an object in the sensory �eld and a particular behavioral response. In the case of

pursuit, the correspondence is a simplematter of sensory stimulation being transformed into drive-wheel

activity: objects appearing in particular parts of the sensory �eld cause particular amounts of drive to

be applied to the wheels to ensure an appropriate move/turn. In the case of obstacle-avoidance the

correspondence is a matter of sensory stimulation indicative of very near objects inhibiting drive-wheel

altogether.

Thus we have a fairly clear distinction between conditional approach on the one hand, and pursuit/obstacle-

avoidance on the other. In conditional approach, but not in pursuit/obstacle-avoidance, the in-

put/output rule is based on a relational property of the input variables. Any type-1 e�ects observed

in training data for conditional-approach are e�ectively artifacts, i.e., purely accidental, statistical fea-

tures attributable to the size/dimensionality/grain etc. of the experimental situation. These artifactual

e�ects may be relatively intense | the complexity of the training set means that measuring them di-

rectly is out of the question | but the fact that supervised learners tend to perform badly on this

problem, but very well on obstacle-avoidance and pursuit tends to suggest that conditional-approach

produces training sets in which the type-1 e�ects are relatively weak.

6 Summary

The paper presented the results of a comparative study that looked at the conditional-approach behav-

ior. The results of the study showed that several, powerful learning methods are unable to successfully

learn the conditional-approach behavior even though they are perfectly capable of learning other, closely

related behaviors such as obstacle-avoidance and pursuit.

The failure on conditional-approach training was explained using a statistical analysis. This showed

that supervised learning involves generating probability assignments and that these may be justi�ed

by training data either directly or indirectly. Directly observed justi�cation were labeled type-1 e�ects.

Indirectly observed justi�cations were labeled type-2 e�ects. The latter were shown to exist in an

in�nitely large space and thus to be `harder' to �nd. It was then shown that training sets for learning

problems based on relational input/output rules will tend to exhibit type-2 justi�cations only and thus

be harder to learn and the hardness of conditional-approach was explained by showing it to be based

on a relational input/output rule.
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