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Abstract

A connectionist system that is capable of learning about the spatial structure of a simple

world is used for the purposes of synthetic epistemology: the creation and analysis of arti�cial

systems in order to clarify philosophical issues that arise in the explanation of how agents,

both natural and arti�cial, represent the world. In this case, the issues to be clari�ed focus on

the content of representational states that exist prior to a fully objective understanding of a

spatial domain. In particular, the criticisms of (Chrisley, 1993) that were raised in (Holland,

1994) are addressed: how can we determine that a system's spatial representations are more

objective than before? And under what conditions (tasks, training regimes, environments) do

such increases in objectivity occur? After analysing the results of experiments that attempt

to shed light on these questions, the study concludes by comparing and contrasting this work

with related research.

1 Synthetic epistemology: Philosophy and AI/ALife

Sometimes in order to clarify the theories and concepts one would like to use to explain a natural

system, it can be of great assistance to try them out on a simple, arti�cial system, which allows

greater control and clearer analysis. Just as one mightmore readily come to a clear understanding

of the principles of aerodynamics by studying a simple, arti�cial glider than by studying the

particularities of the feathers and muscles of sparrows, so one might also see more readily the

general structure of a proper psychology of real systems by �rst attempting to apply it to a

simple, arti�cial agent.

Thus, to clarify some new ideas being proposed for the explanation of natural intentional systems,

it seems a promising idea to turn to synthetic epistemology: the creation and analysis of arti�cial

systems in order to clarify philosophical issues that arise in the explanation of how agents, both

natural and arti�cial, represent the world.

Synthesis can thus be justi�ed as an approach to understanding epistemology in the same way

that it can be justi�ed as an approach to understanding intelligence (AI), or biology (ALife):

Arti�cial systems which exhibit lifelike behaviors are worthy of investigation on

their own rights, whether or not we think that the processes they mimic have played

a role in the development or mechanics of life as we know it to be. Such systems : : :

expand our understanding of life as it could be. By allowing us to view the life that

has evolved here on earth in the larger context of possible life, we may begin to derive
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a truly general theoretical biology capable of making universal statements about life

wherever it may be found and whatever it may be made of. (Langton, 1989, p.xvi,

original emphasis).

The speci�c epistemological issue which this research addresses is understanding the nature of,

and mechanisms underlying, the transition from heavily perspective-dependent to more objective

modes of representation. Some ways of representing the world are objective or near-objective,

some are not. A way of representing some aspect of the world is objective if, e.g., it presents

that aspect of the world as something that could exist while unperceived. Pre-objectivity involves

representing the world, but not as the world, not as something that is or can be independent of

the subject. Another important aspect of ways of representing is that they can be more or less

objective.

There are several reasons (Chrisley, 1993; Cussins, 1990) for thinking that a connectionist ar-

chitecture is much more suited than traditional symbolic architectures to the investigation of

the development from less objective to more objective cognition. Furthermore, the acquisition

of more and more sophisticated navigational abilities is plausibly seen as a paradigmatic case

of the move from perspective-dependent to more perspective-independent ways of representing

(Cussins, 1990). Thus, the Connectionist Navigational Map (CNM; (Chrisley, 1990)) was devel-

oped for these purposes.

2 The Connectionist navigational map

This section reviews the CNM architecture, environment, and learning regime; those already

familiar with these details may skip to section 3.

2.1 CNM architecture

The Connectionist Navigational Map is a computational architecture being developed with the aim

of providing an autonomous robot with the ability to learn and use spatial maps for navigation.

One component of this architecture, the predictive map, allows the robot to predict what sensations

it would have if it were to move in a particular ego-centrically speci�ed manner (e.g \rotate �=4

radians to the right", \move forward 10 feet"). Of course, this requires the robot to have some

kind of representation of its current location, since, in general, the mapping from actions to

sensations is dependent upon where one is in the world. That is, the mapping from sensations

and actions to sensations is one-to-many, since more than one place can have any given sensory

signature. Thus, the spatial environment, and therefore a model of it, can be seen instead as a

function from current location and current action to predicted sensations. The input consists of

a state representation, or location code, corresponding to the current location a of the robot, and

an action representation representing the move m being made. The output of the network is a

vector that is supposed to be equal to the sensation vector the robot would receive from its senses

if it were actually at the place that is reached by making the move m at location a.

Of course, there is more structure to space than a simple, direct mapping from locations and

actions to sensations indicates (see �gure 1).

Speci�cally, location and action determine a new location, which itself determines the sensations

of the robot. Thus, it might be easier for a robot to learn (or a theorist to analyse) a predictive

map if its structure reects this regularity of the spatial environment. The predictive map of the

CNM is a composition of two mappings: a topological mapping T (from locations and actions to
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Figure 1: The PDP architecture of the predictive map (locations�actions 7! sensations) formed

by composing a topological mapping T (locations � actions 7! locations) with a descriptive

mapping D (locations 7! sensations). Arrows indicate directed, full inter-connection between

layers of units.

states) and a descriptive mapping D (from locations to sensations). In actual use, the location

output of the T mapping, after a given action, is used as the location input to the T mapping for

the next action.

Thus, if a constantly north-facing robot considers moving forward and then moving right, it can use

the map to predict what sensations it would have after those moves by calculatingD(T (T (a;move-

north), move-east)), where a is a location representation corresponding to the robot's initial

location before the actions, and move-north and move-east are action representations with the

intuitive interpretation.

Given the iterative nature of the T mapping, the predictive map must be a recurrent network; in

the experiments discussed here, it is implemented as a simple recurrent network (Elman, 1990).

2.2 The experimental setup

The experimental situation used here (roughly the same as the one used in (Chrisley, 1993) and

(Holland, 1994)) is a deliberately impoverished one: a developing (learning) agent moving through

a simulated \grid world"; the part of the world simulated has only 81 cells or locations (9 by 9).

Each location has a 4-bit vector associated with it, which can be understood to be the sensations

the agent has when at that location (see �gure 4, in section 7 below). As in its normal use, the

CNM is to provide a means for this agent to improve its navigation of its space (and thus increase

the objectivity of its ways of representing that space) through sensory prediction.

The agent has eight actions available at any location, those of moving into each of the adjacent

locations (orientation is not modeled: the agent can be thought of as always facing north).

It is assumed that the developing agent has somehow managed to conduct a journey that starts

and ends at some privileged location, called home. The developing agent stores the sequence of

actions taken and the sensations that result. Note that sometimes the same action yields di�erent

sensations, and that di�erent actions sometimes result in the same sensations.
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2.3 Learning regime

When the agent returns home, it iteratively learns the route, not by actually moving, but by

reviewing the remembered route in the following manner:

� First, generate a training set:

1. Assume some arbitrary representation or code for the initial location (\home"). Store

this code, and the code for the �rst action taken, as an input pattern; store the sensa-

tions that were observed after taking that action as the target output for that pattern.

2. Propagate the current input pattern into the T mapping.

3. Use the output of the T mapping, along with the next action on the remembered route,

as the next current input pattern. Store this pattern into the training list as an input

pattern, as well as storing the next remembered sensation as the target output pattern

for that input.

4. Go to 2 until �nished with the remembered route.

� Then, learn with the current training set: adjust the weights of the T and D mappings

according to the gradient of the error (di�erence between target and actual outputs); i.e.,

use the backpropagation learning algorithm (Rumelhart et al., 1986).

� After some period of learning with one training set (in the simulations described, the time

was 6 epochs) , a new training set is created, in the same manner as before (steps 1-4), and

the agent trains with the new set.

In the simulation used for the experiments which follow, this 6 epoch cycle was repeated until the

network had learned the route. That is, starting with the code for home and the initial action

taken, the T mapping would produce a new code that not only yielded the correct predicted

sensations via the D mapping, but which also, in conjunction with the representation for the next

action taken, produced a code via the T mapping which could itself yield both the right sensation

vector and location code, and so on, iteratively.

The T mapping was realized by a network which comprised 9 inputs (5 for the location code, and

4 for the action code; action codes were the 4 unit vectors for north, south, east and west, or

the sum of the relevant unit vectors for the other 4 directions: NE, SE, SW and NW), 6 hidden

units, and 5 outputs (a location code). The D mapping was implemented by a network with 5

inputs for a location code (in practice, this was the same as the output layer of the T mapping),

and 4 outputs for a sensation vector at that location. The network was simply recurrent; back-

propagation through time was not necessary.

3 Simplicity as a virtue: arguments for and against the

CNM approach

It might be thought that this grid \world" is too impoverished to be of much interest. In particular,

it might be thought that there are too few states, and that the \sensory properties" of each place

are too coarse-grained, for this work to be of any relevance. There are several reasons why we

disagree.

First, this work can be seen as an extension of the research in learning �nite state machines or

formal grammars, e.g. (Cleeremans, 1992) and (Dienes, 1994). The �nite state machines in that
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work typically involve fewer states with only one or two transitions possible from or to a state,

and have no notion of the sensory properties of a state that may be shared with another state,

and be sensed by the agent. We believe that by adding the complexity found in the CNM world,

one begins to justify talk of learning spatial representations, instead of mere arbitrary grammars.

But even if that assumption is illicit, the CNM paradigm should still be valuable, at least within

the �nite state machine learning paradigm.

Furthermore, coarse-grained sensations actually support the intended spatial interpretation of the

CNM's activity. Since there are so few (i.e., 16) types of sensory properties a location might have,

the CNM cannot rely, in achieving its predictive aims, on merely recording the super�cial sensory

contingencies, but rather is forced to learn the more abstract spatial structure of its environment.

To exaggerate this e�ect, we did not even let the CNM use the current sensations as an input to

its predictive map, but rather forced it to use only its own representations.

It could still be objected that this, too, is unlike human cognition. It could be claimed that the way

that humans and other animals achieve most of their navigation is by learning associations between

actual detailed sensations, and not by developing some more abstract topological representation.

That is, organisms predict what comes next by looking and seeing where they are.

1

It would be a mistake to think that because we are interested in understanding how cognizers are

able to make transitions from less objective to more objective ways of representing the world, that

we somehow think that the majority of cognition involves representations that are at the extreme

objective end of this scale. In fact, we agree that there are many kinds of cognitive interactions

with the world that require relatively unsystematic, pre-objective ways of representing, if they

involve any representation at all. Furthermore, it may be impossible for any embodied, �nite

system to ever achieve total objectivity or total systematicity. Nevertheless, we do think that

there are interactions for which the ability to increase systematicity is a cognitive virtue, and

spatial navigation is one of these.

In order to pump your intuitions concerning these matters, consider the kinds of mistakes we

(and other animals) do and do not make in navigating. Suppose that I leave the lecture theatre

between talks at a conference in Sk�ovde. While I am out of the room for a few minutes, the rest

of you redecorate the lecture theatre so that it very closely resembles another one, with which I

am familiar, in Brighton. You then hide (so as to give no clues about the true location of the

theatre), and watch what I will do from behind doors, desks, etc. You might expect to have a

good laugh upon seeing my puzzled expression, (the lengths to which some people will go for a

gag!), but you would not expect me to actually think I have somehow travelled hundreds of miles

back to Brighton! Behind my puzzled expression is the thought \Why does this place look so

much like the lecture theatre in Brighton all of a sudden?", not the thought \Whoa! How did I

cross the North Sea all of a sudden?!"

The objector might not �nd this story relevant, since what is being denied is that two di�erent

locations ever could, other than in the laboratory, ever yield identical sensations. On this view, the

reason why I am not tricked into thinking I am in Brighton is due to my (perhaps sub-conscious)

ability to make very �ne sensory discriminations (e.g., I can see that the walls in Sk�ovde have

been recently painted to be that beige colour, whereas the paint is much older in the Brighton

room).

But surely this is unlikely. It would imply that we would have di�culty recognizing the lecture

theatre we are in now as the one that we were in before the break given that, e.g., the overhead

projector has been moved slightly. We would be like the mnemonist S., whose eidetic memory

made it di�cult for him to recognize a face as the same as one seen earlier if the face's expression

1

Thanks to David Rumelhart for pointing out this objection.
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was di�erent (Luria, 1968, reported in Glass & Holyoak, 1986, p. 330). But we are not typically

like that. Usually, one can recognize a place as being the same, in virtue of its relational properties,

even though its intrinsic (sensory) properties have changed considerably since one's last visit. This

cannot be explained by a model that does not allow for some topological, spatial representation,

in addition to sensory association.

One might wonder why we are demanding that the CNM learn its spatial representations. Since

the structure of space does not change within a creature's lifetime, surely the system of spatial

representation could be innate. This may be, but there are two reasons that remain for using the

CNM. First, in order to naturalize our systems of mental representation, not only do we have to

have a (synchronic) understanding how they can be realized in our current physical structure; we

must also have a (diachronic) understanding of how such abilities could be the product of a natural

selection process (Cussins, 1992). So if there is no \development of spatial objectivity" story to

be told for any individual, then there must be some such story to be told for cognizing species.

Second (but more concessively), there might be good design reasons for having an adaptive spatial

representation system, even if its parameters are initialized at birth to some near-objective value

(Chrisley, 1991).

Also, it should be re-emphasized (cf section 1) that the CNM is for synthetic epistemology, and is

obviously not meant to be a detailed model of the actual mechanisms of spatial learning in any

natural system. Rather, it is meant to explore and illustrate some general principles and phe-

nomena that are relevant under certain conditions (e.g., those in which local sensory information

is not su�cient to guide navigation).

Nevertheless, we do plan to improve the CNM's \world" in several ways, including making the

space continuous; using unit-free, routine-based actions; making the environment dynamic; and

eventually using a real, non-simulated robot in a real-world environment. It is hoped that after

some more general observations like the ones expressed in this paper, these added degrees of

realism will allow us to address more speci�c issues, in addition to further testing conclusions

already drawn on the basis of these simpler \grid world" experiments.

4 Objectivity as a by-product of maximizing predictive suc-

cess

Because of the feedback inherent in simple recurrent nets, the CNM's representations (location

codes) change over time: at any time, a code may be used to represent a location or set of locations

di�erent from the location(s) that it is used to represent at a di�erent time; and at any time, a

given place may be represented by code(s) that are di�erent from the ones used to represent that

place at other times. The idea behind this research is that in some cases this dynamic process

may be seen as a developmental one, in which the CNM's codes become more and more objective,

conceptual and perspective-independent.

In general, the CNM uses a di�erent location code after each move, even when moving to a place

that it has been before. That is the CNM typically uses di�erent location codes on di�erent occa-

sions for the same objective location. Thus, typically, CNM representations are non-systematic.

For our purposes, systematic

2

representation can be de�ned as follows:

2

The terms \systematic" and \systematicity" have already been used in the connectionist literature; we are

using it here as a technical term only. That is, we think it is related to the other notions of systematicity that

have been used, but we are not yet clear on what exactly that connection is. However, this connection need not

be made clear in order for the notion to do its work here as a measure of the degree of objectivity which a set of

representations exhibit.
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De�nition: A system represents a location l systematically if there is a representation

a such that:

1. whenever the system uses a, or a representation very functionally similar to a, it

does so to represent l and not some other location l

0

; and

2. whenever the system needs to represent l, it is capable of using a, or a represen-

tation very functionally similar to a, to do so.

For the case at hand, these requirements boil down to:

The CNM represents a location l systematically if there is a location code a such that,

normally, a is active on the \current location" units if and only if the agent is currently

at l.

Often, when speaking about the CNM's representations, we use expressions like \the same repre-

sentation" or \di�erent representations", when, strictly speaking, there is no such relevant issue of

representational identity, but rather only representation similarity, in particular functional simi-

larity. Thus, the above requirement is that normally all the codes a that the CNM has active on

the \current location" units when at A are functionally very similar, and the CNM never has a

code b, that is functionally very similar to one of the a, active on the \current location" units when

the CNM is at a place other than A. Thus, there are at least three ways in which systematicity

is a matter of degree:

1. the greater the number of di�erent ways of getting to the place A that yield a code func-

tionally equivalent to a, the greater the systematicity;

2. the greater the number of ways of getting to places other than A that yield a code function-

ally equivalent to a, the less the systematicity; and

3. the degree of systematicity will vary with the degree of functional equivalence in the above

two conditions.

Therefore, the CNM, like a typical connectionist system, uses analog representations, rather than

digital representations which can be exactly functionally equivalent. A consequence is that it seems

unlikely that the CNM could ever achieve 100% systematicity, since it is a non-linear system, and

even slight di�erences in location codes will, through iteration in the T mapping, most likely result

in a large divergence at some point. Even if this is the case, it is not necessarily an argument

against the CNM as a cognitive model, since it is not clear that, without external symbol systems,

humans can be completely systematic either.

However, in (Chrisley, 1993), it was suggested that if the CNM could develop a more systematic

representation for a place (i.e., use the same location code, across di�erent contexts, for the

same location, and only that location) then the objectivity of its way of representing would be

increased dramatically. That ability was observed to be present; in many cases the CNM did

develop functionally equivalent codes for the same place as encountered at two di�erent stages

along a route (i.e., at a place where the route crossed itself). For a full explanation of the

connection between systematicity, generalization, and objectivity, the reader is referred to section

4.4 of that paper; however, a brief explanation can be given here. Speci�cally, the systematicity

that was observed yielded a kind of generalization. Since the codes were functionally equivalent,

the predictions/associations the CNM learned for either one of the two codes were \inherited" by

the other code. Thus, the CNM would successfully predict what would happen if it were to take
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a path it had never taken before. That is, form of spatial generalization occurred; the CNM was

shown to be more than just a means of memorising a list of action/sensation sequences.

Such cases of the emergence of systematic codes suggested that the CNM was able to make

transitions from less objective to more objective ways of interacting with the world, which, along

with the counterpart transitions from more objective to less objective ways of representing, are

the operations we take to be at the heart of cognition. However, we have since realized that those

results need to be quali�ed in two important ways.

4.1 Sameness of location vs. mere sameness of sensation

First, recent work (Holland, 1994) has pointed out that one must take care in inferring an increase

in objectivity on the basis of the kind of evidence presented in (Chrisley, 1993). Holland reports

that the phenomenon of convergence of codes that correspond to the same place can be reproduced

very reliably. But he makes an important observation: the convergence also occurs for location

codes that do not correspond to the same place, but merely to places that have, e.g., the same

sensory properties.

This is a consequence of the CNM's non-symbolic form of representation. In (Chrisley, 1993) it

was pointed out that a key di�erence between symbolic and non-symbolic architectures is that in

the former, associating a representation a with another representation d does not constrain the

class of representations that the system can associate with a di�erent representation, b. However,

in non-symbolic architectures like the CNM, mapping a set of sensations to a via the D mapping

does constrain what D can map to b. For example, if a and b are very similar (but still, say,

functionally distinct), it is very di�cult for D to map di�erent sensation vectors to a and b.

Looked at the other way, if it is a constraint on the codes that the CNM develops that D must

map a and b to the same outputs, then the CNM will tend to develop similar codes for a and b.

Thus, it appears that the CNM's observed tendency to develop common codes for the same place

encountered in di�erent contexts can, at least in some cases, be explained as just a fortuitous by-

product of a more pervasive, and less impressive tendency: to develop common codes for places

that have the same descriptive mapping. If so, then this calls into question the appropriateness

of the CNM for studying the development of objective representations.

4.2 The functional equivalence of hidden representations

Also, the earlier study places too much emphasis on the actual Euclidean similarity/identity of

two location codes. Objectivity does not require that the location codes used to represent the

same place in di�erent contexts be themselves the same, or even similar; rather, they need only be

functionally equivalent

3

. Conversely, the fact that two location codes are, e.g., clustered together

in a cluster analysis, does not guarantee that the codes will play the same, or even similar, causal

roles in the network. Two codes a and b are said to have a (second-order

4

) functional equivalence

of F

d

(a; b) = �

F

2

(a;b)+F

1

(a;b)

2

, where:

3

The notion of functional equivalence here focuses on the similarity of the e�ects of two codes. If, in addition,

one paid attention to the similarity of the causes of the two codes, then one might not be able to distinguish

identity and functional equivalence. We think (for reasons which we cannot elaborate on here) that it is best not to

include causal origins in a characterization of the functionality of a representation, so we are therefore compelled

to acknowledge the di�erence between brute vector similarity and functional equivalence.

4

Obviously, this de�nition of functional equivalence can be generalized via a recursive de�nition to nth order

functional equivalence (i.e., the negative of the distance between predictions made for locations up to n moves

away) for arbitrary n. For our purposes it is su�cient to use only these �rst few terms for such a generalization,

since they dominate the results.
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(x; y) =

P

A

m=1

jjD(T (x;action

m
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))jj

A

;

� F

1

(x; y) = jjD(x)�D(y)jj;

� A is the number (in our case 8) of actions available, and action

m

is the mth element of the

list (N, NE, E, SE, S, SW, W, NW).

This value can be thought of as the negative average distance between corresponding sensory

predictions (corresponding to the current and eight surrounding locations) that a and b give rise

to.

There are two other ways of measuring functional equivalence that we considered: the percent-

age F

p

of neighbouring output pattern predictions that are the same, and the percentage F

b

of

neighbouring output bits that are the same. That is:

� F

p

(x; y) = 100

P

A

m=1

P [D(T [x;action

m

]);D(T [y;action

m

])]

A

; and

� F

b

(x; y) = 100

P

A

m=1

B[D(T [x;action

m

]);D(T [y;action

m

)]

A

;

where:

� P (d

xm

; d

ym

) is 1 if the (thresholded) sensory predictions d

xm

and d

ym

are equal, and 0

otherwise; and

� B(d

xm

; d

ym

) is the hamming distance between sensory predictions d

xm

and d

ym

.

The former measure is more strict that the latter; two codes a and b may be such that F

b

(a; b) =

75%, yet F

p

(a; b) = 0% (i.e., they may always disagree on, say, bit 1 of the 4 possible output

pattern bits, but agree on all others). Its advantage is that it better avoids apparent functional

equivalences that are actually spurious in that they depend on some accidental similarities (e.g.,

those that are a product of the contingent distribution of sensory properties in the environment)

between the output that a is producing and the output that b is producing. But the latter may

be a better measure for some purposes, since agreeing somewhat, if not perfectly, on neighboring

predictions, indicates some degree of functional equivalence that may be of some explanatory

use (especially if the non-sensory properties of a place { presence of food, danger, etc. { are

reliably correlated with its sensory properties). In the 75%=0% case, above, it seems that b and a

have some degree of functional equivalence, even if it is systematically distorted. Thus, all three

measures were used in reporting the results of the experiments below.

It may sometimes be useful to acknowledge the fact that two location codes are functionally

similar with respect to the actions that the network actually made at those locations, while being

functionally divergent with respect to the the remaining actions, which are, in e�ect, \don't care"

values as far as the training regime is concerned. This notion of relevant functional divergence

is denoted by F

�

, and is calculated by only using actions that have actually been taken by the

agent in the involved location(s) when summing and normalizing in the �rst equation above. It

is desirable, of course, that F (x; y) be low for any co-referring x and y, but such a situation is

not strictly required for the correspondning F

�

(x; y) to be low, which would in itself constitute

a degree of systematicity. In the experiments reported here, we ignored this weaker notion of

functional equivalence, since one of our main interests is in the generalization from what has been

explicitly experienced to what has not.

Note that functional equivalence of any of these three kinds is independent of correctness: two

codes may give rise to the same predictions (and thus have F

d

= 0 and F

p

= 100% = F

b

), yet both
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may be completely wrong in those predictions. The connection with correctness will be captured

in two ways in the experiments that follow: the criterion that the net learn until it correctly

predicts all sensations on its route; and the generalization that will naturally result in the cases

of high systematicity.

In the experiments that follow, we give an example of the cases that justify the introduction of

these functional equivalence measures: cases in which Euclidean distance/clustering would suggest

a functional equivalence that is not present, and cases in which Euclidean distance/clustering

would suggest functional divergence that is not present. This aspect of the research, then, can have

a relatively broad application, even if one is not interested in synthetic epistemology, connectionist

navigation or the development of objectivity.

5 A hypothesis concerning the requirements for the devel-

opment of systematic representation in the CNM

In order to address these issues concerning the requirements for the development of objectivity,

a hypothesis was formed concerning the conditions under which this style of representation will

arise in the CNM, and experiments have been conducted to test this hypothesis.

Given the de�nition of systematic representation in section 4, the central hypothesis of this paper

can be stated thus:

Hypothesis: The CNM will only develop a systematic representation of a location l if

its encounters with l, and with locations that resemble l, are so structured as to make

such a form of representation a useful means of minimizing the error of its predictions.

The plausibility of the hypothesis is a consequence of the CNM's non-symbolic form of represen-

tation, as discussed in section 4.1. The holistic, as opposed to atomistic, nature of representation

in the CNM implies that systematic representation will not be the default. Since what primarily

determines whether the two location codes used at two di�erent points in a route are similar is the

similarity of the sensory predictions that such codes are required to produce (and not the identity

of the two locations in question), the CNM will tend to violate the �rst of the two requirements

for systematicity. Thus, it is only likely to satisfy the �rst requirement if its routes through its

environment which generate its training regime are structured in particular ways.

The hypothesis itself doesn't have much force without some speci�cs concerning what kinds of

structure the CNM's encounters must have in order to make the hypothesis true. If one prefers,

one can rephrase the hypothesis into a question: what kind of spatial behaviours, if any, compel

the CNM to form systematic spatial representations?

We attempted to answer this question by considering it for each of the two components of the

working de�nition of systematic representation:

1. under what conditions does the CNM avoid allocating functionally equivalent codes to dis-

tinct locations (even though the locations, e.g., have the same description)?; and

2. under what conditions does the CNM succeed in using functionally equivalent codes for the

same location in di�erent contexts?

In trying to answer these questions, one major obstacle to systematic representation, already

alluded to, must be understood. If the CNM needs, in two di�erent contexts A and B, to produce

10



the same (or very similar) outputs on the D mapping, then there will be a tendency for it

evolve weights such that the codes that are active in those two contexts, a and b, are functionally

equivalent, even if the CNM is at di�erent (albeit sensorily similar) locations in those two contexts.

Thus there is a tendency to violate the �rst of the two requirements for systematic representation.

In what situations, if any, can this tendency be overcome, such that systematic representations

are developed?

But this is only one example of how the predictive demands placed on the CNM constrain the

kinds of representations used. Another example is that making the same move at two di�erent

parts of the route will tend to produce similar codes for the location after those moves. The

representational demands of a recurrent network are extremely holistic, with the \optimal" rep-

resentation for the current situation being determined both by what it will give rise to in the

arbitrarily distant future, and by what what gave rise to it in the arbitrarily distant past, in

addition to the constraints of the present. Not only does the code that is used for the current

location have to be mapped to the current sensations via the D mapping, but it needs to give rise

to a code that can lead to the right predictions for the next step in the route, and it needs to be

such that it can be the product of inputting the last code and action into the T mapping.

6 Principles & Predictions

To make substantive the hypothesis of the previous section, we used it to make some predictions

concerning the conditions under which systematicity would and would not develop.

First, we noted four principles that we take to characterize the holistic interdependence of CNM

representations (i.e., the aspects of the CNM that make it non-symbolic, as discussed in sections

4.1 and 5):

1. same inputs tend to produce same outputs

2. di�erent inputs tend to produce di�erent outputs

3. same outputs tend to require same inputs

4. di�erent outputs tend to require di�erent inputs

These are, of course, only rough guides and tendencies, which are defeasible. But in the context

of the CNM, we appealed to the above principles to suggest some more concrete tendencies

concerning the functional equivalence of location codes that the CNM develops.

We focussed on the case of codes that the CNM develops to represent sensorily equivalent places.

This is because we are interested in two kinds of case: the divergence between codes that represent

sensorily equivalent but spatially distinct places, and the equivalence between codes that represent

the same place (which, obviously, must also be sensorily equivalent).

We used the principles to derive the following postulates

5

, expectations concerning how the

CNM's codes would develop (numbers in brackets indicate which of the principles were used to

derive each postulate):

1. D(a) = D(b)! a = b [3];

2. ma

�1

= mb

�1

! a = b[1];ma

�1

6= mb

�1

! a 6= b [2];

5

At least one or two of these postulates seem to have an analogue in (Cleeremans, 1992, pp 64-65) (e.g., postulate

5).
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3. D(a

�1

) = D(b

�1

)! a = b[3];D(a

�1

) 6= D(b

�1

)! a 6= b [4];

4. ma = mb! a 6= b[4];ma 6= mb! a = b [3]

5. D(a

+1

) = D(b

+1

)! a = b[3];D(a

+1

) 6= D(b

+1

)! a 6= b [4];

where:

� \=" means \similar" for movement and sensation vectors, but means \functionally equiva-

lent" for location codes; and

� \!" means \tends to make true".

Postulate 4 requires some explanation, since it does not hold unconditionally. In general, the

similarity or di�erence of moves made from a and b has no implication in itself for the functional

equivalence of the codes. But it does have implications when interacting with other contexts. In

particular, if D(a

+1

) = D(b

+1

), then ma 6= mb ! a 6= b. This is because di�erences in a and b

will be required in order to cancel out the di�erences in ma and mb in order to have a constant

result.

Conversely, if D(a

+1

) 6= D(b

+1

), then ma = mb ! a 6= b, by principle 4. To see why, �rst note

that principle 4 implies that D(a

+1

) 6= D(b

+1

) ! a

+1

6= b

+1

. Next, note that there will be an

even stronger push (via principle 4 again) for a 6= b than there would be based on prediction 5

alone, since the similarity in the movesma and mb must be compensated for by greater di�erences

in a and b in order to achieve a comparable di�erence in a

+1

and b

+1

. There will be no special

tendency produced by ma 6= mb.

In stating these tendencies, our use of \=" and \6=" suggests that we are once again assuming

either completely equivalent or maximally di�erent description vectors. But in fact, the relevant

description and movement vectors may be more or less similar or di�erent. These di�erences

should a�ect the functional equivalence of the relevant location codes accordingly, but given a

random distribution on sensation vectors and moves, we believe these additional modifying factors

can be ignored in our analysis.

In light of these postulates, we de�ned 7 (non-exhaustive) types of route, or scenarios, that we

thought might generate a large variation in the degree of systematicity of the representations the

the CNM develops for two locations that are sensorily equivalent. The situations are listed in

�gure 2.

Using the �ve principles, we predicted the following rough ordering of these situations with respect

to the degree of systematicity that they impose on the CNM's representations for the two locations,

from most systematic to least:

SIDO These scenarios should yield the best systematicity, since because functional divergence

between the codes for di�erent places is fostered by exploring the di�erent sensory surround

of the two locations, yet each of the two locations is entered via a constant approach,

providing a basis for the development of very similar codes for the same place. Within this

group SIDOD should be more systematic than SIDOS, since the di�ering ways in to the two

locations will add the the divergence between their location codes.

DIDO This should be next best with respect to systematicity, because although the lack of a

common approach to the locations will yield a divergence between the codes used for the

same place, there will be a greater divergence between the codes used for the two di�erent

places, due to the exploration of their di�erent sensory surround.
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DIDO : Di�erent ways in, di�erent ways out. The route that the CNM takes approaches each places from several di�erent

directions, and leaves from each place in several di�erent directions.

SISO : Same way in, same way out. There are four possible sub-cases:

SS both the single direction in and the single direction out are the same for the two locations

SD the single way in is the same, but the single directions out are di�erent for the two locations

DS the single ways in are di�erent, but the single direction out is the same for the two locations

DD both the single ways in and the single directions out are di�erent for the two locations

DISO : Di�erent ways in, same way out. For each location, the CNM's route approaches from several di�erent directions,

but always leaves by the same direction. There are two sub-cases:

S the single way out is the same for both locations

D the single way out is di�erent.

SIDO : Same way in, di�erent ways out. For each location, the CNM's route approaches from one direction only, but

leaves by several di�erent directions. There are two sub-cases:

S one in which the single way in is the same for both locations, and

D one in which the single way in is di�erent.

Figure 2: The classi�cation of routes used in the experiments.

SISO These should yield poor systematicity, due to the lack of exploration of the two locations'

di�erent sensory surrounds. However, SISODS and SISODD should be more systematic

than SISOSS and SISOSD, since the single moves in are not the same between the two

locations, thus causing some functional divergence between the codes for the two places.

SISODS should be slightly more systematic than SISODD, and SISOSS more than SISOSD,

for reasons similar to the ordering given within the SIDO category, above. All of these

should be more systematic than the DISO scenarios, since at least the codes for a location

are being produced by a common factor: the move in.

DISO DISOS should yield poor systematicity, but DISOD should be even worse, since in DISOS

there is at least one basis for forcing a divergence between the codes that represent the two

places: the di�erent predictions required of their common move out of those places (the

same code cannot produce both 1111 and 1001 when combined with the move North). In

DISOD, the single ways out are di�erent for the two locations, and thus there will be no

need to develop di�erent codes to accommodate the di�erent predictions (the same code

can produce 1111 when combined with North and 1001 when combined with E).

Of course, the variables used in calculating these predictions are not all of the ones that are

relevant in determining the degree of systematicity of the two representation codes. In particular,

we have said nothing about the distribution of description vectors for the places surrounding the

two locations in question, yet this will typically have considerable e�ect. For example, if there

were local duplications (if, e.g., the locations surrounding a and b had corresponding description

vectors), then postulate 5 would suggest that exploring the sensory surround of a and b will

push the two codes together, not cause them to diverge, as was assumed in the rationales for the

above predictions. Nevertheless, if one assumes a uniform distribution of sensation vectors, the

predictions that we have made will tend to hold, given that local duplications are highly unlikely.
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1. DIDO: N; W; S; SE; E; N; N; W; S; E; S; S; NW; N; NW; E; N; S; E; SE; S; W; W; SW; NE; E; E; NW; W.

2. SISOSS: N; W; S; SE; SE; N; W; N; N; W; NE; SE; SE; S; SW; N; W; NE; W; N; W; SE; S; SE; N; W; W; NE;

N; W; S; S; SE; E; N; W; N.

3. SISODD: N; E; S; S; W; NW; E; N; E; E; S; W; S; W; S; NW; NE; N; E; SW; E; S; W; N; N; E; S; S; W; N.

4. DISOS: N; W; SE; E; S; W; NW; N; E; W; SW; SE; E; E; W; NE; N; W; W; S; SE; S; E; N; W; N; NW; NE; S;

W; SE; E; SE; W; W; N.

5. DISOD: N; E; S; S; N; N; W; E; SW; S; E; N; N; NW; SW; E; E; SE; S; W; N; W; NW; NE; S; E; S; SW; SE; N;

N; W.

6. SIDOS: S; E; N; W; NW; E; N; SE; SW; S; E; E; NW; W; NW; E; E; SW; S; E; S; NW; N; NW; E; S; S; E; W;

N; NW; E; W; SE.

7. SIDOD: S; E; E; NW; W; N; W; SE; S; E; S; NW; N; N; E; S; SW; E; W; N; N; S; S; E; N; W; N; N; SW; SE.

Figure 3: The route types used in the experiments, and the particular move sequences that realized

them

HOME
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01101000

0001 1100
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B
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2 43 5 6

5

6

4

NORTH

3

2

Figure 4: The region of the grid world used in the experiments. The four-bit binary vector at

each location indicates the description or sensation vector associated with that location.

7 Experiments & results

To test these predictions, we had the CNM learn 7 routes, each route realizing a di�erent route

type (see �gure 3). The particular environment that was used is shown in �gure 4. The CNM

converged on a solution with no errors within, on average, 16330 epochs of training.

6

The learning

rate was 0.01, and the momentum was 0.5.

As we surmised (cf section 4.2), the standard Euclidean measure of distance (and attempts at

functional analysis based on it, such as cluster analysis) is an unreliable measure of functional

equivalence. The non-linear nature of networks means that sometimes codes that are geomet-

rically close will have di�erent functional properties, and sometimes codes that are relatively

geometrically distant will be functionally equivalent. An example of this was found in the codes

(C

29

, C

24

and C

33

) the CNM learned for the DIDO route (for moves 29, 24, and 33; see �gure

6

In a few of the simulations, there were a few prediction errors (at most 2 on any route) with respect to the

learned route, but none of the errors involved the two locations under scrutiny nor their immediate neighbours.
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Code 1 Code 2 Distance F

b

F

p

F

d

C

29

C

24

0.87 87.50% 62.50% -1.056

C

29

C

33

0.74 84.38% 50.00% -1.517

Figure 5: An example of Euclidean similarity and functional equivalence coming apart.

 36. 1100 N  (4, 4) B 0010 A 1100N 
 26. 1100 N  (4, 4) B 0010 A 1000NW 
 31. 1100 SE  (4, 4) B 1000 A 0100E 
 3. 1100 SE  (4, 4) B 1000 A 0100E 

 32. 0100 E  (5, 4) B 1100 A 1000SE 
 4. 0100 E  (5, 4) B 1100 A 1001S 

 16. 0100 NE  (5, 4) B 0010 A 1010N 
 17. 1010 N  (5, 3) B 0100 A 1001W 

 35. 0010 W  (4, 5) B 1001 A 1100N 
 25. 0010 W  (4, 5) B 1001 A 1100N 
 6. 0010 W  (4, 5) B 1001 A 1000NW 
 21. 0010 SE  (4, 5) B 1000 A 1001S 

 15. 0010 W  (4, 5) B 1001 A 0100NE 
 10. 1000 W  (3, 3) B 1001 A 0001SW 

 33. 1000 SE  (6, 5) B 0100 A 1001W 
 2. 1000 W  (3, 3) B 1001 A 1100SE 
 30. 1000 W  (3, 3) B 1001 A 1100SE 
 19. 1000 W  (3, 3) B 1001 A 1000S 

 18. 1001 W  (4, 3) B 1010 A 1000W 
 12. 1010 SE  (3, 5) B 0001 A 0010E 

 11. 0001 SW  (2, 4) B 1000 A 1010SE 
 34. 1001 W  (5, 5) B 1000 A 0010W 
 13. 0010 E  (4, 5) B 1010 A 1001E 

 22. 1001 S  (4, 6) B 0010 A 1001E 
 29. 1001 S  (4, 3) B 1111 A 1000W 

 24. 1001 N  (5, 5) B 1001 A 0010W 
 1. 1001 N  (4, 3) B 1100 A 1000W 

 5. 1001 S  (5, 5) B 0100 A 0010W 
 27. 1000 NW  (3, 3) B 1100 A 1111NE 
 20. 1000 S  (3, 4) B 1000 A 0010SE 

 7. 1000 NW  (3, 4) B 0010 A 1000N 
 8. 1000 N  (3, 3) B 1000 A 1001E 

 28. 1111 NE  (4, 2) B 1000 A 1001S 
 23. 1001 E  (5, 6) B 1001 A 1001N 
 9. 1001 E  (4, 3) B 1000 A 1000W 

 14. 1001 E  (5, 5) B 0010 A 0010W 

Figure 6: Cluster analysis of all location codes used in the DISOS route. Labels indicate the

move number that produced the code, the description vector for the location, the move made, the

coordinates of the location, the description vector of the previous place, the description vector of

the following place, and the move taken to get there.

5). Although the distance between C

29

and C

33

was less than than the distance between C

29

and

C

24

, the functional equivalence of the former pair was less than that of the latter pair, on all three

of our measures of functional equivalence.

7.1 Qualitative analysis

One can use cluster analysis to get a rough idea of the di�erent degrees of systematicity developed

in learning the di�erent types of routes. Figure 6 shows the cluster analysis of the location codes

developed in learning the DISOS route. Note how the codes corresponding to (5, 5) are found in

several parts of the tree, suggesting low functional equivalence between them. The same applies to

the codes for (4,3). Note also that codes for (5,5) and (4,3) are often clustered together, suggesting

a high functional equivalence between them. Both of these factors indicate a very low degree of

systematicity.

In contrast, the cluster analysis of the codes developed for the SIDOD route (�gure 7) suggests a

high degree of systematicity. The codes for (5,5) are all clustered together, as are the codes for

(4,3), and the (4,3) and (5,5) codes are in di�erent (albeit neighbouring) sub-clusters, suggesting

that they might be functionally divergent, despite the sensory equivalence of the two locations.
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 30. 1100 SE  (4, 4) B 1000 A 1100S 

 22. 1100 S  (4, 4) B 1001 A 0010S 

 8. 1100 SE  (4, 4) B 1000 A 0010S 

 27. 1001 N  (4, 3) B 1100 A 1111N 

 6. 1001 N  (4, 3) B 1100 A 1000W 

 21. 1001 N  (4, 3) B 1100 A 1100S 

 14. 1001 N  (4, 3) B 1100 A 1010E 

 24. 1001 E  (5, 5) B 0010 A 0100N 

 10. 1001 E  (5, 5) B 0010 A 1001S 

 2. 1001 E  (5, 5) B 0010 A 1000E 

 18. 1001 E  (5, 5) B 0010 A 0010W 

 29. 1000 SW  (3, 3) B 1111 A 1100SE 

 7. 1000 W  (3, 3) B 1001 A 1100SE 

 3. 1000 E  (6, 5) B 1001 A 0100NW 

 11. 1001 S  (5, 6) B 1001 A 0010NW 

 15. 1010 E  (5, 3) B 1001 A 0100S 

 23. 0010 S  (4, 5) B 1100 A 1001E 

 9. 0010 S  (4, 5) B 1100 A 1001E 

 1. 0010 S  (4, 5) B 1100 A 1001E 

 19. 0010 W  (4, 5) B 1001 A 1100N 

 12. 0010 NW  (4, 5) B 1001 A 1100N 

 17. 0010 SW  (4, 5) B 0100 A 1001E 

 28. 1111 N  (4, 2) B 1001 A 1000SW 

 25. 0100 N  (5, 4) B 1001 A 1100W 

 16. 0100 S  (5, 4) B 1010 A 0010SW 

 4. 0100 NW  (5, 4) B 1000 A 1100W 

 26. 1100 W  (4, 4) B 0100 A 1001N 

 5. 1100 W  (4, 4) B 0100 A 1001N 

 20. 1100 N  (4, 4) B 0010 A 1001N 

 13. 1100 N  (4, 4) B 0010 A 1001N 

Figure 7: Cluster analysis of all location codes used in the SIDOD route. See �gure 6 for an

explanation of the labels.

7.2 Quantitative analysis

However, in order to provide a more detailed comparison of the systematicity of the location

codes developed for each route type, we need a quanti�able measure of systematicity. In keeping

with the two components of the de�nition of systematicity, systematicity should be maximized

when the functional equivalence between codes for the same location is maximized, and when the

functional equivalence between codes that correspond to di�erent locations is minimized. Thus,

systematicity can be seen as the average functional equivalence of codes for the same location

minus the average functional equivalence of codes that represent di�erent locations. For the

particular cases considered in the experiments, this can be formalized as:

S(A;B) = 2

P

N

i=1

P

N

j=i

F (a

i

;a

j

)+F (b

i

;b

j

)

N(N�1)

�

P

N

i=1

P

N

j=1

F (a

i

;b

j

)

N

2

where:

� A and B are the distinct yet sensorily equivalent locations the codes for which are under

consideration (in our case, the A and B were the locations (5,5) and (4,3) in all routes);

� N is the number of times that the route enters the places A and B (in our case 4);

� F is the functional equivalence measure being used, be it F

p

; F

b

; F

d

(see section 4.2); and

� a

i

and b

i

are the location codes that are active on the ith visits to A and B, respectively.

The �rst term sums up the functional equivalences of the four codes that represent A and the

functional equivalences of the four codes that represent B, and then divides by the number of

such comparisons (in our case 6) to get an average; the second term sums up the functional

equivalences of the codes that represent di�erent places, and then divides this sum by the number

of such comparisons (in our case 16) to yield another average. The di�erence then expresses the

degree of systematicity.
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Figure 8: The observed bit- and pattern-based systematicity of the 7 tested route types.
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Figure 9: The observed distance-based systematicity of the 7 tested route types.
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The systematicity results using pattern- and bit-based functional equivalence measures are shown

in �gure 8. We also calculated the systematicity of the 7 scenarios using the distance-based

measure, shown in �gure 9 (note that this is not a measure of the Euclidean distance between the

codes, but a measure of the distance between the sensations that two codes predict).

8 Discussion

The data are fairly univocal. The SIDO scenarios produce the most systematic codes, the SISO

scenarios to a lesser extent, and the DISO scenarios even less. This agrees with our predictions,

and thus supports the postulates, principles and hypothesis of sections 5 and 6.

However, two aspects of our predictions were not borne out. First, although our predicted general

ranking of the SIDO, SISO, and DISO scenarios was correct, our predictions of the rankings of the

sub-types within those groups were not. In particular, we expected SIDOD to be more systematic

than SIDOS, and SISODD to be more systematic than SISOSS, yet the converse was found in both

cases. It seems that having a common move in helps the codes for the two locations to diverge

from each other, which suggests that in some cases principle 1 and postulate 2 (cf section 6) do

not hold. Further work, then, should include an investigation into that principle and postulate.

Second, we expected the systematicity of the DIDO route to be between that of the SIDO and

SISO routes, but it is in fact near the bottom of the scale, better only than the DISO routes.

This suggests that the commonality of the codes for the same location has a greater weight in the

determination of systematicity than divergence between codes of di�erent locations. This would

also explain the negative systematicity results for the DISO routes.

Note that, predictably, the high systematicity of the SIDO routes yielded perfect generalization.

That is, since the CNM was trained until it got all the predictions on its routes correct, the

four codes that it used for each of the four times in (5,5) each make a correct prediction for

what would result from moving north, east, south and west, respectively. But since the CNM in

this case developed a systematic representation of (5,5), these four codes are highly functionally

equivalent, and thus a correct prediction is made if the CNM considers moving south from (5,5)

at a point in the route where it normally would have gone east. This shows that the CNM is

doing more than just memorizing a route (cf section 4).

Another look at the cluster analysis of the SIDOD route (�gure 7) suggests that another kind

of generalization might be at work. Even though the SIDOD structure of the route was only

expected to foster a systematic representation of (4,3) and (5,5), it appears that every developed

location code meets the systematicity requirements (contrast the ordered grouping of co-referential

location codes in �gure 7 with the relatively jumbled groupings in �gure 6). Perhaps developing

systematic representations for a few locations can serve as a catalyst that bootstraps systematic

representation in general, for locations that have not been the focus of a SIDO strategy. This will

be the subject of future work.

9 Comparisons with other work

Independently of the work done in (Chrisley, 1993), there has been work on applying simple

recurrent nets (SRN's) to the task of learning �nite state automata (FSA's) which suggests their

capability to develop systematic representations of those automata. In particular, the cluster

analysis in (Cleeremans, 1992, chapter 2) of an SRN trained to predict the next letter in a

sequence constructed from a simple grammar suggested that the net had indeed developed hidden
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unit patterns that were active if and only if the portion of the string processed so far corresponded

to a particular node in the FSA representation of that grammar. Furthermore, Cleeremans went

on to examine one parameter that seems crucial in determining whether or not such systematic

representations will develop: the number of hidden units. Given too many hidden units, the

network will use di�erent regions of the hidden unit space to represent the same state, thus

preventing generalization.

The work here can be thought of as complementing Cleeremans', in that it highlights external,

rather than internal, constraints on the development of systematic representation. However, there

are several other di�erences between that work and this,

Cleeremans used a very di�erent training strategy. In order to train his network, he used 60,000

sequences with an average of 7 patterns per sequence, yielding 420,000 training patterns (as

opposed to our use of 30 patterns or so). He thus had little idea of which of those patterns were

crucial for systematic representation. Our lighter approach allowed us to investigate the relatively

minimal requirements for the development of systematicity.

Also, the nature of the task is di�erent: the CNM learns by predicting the sensory properties of

states, while Cleeremans's model predicts possible sequences of letters, which are analogous to

the actions in the CNM (i.e., they are what e�ect state transitions). Perhaps the CNM could be

modi�ed to use both kinds of learning to further constrain the development of systematicity. This

would also improve the CNM's ability to aid in navigation, since it would be able to rule out some

possible action sequences as being \ungrammatical". Correlations between these restrictions on

movement and sensory properties could then be learned, yielding a deeper understanding of the

causal properties of its environment.

In his analysis of (what we would call) the systematicity of his network's representations, Cleere-

mans relied only on Euclidean distance and cluster diagrams, which as we have shown do not

always indicate the true functional equivalence of representations. However, since his behavioral

tests were so exhaustive and high-scoring (e.g., his network correctly categorized 130,000 ran-

domly generated strings as grammatical or ungrammatical), perhaps the high number of training

patterns ensured a tight connection between distance and functionality.

Given that the development of spatial representations in the CNM can be thought of as the

development of \place permanence" (Chrisley, 1993, p 342), recent research into connectionist

models of the development of object permanence (Mareschal & Plunkett, 1994) are highly relevant

to the work done here, especially since the task in that work is (visual) prediction using an

SRN. However, despite these similarities, there are some serious di�erences. For one, Mareschal

& Plunkett's work has the advantage of successfully addressing and explaining actual human

developmental data. Also, their evaluation of their network is entirely behavioural; i.e., they do not

analyse the representations their network develops via cluster analysis or calculate systematicity

measures.

Finally, there has been some investigation into the conditions under which SRN's learning FSA's

can transfer what they have learned to other domains (Dienes, 1994), which can be seen as another

kind of generalization. For example, it was found that in order to achieve transfer, a network

should be presented with sequences that have repeated elements. Perhaps the principles that

were useful here in predicting and explaining the conditions for the development of one form of

generalization could be of use in explaining why repeated elements are so crucial to developing

this other kind of generalization.
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10 Future work

In addition to the future work already mentioned (cf sections 3, 8 and 9), some other possibilities

should be mentioned.

The generalization exhibited by the CNM so far only involves di�erent combinations of transitions

that it has made before. Another important kind of generalization is to transitions not made

before, but for which one has been given enough information to make a successful prediction. For

example, suppose the an agent using the CNM has never moved south from (4,4) to (4,5), but

it has been to (4,5) via moving east from (4,4) to (5,4), then south to (5,5), and then west. It

would be very signi�cant if the CNM could develop representations so systematic that the code

for \south from (4,4)" was functionally equivalent to the code for \east, south and west from

(4,4)", even though it had never moved south from (4,4) before. Speci�cally, it might be useful to

consider under what conditions does the CNM develop codes such that the action vectors cause

systematic movements in the principal component space of the location codes.

Perhaps the CNM is on its way toward this, as evidenced in the unexpected systematicity in

�gure 7. But another idea for how the CNM might achieve this is for it to have a small core of

systematic location codes which it repeatedly redeploys in order to represent di�erent areas. This

might also address the scaling-up problems of SRN's that have been observed (Cleeremans, 1992,

p 66). It is unclear, however, how such a structure might be learned, so it is unclear to what

extent such an architecture would be furthering a connectionist naturalization of epistemology, as

opposed to assuming a complex innate symbolic mechanism.

Finally, if the CNM were to be re�ned so that it might be used to model and explain actual

data of some sort, a natural area of application is the spatial learning of rats. The \place cells"

(O'Keefe & Nadel, 1978) observed to be in the rat hippocampus, cells which are maximally active

if and only if the rat is at a particular location, sound very much like the systematic location

codes developed in the CNM.
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