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Abstract

Some recent attention in Arti�cial Intelligence (AI) research (speci�cally the sub-

discipline known as Arti�cial Life) has been focussed on the possibility of using genetic

algorithms to evolve neural network controllers for task-de�ned robots. Employing

techniques formalised by Holland (1975), the hope is that by using various encoding

methods for representing a neural network on a `genome' -commonly a binary string-

and then manipulating a population of these genomes using, primarily, cross-over and

mutation operators according to �tness-preferential dictates, one may e�ciently search

a large parametric state-space for useful networks.

This paper deals with my attempt to evolve a neural network that, by mediating

between a simulated robot's actions and its environmental input leads to a `guard-dog'

behaviour.

KEYWORDS: Genetic Algorithms, Neural Network, Task-de�ned Behaviour, Sim-

ulated Environment, Encoding Method.
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1 Introduction

1.1 A Short Historical Perspective

1.1.1 Genetic Algorithms

The Darwinian Theory of Natural Selection is one of the profound insights in the history

of scienti�c endeavour. At its heart is the idea that purely randomate, stochastic changes

coupled with environmental pressures can lead to the development of creatures which are

`tailored for their environment'. Di�erent options are thrown up randomly and those

which do well - are �tter than their rivals - prosper. Important to note is that this is not

an argument for design; the environment can be seen as a test for which nature throws up

random attempts at solution; those attempts that score well get to multiply. In modern

biological parlance, their genes are passed down to the next generation.

Both in terms of its notoriety and seeming success, natural selection has made a big

impact. It is not, therefore, surprising that many in the �elds of Arti�cial intelligence and

Mathematics began to wonder whether the power of genetic algorithms (GAs) could be

harnessed for use as a state-space

1

search algorithm. A breakthrough came in 1975 with

Holland's ground-breaking paper [1] which showed that a genetic algorithm employing

crossover and mutation operations (see below) on a �tness preferential breeding basis (the

�ttest or most successful attempts -represented by an n-parameter genome - having a pro-

portionately higher chance of passing some part of their genome into the next generation)

represented a very e�cient means of searching through a large number of possibilities and

tended to maximise the number of short, useful blocks of genome (referred to as `schemas'

by Holland) averaged through the population -the algorithm would inevitably optimise

for a function that could be represented in terms of these schemas; it would produce

progressively better attempts at solving the problem.

2 The Task at Hand

The aim of this project was to produce a guard-dog like behaviour in a simulated robot

by using a genetic algorithm to search through a state space of possible neural network

controllers. Operating in a four-walled, square arena the task of the robot is, in a limited

time (typically four hundred time units) to keep a simulated automaton as far as possible

from the centre of the arena. The rewards, in terms of �tness points, to the guard-

robot increase progressively the further from the centre the automaton can be kept; being

allocated according to a Gaussian function (see section below on the �tness function).

The biological analogy with a guard-dog should be taken loosely. It refers only to

the behaviour exhibited; there is no claim being made that the means by which the

creature abstracts from its environment or the strategies it employs in defending the

centre resemble, in any way, those of a real guard-dog; although the possibility of strategic

similarity is not discounted.

2.1 The Di�culty of Hand Wiring Robots

The task was chosen because it seemed suitably complex so as to present a challenge to

anyone trying to hand design or hard-wire a robot to perform it; imagine trying to dictate

a suitable left and right motor response for the robot based only on the ten intensity levels

1

n-dimensional where n is the number of possible parameters being explored.

4



(from ten light sensors spaced evenly around the robot (see below)) presented at each time

phase.

Indeed, much of the impetus for research in this area comes from the �rmly held

belief that, as the tasks required of robots become increasingly more complex, it will be

increasingly infeasible to hand-design robots to perform them

2

. In as much as, coupled

with suitably chosen selective pressures on breeding (represented as a �tness function,

often over time), a GA allows the problem to seek its own solution (the solution is, in this

sense, emergent from the system created) the human programmer is freed from the task

of designing the solution and can turn his attention to creating the right environmental

pressures (�nding the right �tness function) and the right encoding system (the way in

which, for example in this case, the neural network is represented on the genome (see

section below on encoding the network)) in which progressively better solutions will be

found. This is, in itself, a di�cult task, but is orders of magnitude simpler than having to

hard-wire the robots.

Part I

Genetic Algorithms

3 Standard Methods Employed by Genetic Algorithms

3.1 Common Genetic Operators

3.1.1 Crossover

The most common form employed, crossover consists of combining elements from one

genome with those from another to produce an o�spring. The most common method

is single-point crossover though multiple-point crossovers are sometimes employed. The

method is as follows:

1. Take two parent genomes P1 and P2 of �xed length l and divide them at point x

along the genome where x is a random number between 1 and l-1

|

P1 01110101101000101011|011000101001010

|

P2 00010010100101111110|101100010111010

|

x

2. Crossover the two genomes at this point to produce two o�spring O1 and O2.

O1 01110101101000101011\ /101100010111010

\/

/\

/ \

O2 00010010100101111110 011000101001010

2

see Harvey, Husbands et al and their provisional manifesto outlining the di�culties faced [2].
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3. Choose one of O1 and O2 to be the o�spring of P1 and P2; in the GA I employ

(see below) this o�spring replaces a stochastically chosen weak member of a sub-

population.

Single point crossover was used in this GA. The genome of the two chosen parents

3

was cut at the bit level

3.1.2 Mutation

In Darwinian natural selection it is mutation that plays the major role in providing the

impetus for change; it is the vehicle for random search of the state space. However in GAs

up till recently it has been a poor cousin to the crossover operation. This is because GAs

have been commonly perceived as function optimisers whose job stops once the population

has converged -this being the case when the members are approximately identical. For

real-world evolution this is the starting point; a species has, by de�nition, achieved a

high degree of convergence. Recently, as the limitations of GAs as �xed length function

optimisers has become apparent (see [3,4]) for an analysis), more interest has begun to

focus on the mutation operator (see [10]) and its subtleties. For a single, bit-wise mutation:

1. Take one of the o�spring of parents P1 and P2 of length l. Choose a number x

between 1 and l - 1 and invert the bit found there on the o�spring's genome

O1 01110101101000101011011000101110101

|

x

|

Mutated O1 01110101101000101011111000101110101

Rate of mutation has typically been of the low order of one bit per thousand in the

genome, though recent research has advocated a far higher rate (see [3,4]).

In the GA employed in this project, mutation was initially set to a rate of one bit per

genome.

3.2 Rank Based Selection

Rank Based Selection(RBS) is a means of sustaining useful evolutionary pressures in the

face of either very large or very small discrepancies between the �tness of individual

members. An example will show why the mediation of a rank-based selection system is

necessary:

Consider the example of a population of genomes -arti�cially small but adequate for

the purpose of explanation- g1,g2,g3 and g4 with �tnesses g1=100, g2=20, g3=5, g4=4.

A method of choosing which of these members will get to breed might involve totalling

their �tnesses and then employing a `roulette wheel' method to choose which member is

to breed:

3

the genome is an array of n signed characters in `C'. Dependent on the encoding method employed

these signed characters were sometimes cast as unsigned integers.
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METHOD 1:

1. take x, a random number between 0 and the �tness total of the group (in this case

129).

2. add the �tnesses of the population members sequentially until this total exceeds x.

3. the member chosen to breed is the last member whose �tness was added to the

accumulator.

The probability for each member reproducing is members �tness = total �tness and,

based on the sample population given, this would give g1 an overwhelming breeding ad-

vantage. Based on this stochastic method, g1's genes would very quickly predominate.

But an important principle in the theory of GAs maintains the importance of diversity; it

is not desirable that one solution within the search space is pin-pointed quickly since it is

likely to be sub-optimal

4

. With this in mind and taking into account the fact that at the

beginning of a GA there may well be large di�erences in the �tnesses of the population

-such as to lead to one -or a small number in a distributed GA- member predominating ,

one can already call into question the e�cacy of method 1.

But another reason exists that mitigates againstmethod 1. Most GAs converge at some

point or another; the �tnesses in the population are, at this point, similar. Method 1, ap-

plied to a converged or semi-converged population seems to lead to a rather aimless search

of the state-space. If we had a population, for example,with �tnesses of 1001,1020,1100,965

then each would seem to have a roughly equal chance of breeding, by method 1. The

stochastic search becomes unfocussed and there is less chance of serendipitous discovery.

To counteract the ine�ectiveness of method 1 at these points in a GA's operation RBS

is employed. Here the �tnesses of members of the population are used to rank them; for

example the least �t is given a rank of N (where N is the size of the population) and the

most �t given a rank of 1. From now on it is these ranks that are used to select breeding

members, not the �tnesses; these are discarded after ranking has taken place and play no

further part in the selection procedure.

RBS means that we can expect relatively similar selection pressures at di�erent stages

in the operation of the GA; typically the �ttest member having approximately twice the

chance of selection as the median �ttest. Disparities in the individual �tnesses are only

of issue in placing the genomes in rank; they cannot produce the detrimental e�ects that

have been mentioned. The selection procedure has been homogenised.

In the GA employed for this project, RBS was used at all times in preference over

method 1.

4 The Choice of a Genetic Algorithm

The study of GAs is a discipline in its infancy. Holland's schema processing analysis (see

[1] and [5]) has provided a mathematical foundation for GAs which shows them to be an

extremely e�cient search algorithm; in a population of size P the number of schemata

- concurrent genes or `building blocks' being processed is of the order P cubed. The

operation of cross-over and mutation have been shown, in a population of �xed-length

genomes with �tness-preferential reproduction, to encourage the formation of small blocks

of genes -as averaged from the genome population- which are advantageous to function

4

the larger the search space the higher this probability.

7



optimisation. This proof was important because it showed, for these blocks, a remarkably

large amount of search space could be combed in relatively few genetic operations on the

genome population.

However, many areas of GA research defy mathematical formalism. There is much

that is unpredictable and often heuristic, rules-of-thumb are all that is available to guide

the development of new GAs.

The upshot of this is that much of GA research involves trial and error, a natural

selectionist approach true to its subject matter. This trial and error is not, of course,

totally uninformed; at the heart of most approaches is a putative gem of wisdom:

One approach currently gaining credibility is motivated by the belief that in restrict-

ing evolutionary forces to small pools or sub-populations within the main population of

genomes, one may encourage diverse approaches to speci�c problems to ourish within

the main population; this approach has been developed in response to a problem that

consistently dogs the operation of GAs:

It is entirely possible that a genome which is initially relatively un�t may possess the

key, or springboard, to a very �t creature -a good position in the n-dimensional search

space- of the future. Equally, a genome which is initially �t may well prove redundant in

the future, being further away in the search space from the optimum than the previous

ailing genome. If both these creatures are encountered early on in the evolution of the

main population and both are subjected to the full battery of evolutionary pressures -if

both are in direct competition with one another- then it is probable that the latter will

triumph at the expense of the former and a potentially useful future approach will be

lost. If, however, we allow the less �t genome to breed away from the full rigours of

the main population in a small pool then it may lead to the development of a better

solution than the previously �tter genome. In short, it is recognised that encouraging

diverse approaches to a problem is advantageous but that in GAs a �tter solution may

well come to predominate too quickly, thus preventing any of the weaker but potentially

useful approaches from reaping fruit. What is needed is an approach which compromises

between a desire to see the �ttest triumph and a belief that initially weak members of the

main population should be protected from the full application of the Darwinian ethic; a

time buying strategy to allow the di�erent approaches to show their worth.

One way in which this can be achieved is by employing a spatialised GA. The algorithm

is as follows:

1. Arrange initial n*n members on a toroidal (wrap around) array of dimension nxn.

2. To breed two creatures:

(a) Choose a member of the main population (parent1) on a group-�tness pref-

erential basis - where group-�tness is the average �tness of a member of the

main population and his immediate neighbours- from a sample of n chosen at

random; use rank-based-selection(RBS).

(b) Restrict breeding to within the sub-population de�ned by parent1 and its im-

mediate neighbours.

(c) Using RBS select a member of this subpopulation (parent2) to mate with par-

ent1.

(d) Crossbreed parent1 and parent2 and choose one of the crossed genomes to be

the the o�spring. Mutate this o�spring.

8



(e) Choose a member of the sub-population using RBS biased in favour of the

weaker members

5

. Replace this member with the o�spring.

Breeding, within this sub-population is governed by rank-based-selection (RBS) (see

section above) which is used to choose the breeding partners and the member of this

sub-population to be replaced by their o�-spring.

It should be recognised that these sub-populations merge together and that via this

route a very �t solution may eventually colonise the whole population. However, the time

it will take to achieve this has increased and in the meantime any one of these semi-isolated

colonies may produce a solution to combat invasion.

A spatialised GA appears to me to be a good compromise and I chose to employ one

in my project.

5 Encoding the Neural Network on the Genome

The genome is, at its most basic, a long binary string. Moving up a level of interpretation,

this string can be viewed as encoding numbers (signed or unsigned ) or characters (letters

of the alphabet encoded in ASCII). Somewhere on this string is the information needed

to build the neural network controller for the robot. There is much debate, within Alife,

as to which encoding should be employed. A number of options present themselves:

5.1 Direct Encoding

We can pre-establish the structure of the network (number of input, hidden, and output

nodes and connections to be made between them) and then use the genome to repre-

sent network parameters (the strength of the weight connections -whether excitatory or

inhibitory, and the value of the thresholds on the weights -their bias). This method is

comparatively simple to employ but, by pre-establishing the structure of the net we have

already imposed what is probably a sub-optimal form of network for the task; the struc-

ture of the network forms no part of the search space. In this form parts of the genome

encode all the weight and threshold parameters for a single unit

6

. In this paper I refer to

this method as strong direct-encoding

7

(see Fig 1). Fig 5 shows how the genome, an array

of signed characters (in the range [-127,127] � R) encodes network parameters.

Another more profound problem exists which calls into question the whole ethos of

strong direct-encoding. As has been mentioned (see section above) the spatialised GA

employed in this project encourages diverse approaches to the problem posed - in this

case evolving a guard-dog behaviour in robots. The distributive nature of connectionist

(or neural) networks means that an individual robot's solution to the problem posed is

represented as a generalised hypothesis spread through the network parameters (weight,

thresholds etc.). It can be seen as a vector in the n-dimensional space formed by these

parameters. The e�cacy of an individual weight connection or threshold may well depend

on the context in which it �nds itself (the generalised hypothesis or vector). Since the

5

The weakest is now ranked 1, the �ttest n, where n is the size of the subpopulation.

6

Holland's schema processing advocates that the details for a single unit should be placed close together

on the genome (see [1],[5], and especially [6])

7

commonly the term direct-encoding is applied to any situation where there is a one to one mapping

between the genotype and the phenotype it encodes (in this case a neural network). The encoding method

is termed `strong' because the structure of the network is pre-established, as opposed to its being de�ned

on the genome.
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crossover operation radically disrupts this context we might expect many of the param-

eters, post-crossover, to be distinctly sub-optimal; it is possible that two very �t robots,

when bred, might lead to a very weak o�spring.

This should not, however, provoke despair in the method of strong direct-encoding.

Many weight connections and thresholds will probably be of some use in most networks.

The weights and thresholds run in the range from -127 to +127. Negative values can

be viewed as inhibitory (the node receiving input along a negatively weighted connection

being less likely to register 1 as its activation value) while positive are excitatory (the

node being more likely to register 1 as its activation value). Since the relative excitatory or

inhibitory capacity of a connection or threshold is preserved through the genetic operation

of crossover, and taking into account the fact that we might expect certain relative weights

to be generally useful for producing a �t network, it is only necessary for the genetic

algorithm to encourage these generally useful parameters for it to be successful; Holland's

schema processing has shown that GAs do perform this function (see [1])

8

.

5.2 The Hybrid Encoding

While strong direct-encoding can be shown to work (see Results section below) its e�ciency

must be called into question. As has been mentioned, by pre-establishing the structure of

the network we are already imposing what is almost certainly a sub-optimal state-space in

which the GA is required to work; better structures for the task exist. Recent interest in

evolving connectionist architectures

9

has focussed on using the GA to design structural

features of the network, either with �xed weight and threshold parameters (typically binary

values) or in conjunction with de�ning these parameters also

10

.

As well as employing strong direct-encoding (see Fig 5) with my GA, I also designed

and tested what I refer to as a hybrid encoding system

11

; the number of input, hidden and

output nodes (see section on the neural network) were �xed and a portion of the genome

(invariable) was allocated to each. Within this portion the units are free to set their own

threshold parameter and choose which other units they receive input from and the strength

of the connections from these units. Depending on its status, hidden or output, the unit

is allowed a set number of connections. As opposed to the strong direct encoding method,

this hybrid method allows a fair amount of exibility for the structure of the network ; a

unit can, for example, make a multiple number of recurrent connections to itself or other

units; it can also ignore certain units completely.

The di�erence between the two encoding systems is shown in Fig 1. In the strong

direct-encoding system, any number on the genome represents, dependent on its position,

the value of a pre-established weight connection or threshold; the weight-link is already

�xed, requiring only a weight. In the hybrid encoding system the weight-links themselves

are variable. After establishing the threshold of a unit (as in the strong direct encoding)

two numbers are required to establish each link and its weight. For the �rst the signed

character ( in the range [-127,127] � R) is recast as an unsigned integer (in the range

[0,255]�R) and its value modulus 20 (the number of units in the network) establishes the

8

many examples exist of successfully employed strong direct-encoding. See [7] for an example.

9

see [2],[6], and [8] for some recent examples of incorporating structural details of the connectionist

network on the genome.

10

see [8] for an example of such inclusive coding.

11

the name `hybrid' used is solely for the purpose of distinguishing between the two encoding methods

employed but it is hoped to encompass the fact that, though pre-established segments of the genome are

still allotted to individual units, within these segments freedom exists for the units to de�ne structural

features of the neural network.
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Establishing the connections for unit 1:

100 -78
2 3

mod 20
=

mod 20

=

-78

54

-78

54

HYBRID ENCODINGDIRECT ENCODING    

threshold
UNIT 1

100

UNIT 2

UNIT 3

threshold
UNIT 1

100

UNIT 2

UNIT 3

54-78100 54

Figure 1: The hybrid encoding method establishes structural details of the network which

can be transferred during the crossover operation. Under the strong direct-encoding these

details are pre-established.

unit that the weight is to come from

12

. The next number speci�es the weight of the link

in the normal way.

Each hidden and output unit was allowed to establish ten incoming weight-links. This

meant that the hybrid encoded network used 100 links, as opposed to the 130 in the

strong direct-encoded network. The number of weight-links allowed provided for a fair

comparison between the strong direct-encoding and the hybrid encoding,

13

the extra links

to the output units , compared with the strong direct-encoding, reecting their primary

role in establishing the motor responses of the robot (see Fig 4).

The relative success of this system (see Results below) shows the e�cacy of allowing

at least some structural elements of the network to be decided by the GA

14

.

12

Allowing units only to receive input from other units and not to send out links simpli�es the processing

of the genome into the neural network. This speeds things up considerably and also limits the search space

since specifying a link as `to' or `from' would require extra indicators on the genome.

13

the increased search space of the hybrid method means that relatively fewer potential phenotypic

options can be processed in the number of breeding cycles available, when compared with the strong

direct-encoded network.

14

An even more radical approach is adopted by Moriarty, D., and Miikkulainen, R., [8] in their attempt

to breed an Othello playing program. This involves using a marker-based encoding schema whereby the

individual network units are not allocated �xed portions of the genome but are allowed to mark out their

own (for example any number modulated by 50 returning a 1 is assumed to mark the beginning of a portion

of genome �xing the structural parameters for a unit. Any number modulated by 50 returning 0 marks

the end of these parameters).

11



5.3 Search Space Consideration

The total size of the strong direct-encoded genome is 130 signed integers

15

. Parametrically

this makes for a 130 dimensional state space.

In the hybrid encoding each output and hidden unit was allowed to de�ne ten weighted

connections. Although the total number of weighted connections was less (100 compared

with 120) than the strong direct-encoding, because each connection required two numbers,

(one to establish a link, the next to weight it) the search space, 210 dimensional, was

larger than the strong direct-encoding method.

It was hoped that the general e�ciency of genetic algorithms (see above), coupled

with the freedom of the neural network to establish novel and better task-oriented network

structures, would compensate for this increased search space and still allow the hybrid sys-

tem, in the allotted 2000 breeding cycles, to outperform the strong direct-encoded method

(see Results below for con�rmation of this belief).

Part II

The Simulation

6 Practical Considerations

6.1 Availability and Speed of Processor

As a member of a networked system, processor time is shared out among a group and is

as such fairly limited. The amount available a�ects considerations such as the complexity

of the environment.

6.2 Designing the Environment

The environment in a simulated robotics project can be made arbitrarily complex. Pro-

cessor intensive applications such as recursive ray-tracing (see section below) or complex

kinematics can almost always be made more accurate. However, the availability of pro-

cessor time meant that my environment had to be necessarily simplistic. The addition of

generous quantities of noise should, however, alleviate to a certain extent the problem of

unrealism (see section below on the importance of noise).

6.3 Choice of a Programming Language

Having been impressed by the speed of `C' coded neural networks, I decided to teach

myself this language and coded my programming project in it. It is not unusual for GAs

to take days to achieve results -dependent, of course, on the problem posed- and the speed

and e�ciency of implementation is an extremely important factor.

7 The Environment

The environment in which the guard-robot �nds itself is a two dimensional four-walled

room (dimensions 400x400 units). The walls radiate light with an intensity of 1, whilst

15

(input-hidden) 10x6 + (hidden-hidden) 6x6 + (hidden-output) 4x6 + (hidden and output thresholds)

10.

12



V dog

l

l

AUTOMATA

DOG

1

2

CENTRE
ROOM

α

Figure 2: The Automaton's Movement

the automaton is black (intensity 0) (see section below on ray-tracing).

7.1 The Kinematics

The robot and automaton do not physically interact. This transparency saves processor

time computing the collision dynamics and acknowledges the precedence given in the

experiment to the central motion vectors of the two

16

.

The environment, as mentioned, is non-toroidal and collisions occur between the robots

and the walls. These collisions are elastic and no attempt is made to simulate complex,

friction-dependent interactions - once again frugality rules.

The robot's movement is a product of disparities between the forces generated by its

left and right wheels; unless the impulses are equal - in which case it moves a set distance

in the direction it is facing- this motion is then resolved into a rotation and translation.

This allows for quite a degree of freedom in the robot's movement.

7.2 The Movement of the Automaton

Two inuences e�ect the movement of the automaton in the simulation. These are

attraction to the centre and repulsion from the guard-robot. Of these two, it is the latter

which takes precedence. If the automaton is within 100 distance units of the robot, it will

either be immobilised or repelled by the robot. Referring to the diagram (Fig 2):

1. If the length of l

2

is greater than 100 then the automaton will be attracted towards

the centre, along l

1

with a constant velocity of 60 units per time phase. This is

double the maximum guard robots speed and is intended to severely punish any

robot leaving the centre unguarded.

2. If the length of l

2

is less than 100 then the automaton's reaction is dependent on

whether the robot is advancing towards it or not (whether cos(�) is positive):

(a) If cos(�) is negative then the automaton is immobilised.

16

for the early simulations, the repulsion of the automaton from the robot was inversely proportional

to the distance between the two centres (however, the periphery of the automaton is taken into account

in the ray-tracing procedure). By allowing the centres to come close together, greater repulsion could be

generated.

13
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Figure 3: The Simulated Robot

(b) If cos(�) is positive then the automaton is repelled along the line l

2

either by a

force proportional to the robot's velocity times cos (�) divided by the length of

l

2

or, in the case of the normalised automaton response (see below), at a speed

of 60 units per time phase.

8 The Robot

The robot is circular (the environment being two dimensional) with ten light sensors

arranged uniformly (every (2�/10) radians) around its periphery. It's movement is e�ected

by left and right wheels powered by separate motors (see Fig 3).

Information from the environment is obtained by the light sensors which return an

average intensity rating over a de�ned arc-spread 2� (see Fig 3). Referring to Fig 4,

normalised input from these (in the range [0,1] � R) is sent directly to the ten input

nodes of the robot's neural network

17

where the values are forward propagated through

the network, according to weighted connections and node thresholds whose parameters are

encoded on the robot's genome (see section on encoding the genome). This propagation

establishes the activation values of four output units (in the range [0,1] � R) O

1

; O

2

; O

3

and O

4

. The left motor response is obtained by O

1

�O

2

, the right by O

3

�O

4

; this gives

a possible range for each motor of between -1 and +1 (allowing forward and backward

motion, and any discrepancy between the left and right motor outputs providing for a

rotation motion) .

For the simulations run the left and right motor impulses at each time period were

multiplied by the robot's maximum forwards and backwards velocity of 30 distance units

per time period to give a distance over which each wheel travels; the robot's movement

is resolved into a translation and rotation dependent upon the distance travelled by each

17

analogous to its sensory nervous system, being employed to mediate between received sense data

subsequent action.
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Figure 4: Converting Light Intensities to the Robot's Movement

wheel.

Uniform noise at �10% is added at all stages of the network's propagation and the

resulting motor response causes the robot to move position (e�ecting a rotation/translation

resolution according to standard dynamics). This change in its position causes the robot's

environmental input to change. This new information is sampled by the light sensors and

the cycle begins again. In this way the system can be said to be closed

18

.

9 Discriminating the Environment

The guard-robot discriminates its environment with the use of a neural network; its be-

haviour being moderated by this discrimination.

9.1 Why a Neural Network

For the guard-robot to function properly it must have knowledge about its environment. In

this case knowledge is exhibited in the robot's capacity to make the right move given certain

information about its environment, received as intensities registered by its light sensors.

It must discriminate the information received and act according to that discrimination; a

simplistic example might be \if the sensors in front register light, dark, light -indicating the

presence of the automaton silhouetted against a wall - then cause the motors to advance

the robot"; this action is likely to have the desirable consequence of forcing (via repulsion)

the automaton further away from the centre of the room, thus improving the robot's

�tness.

A neural network is a very e�cient way of representing, through its weighted con-

nections and thresholds, a generalised hypothesis about the environment in which the

guard-robot �nds itself. If one imagines the total number of possible inputs to the net-

work (in the form of normalised activations from the ten light sensors spaced evenly around

the robot) as representing an `input space', each n-dimensional (in this case n = 10) input

vector �nding a place here, then the combination of hidden and output units allied to the

18

see [11] for an advocation of closed-environment simulation systems.
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weights and thresholds, can be said to partition this input space into discrete areas. Mem-

bers of these areas provoke a similar output response which, applied to the motors, cause

the robot to move in a set way; in this way, the robot can be said to possess a number of

strategies. As the robot gets �tter, the partitioning of the input space into set output re-

sponse comes to represent progressively better strategies for repelling the automaton from

the centre; the guard-robot begins to develop a strategic understanding of the problem at

hand. The distributive nature of the neural network; each unit participating in a large

number of abstractions from the input space (for use in ful�lling useful discriminations of

the environment) makes it an e�cient way of storing the large amounts of knowledge the

robot must employ if it is to develop a successful general approach

19

.

The optimal solution to the task can be viewed as a vector in the parametric weight

and threshold space. Successful solutions will tend towards this vector and the GA can

be seen as the motive force for this tendency. In the case of the hybrid encoding scheme

(see above) the state space is extended to include structural details about the net; the

individual units are allowed to search for useful weighted links with other units, rather

than having them pre-established.

9.2 The Neural Network

The neural network in the guard-robot is analogous to a central nervous system. It acts

as an intermediary deciding, from a given sensory input -provided by the ten light sensors

arranged around the robot- what action is to be taken by the robot -achieved through

impulses sent to its left and right motor-driven wheels. The structure of the neural network

is dependent on the encoding system used (see section on encoding the network).

Its most general form is a three layer network with ten input units (one for each light

sensor on the robot), six hidden units and four output units (each motor using two outputs

to establish its impulse). The strong direct encoding method (see above) has recurrent

connections on its middle, or hidden connections (see Fig 5). The hybrid method allows

the hidden and output units to establish recurrencies; any input to a unit, the weight

connection being de�ned on the genome, coming from a unit on the same or a higher level

of the network (the levels being input, hidden and output) is assumed recurrent, and the

old activation of the incoming unit used in establishing the value of the input

20

.

The recurrent units should o�er some short-term memory capacity for the robot by

preserving details of activation at time (t) for use in deciding activations at time (t+1).

The decay of the activation units is total per unit time.

I felt this network was large enough to provide the discrimination necessary for achiev-

ing what is a fairly complex task whilst at the same time not proving too processor hungry

-this consideration must once again be emphasised.

The input nodes receive normalised input (in the range [0,1] � R) from the light

sensors; a unit's activation is the intensity registered at its light sensor; the ranges being

from 1 at maximum possible light intensity (close to and facing a wall in the room) to 0

when no light is being received (close to and facing the automaton) at the sensor.

19

although most connectionist simulations are, at the present time, virtual, being instantiated on cur-

rent Von Neumann architecture machines, in the future, with the increasing availability of connectionist

hardware, the massively parallel operations of a neural network should reap considerable speed bene�ts.

20

if the propagation occurs at time(t) the old activation is de�ned as activation at time (t-1).
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Figure 5: The Standard Neural Network

9.2.1 The Direct Encoded Network

THE PROPAGATION OF THE NEURAL NETWORK WITH DIRECT ENCODING

1. Activation A at input comes directly from light sensors in the range[0,1] � R. The

output � of an input unit is its activation A.

2. The activation for a hidden unit i at time t:

A

i(t)

=

X

i

�

j(t)

W

ij

x +

X

h

�

h(t�1)

W

ih

x

where j is an input unit, h a hidden unit and W

ij

represents the weighted connection

from unit j to unit i. x is a random multiplier in the range [0.9,1.1] � R. The

activation passed via the recurrent connections between the hidden units is one time

phase behind (t - 1) the current activation. This provides for a limited short-term

memory.

3. The output for each hidden unit

�

h(t)

=

1

1 + e

�A

h

(t)

The sigmoidal function approximates a step or threshold function.

4. The activation for each output unit o at time t:

A

o(t)

=

X

h

�

h(t)

W

oh

x

5. The output for each output unit

�

o(t)

=

1

1 + e

�A

o

=c(t)

where c is the temperature or gradient constant for the sigmoidal, de�ning over

which range the function approximates a linear function.
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Figure 6: The Noisy transference sigmoidal function

The activation at the input units is propagated to the hidden units via weighted con-

nections whose parameters are established by the evolved genome -as are all weight and

threshold parameters in the standard encoding scheme (See Fig 5). Each hidden unit also

receives weighted recurrent input from itself and the other hidden units. This weighted

input is summed and fed through a sigmoidal function which at a temperature of 1 ap-

proximates a step function with a threshold established by the permanently active bias

unit or weight. Each hidden unit therefore is registered as 1 or 0 -the return values of the

sigmoidal.

Each output unit j receives weighted input from every hidden unit. This is fed through

a sigmoidal with a temperature adjusted to give a variable motor response. Within the

temperature bound, the sigmoidal approximates a linear function (y = mx + c, where

c is the established threshold and m is the gradient of the sigmoidal between (-temp to

+temp)) and the output value of the function is proportional to the input value (within

those bounds). This should o�er a fairly smooth range of output values between 0 and

1. Since the motor output for each wheel is obtained by subtracting one of the four

output activations from another, this should provide each wheel with a fairly smooth

choice within the range maximum reverse to maximum forward. Noise is added at all

points in the network giving a noisy transference function for the hidden and output units

(see Fig 6).

9.2.2 The Hybrid Encoding

As is shown in Fig 1 the hybrid encoding allows for exibility in the structure of the

network. Whilst the number of input, hidden and output units is the same for the strong

direct encoding, the weight connections (and their weights) are established by the genome.

The forward propagation of the network takes into account these connections; hidden to

hidden, output to hidden or output to output connections are recurrent; the activations

used (the old activations) being one time phase behind the current activations. Noise is

also added at all stages of propagation.

9.3 The Importance of Noise

The `real world' is a noisy environment; information is often corrupted, vision occluded,

hazy, unfocussed etc. Environments are constantly changing, unpredictable. A mathe-

18



matically formulated simulation which failed to take into account this `fuzziness' in the

real world would be of questionable relevance. The ability to cope with noisy input must

be seen as fundamental to the useful functioning of a robot.

Harvey, Husbands, Cli� (see [2,9]) have also used noise to practical e�ect in massively

recurrent neural network controllers where the noise is used to sustain `generator' nodes

which act to provide constant intra-network stimulus.

In my uniform noise at �10 % is added at all stages of the network's propagation. As

has been mentioned it is hoped this will improve the durability of the network-controller.

In the case of paltry input, the recurrent nature of the net means that the robot should

eventually do something; which will with any luck take it to a less ambiguous position in

the room.

9.4 Vision

9.4.1 Why Vision?

Many ways exist with which to sample information about one's environment; for exam-

ple sound, touch, taste etc. Within Robotics a common method with which robots have

sampled from their environment is through the use of touch sensors or distance sensing

equipment -a crude sonar for example. Although useful, a method such as the use of

whiskers or bumpers -which register contact with an object- is limited in its potential;

an object must fall within the range of these tactile sensors if it is to play any part in

the robot's behaviour and this range is necessarily limited in practice. Also, the informa-

tion returned is necessarily crude; discrimination is limited usually to simple proximity

detection. A common problem encountered is that of sensory blindness; where no objects

fall within the range of these sensors and the robot is left with no information about it

environment with which to compute a behaviour (see [9]).

Of all the ways with which to absorb information about one's environment vision

seems the most profound and informative; its medium is after all the fastest in the uni-

verse. Depending on the complexity of the sensing equipment employed, discrimination

can be almost arbitrarily �ne. Unlike tactile detectors there are almost unlimited ways of

improving the resolution of the robot's immediate environment.

The vision employed by the guard-robot is necessarily crude; since the ray-tracing

techniques used are processor-intensive. The sensors are really just intensity indicators,

averaging for an area of the environment.

9.4.2 Simulating Vision

Ray tracing is the technique I used to enable the robot to absorb information from its

environment via the medium of light. It is without doubt the most popular of all the

methods that can be used to simulate light in a computerised environment.

The environment is two dimensional and 2-D vector mathematics was employed to

calculate intersections etc. The technique involves extending a ray

21

from the light sensor

and calculating the object that it �rst intersects with (in this case one of the walls of the

arena or the automaton)

22

.

21

a line de�ned by an initial point (the coordinate of the light sensor involved) and a direction vector

(ten rays are traced from each sensor at di�erent directions and covering a speci�ed arc-angle of, typically,

ninety degrees).

22

Advanced ray tracing would extend the journey of this ray in a recursive procedure by noting its

interaction with the object (dependent on indexes of refractivity and other qualities of the wall) and then

19



light sensor
ROBOT

direction robot is facing

normal to the wall

WALL OF THE ARENA

l 1

θ θ

2π/10

α  θcos (  )

(length of line l )
2

1

the intensity of the ray 

ray traced from sensor to contact  with the nearest wall

Figure 7: The rays are projected from the light sensor and the intensity registered is a a

product of their �rst encounter with an object (the automaton or a wall).

The simpli�ed procedure I employed assumed that the light in the simulation radiated

at an intensity of 1 from the arena walls. Each point on a wall could be assumed to be

a point source of light directed at a normal to the wall. The automaton was assumed

totally dark (any ray intersecting with its circle returning an intensity of 0) for maximum

contrast with walls. The intensity value returned by a ray was calculated by taking into

account only its �rst collision with an object.

In Fig 7 the ray leaves the sensor and intersects with the wall of the arena. The

intensity registered is proportional to the cosine of the incident angle (�) divided by the

square of the distance from sensor to the point of intersection (the inverse square law for

the radiation of light) times a constant c which regulates the distance from a wall at which

a ray perpendicular to that wall will return the maximum intensity of 1. Using vector

maths these values are calculated and an intensity for that ray returned. The intensity

registered by the sensor is the average of the ten rays traced over the arc-angle.

The ray tracing employed was necessarily simplistic (see comments above on the impor-

tance of limiting the processor time necessary) but the general noisiness of the simulation -

noise being injected at all phases of the operation of the neural network - does not require

much more then a crude intensity indicator, and in this respect the procedure works well.

Results obtained (see below) show that it provides enough information for the robot to

successfully negotiate a guard-dog behaviour. Within the limits imposed by the available

processor time it has been made as veracious as possible a simulation of light interaction.

following the multiple divergent rays this interaction might produce; each of these rays would in turn

be followed and their progress recorded until their contribution (in terms of adjusting the eventual light

intensity registered) was deemed insigni�cant, according to a pre-established threshold. The contribution

of an individual ray to the �nal intensity would be ultimately decided by one or many light sources in the

simulated environment.

20



Part III

The Experiment

10 The Interface

A modest X-Windows interface was designed to allow monitoring of the GA's progress.

This interface provided for the initiation and subsequent review of a GA. From the inter-

face it is possible to initiate a GA and review its progress or that of an already evolved

population (speci�ed in the command line); monitoring of the behaviour of the �ttest in

the population, a graphical representation of the GA's performance and the spatialised

�tnesses of the population.

11 The �tness function

The task at hand requires the robot to guard the centre of the arena from intrusion. The

further away from the centre the automaton can be kept, the better the robot is doing its

job. I decided to employ a Gaussian function (G) giving an optimal �tness per unit time

of one if the automaton is con�ned to the corner of the arena (as far from the centre as

possible) and approximately zero (using a suitable radius of Gaussian) if the automaton

is at the centre:

G = e

�r

2

c

where r is the distance of the automaton from the centre and c is a constant chosen to

ensure a �tness return of approximately 0 for a centralised automaton.

Fitness is added at each time cycle giving an optimal �tness, for 400 time units, of

400. However, speed constraints and the general noisiness of the environment mediate

against �tnesses of over 200. An optimum �tness give the relative severity of the �tness

function (its non linearity means that maintaining the automaton at around half the

optimal distance from the centre accrues far less than half the optimal �tness) is around

this 200 mark.

12 Preliminary Details

A number of important parameters in the experiment are not under the control of the GA.

Possibly the most important is the arc angle over which each light receptor collects light.

I chose 90 degrees as a reasonable compromise (in Fig 3 angle � set at 45 degrees) and

though this is probably sub-optimal to the task (for which possibly the most important

element is discriminating the automaton from the background) it remained constant so

that comparisons as to the e�ectiveness of the di�erent encoding schemes could be made.

The starting positions for the robot and automaton are shown in Fig 8. The automaton

starts at the centre with the robot placed such that the automaton falls just outside its

radius of inuence. At time t with the automaton at the centre, the �tness function (see

Section) returns approximately 0, so in the number of time steps allocated (400 was chosen

since this meant the 2000 or so breeding cycles could be completed in a realistic time) the

robot's centre must enter into the circle of radius 100 (its radius of inuence) from the
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Figure 8: The Initial Positions in the Arena

centre of the arena if it is to e�ect the automaton and register a signi�cant �tness for the

trial. This discriminates heavily in favour of robots attracted to the automaton or with a

tendency to centralise themselves in the arena -both good strategies.

13 Calculating the Fitness of an O�spring

An o�spring is chosen by applying the algorithm for a spatialised GA (see section above

on choosing a GA). The �tness of the o�spring is then decided by giving it a number of

trial runs in the arena:

13.1 The Trial Based system

The starting position for each trial is as described above but the initial orientation of

the robot is random (a value in radians in the range [0,2*�] � R) to encourage durable

guard-dog behaviour; a robot which just moved forwards regardless of input might do well

every now and then but could not be said to be guarding anything.

With the aim of a durable guard-behaviour in mind, the robot was run for six trials

and its worst performance selected; it is hoped this would discriminate against occasion-

ally lucky but generally ine�ective robots and encourage those with a generally positive

behaviour. To do well it is necessary for the robot, regardless of its original orientation,

to move the automaton from the centre at each trial. Fitness can be accrued at all points

in the trial and ine�ective periods of behaviour (dalliance in the corner for example) are

thus punished.

14 Normalising the Automaton's response

Making the repulsion of the automaton relative to the distance between its and the guard-

robot's centre encouraged very fast robots to develop. Using epicycles to remain localised
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at the centre of the arena whilst turning very quickly proved a very e�ective strategy and

the �ttest of the early simulations all possessed a variant on this strategy, with marginally

di�erent sizes of epicycle and speeds (see Results below).

In order to encourage more varying behaviours, the decision was taken to normalise

the speed of the automaton; its repulsion being constant regardless of the speed of the

robot.

By mediating against the quick epicyclists the hope was to encourage behaviour which

focussed more on maintaining contact with the automaton rather than the `fast and dirty'

behaviour witnessed up to this point; where subtleties of approach were possibly being

subsumed by messy, but e�ective speed strategies.

15 Results

Most of the results obtained are from simulations employing a normalised repulsive re-

sponse from the automaton (see above for a rationale). Time prevented me from running

as many simulations as I would have liked but, nevertheless, I feel those obtained do

point out some interesting comparisons; between the strong direct encoding method and

what I refer to as the hybrid encoding method. I include representative results from the

simulations, in the form of graphs, showing the performance of the simulations over 2000

breeding cycles, the spatialised populations after 2000 breeding cycles and the performance

of the best robot from these populations at this point. All these are obtained from the

X-windows interface.

There is also an attempt to analyse the behaviour of two robots in more detail, includ-

ing their performance without noise (the presence of uniform noise being an important

element of the experiment); with relevant graphs showing motor impulses over time.

15.1 Results with Repulsion Relative to Distance

As has been mentioned, making the automaton's repulsion inversely proportional to its

distance from the guard-robot produced similar strategies in the GAs run:

The form of movement most often chosen was epicyclical (see Fig 9 and Fig 10). This

seems to be a good compromise motion between maintaining a high velocity (the repulsion

of the automaton being relative to the velocity of the robot) and remaining centralised

(colonising the centre of the arena is almost an optimal strategy for the robot). The robot

was observed to re-orient its epicycles in the direction of the automaton thus slowly forcing

the automaton further from the centre of the arena. At a critical moment, the two would

interact violently and the automaton be repelled towards the centre. At this point the

robot would quickly recolonise the centre and the cycle begin again.

This form of repulsion was discarded quite early on in favour of a normalised repulsion

by the automaton; it was hoped this would encourage more varied strategies from the

robots bred. Whilst the epicyclical strategy proved good in both normalised and non-

normalised simulations, it was possible that, by mitigating against the speed specialists,

more subtle strategies might be encouraged.

15.2 Results with Normalised Repulsion

With normalised repulsion, the automaton is repelled by a constant speed if it falls within

the robot's radius of inuence (100 units) and the robot is advancing towards it. Whereas

before a robot might interact infrequently with the automaton but, due to its speed and
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Figure 9: The epicyclist makes a sharp turn

away from the wall and towards the centre of

the arena

Figure 10: The epicyclist begins facing the cen-

tre of the arena and proceeds to colonise it

proximity, still generate enough repulsion to score a high �tness, now robots maintaining

a closer proximity (within 100 distance units) to the automaton are guaranteed more

repulsion.

Normalising the repulsion of the automaton proved surprisingly e�ective at producing

varying robot behaviours (see Fig 17 and Fig 19). Optimising speed in a �xed position no

longer proves necessarily the best strategy for the robot. While fast robots were observed

(see curly robot in Fig 9 and Fig 10), speed now appears to be employed more as a means

of inuencing large areas of the arena in a short space of time

23

whereas before this useful

strategic employment of speed was subsumed by the general e�cacy of speed as a means

of generating proportionate repulsion.

One of the most successful robots bred, I nicknamed the big dipper (see below for an

analysis). Eschewing the large ellipses employed by curly robot, the big dipper employs

a more direct approach. Its general behaviour is shown in Fig 17. Circling for a few

time cycles it then moves rapidly to colonise the centre of the arena. This colonisation is

more localised than the previous epicyclical strategies, relying on the robot's continuous

presence at the centre, rather than its speed, to score high �tness points (see below for a

fuller analysis of the big dipper).

15.3 Direct Versus Hybrid Encoding

The availability of processor time prevented a large number of trials being run, but for

the purposes of this project three to four trials are assumed representative.

With the parameters �xed such that a comparison could be made

24

simulations were

run and relative �tnesses compared.

23

the larger the epicycles employed by the robot, the more likely that, at some point, the automaton

will evade the robot's inuence and return to the centre, thus costing the robot valuable �tness points.

One way to compensate for this is to increase the speed of the robot.

24

the light sensors averaging over 90 degrees; the repulsion normalised.
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15.3.1 Degrees of Convergence

Of interest in monitoring the performance of the genome populations was the degree of

convergence exhibited; the extent to which the �tnesses in a population are similar to one

another; a guide to this is how the best performance for the population is reected in the

average performance. In the graphs shown, this can be monitored by seeing how far the

best line is from the average. At the end of the 2000 breeding cycles the �tnesses of the

spatialised members were also recorded.

In the strong direct-encoding the degree of convergence was low (see Fig 11). This

was predicted in the section on encoding the GA (see above); since context is radically

disrupted by the crossover operation, the possibility that two parents will produce a rel-

atively un�t o�spring is far higher than that they will produce a �t one; at any time we

would expect to see a fairly high number of weak members in the population. This feature

keeps the average of the population relatively low in comparison with the �ttest of the

group. As can be seen in Fig 12, the best performance achieved by strong direct-encoding,

even at a fairly late stage, the population still possesses some very poor performers.

Figure 11: The Best Performance by Direct

Encoding

Figure 12: The Non-converged Population

In the hybrid encoding, where some structural features are preserved through the

crossover operation, we would expect to �nd a higher degree of convergence than that

of the strong direct-encoding. This was indeed the case as can be seen in Fig 13 and

Fig 15 (the related populations are shown in Fig 14 and Fig 16). A dominant approach

has emerged through the population. The general ruggedness of the populations in this

hybrid scheme was impressive when set against that of the strong direct-encoding. Whilst

the strong direct method might occasionally produce a �t or even very �t result it seems

that, in the long run, (accommodating the hybrid method's larger search space) the �t-

ter population will produce the best results and that the �tter populations result from

preserving structural details in the population; the increased search space that this en-

tails

25

is compensated by improved performance; the best the strong direct-encoding (see

Fig 11)could manage was some way away from the worst of the hybrid encoded results.

25

two numbers are required to establish a weighted link between neural network units, one to establish

which unit the link comes from, the other to set its weight. In the strong direct-encoding only one number

is required since the structural details of the weight-links are pre-established.
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Figure 13: A typical performance by the hy-

brid encoding scheme. This simulation bred the

corkscrew

Figure 14: The Converged Population

15.3.2 Behaviours Evolved

Most of the behaviours evolved in the time available exhibited epicyclical elements (see

above and Fig 9 and Fig 10). All those strong directly-encoded exhibited this feature. With

the hybrid encoding, as well as the big dipper (see below for an analysis), one of the more

interesting behaviours was that of the corkscrew. Its behaviour has three elements: a sharp

reorientation, whilst moving relatively fast, in the direction of the automaton (shown as an

extended corkscrew); occasional large epicycles around the centre of the arena; colonisation

of part of the arena by rotating quickly whilst minimising the translation element of motion

(see Fig 19, Fig 20 and Fig 21).

15.4 Testing Performance Without Noise

Time available meant that not all the �ttest networks evolved could be analysed to as-

certain the part noise plays in their performance. However, two of the more interesting

robots, nicknamed the big dipper and the corkscrew were chosen and their motor impulse

over the time of a trial monitored.

In order to remove noise from the propagation of the neural network, the NOISE macro

was set to 0.0; the noise in the system being multiplied by this factor.

15.4.1 The Performance of the Robots

Part of the theory lying behind the introduction of noise into the system is that it is

useful in allowing the robot to escape from ambiguous positions ; where, for example, the

external stimulus would cause a noiseless system to vacillate (or maybe be trapped in an

oscillatory response). Although the noise is random, the recurrent nature of the network

means that noise can build up and provoke a de�nite response in the robot; by this means

the robot can escape from an ambiguous position or be forced over a notional threshold

into making, with any luck, a positive response.
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The Big Dipper

Comparing the performance of the big dipper with and without noise, a marked dif-

ference can be discerned in its respective performances. The standard action of the big

dipper is to circle at its starting position for a few time units and then make a quick

dart to the centre to adopt a very �t colonisation of this area, circling around inde�nitely,

though occasionally adjusting its position in response to movements in the automaton (see

Fig 17).

The performance of the robot without noise is markedly di�erent (see Fig 18). Its initial

circling around the start position is inde�nitely prolonged and, in the same number of time

units allocated to the noisy trial, it consistently failed to make the very advantageous dart

to the centre; although it did progress very slowly in this direction. The noise appears to

provide the necessary impetus for the robot to move from its ambiguous circling of the

start position to its colonisation of the centre.

Figure 15: A performance by the hybrid encod-

ing scheme. This simulation bred the big dipper

Figure 16: The Converged Population

The Corkscrew

As has been noted (see above), the corkscrew exhibits three types of behaviour when

noise is added to its neural network controller:

1. sharp corkscrew like turns (see Fig 20)

2. occasional localised rotation (colonisation) (see Fig 21)

3. occasional wide circles (see Fig 19)

The corkscrew proved more durable than the big dipper when noise was removed from

the network. However, some changes were apparent; although behaviour (1) was still

exhibited when noise was removed, behaviours (2) and (3) were not; it seems that these

were a product of the noisy system (see below for motor analysis).
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Figure 17: The performance of the big dipper

with noise injected

Figure 18: The performance of the big dip-

per with no noise added to the system

Figure 19: The corkscrew traps the automaton

in the corner

Figure 20: A standard response by the

corkscrew. Notice the colonising behaviour,

shown by the dark circle
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Figure 21: The corkscrew colonises the centre

15.4.2 Analysing Motor Response

The Big Dipper

In Fig 22 the left and right motor response of the big dipper, with noise added, is

shown over the �rst 100 time units of its progression. Its standard motion is characterised

above and can be seen in Fig 17. The left motor response remains low throughout the

100 time units, though varying slightly. However, the right motor, normally with a high

positive impulse, is characterised by occasional periods of low activity where the graph is

seen to dip. Three consecutive trials are superimposed and this dip is a regular feature of

all three. During the time when its right motor output is low, the rotational component

of the robot's motion is minimised and its translational component increased

26

; in other

words it stops spinning and covers a relatively large amount of ground. The sudden spurt

towards the centre that characterises the big dipper'smovement is explained by this sudden

diminution in the right motor output.

Fig 23 shows the motor responses of the big dipper without noise. The right motor

shows a high periodic response which keeps within a fairly small band. The left motor has

a small response but it is periodic. This response �ts the observed rotational behaviour

(see Fig 18). Unlike that in Fig 22 the right motor response does not occasionally dip,

allowing for increased translational motion; the noiseless response is that of a robot with

a consistently high rotational component of motion and very little translation.

The part noise plays in allowing the big dipper to move to the centre seems clear.

Recurrencies within the network build up and occasionally are enough to push the robot

into making a positive move. This positive action is required to move the robot from an

ambiguous position to a more certain one; once it has begun to move towards the centre,

interactions with the automaton become increasingly likely and ambiguity diminishes.

Looking at Fig 23 the right motor output oscillates periodically. It is probable that

the sudden dip in the noisy motor response (see Fig 22) coincides with the lowest motor

impulse in this periodic cycle and that this low point occurs when the robot is facing

26

the translational component of the robot's movement increases as the left and right motor outputs

converge and is at an optimum when they are the same.
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Noisy Motor Response
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Figure 22: Noisy Motor Response

Noiseless Motor Response
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Figure 23: Noiseless Motor Response

towards the centre of the arena; therefore the translation occurs in the direction of the

centre of the arena. The noise enables the robot to colonise the centre with a very e�ective

strategy.

The Corkscrew

The motor response of corkscrew, with and without noise, over 100 time units is shown

in Fig 24. The right motor is jammed full on for the whole time in both noisy and noiseless

simulations. It is the variation in left-motor response that is responsible for the interesting

behaviour noted above.

Looking at the noiseless left motor impulse, it hovers around 17 with occasional large

dips to the -15 mark. This is interpretable, assuming the right motor is �xed at 30,

as a robot which is moving quite fast (its translation component) whilst turning to the

left (its rotation component) and which suddenly takes a sharp left turn (maximising its

rotation component with a sharp increase in motor disparities) before continuing on its

way. Further analysis is needed, but observation over an extended time shows the sharp

turns to be a product of interaction with the automaton

27

tending to force the automaton

away from the centre, explaining the high �tness of this strategy.

As has been mentioned above, the noiseless corkscrew exhibited the corkscrew be-

haviour but not the other two elements witnessed in the noisy version.

Looking at Fig 24, the noisy left-motor response shows occasional `basin' form. Here

the robot suddenly executes a sharp turn (as in the noiseless robot) and remains caught in

this response, rotating quickly on the spot. This conforms with the colonisation behaviour

seen is Fig 21. This colonisation often traps the automaton in a position away from the

centre (see Fig 19) and is a way of occasionally toting up considerable �tness points,

especially if the automaton is maintained in a corner. The noise in the system must be

extending the life of a sharp turn into a colonisation tactic by the built up recurrencies.

The occasional circular sequences observed (see Fig 21) in the robot are concomitant

with repression of the sharp left turns (seen as the dip in left-motor response from 17 to

27

presumably a sudden dip in the light intensity registered by one or more light sensors.
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Motor Response With Noise
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Motor Response Without Noise
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Figure 24: The Motor Response of the robot corkscrew with and without noise; three

consecutive performances over 100 time units are superimposed

-15). Looking at the third (noisy) left-motor response in Fig 24, this appears to be what is

happening. The dips observed are much shallower then normal (down to 7 - 10 as opposed

to -15) and fail to provide the impetus for a sharp turn. The extended left turn (with

occasional adjustments) leads to a circular behaviour.

The complexity of the corkscrew's behaviour is a product of noise in the neural network,

the recurrencies building up to provide impulses crucial to both the colonisation and

circular behaviour. In this way noise is seen as a potentially useful tool for subverting

standard behaviour types into more successful but more complex responses.

16 Areas for Improvement

As has been mentioned , part of the motivation for a project of this nature lies in the belief

that, in certain areas of exploration (particularly the �eld of Alife) human intuition is a

poor guide. For my own part, I do not feel quali�ed to decide the most e�cient number of

light sensors to be employed in a project such as this or where they should be positioned

on a robot. One way that insight might be gained is in looking to the natural world; a

heuristic might be derived, along the lines of; \predators have their eyes to the front for

optimal focus whilst prey tend to position their eyes on the sides, thus gaining maximum

coverage". But though this insight may be useful in the development of certain robots, for

a task-speci�c robot it is too probably crude a guide for developing optimal performance;

whilst observations from nature may allow one to establish certain boundary-limits to

robotic operational parameters, within these limits it is probably preferable to allow the

GA some search capacity.

However, caution should be advocated here. Every new parameter the genome speci�es

increases the search space and, by implication, increases the time required to establish �t

robots. All increases to the genome length should be thought through thoroughly.
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Nevertheless, a number of parameters in the simulation were under my control that

I feel it would have been better to submit to environmental pressures. For example, in

the hybrid encoding system the number of connections each unit could receive was pre-

established. It would doubtless be far more e�cient, and in the long run e�ective, to

allow the GA to establish these parameters

28

. I feel now that I allowed too many weight

connections; the larger weight space this involves required more breeding cycles than time

allowed for to do it justice.

Though the results achieved with the hybrid method were superior to those managed

by the strong direct-encoding (see Results above), areas such as the number of weight

connections allowed to each unit, the possibility of allowing a unit to send impulses to

another rather than just receive them (though this would require an extra indicator on

the genome), the number of cycles the neural network propagates during each time unit

etc., suggest improvements for the future.

17 Conclusion

The genetic algorithm employed proved successful in breeding network controllers that

simulated a guard-dog behaviour in the robot. The �tness of the population increased

progressively for around 1500 breeding cycles and then was then seen to fall o� as further

progress became increasingly unlikely.

Though the environment simulated was necessarily simplistic, this does not invalidate

the results achieved. Within the large search space de�ned, the GA was able to breed

neural network controllers that enabled the robot to perform its speci�ed guard-behaviour

with some e�cacy. The task is of suitable complexity that I feel a human trying to design

an intermediary, between the information from the robot's light sensors and its subsequent

response, that performed the task as well would be faced with a considerable challenge;

certainly one greater than designing a spatialised GA to breed an attempted solution.

While this project has shown that the approach of breeding network controllers has

some e�cacy, the success of the hybrid encoding scheme (see Results) over the conventional

strong direct-encoding approach highlights the ever-present possibilities for innovation.

The more parameters left under the e�ective pressures of natural selection, the better the

results seem to be. This seems in validation of the belief that, in some areas, natural

selection is a more e�ective tool than human intuition. An obvious next step would be

to place as many parameters as possible under the control of the GA, towards the aim

of limiting, as far as possible, any rigid structural assumptions imposed from above

29

;

my intuition is that the freer the GA to explore the more impressive will be its eventual

solution.

The time available meant that a control experiment, using a more conventional GA

(in this context, non-spatialised) could not be run, and, as such, no �gures are available

for comparing relative performance. It is only speculation, but the fact that diverse

approaches to the problem (see Results) did surface leads me to believe that the spatialised

GA ful�lled at least this aspect of its remit.

28

in [4] an example is given of a variable length genome; the genome being extendible allows it to

increase its own search space. This makes regulating genetic operations a more complex operation, but

the advantages in terms of exibility seem to outweigh this aspect.

29

However, as mentioned, care must be taken not to expand the search space too much. The incremental

approach favoured by Harvey, Husbands and Cli� (see [2],[4] and [9]) where the genome is of variable length

and able to increase its own search space points towards a possible solution to the problem of initially

overloading the genome.
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