
Managing Inconsistencies in an Evolving Specification

Steve Easterbrook Bashar Nuseibeh

School of Cognitive and Computing Sciences, Department of Computing, Imperial College
University of Sussex, Brighton, BN1 9QH, UK. 180 Queen’s Gate, London, SW7 2BZ, UK.

easterbrook@cogs.susx.ac.uk ban@doc.ic.ac.uk

Abstract
In an evolving specification, considerable effort is spent

handling recurrent inconsistencies. Detecting and resolving

inconsistencies is only part of the problem: a resolved

inconsistency might not stay resolved. Frameworks in

which inconsistency is tolerated help by allowing resolu-

tion to be delayed. However, evolution of a specification

may affect both resolved and unresolved inconsistencies.

We address these problems by explicitly recording

relationships between partial specifications (ViewPoints),

representing both resolved and unresolved inconsistencies.

We assume that ViewPoints will often be inconsistent

with one another, and we ensure that a complete work

record is kept, detailing any inconsistencies that have been

detected, and what actions, if any, have been taken to

resolve them. The work record is then used to reason about

the effects of subsequent changes to ViewPoints, without

constraining the development process.

1 . Introduction

In an evolving specification, considerable development

time and effort is spent handling recurrent inconsistencies.

Such inconsistencies are particularly prevalent during

requirements engineering, when conflicting and contra-

dictory objectives are often required by different stake-

holders. Tools and techniques for detecting and resolving

inconsistencies only address part of the problem: they do

not ensure that a resolution generated at a particular stage

will apply at all subsequent stages of the process.

In this paper, we propose an approach for managing

inconsistencies that arise during the development of multi-

perspective specifications, by explicitly recording

consistency relationships between partial specifications,

and by representing both resolved and unresolved

inconsistencies. We use the ViewPoints framework for

multi-perspective software development as a vehicle for

demonstrating our approach, and illustrate our techniques

by working through an example drawn from the

behavioural specification of a telephone.

2 . The ViewPoints Framework

We base this work upon a framework for distributed

software engineering, in which multiple perspectives are

maintained separately as distributable objects, called

ViewPoints. We will briefly describe the notion of a

ViewPoint as it is used in this paper. [9] provides a fuller

account of the framework, and [7] gives an introduction to

the issues of inconsistency management.

A ViewPoint can be thought of as an ‘actor’, ‘role’, or

‘knowledge source’ in the development process, combined

with a ‘view’ or ‘perspective’ which an actor maintains. In

software terms, ViewPoints are loosely coupled, locally

managed, distributable objects which encapsulate partial

knowledge about a system and its domain, specified in a

particular, suitable representation scheme, and partial

knowledge of the process of development.

Each ViewPoint has the following slots:

• a representation style, the scheme and notation by

which the ViewPoint expresses what it can see;

• a domain, which defines the area of concern addressed

by the ViewPoint;

• a specification , the statements expressed in the

ViewPoint’s style describing the domain;

• a work plan, which comprises the set of actions by

which the specification can be built, and a process

model to guide application of these actions;

• a work record, which contains an annotated history of

actions performed on the ViewPoint.

The development participant associated with a

ViewPoint is the ViewPoint ‘owner’. The owner is

responsible for developing a specification using the

notation defined in the style slot, following the strategy

defined by the work plan, for a particular problem domain.

A development history is maintained in the work record.

This framework encourages multiple representations,

and is a deliberate move away from attempts to develop

monolithic specification languages. It is independent from

any particular software development method. In general, a

method comprises of a number of different notations, with

rules about when and how to use each notation. A method

can be implemented in the framework by defining a set of

ViewPoint templates, which together describe the set of

notations provided by the method, and the rules by which

they are used independently and together.

The notion of a viewpoint was first introduced as part

of requirements specification methods such as Structured

Analysis [22] and CORE [17], and more recently deployed

for validating requirements [16], domain modelling [5] and

service-oriented specification [12, 14]. In our framework,

we use ViewPoints to organise multi-perspective software

development in general, and to manage inconsistency.

3 . Inconsistency Management

In our framework, there is no requirement for changes

to one ViewPoint to be consistent with other ViewPoints

[8]. Hence, inconsistencies are tolerated throughout the

software development process. This contrasts with many

existing support environments which enforce consistency,

for example by disallowing changes to a specification that

lead to inconsistencies.

We view strict enforcement of consistency throughout

the requirements process as unnecessarily restrictive. Partly

this view arises from a consideration of the distributed

nature of software development: it may not always be

possible to check that particular changes are consistent

with work in progress at another site. Consistency

enforcement can also stifle innovation, causing premature

commitment and preventing exploration of alternatives

[15]. Finally, development participants are likely to have

conflicting views about many aspects of the requirements,

and exploration of these conflicts are greatly facilitated by

the ability to express the alternative views.

The ability to express and reason with inconsistent

specifications during software development overcomes

many of these problems. However, we assume that

eventually a consistent specification will be required as the

basis for an implementation1. We therefore focus on the

management of inconsistencies, so that the specification

process remains a coordinated effort. Consistency checking

and resolution can be delayed until the appropriate point in

the process. As there is no requirement for inconsistencies

to be resolved as soon as they are discovered, consistency

checking can be separated from resolution.

In order to manage inconsistencies, the relationships

between ViewPoints need to be clearly defined. In general,

the relationships arise from deploying the software

development method. For example, if a method involves

hierarchical decomposition of a particular type of diagram,

then two diagrams that are hierarchically related should

obey certain rules. Similarly, a method which provides

several notations will specify how those notations inter-

1 We will ignore the question of whether inconsistencies in a final
specification or an eventual product are acceptable under some
circumstances.

relate. Thus, the possible relationships between

ViewPoints are determined by the method.

Consistency checking is performed by applying rules,

defined by the method, which express the relationships that

should hold between particular ViewPoints [21]. The rules

define partial consistency relationships between the

different representation schemes. This allows consistency

to be checked incrementally between ViewPoints at

particular stages rather than being enforced as a matter of

course. A fine-grained process model in each ViewPoint

provides guidance on when to apply a particular rule, and

how resolution might be achieved if a rule is broken [20].

The need to tolerate inconsistency has been recognised

in a variety of areas, including configuration management

[23], programming [3], logical databases [10] and

collaborative development [18]. In [7], we discuss how co-

ordination between ViewPoints can be supported without

requiring consistency to be maintained. A key problem is

to support resolution of inconsistencies in an incremental

fashion, so that resolutions are not lost when the

ViewPoints continue to evolve. We now present a scenario

to illustrate how this process is supported.

4 . Scenario

Our scenario involves the behavioural specification of a

telephone. We assume the existence of a method which

allows such specifications to be partitioned into separate

ViewPoints. We begin by outlining the salient features of

the method, before introducing the scenario.

4 . 1 . The method

Our method uses state transition diagrams to specify the

required behaviour of a device, in this case a telephone.

The method permits the partitioning of a state transition

diagram describing a single device into separate

ViewPoints, such that the union of the ViewPoints

describes all the states and transitions of the device. Such

separation of concerns is a powerful tool for reducing

software development complexity in general [11], and

requirements complexity in particular [2]. It does,

however, require corresponding techniques to combine

resultant partial specifications, such as composition [25]

and amalgamation [1].

By describing the behaviour of a telephone as two

separate partial specifications, we can concentrate on

different subsets of behaviours, and hence clarify how

those subsets interact. In this way, we can, for example,

analyse problems such as “feature interaction” in telephone

systems [24].

The scenario concentrates on two analysts co-operating

to build a description of the various states that a single

telephone handset can be in. The analysts choose to

partition this task such that one of them describes the

A (owner=Anne; domain=telephone/calling)

idle
dial

tone

ringing

tone

engaged

tone
connected

off hook

lift

receiver

dial

(callee idle)

callee

lifts

receiver

dial

(callee off

hook)

callee

replaces

receiver

replace

receiver

Figure 1: Anne’s initial ViewPoint specification for
making a call.

B (owner=Bob; domain=telephone/incoming call)

idle ringing connected

dial

tone

replace

receiver

lift

receivercaller dials

caller replaces

receiver

caller

replaces

receiver

Figure 2: Bob’s initial ViewPoint specification for
receiving a call. Note that this specification is incomplete,
as Bob has not yet considered what would happen if the
callee replaces the receiver when in the connected state.

states involved when the handset is being used to make a

call, and the other describes the states involved when the

handset is receiving a call. There is an implicit assumption

that their descriptions could be merged at some point to

give a complete state transition diagram for the handset.

The method provides the following:

• A notation for expressing states and transitions

diagrammatically. The state transition notation includes

extensions for expressing super-states and sub-states2.

• A partitioning step which allows a separate diagram to

be created to represent a subset of the behaviours of a

particular device. This may mean that on any particular

diagram, not all the device’s possible states are

represented, and for some states, not all the transitions

from them are represented.

• A set of consistency checking rules which test whether

partitioned diagrams representing the same device are

consistent with one another. These rules test whether

two diagrams describing the same device may be merged

without any problems; even though the checking

process does not require such a merge to take place.

The method also includes guidance about when to use each

of the steps, and when to apply the consistency rules. The

scenario will illustrate each of these steps in turn.

4 . 2 . Preliminary specifications

At the start of our scenario, Anne has created a

ViewPoint to represent the states involved in making a

call (figure 1), and Bob has created a ViewPoint to

represent the states involved in receiving a call (figure 2).

As they are both describing states of the same device, a

number of consistency relationships must hold between

their ViewPoints.

2 We use Harel’s extended state transition diagrams [13]. The
extensions include the use of super and sub-ordinate states, as
illustrated in figure 1. Transitions out of super-states are available
from all sub-ordinate states. The notation also allows transitions to
be a function not just of a stimulus, but of the truth of a condition.
Conditions are shown in brackets after the name of the stimulus.

At this stage, Anne and Bob may wish to check

whether their ViewPoints are consistent with one another.

They do not yet attempt to analyse the interaction between

a calling and receiving telephone: they only wish to check

that the subset of behaviours described in each ViewPoint

are consistent. In particular, the ViewPoints are likely to

have some overlap, and these overlaps need checking. In

this scenario, both ViewPoints include states such as

‘idle’, ‘connected’ and ‘dial tone’.

We will consider two consistency rules in more detail:

(i) “If a transition between two states is described in one

ViewPoint, and both states are described in the second

ViewPoint, then the transition should also be described

in the second ViewPoint”.

In the example above, there is a ‘replace receiver’

transition between ‘connected’ and ‘idle’ in Anne’s

ViewPoint (inherited from the super-state ‘off hook’), but

not in Bob’s. Although the partitioning method allows

states to be missed out in different ViewPoints, if two

states are included, all possible transitions between them

should be shown. In this example, Bob’s ViewPoint

implies that replacing the receiver while connected does

not return the phone to idle. Indeed, this is the actual

behaviour of many telephone systems for incoming calls.

(ii) “If a state is shown as belonging to a super-state in

one ViewPoint, and the same state is included in the

second ViewPoint, then the super-state must also be

included in the second ViewPoint”.

This rule is to ensure no ambiguity: the ‘connected’ state

is part of the ‘off hook’ super-state as defined in Anne’s

ViewPoint, but it is not clear which other states of Bob’s

ViewPoint are also members of ‘off hook’.

4 . 3 . Support for consistency checking

The consistency checking process described above is

supported in each ViewPoint by providing consistency

rules which may be invoked by the ViewPoint owner. The

rules are defined by the method designer. We have

developed a notation (presented in a simplified form below)

B (owner=Bob; domain=telephone/incoming call)

idle ringing connected

dial

tone

replace

receiver

lift

receivercaller dials

caller replaces

receiver

caller

replaces

receiver

off hook

Figure 3: Bob’s ViewPoint specification after resolution.

for expressing the rules as relationships between objects in

the specifications of a source ViewPoint VPS , (from which

the rule is invoked), and a destination ViewPoint, VPD.

For example, the first consistency rule above would be

expressed in each ViewPoint as:

R1: ∀ VPD(STD, DS)

{ VPS .transition(X, Y) ∧ VPD.state(X) ∧
VPD.state(Y) → VPD.transition(X, Y) }

Briefly, the rule has three parts: a label by which it can

be referred (R1); a quantifier defining the possible

destination ViewPoints for which the relationship should

hold (in this case, all ViewPoints containing state

transition diagrams, STD, whose domain, DS , is the same

as the current ViewPoint); and a relationship (in this case

the existence of a transition in the source ViewPoint and

the two states to which it is connected in the destination

ViewPoint entails the existence of the transition in the

destination ViewPoint).

There also is an entry in the ViewPoint’s process

model, defining circumstances under which the rule is

applicable, and the possible results of applying it. Entries

in the process model are expressed in the form:

{preconditions} ⇒ [agent, action] {postconditions}

For rule R1 , the following entry has been defined:

{ } ⇒ [VPS , R1]
{ℜ1(transition(X, Y), VPD.transition(X, Y))} ∪
{missing(transition(X, Y), VPD.transition(X, Y), R1)}

In this case the preconditions are empty, indicating the

rule can be applied at any time. The action is the

application of rule R1 by the source ViewPoint, VPS . The

result is a set of predicates describing the facts that have

been established. Predicates of the form ℜi(σ, ψ.δ) indicate

that the relationship defined by the rule Ri holds for the

partial specifications σ in the source ViewPoint and δ in

the ViewPoint ψ. Predicates of the form missing (σ, ψ.psD,

Ri) indicate that no items matching partial specification

psD in the destination ViewPoint ψ were found to meet the

existence criteria associated with partial specification σ as

required in rule Ri.

Hence, if Anne applies rule R1 , the result will be the

predicate:

missing(transition(off hook, idle),
B.transition(connected, idle), R1)

This states that according to rule R1 , the transition from

‘off hook’ to ‘idle’ in ViewPoint A requires that there be a

transition from ‘connected’ to ‘idle’ in ViewPoint B, but it

is missing3. This predicate is recorded as part of the work

record for Anne’s ViewPoint. Normally, ViewPoint B is

also notified of the results of the check.

3 We have assumed that inheritance of transitions from super-states,
which is a part of the notation, is handled by the process of matching
partial specifications given in a rule with the actual contents of a
ViewPoint.

4 . 4 . Resolution of inconsistencies

Anne and Bob consider the inconsistency resulting from

the application of rule R1 above. It reveals a conflict

between their notion of the ‘connected’ state. Bob had

assumed that if the callee replaces the receiver it does not

sever the connection, and his ViewPoint is correct given

that assumption. A possible resolution would be to

distinguish the ‘connected’ state in each ViewPoint as

different – being connected as a caller is different from

being connected as callee. However, they cannot agree on

this, and decide to delay resolution.

At a later point, they then consider the inconsistency

resulting from the application of rule R2 . An obvious

resolution is to add the ‘off hook’ super-state to Bob’s

ViewPoint. Bob does this, and his ViewPoint then

contains the specification shown in figure 3.

This resolution accidentally resolves the inconsistency

resulting from the application of rule R1 as well, in that

the connected state in Bob’s ViewPoint now inherits the

‘replace receiver’ transition from the super-state. This side

effect contradicts Bob’s assumption that when the callee

replaces the receiver it does not end the connection.

However, he does not notice the side effect at this stage.

4 . 5 . Support for resolving inconsistencies

When the consistency checking rules were invoked, the

results were recorded as part of the ViewPoints’ work

records. This provides some basic historical information

on which to base a resolution, and is available whenever

ViewPoint owners wish to tackle the inconsistencies.

The method provides a number of actions for each

consistency rule, which may be applied if the rule is

broken. Some of the actions will repair the inconsistency,

others may just take steps towards a resolution, for

instance by eliciting further information or performing

some analysis [operationally: the actions are available to

the ViewPoint owners as a menu, and each action has a

short text giving the rationale for that action].

Consider the inconsistency resulting from the

application of rule R1 above. Anne and Bob both have

available the ‘missing’ predicate described in section 4.3.

ViewPoint A actions:

(1) delete transition(off hook, idle)

(2) move state(connected) so it is no longer part of state(off

hook)

(3) move transition(off hook, idle) so it no longer connects from
state(off hook)

(4) delete state(connected)

(5) delete state(idle)

(6) rename state(connected)

(7) rename state(idle)

(8) devolve transition(off hook, idle) to all sub-states of off hook

ViewPoint B actions:

(9) delete state(connected)

(10) delete state(idle)

(11) rename state(connected)

(12) rename state(idle)

Joint Actions:

(13) copy transition(off hook, idle) from ViewPoint A to
ViewPoint B as transition(connected, idle)

Table 1: Possible resolution actions for rule R1

They also have the list of suggested actions for tackling

the resolution. The available actions are given in table 1.

Some actions are derived directly from the rule that

failed. These include removing items that make the rule

hold, or adding items required by the rule. For example,

action (13) is suggested because under-specification may be

the cause of the problem, which can be dealt with by

transferring material from one ViewPoint to another.

Other actions are offered by the method designer. These

are typically resolution actions that the method designer

has identified after considering examples of the

inconsistencies detected by a rule. They may also have

resulted from the experience of method users in the past:

methods evolve as lessons are learnt about their use.

Further suggested actions are derived using method-

specific heuristics. For example, action (8) is derived from

a heuristic which suggests that an alternative to deleting a

transition from a super-state is to devolve the transition to

the sub-states. This action will not resolve the

inconsistency, but it may take ViewPoint owners a step

closer to finding a resolution.

In addition to the suggested actions, ViewPoint owners

always have the option of ignoring an inconsistency, or

invoking a tool to analyse it further by, for example,

displaying portions of the ViewPoints side-by-side and

exploring the differences between them [4]. If they choose

to ignore the inconsistency, they may wish to first

perform some steps towards resolution, either by applying

actions which don’t quite resolve the inconsistency, or by

eliminating some of the suggested actions as undesirable.

Any such steps performed in the context of resolving a

particular inconsistency are recorded in the appropriate

ViewPoint work record, so that the process may be

continued at a later point.

Each ViewPoint maintains a list of unresolved

inconsistencies. The list only contains those that have

been detected - there may always be others for which

relevant rules have not been applied. Subsequent changes

to a ViewPoint are checked to see if they affect any of the

known inconsistencies. This process can be illustrated by

considering what happens when an inconsistency resulting

from the application of rule R2 is resolved:

• Anne’s ViewPoint represents the inconsistency as:

missing(state(off hook), B. state(off hook), R1)

• Among the actions suggested for its resolution are that

‘off hook’ be added to Bob’s ViewPoint.

• Anne selects this action, as a suggested resolution for

Bob to carry out. Bob agrees and so adds the new state.

• An entry is added to each ViewPoint’s work record to

record that the action resolved the inconsistency.

• As part of the resolution, the transition from ‘off hook’

to ‘idle’ is also copied to Bob’s ViewPoint.

• The actions are checked for their effect on other

inconsistencies. These checks are only performed

locally: each ViewPoint only checks its own actions

against its own list of consistency rules. In this case,

the new transition in Bob’s ViewPoint is likely to repair

the inconsistency:

A.missing(transition(off hook, idle),
B. transition(connected, idle), A.R1)

This fact is recorded in Bob’s work record, but it is not

immediately flagged to Bob, as there may be a large

number of such effects.

• Anne’s rule R2 is re-applied to check that the

inconsistency is indeed resolved.

Note that the rule R1 is not re-applied automatically,

despite the evidence that this too is resolved. There are two

reasons for this: only Bob’s ViewPoint has the

information about this side-effect, and the resolution

process only concerns the inconsistency from rule R2 . Any

effect on other inconsistencies are dealt with when the

ViewPoint owners specifically consider them.

4 . 6 . Further elaboration

Anne and Bob now proceed to consider some additional

features which will be made available on this phone. The

first of these is the ability to forward a call to a third party.

This requires Anne to add an ‘on hold’ state (figure 4).

Note that her connected state does not specify which party

the phone is connected to.

Bob’s changes are more complicated, as new states are

needed to represent the process of contacting the third

party. The required behaviour for the callee is that pressing

the ‘R’ button on the phone puts the calling party on hold,

to enable the callee to dial and connect to the third party. If

the callee replaces the receiver before a connection to a

third party is established, the phone rings again; picking it

up then reconnects to the original caller. If the callee

A (owner=Anne; domain=telephone/calling)

dial

tone

ringing

tone

engaged

tone

off hook
dial

(callee=idle)

callee

lifts

receiver

dial

(callee=

off hook)
callee

replaces

receiver

on hold

callee

dials

’R’ + N

callee

replaces

reciever

(callee=

forwarding)

callee

replaces

reciever

(callee=

connected

to N)

idle

lift

receiver

replace

receiver

connected

Figure 4: Adding an ‘on hold’ state to Anne’s ViewPoint
specification.

B (owner=Bob; domain=telephone/incoming call)

idle ringing connected

dial

tone

replace

receiver

lift

receiver

caller

dials

caller replaces

receiver

caller

replaces

receiver

ringing

tone

connected

to N

dial N

(N=idle)

N lifts

receiver

engaged

tone

dial N

(N=off hook)

replace

receiver

forward

tone

dial ’R’

forwarding
off hook

N replaces

receiver

Figure 5: Extending Bob’s ViewPoint specification to
handle call forwarding.

B (owner=Bob; domain=telephone/incoming call)

off hook

ringing connected

dial

tone

replace

receiver

lift

receiver

caller

replaces

receiver

ringing

tone

connected

to N

dial N

(N=idle)

engaged

tone

dial N

(N=off hook)

replace

receiver

replace

receiver

forward

tone

dial ’R’

forwarding

N lifts

receiver

N replaces

receiver

idle

caller

dials

caller replaces

receiver

Figure 6: Replacing the receiver only returns the phone
to an ‘idle’ state if there is a ‘dial tone’ or ‘connected to N’.

replaces the receiver after connecting to a third party, the

original call is forwarded to the third party, leaving the

callee’s phone idle (figure 5).

At this point Bob realises that one of the reasons he has

distinguished between ‘connected’ and ‘connected to N’ is

because replacing the receiver has a different result in each

case. In the ‘connected’ state, replacing the receiver does

not disconnect the incoming call. In the ‘connected to N’

state, replacing the receiver completes the forward

operation, leaving the phone idle. He notices that when he

added the super-state ‘off hook’, he inadvertently gave all

the off-hook states the transition to idle when the receiver

is replaced. He now corrects this error (figure 6).

This now reintroduces an inconsistency from rule R1 , as

Bob no longer has a transition from connected to idle.

Because this latest change affects a previous resolution the

support tools will suggest to Bob that he re-checks R1 at

some point. When Bob checks this rule he discovers his

ViewPoint is inconsistent with Anne’s. He realises that

the only resolution he will be happy with is to rename his

connected state to distinguish it from Anne’s connected

state. This resolves the inconsistency once more.

4 . 7 . Support for monitoring inconsistencies

Throughout these elaborations, each action is checked

for its effect on the known inconsistencies in each

ViewPoint, whether or not they were resolved. In the

scenario, only two inconsistencies were detected, as we

only applied two consistency rules. Both were resolved,

and annotated with the action that resolved them.

Although the list of unresolved inconsistencies is

empty, this does not mean the ViewPoints are consistent.

For example, if rule R1 were applied after the elaboration

above, an inconsistency between the states labelled

‘ringing tone’ in each ViewPoint would be detected: the

transition ‘replace receiver’ has a different destination in

each case. The same applies to ‘engaged tone’. These

inconsistencies will be detected next time R1 is applied,

but having applied a rule in the past is no guarantee that

the relationship expressed in the rule still holds.

Now consider what happens when Bob deletes the

transition from ‘off hook’ to ‘idle’. As the addition of this

transition resolved the inconsistency arising from rule R1 ,

its deletion may re-introduce the inconsistency. When the

list of past inconsistencies is examined, this possibility is

detected, and the ViewPoint owner, Bob, will be warned.

He may ignore the warning (inconsistencies are tolerated),

or he can choose to check whether or not the inconsistency

has indeed re-appeared, by invoking rule R1 again. If he

does this, there are again two possibilities:

• The inconsistency does not re-appear. In this case some

other action may have had an affect. The inconsistency

is annotated to indicated that it was resolved by some

unknown action between the original resolution and the

current action.

• The inconsistency re-appears, as is the case in our

scenario. Here, the inconsistency is marked as

unresolved, and annotated to show which actions

resolved and re-introduced it. This allows ViewPoint

owners to further eliminate suggested resolution actions,

if they have been tried and found to be unsatisfactory.

4 . 8 . Discussion

Incremental exploration and resolution of the

inconsistencies revealed an important mismatch between

the conceptual models held by the two participants

described in our scenario; namely about when connection

are terminated, and whether there is a difference in being

connected as a caller and connected as a callee. Although it

is entirely possible that this mismatch may have been

detected anyway, the explicit resolution process provides a

focus for identifying these kinds of mismatch.

The process of defining the required behaviour of a

device is crucial to requirements specification. Various

tools exist for defining and analysing behavioural

specifications, including, to some extent, determination of

completeness and consistency. However, no such analysis

can guarantee that the behaviour that gets specified is the

intended one. Animating a behavioural specification can

help by bringing the specified behaviour to the attention of

the analyst. Analysis of inconsistencies in the manner

described here is clearly an additional help.

5 . Undetected conflicts

We have demonstrated how conflicts between the

conceptual models used by the two participants can be

detected through identification of inconsistencies. It is

worthwhile clarifying the distinction between conflict and

inconsistency. An inconsistency occurs if a rule has been

broken. Such rules are defined by method designers, to

specify the correct use of a method. Hence, what

constitutes an inconsistency in any particular situation is

entirely dependent on the rules defined during the method

design. Such rules might cover the correct use of a

notation, and the relationships between different notations.

We define conflict as the interference in the goals of one

party caused by the actions of another party [6], typically

where one person makes changes which interfere with the

developments another person is making. This does not

necessarily result in any consistency rules being broken.

An inconsistency might equally well be the result of a

mistake. We define a mistake as an action that would be

acknowledged as an error by the perpetrator of the action.

Some effort may be required, however, to persuade the

perpetrator to identify and acknowledge a mistake.

Although our approach is based on the management of

inconsistency, the scenario has shown how this in turn

helps with the identification and resolution of conflicts, as

well as mistakes. There remains the possibility that some

conflicts and mistakes will not manifest themselves as

inconsistencies.

The consistency rules arise from: consideration of the

rationale and operation of the method; from consideration

of examples and case studies of the use of the method; and

from the experiences of method users. If it becomes clear

that some types of mistakes and conflicts are not being

detected, then new consistency rules can be added.

6 . Implementation

A prototype development (The Viewer) has been

constructed to support the framework [19]. The Viewer has

two distinct modes of use: method design and method use.

Method design involves the creation of ViewPoint

templates which are ViewPoints for which only the

representation style and work plan slots are filled. In

method use, ViewPoints are instantiated from these

templates, to represent the various perspectives. Each

instantiated ViewPoint will inherit the knowledge

necessary for building and manipulating a specification in

the chosen notation, and cross checking consistency with

other ViewPoints. Hence, each ViewPoint is a self-

contained specification development tool.

We have also extended The Viewer to support a subset

of the inconsistency management tools described in this

paper. A Consistency Checker allows users to invoke and

apply in- and inter-ViewPoint consistency rules, and

records the results of all such consistency checks in the

appropriate ViewPoint’s work record. A prototype

Inconsistency Handler has also been implemented, to

demonstrate the kind of inconsistency management we

expect tool support to provide.

7 . Conclusions

ViewPoints facilitate separation of concerns and the

partitioning of software development knowledge.

Partitioning is only useful if relationships and

dependencies between partitions can be defined. In this

paper, we have shown how such relationships can be

defined as part of a method. We have demonstrated how

inconsistencies identified by checking these relationships

may be resolved, and illustrated how subsequent evolution

affects a resolution. Resolutions are recorded so that the

effects of subsequent changes may be tracked.

We have also shown how re-negotiation may be

supported. Analysis of conflicts helps reveal the

conceptual models used and assumptions made by

development participants. In this way, the explicit

resolution process acts as an elicitation tool. The ability to

identify mismatches in conceptual models is an important

benefit to requirements engineers adopting this approach.

The detection of conflicts and other problems (e.g.,

mistakes) depends on how well a method is defined. We

suggested how conflicts can arise which do not give rise to

inconsistencies. Moreover, method design is an iterative

process in which experience with method use can help

improve the method. In this way, experience in using a

method may lead to new types of consistency rules being

added to the method.

Identifying consistency relationships, checking

consistency and resolving conflicts are all important steps

in managing inconsistency in an evolving specification.

Our approach makes a contribution to multi-perspective

software development in general, and requirements specific-

ation in particular by using inconsistency management to

elicit knowledge about systems and their domain.

Acknowledgements

We would like to acknowledge the contributions and

feedback of Anthony Finkelstein, Jeff Kramer, Martin

Feather, and the anonymous reviewers. This work was

partly funded by the UK DTI as part of the ESF project,

and the UK EPSRC as part of the VOILA project.

References

[1] Ainsworth, M., A.H. Cruickshank, L. G. Groves & P. J.
L. Wallis (1994) “Viewpoint Specification and Z”;
Information and Software Technology, 36(1).

[2] Alford, M. (1994) “Attacking Requirements Complexity
Using a Separation of Concerns”; Proc. 1st IEEE
Conference on Requirements Engineering, Colorado
Springs, USA, 18-22nd April 1994, 2-5.

[3] Balzer, R. (1991) “Tolerating Inconsistency”; Proc.
13th International Conference on Software Engineering
(ICSE-13), Austin, Texas, 13-17th May 1991, 158-165;
IEEE CS Press.

[4] Easterbrook, S. (1991) “Resolving Conflicts Between
Domain Descriptions with Computer-Supported
Negotiation”; Knowledge Acquisition: An International
Journal, 3: 255-289.

[5] Easterbrook, S. (1993) “Domain Modelling with
Hierarchies of Alternative Viewpoints”; Proc. IEEE
Symposium on Requirements Engineering (RE ‘93), San
Diego, USA, 4-6th Jan. 1993, 65-72.

[6] Easterbrook, S., E. E. Beck, J. S. Goodlet, L. Plowman,
M. Sharples & C.C. Wood (1993) “A Survey of
Empirical Studies of Conflict”; (In) CSCW: Co-
operation or Conflict?; S. M. Easterbrook (Ed.) 1-68;
Springer-Verlag, London.

[7] Easterbrook, S., A. Finkelstein, J. Kramer & B.
Nuseibeh (1994) “Coordinating Distributed ViewPoints:
The Anatomy of a Consistency Check”; Concurrent
Engineering: Research and Applications, 2: 209-222.

[8] Finkelstein, A., D. Gabbay, A. Hunter, J. Kramer & B.
Nuseibeh (1994) “Inconsistency Handling in Multi-
Perspective Specifications”; IEEE Trans. on Software
Engineering, 20(8): 569-578.

[9] Finkelstein, A., J. Kramer, B. Nuseibeh, L. Finkelstein

& M. Goedicke (1992) “Viewpoints: A Framework for
Integrating Multiple Perspectives in System
Development”; International Journal of Software
Engineering and Knowledge Engineering, 2(1): 31-58.

[10] Gabbay, D. & A. Hunter (1991) “Making Inconsistency
Respectable: A Logical Framework for Inconsistency in
Reasoning, Part 1 - A Position Paper”; P r o c .
Fundamentals of Artificial Intelligence Research ‘91,
19-32; LNCS 535, Springer-Verlag.

[11] Ghezzi, C., M. Jazayeri & D. Mandrioli (1991)
Fundamentals of Software Engineering; Prentice-Hall.

[12] Greenspan, S. & M. Feblowitz (1993) “Requirements
Engineering Using the SOS Paradigm”; Proc. IEEE
Symposium on Requirements Engineering (RE ‘93), San
Diego, USA, 4-6th Jan. 1993, 260-263.

[13] Harel, D. (1987) “Statecharts: A Visual Formalism for
Complex Systems”; Science of Computer Programming,
8: 231-74.

[14] Kotonya, G. & I. Sommerville (1992) “Viewpoints for
Requirements Definition”; IEE Software Engineering
Journal, 7(6): 375-387.

[15] Kramer, J. (1991) “CASE Support for the Software
Process: A Research Viewpoint”; Proc. Third European
Software Engineering Conference, Milan, Oct. 1991,
499-503; LNCS 550, Springer-Verlag.

[16] Leite, J. C. S. P. & P.A. Freeman (1991) “Requirements
Validation Through Viewpoint Resolution”; IEEE Trans.
on Software Engineering, 12(12): 1253-1269.

[17] Mullery, G. (1979) “CORE - a method for controlled
requirements expression”; Proc. 4th International
Conference on Software Engineering (ICSE-4), 126-
135; IEEE CS Press.

[18] Narayanaswamy, K. & N. Goldman (1992) ““Lazy”
Consistency: A Basis for Cooperative Software
Development”; Proc. International Conference on
Computer-Supported Cooperative Work (CSCW ‘92),
Toronto, 31st Oct. - 4th Nov., 257-264.

[19] Nuseibeh, B. & A. Finkelstein (1992) “ViewPoints: A
Vehicle for Method and Tool Integration”; Proc. 5th
International Workshop on Computer-Aided Software
Engineering (CASE ‘92), Montreal, 6-10th July 1992,
50-60; IEEE CS Press.

[20] Nuseibeh, B., A. Finkelstein & J. Kramer (1993) “Fine-
Grain Process Modelling”; Proc. 7th International
Workshop on Software Specification and Design
(IWSSD-7), Redondo Beach, California, USA, 6-7 Dec.
1993, 42-46; IEEE CS Press.

[21] Nuseibeh, B., J. Kramer & A. Finkelstein (1994) “A
Framework for Expressing the Relationships Between
Multiple Views in Requirements Specification”; IEEE
Trans. on Software Engineering, 20(10): 760-773.

[22] Ross, D. T. & K. E. Schoman (1977) “Structured
Analysis for Requirements Definition”; I E E E
Transactions on Software Engineering, 3(1): 6-15.

[23] Schwanke, R. W. & G. E. Kaiser (1988) “Living With
Inconsistency in Large Systems”; Proc. International
Workshop on Software Version and Configuration
Control, Grassau, Germany, 27-29 Jan. 1988, 98-118.

[24] Zave, P. (1993) “Feature Interaction and Formal
Specifications in Telecommunications”; I E E E
Computer, 26(8): 20-30.

[25] Zave, P. & M. Jackson (1993) “Conjunction as
Composition”; ACM Trans. on Software Engineering
and Methodology, 2(4): 379-411.

