
THE SEVENTH WHITE HOUSE PAPERS

Graduate Research in the Cognitive

and Computing Sciences at Sussex

CSRP 350

editors:

Peter de Bourcier

Ronald Lemmen

Adrian Thompson

December 1994

Contents

Preface : iv

Michael Wheeler and Peter de Bourcier

What is Synthetic Behavioural Ecology? : 1

Peter de Bourcier and Michael Wheeler

Aggressive Signaling : 6

Seth Bullock

Dynamic Fitness Landscapes : 14

Adrian Thompson

Real Time for Real Power: Methods of evolving hardware to control autonomous mobile robots : 20

Stephen Eglen

An Overview of Motion Processing in Mammalian Visual Systems : : : : : : : : : : : : : : : : 26

Philip Jones

Macroscopic Explanations : 34

Rafael Perez y Perez

Creativity in Writing and Music : 39

Ronald Lemmen

Cognitive Science as the Study of Consciousness : 42

Amer Al-Rawas

Problems Caused by Ineffective Communication in Requirements Engineering : : : : : : : : : : 47

Ian Cullimore

Informal Interfaces: Informality in Human-Computer Interaction : : : : : : : : : : : : : : : : : 52

Joseph A. Wood

A Proposal for the Detection of Software Interactions : 56

Changiz Delara

Towards an Intelligent Debugging System for ML Programming Language : : : : : : : : : : : : 60

Remedios de Dios Bulos

Goal Formulation as an AI Research Issue : 69

Ricardo Garza M.

Structural Extensions for the ELKA Model : 75

Rosemary Tate

Feature Extraction Using Wavelets for the Classification of Human in Vivo NMR Spectra : : : : 81

Vicente Guerrero-Rojo

MML, a Modelling Language with Dynamic Selection of Methods : : : : : : : : : : : : : : : : 85

i

Marco Rocha

Anaphora Processing: A Cross-Linguistic Discussion : 93

Julian M. L. Budd and Eevi E. Beck

Doing a PhD with Hindsight : 97

ii

Dedication

The editors would like to dedicate the Seventh White House Papers to Berry Harper for her great

contributions to COGS. She will be greatly missed.

iii

Preface

Each year since 1988, COGS graduate students have been meeting at Sussex University’sconference cen-

tre, the White House, located at the Isle of Thorns, near Haywards Heath. Over several days, students are

given the opportunity to give presentations on their work, exchange ideas, and most importantly, socialise.

Out of this annual event arises a collection of short papers that have come to be known as the White House

Papers.

This summer, all postgraduate students at COGS were invited to submit papers of around 2000 words

for inclusion in the Seventh White House Papers. The resulting collection reflects work in many diverse

areas of research, such as philosophy, behavioural ecology, computer vision, linguistics, medical infor-

matics, HCI, software design, and artificial life.

Many people have sacrificed their time and effort to organise the Isle of Thorns Workshop and the

White House Papers. The editors would like to thank the secretaries, postgraduate students, and members

of the faculty for their help in making the workshop and papers a success. Thanks also to prof. Matthew

Hennessy for financial support and special thanks to Jo Brook, for her continuous dedication to the or-

ganisation of the Isle of Thorns Workshop and White House Papers. Without her help, and extensive

knowledge of the “art” of LATEX, this collection would have appeared considerably later and, we fear,

with hand-written page numbers. Finally, we would like to thank Berry Harper for her help in producing

the White House Papers over many years, we dedicate this year’s collection to her.

Peter de Bourcier

Ronald Lemmen

Adrian Thompson

December 1994

iv

In: de Bourcier, Lemmen & Thompson eds., 1994 The Seventh White House Papers:

Graduate Research in the Cognitive & Computing Sciences at Sussex. University of

Sussex, School of Cognitive & Computing Sciences, Brighton, UK. Research Paper

CSRP 350.

What is Synthetic Behavioural Ecology?

Michael Wheeler and Peter de Bourcier

michaelw@cogs.susx.ac.uk, peterdb@cogs.susx.ac.uk

School of Cognitive & Computing Sciences

University of Sussex

Brighton

BN1 9QH

Abstract Behavioural Ecology seeks functional explanations of ecologically embedded an-

imal behaviour; i.e., it concentrates on the adaptive consequences of behaviour in relation

to ecological context. We describe and justify a theoretical approach that we call ‘Synthetic

Behavioural Ecology.’ This framework for adaptive behaviour research seeks functional ex-

planations of the synthetically embedded behaviour of animats (artificial animals), i.e., it

concentrates on the adaptive consequences of behaviour in relation to a synthetic ecologi-

cal context. The goal of synthetic behavioural ecology is to complement the ongoing work

in the biological sciences on the relationship between ecology and behaviour.

1 Introduction

Adaptive behaviour is behaviour which increases the chances that an autonomous agent can survive in a

dynamic, uncertain, and (possibly) hostile environment. In the field of research known as simulation of

adaptive behaviour (see, e.g., (Cliff, Husbands, Meyer, & Wilson, 1994)), the aim is to produce adaptive

behaviour in autonomous robots or simulated agents, i.e, in what might be thought of as artificial ani-

mals — henceforth animats (Wilson, 1985). This paper introduces a specific approach within the general

simulation of adaptive behaviour paradigm. The approach, which we call Synthetic Behavioural Ecol-

ogy (henceforth ‘SBE’), involves using existing work in the biological sciences to guide the construction

of simple simulated eco-systems populated by animats. Experiments are then carried out in the synthetic

eco-systems, with the aim of contributing to the scientific understanding of the relationship between ecol-

ogy and behaviour.

As far as we are aware, the actual phrase ‘synthetic behavioural ecology’ had not been used prior to

(de Bourcier & Wheeler, 1994). And, although important aspects of the SBE-framework will be famil-

iar from other areas of simulation of adaptive behaviour research (e.g., the use of closed-environment

simulations — see sections 3.2 and 3.3), we have deliberately brought together and made explicit cer-

tain theoretical and methodological commitments which, we believe, make SBE a distinctive approach.

The aim of the current paper is to explain and to justify those commitments. The following paper in this

collection describes some actual experiments using the SBE-framework.

2 Behavioural Ecology

2.1 Explanations in Biology

The distinguishing characteristic of behavioural ecology as a discipline in biology is that it concentrates

on functional explanations of ecologically-embedded animal behaviour (Krebs & Davies, 1987). We can

bring out what is meant by ‘functional explanation in biology’ by way of the Tinbergen questions. Tin-

bergen (1963) identified four different questions that could be asked about a given behaviour. These are

questions of:

1

1. Causation: the mechanisms underlying that behaviour. These include the triggering environmental

stimuli and the cognitive/neural/hormonal processes active in the animal.

2. Development: the ontogenetic sources of that behaviour. For example, birds often learn their mat-

ing songs from their parents.

3. Evolutionary History: the phylogenetic development of that behaviour. For instance, in principle,

it should be possible to trace out the route by which initially incidental movements or responses, on

the part of certain animals, were modified over evolutionary time to become ritualized, stereotypic

signaling patterns.

4. Function: the adaptive consequences of that behaviour. That is, the behaviour is investigated in

terms of the role it plays in contributing to the survival and reproductive prospects (Darwinian fit-

ness) of an animal. For example, if we want to understand why the female of the scorpionfly, Hy-

lobittacus apicalis, mates for longer with males who woo her with larger insects as courtship gifts,

then we had better identify the contribution made by that behaviour to the female’s adaptive suc-

cess. In fact, it appears to be because the female’s capacity to produce eggs is limited by the food

she has available to invest in those eggs. By adopting a strategy such that the larger the pre-nuptial

gift, the longer the male is allowed to copulate, the female encourages the male to arrive with larger

insects (as he will end up fertilizing more eggs), and thereby ensures that she will have more food

available to invest in her eggs (Thornhill, 1979).

So what about ecological embeddedness? The adaptive success of an animal depends on that animal’s

behaviour; and the adaptive success of any particular behavioural strategy is directly dependent upon the

animal’s ecology — including its food, mates, competitors, and predators. So the process of Darwinian

natural selection will tend to produce animals that are well-adapted to their ecological niches. In other

words, the creatures that survive to pass on their genes will tend to be the well-designed foragers, the

well-designed mate-finders, the well-designed predator-detectors etc.. The clear implication is that the

adaptive consequences of an individual animal’s behaviour cannot be investigated in isolation from the

specific features of that animal’s ecological niche.

2.2 Optimality Models

One way to investigate the relationship between behaviour and ecology is to compare the behaviour pat-

terns of different species. This comparative approach is particularly useful in cases of related species,

as differences in behaviour may well be direct reflections of differences in ecology. A complementary

approach is to focus on the behavioural strategies of individual animals, and to analyse those behaviour

patterns in terms of the economic costs and benefits of adopting those particular strategies in the relevant

ecological settings.

In generating an economic model, an assumption has to be made about the ‘currency’ of the model.

For example, in generating foraging models, various currencies, such as rate of food intake, food-finding

efficiency, and risk of starvation may be used (Krebs & Davies, 1987). Economic models also incorpo-

rate assumptions about the set of constraints (bodily and environmental) operating on the set of possible

phenotypic behaviours. The idea then is to produce quantitative predictions of the costs and benefits of a

behaviour pattern to an individual — in a particular ecological context — and to combine that cost-benefit

model with the prediction that, because natural selection tends to produce efficient agents, an individual

will act in a way that maximizes its own net benefit; i.e., its behaviour will tend to be optimal. Hence

economic models become optimality models.

Where the relationship under investigation is between an individual animal and an environmental re-

source (e.g., in solitary food-foraging), optimality models often make the assumption that individual fit-

ness is independent of phenotypic frequencies. In this case, individual fitness is calculated without ref-

erence to the behaviour of other individuals in the population. But, in many cases of adaptive behaviour,

2

what counts as the optimal individual strategy will be determined by the frequencies with which the var-

ious available strategies are adopted by the other members of the population; i.e., individual fitness is

frequency-dependent. For these multi-agent, frequency-dependent situations, the appropriate language

for generating optimality models is provided by the field of game theory, combined with the concept of

an evolutionarily stable strategy. Game theory (von Neumann & Morgenstern, 1944) is a field in which

the formal analysis of a competitive scenario proceeds by way of a pay-off matrix. This matrix defines

how the various available strategies fare, when pitted against each other. An evolutionary stable strategy,

or ‘ESS’ (Maynard Smith, 1982), is a strategy which, when adopted by most members of a population,

means that that population cannot be invaded by a rare alternative strategy.

So behavioural ecology is a well-founded sub-disciplinein the biological sciences, with a well-developed

theoretical machinery. But there is an explanatory gap between the abstract mathematical models con-

structed using cost-benefit/ESS approaches, and the behaviour of animals in their natural environments.

For example, in a recent discussion of ESS signaling theory (see the next paper in this collection), Grafen

and Johnstone observe that “the biological content of the [ESS] models is very limited. ... The existing

body of theory is probably too simple to be applied convincingly to any empirical example” (Grafen &

Johnstone, 1993, p.249). This is where SBE comes in.

3 Synthetic Behavioural Ecology

3.1 General Principles

We offer the following set of principles as definitional of the SBE-approach.

1. Like its biological parent-discipline, SBE concentrates on asking, and (we hope) answering, func-

tional questions.

2. Also in parallel with behavioural ecology, SBE concentrates on explaining behavioural strategies

in the context of the ecological situations in which those behaviour-patterns occur.

3. In common with much adaptive behaviour research, the SBE-methodology is to construct synthetic

ecological contexts in which the behaviour of animats can be observed. By using information from

the biological sciences to guide this process, the synthetic environments employed should be sim-

plified and idealized, but not trivial.

4. The primary aim of SBE is to contribute to ongoing work in the biological sciences, by providing

a distinctive theoretical platform for testing pre-existing hypotheses, and, perhaps, for suggesting

and formulating new hypotheses about animal behaviour.

When the field biologist is investigating behaviour in natural ecologies, her control over what she be-

lieves to be the key factors affecting that behaviour is, in the vast majority of cases, minimal or, at best,

partial. By contrast, in SBE, the parameters underlying the nature of the ‘physical’ environment (e.g., the

rate at which food is replenished) and those driving basic aspects of the animats’ behaviour (e.g., the rate

at which the animats’ hypothetical metabolisms require food-intake) are under direct experimental con-

trol. So one potentially important way in which SBE may contribute to our understanding of the complex

relationship between ecology and behaviour is through experimentation with the values of the parame-

ters affecting key aspects of the (synthetic) ecological context. And, of course, a simulation can be run

over and over again from similar initial conditions, in order to test the robustness of hypotheses. Natural

ecologies are rarely so compliant (cf. MacLennan & Burghardt, 1994)).

There are already studies in the simulation of adaptive behaviour literature, which foreshadow our

general approach. Here we shall mention just two examples. Koza, Rice, and Roughgarden (1992) base

an investigation on field studies which show that the foraging behaviour of the Caribbean Anolis lizard is

close-to-optimal. Genetic algorithms were then used to evolve foraging behaviour in a population of sim-

ulated lizards. The artificially evolved behaviour was shown to be similar to that of the real lizards. And

3

te Boekhorst and Hogeweg (1994) used a simulated eco-system, based on a natural habitat at Ketambe, to

investigate the formation of travel parties in orang-utans. The results from the simulation suggested the

hypothesis that these travel parties were emergent properties of simple foraging behaviours in interaction

with the structure of the environment. Further observations in the natural ecology provided evidence in

support of this hypothesis.

3.2 SBE and Computational Neuroethology

SBE can be distinguished quite sharply from another approach in adaptive behaviour research, namely

that of computational neuroethology (Beer, 1990; Cliff, 1991). Computational neuroethology endeav-

ours to explain the neural mechanisms underlying animal behaviour, by using computers as environments

in which to model the complex neural phenomena. From this it is clear that the questions answered by

computational neuroethology will concern the causal mechanisms underpinning behaviour, and not the

adaptive consequences of behaviour.

Of course, achieving a more complete understanding of behaviour requires that we answer causal

and functional questions, so synthetic behavioural ecology and computational neuroethology are not in

competition. They are complementary approaches. Moreover, although it is essential to keep the different

questions apart, the fact remains that the two types of constraint will sometimes interact. For example,

Miller and Cliff highlight the assumption — usually made in game theory models — that the dynamics

of decision making can be accurately characterized without reference to implementational time-lags or

speed-accuracy trade-offs (Miller & Cliff, 1994, pp.415-16). Thus any assumption that we can investigate

functional constraints in complete isolation from causal constraints — or vice versa — will often amount

to a useful idealization.

3.3 SBE and Synthetic Ethology

In the synthetic ethology of MacLennan and Burghardt (1994), as in SBE, populations of synthetic or-

ganisms are allowed to behave and evolve in simulated worlds. However, in synthetic ethology, the in-

tention is not to model (in however idealized or selective a form) a complex system present in the natural

world. So while we actively seek to develop our models in ways that respect aspects of existing biological

theory, MacLennan and Burghardt make a virtue of the fact that their approach eschews the use of such

constraints. As they put it, “[the] design of a simulation is heavily theory-laden and necessarily highly-

selective. This is true even for models based on current theoretical and empirical understanding of the

phenomena being studied, for out of the multitude of features in the natural situation, only a small fraction

can be selected for modeling. This is the Achilles heel of simulation: An inappropriate selection vitiates

the relevance of the model” (MacLennan & Burghardt, 1994, p. 162). But how serious is this worry? All

processes of scientific modeling make simplifying assumptions. Of course, an “inappropriate selection”

of a feature may mean that the model turns out to be inapplicable; but, from the admitted existence of

this risk, we see no reason to infer that all simulations are doomed to being either unhelpful or irrelevant.

Even where further research or observations in natural habitats show the simulation to be inaccurate in

predicting every aspect of some behaviour, there is the distinct possibility that it is only certain features or

parameter-values of the model that need to be changed, or that some hitherto unaccounted-for additional

constraints are required. Indeed, the later, more enlightening research may have been suggested, or made

possible, only through the impetus provided by the previous model.

4 Conclusions

The goal of SBE is to contribute to ongoing work in the biological sciences, by providing a methodology

which may help to bridge the explanatory gap between (i) the predictions of abstract mathematical models

and (ii) data from highly complex natural environments. We must stress that there is no suggestion that

SBE provides any easy answers to the difficult problems faced by biologists in studying the relationship

4

between ecology and behaviour. Our claim is merely that SBE provides a new way of asking old questions

and, in time, has the potential to find some new questions to ask. The following paper in this collection

describes an example of SBE at work.

References

Beer, R. (1990). Intelligence as Adaptive Behavior: An Experiment in Computational Neuroethology.

Academic Press, San Diego, California.

Cliff, D. (1991). Computational neuroethology: a provisional manifesto. In Meyer, J.-A., & Wilson, S. W.

(Eds.), From Animals to Animats: Proceedings of the First International Conference on Simulation

of Adaptive Behavior, pp. 29–39 Cambridge, Massachusetts. M.I.T. Press / Bradford Books.

Cliff, D., Husbands, P., Meyer, J.-A., & Wilson, S. W. (Eds.). (1994). From Animals to Animats 3: Pro-

ceedings of the Third International Conference on Simulation of Adaptive Behavior, Cambridge,

Massachusetts. M.I.T. Press / Bradford Books.

de Bourcier, P., & Wheeler, M. (1994). Signalling and territorial aggression: An investigation by means

of synthetic behavioural ecology. In Cliff, D., Husbands, P., Meyer, J.-A., & Wilson, S. W. (Eds.),

From Animals to Animats 3: Proceedings of the Third International Conference on Simulation of

Adaptive Behavior, pp. 463–72 Cambridge, Massachusetts. M.I.T. Press / Bradford Books.

Grafen, A., & Johnstone, R. (1993). Why we need ESS signalling theory. Philosophical Transactions of

the Royal Society: Biological Sciences, 340, 245–250.

Koza, J. R., Rice, J. P., & Roughgarden, J. (1992). Evolution of food-foraging strategies for the caribbean

anolis lizard using genetic programming. Adaptive Behavior, 1, 171–200.

Krebs, J. R., & Davies, N. B. (1987). An Introduction to Behavioural Ecology (2nd edition). Blackwell

Scientific, Oxford.

MacLennan, B., & Burghardt, G. (1994). Synthetic ethology and the evolution of cooperative communi-

cation. Adaptive Behavior, 2(2), 161–188.

Maynard Smith, J. (1982). Evolution and the Theory of Games. Cambridge University Press, Cambridge.

Miller, G. F., & Cliff, D. (1994). Protean behavior in dynamic games: Arguments for the co-evolution of

pursuit-evasion tactics. In Cliff, D., Husbands, P., Meyer, J.-A., & Wilson, S. W. (Eds.), From An-

imals to Animats 3: Proceedings of the Third International Conference on Simulation of Adaptive

Behavior, pp. 411–20 Cambridge Massachusetts. M.I.T. Press / Bradford Books.

te Boekhorst, I., & Hogeweg, P. (1994). Effects of tree size on travelband formation in orang-utans: Data

analysis suggested by a model study. In Brooks, R., & Maes, P. (Eds.), Proceedings of Artificial

Life IV, pp. 119–129 Cambridge, Massachusetts. M.I.T. Press.

Thornhill, R. (1979). Adaptive female mimicking behaviour in a scorpionfly. Science, 205, 412–14.

Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift fur Tierpsychologie, 20, 410–33.

von Neumann, J., & Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton Uni-

versity Press, New Jersey.

Wilson, S. W. (1985). Knowledge growth in an artificial animal. In Grefenstette, J. J. (Ed.), Proceedings

of an International Conference on Genetic Algorithms and their Applications, pp. 16–23 Pittsburg,

PA and Hillsdale, New Jersey. Lawrence Erlbaum Associates.

5

In: de Bourcier, Lemmen & Thompson eds., 1994 The Seventh White House Papers:

Graduate Research in the Cognitive & Computing Sciences at Sussex. University of

Sussex, School of Cognitive & Computing Sciences, Brighton, UK. Research Paper

CSRP 350.

Aggressive Signaling

Peter de Bourcier and Michael Wheeler

peterdb@cogs.susx.ac.uk, michaelw@cogs.susx.ac.uk

School of Cognitive & Computing Sciences

University of Sussex

Brighton

BN1 9QH

Abstract The scientific account of intra-specific aggressive signaling is incomplete. In part,

this is due to the fact it is hard to identify the consequences of the different ecological con-

texts in which signaling has developed. The goal of our investigation is to complement the

ongoing work in the biological sciences on this issue. Using the theoretical framework of

synthetic behavioral ecology described in the previous paper in this collection we perform

a series of experiments involving populations of simulated animals (animats), whose simu-

lated world is such that there is competition for food. Each individual displays aggressive

intention signals in line with its bluffing strategy that is determined by a form of artificial

evolution in which there is no explicit fitness function. By varying, in energy terms, the cost

of producing aggressive signals, and by analysing the population dynamics at different costs

of signaling, we are able to provide evidence that the handicap principle (according to which

higher costs enforce honesty) can apply in multi-agent ecologies.

1 Introduction

Communication research concerned primarily with artificial autonomous systems has tended to focus on

the emergence of complex cooperative behaviors from simple signaling interactions between relatively

unsophisticated individuals. But, in the natural world, not all communication is in the interests of explicit

cooperation; that is, not all communication concerns group-ventures such as collective nest-building or

collective foraging. Many signaling-behaviors occur during confrontations between competing aggres-

sors, where the selfish goal of each adversary is the personal control of some resource (e.g., a food supply

or a mate). Of particular interest is the use of signals during aggressive encounters between members of

the same species — cases of intra-specific aggressive signaling. When animals of the same species come

into conflict, the incidence of unrestrained battles is relatively low. Instead of all-out fights, confrontations

tend to revolve around signaling displays which, more often than not, allow the contestants to conclude

matters without the need for potentially damaging physical combat. (see the coverage of red deer mating

competitions by and Clutton-Brock and Albon (1979).)

Despite the existence of an enormous literature in the biological sciences on intra-specific aggressive

signaling, this significant sub-set of signaling-behaviors has received little attention from the autonomous

agent movement. But aggressive signaling is a genuinely adaptive behavior about which there are unan-

swered questions. We use existing work in the biological sciences to guide the construction of a simple

simulated eco-system populated by artificial animals — henceforth animats (Wilson, 1985) — who are

competing for limited supplies of food.

2 Biological Background

For an explanation of the biological background against which the experimental model was developed see

de Bourcier and Wheeler (1994). In short we define aggression as the disposition to fight more intensely

6

or for longer (due to Maynard Smith and Harper, 1988) and signaling as a behavior performed by agent X

to agent Y such that i) the evolutionary function of X’s behavior is to change the behavior of Y, and ii) X’s

behavior is designed to affect Y’s dispositions to behave via Y’s sensory mechanisms, and not by physical

force. (This second condition is intended to prevent the situation where one animal pushes another from

counting as an example of signaling behavior.) We define a ‘territory’ as “a more or less exclusive area

defended by an individual or group” after Davies and Houston (1984, p.148).

Zahavi’s handicap principle (Zahavi, 1975), is that the reliability of intention-signals could be in-

creased if the animal concerned had to invest, in some way, in those signals. The fundamental idea is

illustrated by the fact that a signal which is, for example, wasteful of energy is, as a consequence of that

wastefulness, reliably predictive of the possession of energy; hence honesty is enforced. Only cost-free

intention-signals would be open to exploitation by bluffers. Reliable signals of aggressive intent must be

more costly in fitness terms than they strictly need be merely to communicate unambiguously the informa-

tion at issue. Moreover, the costs involved must be differential. A specific signal indicating a particular

level of intended escalation must be proportionally more costly to a weak individual than to a strong in-

dividual.

3 Experimental Model

We now describe the animat-environment system employed in our experiments. Our animats ‘perceive’

and ‘act’ in a simulated world, which is two-dimensional and non-toroidal; i.e., it is a flat plane, the edges

of which are barriers to movement. The dimensions of the world are 1000 by 1000 units, and each animat

is round and 12 units in diameter. Space is continuous. This is in contrast to the cellular environments

favored in many simulations in which an animat occupies one cell on a rectangular grid, and moves from

cell to cell. Discrete cellular environments, while useful in certain contexts, introduce severe limitations

into the dynamics of perception and action (Cliff and Bullock, 1993).

In the simple synthetic eco-system employed here, an animat’s environment consists of food, plus

other animats. Each animat may move in any one of 36 directions corresponding to a full circle in 10

degree divisions about its current position. Movement takes place in response to sensory information

picked up from the environment via two idealized sensory modalities. Both senses are distal, but have

different ranges. The first — which we think of as idealized vision — provides information about other

animats. The second — which we think of as idealized olfaction — provides information about food.

Vision is simulated using two-dimensional projective geometry. The visual system is based on a 36-

pixel eye providing information in a full 360 degree radius around the animat, with an arbitrarily imposed

maximum range, such that a hard threshold (a sharp cut-off) occurs at a distance of 165 units from the an-

imat. Each pixel is radially oriented, and returns a real number in the range 0 to 1, corresponding to the

proportion of that pixel’s receptive field containing other animats. The olfactory system employs princi-

ples similar to those used for vision, the only differences being that olfactory range is only 35 units, and

that food particles are treated as point sources. The olfactory value returned for each of the 36 directions

is thus proportional to the density of food present (within range) in that direction.

Food is present in the world in the form of randomly distributedfood particles, each carrying an energy

value. When an animat lands on a food particle, the energy value of the particle is transferred to the animat,

thereby incrementing that animat’s energy level. If an animat lands on more than one particle of food at

any one time-step, its intake is restricted to one unit. In order to replenish the resource, new food particles

are added to the world (again with random distribution) at each time-step. The number of new particles

to be added at each step is set by the user, but the resource is ‘capped’ so that the food supply is never

more plentiful than at the beginning of the run. Hence the food supply is limited; and the members of the

population are in intra-specific competition for access to the available resources. The initial population

of animats is created by placing a number of individuals at randomly chosen positions in the world.

Each individual begins life with the same energy level as its peers. But animats lose energy in a num-

ber of different ways, namely: Being alive, where a small existence-cost is deducted from the energy level

7

of each surviving animat; Moving, if an animat moves in any direction it incurs a movement cost; Repro-

ducing, If an animat achieves a high energy level, then it will asexually reproduce. The offspring, an only

child placed randomly in the world is given the same initial energy level as each member of the popula-

tion had at the start of the run, and the corresponding amount of energy is deducted from the parent; And

finally Fighting, Fights occur when animats touch. Such ‘physical’ combat results in a large reduction in

the energy levels of the participants.

If an animat’s energy level sinks to 0, then that individual is deemed to have died. Under these cir-

cumstances, it is removed from the world. So, as well as increasing through births, population size can

decrease through deaths.

Due to the fact that animats lose energy on a regular basis, food-finding is an essential task. To encour-

age foraging behavior, each animat has a hunger level — its disposition to move towards food — which

is updated at each time step. This figure is calculated by adding a constant to the difference between the

maximum individual energy level possible (i.e., the value at which reproduction takes place) and an an-

imat’s current energy level. Thus an animat’s hunger is inversely proportional to its energy level. The

addition of the constant is to increase the overall likelihood that foraging behavior will occur.

In addition to the disposition to find food, each animat has a level of aggression — its general dis-

position to approach and to engage with other individuals in its visual field. An aggressive movement is

defined as one in which the individual in question moves directly towards another animat. Each individ-

ual’s disposition to behave aggressively varies dynamically with its recent behavioral history. When an

animat moves in an aggressive manner, its level of aggression is increased by an amount proportional to

the previous aggression level. Conversely, a non-aggressive movement results in a decrease in an animat’s

level of aggression, by an amount proportional to the previous aggression level.

At each time-step, the direction in which each animat will move is calculated using a probabilistic

equation (for details see de Bourcier and Wheeler 1994). We devised the movement-equation to have the

following basic effects: for some animat F:- If there are no other animats in F’s visual field, and no food

within F’s olfactory range, then F will make a random movement. If F can sense food, and F is hungry,

then the probability of F moving in the direction of that food is proportional to F’s degree of hunger. If

there are other animats in F’s visual field, then the probability that F will move in the direction of another

animat is proportional to F’s aggression level. But F is also likely to move in the opposite direction (away

from the other animat) with a probability proportional to the threat which F perceives from that animat.

So, for example, if F is only slightly aggressive, and perceives another animat as being a significant threat,

then F is more likely to retreat rather than to attack; while, if F is highly aggressive, and perceives the other

animat as posing little threat, then F is more likely to attack than to retreat.

4 Experimental Conditions

In previous experiments we have shown that a simple form of territoriality emerges from the interactions

of the animats simple behavioural repertoire with the dynamics of the simulated environment (de Bourcier

and Wheeler 1994; Wheeler and de Bourcier, 1994). The experiments we discuss here are are based on

what happens when animats are given the capacity to produce signals indicating aggressive intentions

(i.e., an individual’s apparent disposition towards making aggressive moves). An individual animat sig-

nals whenever at least one other animat is within visual range. To enable these signals to be communi-

cated, the animats’ visual systems are ‘tuned’ to pick up the values of the aggressive signals coming from

each of the 36 directions.

Aggressive signals are displays for which a signaling animat has to pay a cost, via a deduction from

its energy level. This cost increases as the level of aggression signaled increases, so that it costs more in

energy to make a more aggressive signal. Thus the costs involved are differential, in the sense required by

the handicap principle, because, given a specific signal made by a strong (high-energy) individual, it will

cost a weak (low-energy) individual proportionally more to produce the same signal. As what is being

signaled is supposed to be an indicator of ‘current willingness to fight’, it is appropriate that what is taxed

8

is an animat’s energy level; in this model, there is a direct correlation between energy and the capacity to

wage battle. The ways in which costs are paid in natural environments may be more complex, although

some notion of an ‘appropriate link’ still seems to apply (Stamp Dawkins, 1993).

In order for us to investigate the operation of the handicap principle in this multi-agent context, it had

to be possible for the various members of the population to adopt different signaling strategies, where

by a ‘signaling strategy’ we mean the degree to which the signal produced by an individual accurately

reflects that individual’s true level of aggression. Aggressive signals are produced in accordance with

the calculation S= A+((C=100):A)where S is the value of the signal made, A is that individual’s current

aggression, andC is an individual-specificconstant, the value of which is an integer in the range 0-100. So,

for example, individual A may always signal a value for apparent aggression which is equivalent to 20%

more than its actual aggression level (C = 20), while individual B may always signal a value equivalent

to 75% more than its actual aggression (C= 75). This provides the potential for the concurrent existence

of a range of strategies, arranged on a continuum from truth-telling to extreme bluffing. (The consistent

signaling of actual aggression (C = 0) is equivalent to complete honesty, and the consistent signaling of

twice actual aggression (C= 100) is the maximum level of bluffing permitted in this system.) Notice that

although an individual’s signaling strategy remains constant throughout its lifetime, the actual values of

the aggressive signals produced by any one animat will vary across time. This is because each individual’s

aggression level changes dynamically as a function of its activity.

The development of different signaling strategies was placed under evolutionary control. Each ani-

mat has associated with it a bit-string genotype, specifying that individual’s particular signaling strategy

(the value of C). At the beginning of a run, a random population of genotypes is created. Hence, the initial

distribution of signaling strategies in the population is also random. But the ongoing distribution of the

different signaling strategies is a matter decided by the evolutionary selection pressures imposed by the

environment. Only those individuals who prosper in energy terms will become strong enough to repro-

duce. The reproductive process copies the parent’s genotype (specifying its particular signaling strategy)

to the offspring. However, to allow the possibility of replication with modification, there is a small proba-

bility that a genetic mutation will take place during copying. (Throughout the experiments reported here,

an 8 bit genotype was used, and the mutation rate was set to be a 0.05 chance that a bit-flip mutation will

occur as each bit is copied during the reproductive event.)

One of the key selection pressures in this environment is provided by the signaling strategies adopted

by the other members of the population. Thus fitness is frequency dependent with respect to the distri-

bution of phenotypes. Moreover, this distribution will change over time. Deaths will result in strategies

becoming extinct; births without mutation will result in an increased number of individuals using a par-

ticular strategy; and mutations will result both in novel (with respect to a particular run) strategies coming

into existence, and in strategies which had previously died out being revived. The other significant selec-

tion pressure, which interacts with phenotypic frequency to determine the overall fitness of any individual

is, of course, the cost of signaling. This cost (imposed as units of energy deducted per unit of aggression

signaled) is set by the human experimenter at the start of each run, and remains constant for the duration

of that run. Over evolutionary time, the general trend is for only the well-adapted strategies to survive

and prosper.

In contrast with most examples of the use of evolutionary techniques in simulation of adaptive behav-

ior research, the artificial evolution present in this eco-system features no explicit fitness function. There

is no ecologically-unrealistic, externally-imposed evaluation function, against which the performance of

an individual is judged. The only arbiter concerning the fitness of a particular signaling strategy is the eco-

logical situation itself, an ecological situation complicated by the presence of interacting multiple agents,

many of whom are operating with vastly different social strategies.

9

30000

25000

20000

15000

10000

5000

0

0->25%

25->50%

50->75%

75->100%

Energy

Time

8000 16000

Low Cost Signaling (0.002)

Figure 1: Low Cost Signaling — the total energy levels of the four sub-populations are plotted against

time. See the text for a discussion of these results.

5 Results: Testing the Handicap Principle

In the experiments reported here, we did not assume that any members of the population were necessarily

committed to what might be thought of as absolute honesty (C = 0). We merely let artificial evolution

take its course, given some random point of departure. It was possible that the random initialization of

the population of genotypes would result in one or more absolute truth-tellers, or that a genetic mutation

would produce such an individual, but the probability was, of course, small. So the use of the continuum

of strategies, as detailed above, meant that we needed to think in terms of relative honesty.

In order to analyse the effect of signaling-cost on relative honesty, we treated the total population as

being made up of 4 sub-populations, each of which was identified according to a grouping in the signaling

strategies deployed. The first group included all those individuals whose genetic specification determined

that they produce signals indicating levels of aggression between 0% and 25% in excess of their actual

aggression. So, in relative terms, this first group included the most ‘honest’ individuals. The second group

included all those signaling 25% to 50% more than actual aggression, the third 50% to 75%, and the fourth

75% to 100%. Thus the fourth group were the most extreme bluffers. (There is, of course, something

arbitrary in our choice of these particular divisions, but we felt that they would be sufficient to uncover

the overall trend in the behavior.) A particular sub-population, at any one time, included all individuals

adopting the appropriate strategy, including any offspring. We then needed a way to assess the success

of the different strategies, at various values for the cost of signaling. To do this, we ran the simulation

many times, setting various values for the relevant cost (units of energy deducted per unit of aggression

signaled), and, during each run, we recorded the total energy present in each of the 4 sub-populations

through time. Below we discuss two typical examples of the results obtained.

5.1 Experiment 1: Low Cost Signaling

In the first experiment described here, the cost of aggressive signaling was set to be low — 0.002 units

of energy deducted per unit of aggression signaled. We allowed that there must be some cost in energy

involved in transmitting a signal at all.

Figure 1 displays the total energy present in each of the 4 sub-populations over the first 16000 time

steps of the low cost run. From these results it is clear that the group signaling between 75% and 100% in

10

excess of their actual aggression (the most extreme bluffers) are the most successful group; i.e., they are

the most adaptively fit under these specific ecological conditions. In fact, after the initial settling down

period (of approximately 1600 time-steps), the 75-100% group tend to dominate the world. Both the 0-

25% group (the most honest contingent) and the 25-50% group struggle to survive in this eco-system.

In particular, the 0-25% group quickly die out, and, despite their occasional reappearance due to fortu-

itous mutations, they never manage to maintain any foothold in the world. This is in spite of the fact that

the 0-25% group was the best represented when the population was (randomly) created at the start of the

run. There is one period (at around 8000 time steps) when the 50-75% group temporarily threatens the

superiority of the most extreme bluffers. However, the 75-100% group soon recover, and regain the ad-

vantage. This challenge coincides with a temporary improvement in the fortunes of the 25-50% group,

an improvement which is less substantial, and equally as ephemeral, as that experienced by the 50-75%

group.

The most significant trend made evident through this analysis — that the 75-100% group (the extreme

bluffers) are the most successful sub-population — has occurred in every one of the many runs at this low

cost signaling that we have analysed so far. These results indicate that, in this simple eco-system, when

there is a low cost to the signaling of aggressive intentions, the most successful (most adaptive) strategy

is to produce aggressive signals that indicate levels of aggression well in excess of actual aggression.

And, if we are allowed to hypothesize the presence of an ESS on the basis of empirical observation rather

than formal mathematical analysis, then it appears that, for this ecological situation, extreme bluffing is

an ESS. The failure of the low-bluffing strategies to re-establish themselves in the population, following

their initial decline, implies that a population of high bluffers could not be invaded by an honest mutant.

The results also suggest that honest signaling would not be an ESS, as a relatively honest population could

be invaded by a higher-bluffing mutant.

5.2 Experiment 2: High Cost Signaling

In the second experiment described here, the cost of aggressive signaling was set to be much higher — 0.2

units of energy deducted per unit of aggression signaled. Figure 2 shows the results of one representative

run at this cost. Again the graph shows the total energy present in each of the 4 sub-populations, during

the first 16000 time steps.

In this particular high cost run, two of the four identified sub-populationsco-exist alongside each other

in the eco-system. These are the 0-25% group and the 25-50% group; i.e., the 2 groups who bluff at lower

levels. For most of the run, the relative positions of the two relevant plots indicate that the 0-25% group

is marginally more successful than the 25-50% group, although the 25-50% group enjoys occasional su-

periority (e.g., the period around time step 12000). Notice that the competitive nature of the eco-system

(resulting from the capped resource level) means that when one of these two groups undergoes a period

of unusual prosperity, its success tends to be at the expense of the other group. Neither of the high-bluff

strategies is able to compete for any length of time. The 75-100% group is moderately successful for

around the first 4000 time steps, but then its fortunes decline, and the group dies out at around time step

7000. The 50-75% group dies out very quickly. The two high-bluffing groups are occasionally resurrected

through mutations, but neither experiences any period of sustained resurgence.

In all the many runs featuring this high cost of signaling, which we have analysed so far, the two

groups adopting the lower-bluff strategies tended to be overwhelmingly dominant, when compared with

the groups of higher-bluffers. And in general, the pattern of relative adaptive success between the two

lower-bluff groups is also repeated; i.e., the most honest sub-population (the 0-25% group) tends to en-

joy some degree of superiority — sometimes more so than in the run shown. So all the indications are

that, in this simple eco-system, when there is a high cost to signaling, it is no longer beneficial to bluff

excessively, because the energy cost incurred through such behavior is prohibitive. For this ecological

situation, relative honesty appears to have the general character of an ESS; high-bluffing sub-populations

cannot re-establish themselves when competing with populations made up of lower-bluffing individuals.

Also, it appears that high-bluffing would not be an ESS, as a high-bluffing population could be invaded

11

20000

15000

10000

5000

0

0->25%

25->50%

50->75%

75->100%

Energy

Time

8000 16000

High Cost Signaling (0.2)

Figure 2: High Cost Signaling — the total energy levels of the four sub-populations are plotted against

time. The general level of energy present in the various sub-populations is, of course, less than in the low

cost example, precisely because the overall cost of signaling, in energy terms, is higher.

by a more honest mutant.

6 Conclusions

Thus, on the evidence from this synthetic ecology, the fundamental logic of the handicap principle does

transfer to multi-agent signaling systems. When the cost of signaling is low, the extreme bluffers take

over the world. When the cost of signaling is high, the more honest individuals are the dominant section

of the population. So our results support the general hypothesis that a high cost to signaling will result in

increased honesty. Moreover, the mechanisms though which relative honesty is enforced in our simulation

are the same as those described by Zahavi.

References

Cliff, D., and Bullock, S. (1993). Adding ‘foveal’ vision to Wilson’s animat. Adaptive Behavior, 2(1),

49-72.

Clutton-Brock, T., and Albon, S. (1979). The roaring of red deer and the evolution of honest advertise-

ment. Behaviour, 69, 145-170.

Davies, N. B., and Houston, A. I. (1984). Territory economics. In Krebs, J. R., and Davies, N. B. (Eds.),

Behavioural Ecology - an Evolutionary Approach (2nd edition)., chap. 6, pp.148-169. Blackwell Sci-

entific, Oxford.

de Bourcier, P., and Wheeler, M. (1994). Signalling and territorial aggression: An investigation by means

of synthetic behavioural ecology. In Cliff, D., Husbands, P., Meyer, J.-A., and Wilson, S. W. (Eds.),

From Animals to Animats 3: Proceedings of the Third InternationalConference on Simulationof Adap-

tive Behavior, pp.463-472 Cambridge, Massachusetts. MIT Press / Bradford Books.

Maynard Smith, J., and Harper, D. G. C. (1988). The evolution of aggression. PhilosophicalTransactions

of the Royal Society: Biological Sciences, 319, 557-570.

12

Stamp Dawkins, M. (1993). Are there general principles of signal design?. Philosophical Transactions

of the Royal Society: Biological Sciences, 340, 251-255.

Wheeler, M., and de Bourcier, P. (1994). How not to murder your neighbor: Using synthetic behavioral

ecology to study aggressive signaling. Submitted to the journal Adaptive Behavior.

Zahavi, A. (1975). Mate selection - a selection for a handicap. Journal of Theoretical Biology, 53, 205-

214.

13

In: de Bourcier, Lemmen & Thompson eds., 1994 The Seventh White House Papers:

Graduate Research in the Cognitive & Computing Sciences at Sussex. University of

Sussex, School of Cognitive & Computing Sciences, Brighton, UK. Research Paper

CSRP 350.

Dynamic Fitness Landscapes

Seth Bullock

sethb@cogs.sussex.ac.uk

School of Cognitive & Computing Sciences

University of Sussex

Brighton

BN1 9QH

Abstract : Genetic Algorithms (GAs) are typically thought to work on static fitness land-

scapes. In contrast, natural evolution works on fitness landscapes that change over evolu-

tionary time as a result of co-evolution. Sexual selection and predator-prey evolution are

examined as clear examples of phenomena that transform fitness landscapes. The concept

of co-evolution is subsequently defined, before attempts to utilise co-evolution in the use of

GAs as design tools are reviewed and speculations concerning future applications of auto-

matic co-evolutionary techniques for design are considered.

1 Genetic Algorithms

Genetic Algorithms (GAs) are a design/optimisation technique inspired by natural evolution (Goldberg,

1989; Holland, 1975). The bare essentials of evolutionary theory (selection, reproduction, variation, fit-

ness, etc.) are extracted and applied to artificial genetic material in an attempt to evolve solutions to prob-

lems.

A genetic algorithm works on a group of potential solutions to a problem, termed a population. Each

solution takes the form of a string (chromosome) of letters (genes) from an alphabet (typically consisting

of the binary digits f0,1g). The algorithm first assesses these ‘genotypes’ allocating a fitness value to

each, dependent upon the degree to which its associated ‘phenotype’ solves the problem (e.g. how well

the parameters specified by a chromosome characterise a useful bridge, or pack a lorry, or optimize a

function, etc.).

Once this has been carried out, a new population of genotypes can be created by ‘breeding’ the cur-

rent population. ‘Parent’ chromosomes are chosen with some bias towards those that are most fit. Both

parents contribute some ‘genetic material’ to their ‘offspring’. This is typically achieved through some

form of cross-over operator which takes two chromosomes and produces two more by swapping a ran-

domly chosen portion of the genome from each parent. During reproduction there is a small chance that

mutation may occur resulting in a less than perfect copy of genetic material. The role of mutation in the

reproduction process is to introduce some random variation to the population. The cycle then repeats as

the offspring generation is assessed, and bred, etc.

Over evolutionary time populations will (hopefully) ‘converge’ on solutions to problems, many of

which may be counter-intuitive to the designer. Convergence is said to have occurred in a population if

the genes at each locus reach some criterion of uniformity across the population.

Just how the discovery of solutions is achieved is controversial, but essentially the search space (de-

fined by the manner in which the problem is parameterized) is tested in a parallel manner which takes ad-

vantage of beneficial strings of consecutive genes (schemata) by tending to group them together to form

potential solutions.

14

2 Landscapes

Optimisation techniques are often thought of as traversing landscapes. A potential solution is represented

as a point in such a landscape, the height of which corresponds to its ‘fitness’ – the extent to which it

solves the problem. Fitness can either increase with height or increase with depth. For the remainder of

this paper I will adopt the former convention.

If an optimisation technique tends to move from one potential solution to another which is slightly

higher then it is a good technique and will tend to reach maxima in the fitness landscape. These solutions

correspond to the tops of hills, points at which any small change to the solution (changing the length of

one of the struts in a bridge, rotating a box slightly in a lorry, increasing one coefficient in an equation

by a small amount, etc.) will result in a poorer solution (somewhere on the hillside). For any landscape

there may be a number of local maxima and will be at least one global maximum. Local maxima are hill

tops that although better than their surroundings are not the highest hill tops in the landscape. They are

good solutions but not the best. Global maxima are the highest ground in the landscape. They are the best

possible solution to the problem.

As was mentioned in the previous section, genetic algorithms typically work with a population of

solutions scattered across the fitness landscape which gradually converge on one of the maxima. The

fitness landscape is fixed by the designer of the GA when she decides how she will assess the potential

solutions in the population. For example, if evolving a bridge design, the GA designer may specify fitness

as being a function of some measure of safety, a measure of traffic capacity, and a measure of cost. As

such a function does not change throughout the evolution process, the fitness landscape can be regarded

as static, i.e. a potential solution with fitness x will always have fitness x independent of its peers or the

passing of time. Indeed almost all optimisation techniques traverse static fitness landscapes.

In contrast, natural evolutionworks on a dynamic fitness landscape. Over evolutionary time the fitness

of a phenotype (solution) may change radically. What was a winning strategy (e.g. eating flora of type A)

becomes ‘out of date’ as conspecifics, predators, resources, etc. change through their own evolution. The

resulting co-evolution, the evolution of systems in response to each other, can be thought of as ensuring

that an organism’s evolutionary goal-posts (maxima in the fitness landscape) move. Rather than work

towards the solution of some fixed problem, organisms are constantly adapting (over evolutionary time)

to each other, their surroundings, etc. which are themselves adapting in response.

As an explicatory exercise, two examples of such co-evolution will be described before a more general

characterisation of the phenomena at issue is attempted.

3 Sexual Selection and Predator-Prey Evolution

One of the oldest and most enduring problems in the study of animal behaviour is that of the genesis of the

plethora of mating displays, colourful feathers, complex calls and songs, etc. that animals use to attract the

opposite sex. With the advent of Darwin’s On the Origin of Species the beginnings of a solution were for-

mulated. Darwin proposed that life-forms evolve through a process involving reproduction, inheritance,

variation and selection. He considered the struggle for survival to be the primary selective pressure. Or-

ganisms slightly better equipped to deal with the trials of life will leave a greater number of offspring

than their less well equipped peers. Over many generations populations will come to be composed of

individual organisms that are well adapted to the dangers and resources of their respective niches.

However, this ‘natural’ selection cannot account for the myriad of impressive and complex sexual

displays that are possessed throughout the animal kingdom. The peacock’s tail, the bower bird’s love-nest,

the frog’s croak, and the stickleback’s dance do not contribute to their respective chances of survival. If

anything, such behaviours and ornaments actively detract from an organism’s chances of survival through

their costs in terms of energy and time (both of which could have been spent foraging or in some other

useful activity), and in terms of becoming more likely to expire through predation (beautiful feathers and

sonorous croaks not only attract mates but hungry predators too).

In order to explain the existence of such characteristics, Darwin proposed a separate selective pres-

15

sure. Sexual selection can be considered as a corollary of the fact that survival is not the only requisite

of an evolutionarily successful creature. In order to survive over evolutionary time one must reproduce.

The evolution of traits which, although not beneficial in terms of natural selection (they do not increases

the organism’s chances of survival), improve an organism’s reproductive chances can be accounted for

by appealing to the notion that organisms slightly better equipped to deal with the trials of mate choice

and reproduction will, again, leave a greater number of offspring than their less well equipped peers.

Darwin divided the mechanism of sexual selection into two categories, male contests and female choice.

The former category contains behaviour and morphological traits that enable males to beat other males

at the mating game. For example, the antlers of red deer, and the tusks of the bull walrus have evolved

to serve the function of enabling a male deer or walrus to beat competitors in fights which determine a

sexual ‘pecking order’. Many of these traits (e.g. size, strength, fighting prowess, etc.) contribute to a

general survival ability as well as specifically to reproductive success. However, male-male competition

can develop in areas that do not aid an individual creature’s survival.

Sperm competition is one such example. In species utilising this practice (e.g. dragonflies) females

typically store the sperm of their mates for a time before their eggs are fertilised. Copulating males will

attempt to expel the sperm of their mate’s previous suitors through a variety of penis specialisations. To

combat such expulsion techniques, methods of ensuring the retention of sperm, including the use of gen-

ital cement, co-evolve.

Female choice may, at first glance, seem less bizarre, relying as it does on the understandable notion

that it pays to be picky. In most species, females put more effort into producing young than their mates1.

They provide the vast majority of the time and energy necessary to produce a viable offspring. Given that

this is the case, females that mate with poor stock are wasting valuable resources. Females with an ability

to distinguish between poor and high quality mates will enjoy an advantage over their less perceptive

conspecifics in terms of the quality and number of offspring produced.

Although this principal seems sound, how can it result in the preferences that we see in the animal

kingdom? Why should pea-hens prefer peacocks with stunning plumage displays? Why should female

frogs fall for males with loud, deep croaks? Two attempts to answer this style of question will be detailed

below.

Fisher (1915) considered the case in which an infrequently occurring trait is favoured by natural se-

lection. Females mating with males who display this trait produce fitter offspring. Thus the females with

preferences for the male trait will proliferate, as will the males which possess the trait. However, off-

spring inheriting such a trait are not merely better equipped for survival, but are also better equipped for

the task of securing a mate. Fisher showed that under certain conditions a “runaway process” could result

in the latter benefit overpowering the former, resulting in males with traits that actively detract from their

survival chances, and females with preferences for such traits.

In contrast, Zahavi (1975) proposed that rather than the reduction in an organism’s chances of sur-

vival being an unfortunate result of runaway sexual selection, females might actually benefit from mating

with “handicapped” males. He claimed, and was subsequentlysupported by mathematical proofs (Grafen,

1990) that showed, that handicaps (e.g. the peacock’s tail) which increase an organism’s chances of per-

ishing due to predation or starvation are honest signals of its quality.

His logic revolves around the observation that costly displays can only be made by those able to afford

them. In this context, displays that are costly in terms of fitness (they reduce ones reproductive chances)

can only be made by those organisms with a high enough fitness to afford them. Sexual selection will

thus result in loud, energetic, opulent, costly, extravagance.

Space does not permit a fuller coverage of the issues raised by these theories and the interested reader

is referred to Gould and Gould (1989) and Krebs and Davies (1993) for more thorough treatments of the

topic. What remains pertinent to this essay is that, as in the male contests described above, co-evolution

1Sea-horses are a notable exception. The female deposits her eggs in her mate’s pouch, the eggs are fertilised, and gestate

within this sac until the male ‘gives birth’ to them. This role-reversal also affects their mating ritual. Male sea-horses are coy

and shy, whilst females must actively win their affection by displaying.

16

drives the female’s mate preferences and the associated male traits, and in many cases drives them in

such a way as to create organisms which have deviated from their strictly survival oriented ancestors in

an attempt to satisfy the constantly changing demands of sexual selection.

Sexual selection is by no means the only example of such co-evolution. Predator-prey evolutionary

dynamics also exhibit what behavioural ecologists have termed ‘evolutionary arms races’. The develop-

ment of higher acuity in a predator may be countered by the evolution of camouflage in a prey, teeth and

claws provoke carapaces and scales, toxins demand antidotes, etc., etc.

Such arms races result in highly developed behavioural skills and complicated morphology. Such

complexity is the result of the increasing demands placed on organisms by their environment (including

their conspecifics, predators, prey, etc.). The hunting skill and speed of the peregrine falcon, for example,

could not have evolved without the concurrent evolutionof the perceptual capacity and escape capabilities

of its prey.

Does any kind of co-adaptation qualify as co-evolution? Daniel Janzen (1980) distinguishes between

true co-evolution and what he terms “diffuse” co-evolution. He defines the former as specific, recipro-

cal, evolutionary change, i.e. continued evolutionary change in the trait of one population in response

to the continued, reciprocal, evolutionary change of a trait possessed by another population. In contrast,

diffuse co-evolution is non-specific, reciprocal, evolutionary change, in which the trait of one population

changes over evolutionary time in response to a group of traits possessed by another population (which

may contain several species).

For example, the evolution of egg-mimicry and egg-discrimination in species of bird that respectively

perpetrate and suffer the depositing of eggs in foreign nests is an example of true co-evolution (which

is common in brood-parasitism and host-parasitism) in that the traits have evolved specifically for the

purpose of brood-parasitism and defeating brood-parasitism respectively. Conversely, the hard shells of

many crustaceans have evolved in response to a general threat from predators with a variety of body crush-

ing/piercing techniques and are thus examples of diffuse co-evolution (See Krebs & Davies, 1991, ch.6

for further examples).

In fact, under Janzen’s definitions,many instances of co-adapted predator-prey traits cannot be classed

as the product of co-evolution. For example, the ultrasonic sound detectors in lacewing moths, which are

a specific counter-adaptation to the sonar hunting technique developed by their bat predators, may be the

product of a one-way adaptation on the part of the moths with no reciprocal evolutionary change in the

bat predation mechanism. If this is the case then the co-adapted traits cannot be termed co-evolved.

Armed with such notions of co-evolution we can proceed to examine the prospects of attempting to

apply co-evolutionary techniques to the use of genetic algorithms as design tools.

4 Co-evolutionary Design

A fundamental problem for the designer of genetic algorithms is specifying the problem that is to be solved

in a manner that allows incremental steps towards a solution to be rewarded. If a problem is not specified

in such a manner the genetic algorithm will have no feedback with which to drive its search and will

essentiallyperform randomly until it finds a solution that can be rewarded. Co-evolution circumvents such

problems by automatically moving the GA’s evolutionary ‘goal-posts’, gradually changing the problem

as the population moves over a dynamically changing fitness landscape.

What are the prospects for such an automatic co-evolutionary approach? Initial work in this area is

thin on the ground. Simulations of undirected co-evolution have been undertaken (e.g. Werner & Dyer,

1991), but have little relevance here as they typically seek neither to explicate co-evolution nor utilise

co-evolution in the solution of some design task.

The incremental approach of the Evolutionary Robotics Research Group at the University of Sussex

can be seen as a first attempt to use co-evolution in the design of autonomous agents (Harvey, Husbands, &

Cliff, 1994). The agents involved initially face a simple sensory-motor problem, which is incrementally

made more difficult in an effort to coax complex behaviour from systems which could not be evolved

17

from scratch. Such scaffolding techniques are reminiscent of the parent-child interactions which facilitate

infant development (Rutkowska, 1994).

However, the hand-cranked nature of such scaffolding requires the presence of a human designer ‘in

the loop’ and, potentially, the tasks of specifying the incremental goals that allow evolution to reach so-

lutions to complex problems could itself become as problematic as designing the agents manually.

First attempts at utilising automatic co-evolutionary design includes work by David Hillis (1990) and

Phil Robbins (1994), in which parasites are used to increase the performance of artificial agents, and Phil

Husbands (1993) at the University of Sussex, in which the co-evolution of shop-floor schedules was ex-

plored. Such work, however, is in its infancy.

Before the full potential of co-evolutionary design techniques can be realised, the burgeoning body

of work exploring artificial co-evolution must be consolidated. At Sussex, studies of predator-prey co-

evolution (Miller & Cliff, 1994), sexual selection (Miller, 1994), and parental imprinting (Todd & Miller,

1993), have already been carried out and further research seems both worthwhile and inevitable. Open

questions, such as the paucity of true co-evolution in natural predator-prey ecologies, in comparison to the

relative abundance of such evolutionary dynamics in parasitic relationships, seem amenable to investiga-

tion through the artificial means employed within this style of research. The possibilityof fruitful collabo-

ration between the simulation of artificial co-evolution and the study of naturally occurring co-evolution

seems to be a set of goal-posts worth shooting for, and one that will not be moving in the foreseeable

future.

References

Fisher, R. A. (1915). The evolution of sexual preference. Eugen. Rev., 7(184 - 192).

Goldberg, D. E. (1989). Genetic Algorithms in search, optimization and machine learning. Addison-

Wesley.

Gould, J. L., & Gould, C. G. (1989). Sexual Selection. Scientific American Library.

Grafen, A. (1990). Biological signals as handicaps. Journal of Theoretical Biology, 144, 517 – 546.

Harvey, I., Husbands, P., & Cliff, D. (1994). Seeing the light: Artificial evolution, real vision. In Cliff, D.,

Husbands, P., Meyer, J.-A., & Wilson, S. W. (Eds.), From Animals to Animats 3: Proceedings of

the Third International Conference on Simulation of Adaptive Behaviour. A Bradford Book; MIT

Press.

Hillis, D. (1990). Co-evolving parasites improve simulated evolution as an optimisation procedure. Phys-

ica D, 42, 228 – 234.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. MIT Press.

Husbands, P. (1993). An ecosystems model for integrated production planning. International Journal of

Computer Integrated Manufacturing, 6(1 & 2), 74 – 86.

Janzen, D. H. (1980). When is it coevolution?. Evolution, 34(3), 611 – 612.

Krebs, J., & Davies (1993). An Introduction to Behavioural Ecology (3rd edition). Blackwell Scientific.

Krebs, J. R., & Davies, N. B. (Eds.). (1991). Behavioural Ecology - An Evolutionary Apporach (3rd

edition). Blackwell Scientific.

Miller, G. F. (1994). Exploiting mate choice in evolutionary computation: Sexual selection as a process

of search, optimization, and diversification. In Fogarty, T. C. (Ed.), Evolutionary Computing: Pro-

ceedings of the 1994 Artificial Intelligence and Simulation of Behaviour (AISB) Society Workshop,

pp. 65 – 79. Springer-Verlag.

18

In: de Bourcier, Lemmen & Thompson eds., 1994 The Seventh White House Papers:

Graduate Research in the Cognitive & Computing Sciences at Sussex. University of

Sussex, School of Cognitive & Computing Sciences, Brighton, UK. Research Paper

CSRP 350.

Real Time for Real Power: Methods of evolving hardware to control autonomous

mobile robots.

Adrian Thompson

adrianth@cogs.susx.ac.uk

School of Cognitive & Computing Sciences

University of Sussex

Brighton

BN1 9QH

Abstract It is possible to use artificial evolution automatically to “design” electronic circuits

to control a mobile robot. Evolvable hardware allows each new variant circuit to be physi-

cally tried out as a real piece of hardware when its performance needs to be measured. This

means that evolution can exploit many of the properties of the hardware which a human de-

signer could not. There is also the potential to accelerate the evolutionary process by the use

of a high-speed simulation of the hardware control system’s environment. It is argued here

that a circuit produced by an accelerated evolutionary process can not use the properties of

the hardware as effectively as one evolved in real time. The methods of accelerated and real-

time evolution will both have their place, but it is important to distinguishbetween the merits

of each.

1 Introduction

In recent years, the case for evolvable hardware (electronic circuits which are directly manipulated by

artificial evolution) has begun to be made [8, 2, 6, 14, 7]. This paper re-examines the methods of evolv-

ing hardware for the specific task of controlling an autonomous mobile robot. I reason that there are two

distinct ways of using the power of evolvable hardware: either evolve real (not simulated) circuits at high

speed in a simulated environment or evolve real circuits more slowly in the real world (which turns out

to allow better exploitation of the hardware). In both cases, it is important to abandon design constraints

which are merely for the benefit of a human designer, such as the enforcement of modularisation and syn-

chronisation. This frees evolution to produce robot control structures which are both spatially (in terms of

the topology and physical layout of the components and their interconnections) and temporally (in terms

of the circuit’s dynamics) too difficult for humans to design. Designing these control architectures might

be difficult not only due to their complexity, but also because of their use of detailed characteristics of the

hardware; characteristics which the designer either does not know about, or would be unable to put to use

even if the information were available.

Firstly, though, what is evolvable hardware? When artificially evolving the control system of an au-

tonomous mobile robot, each of a “population” of many different control systems is evaluated for its per-

formance in mediating some desired robot behaviours to give a measure of “fitness.” Control systems

which cause poor behaviour are removed from the population, and replaced by the “offspring” of con-

trollers which give better results. Fitter control systems are “bred” to produce more offspring than less fit

controllers. The breeding process operates not on the controllers themselves, but on their genotypes —

abstract descriptions of how the controllers are constructed. Usually, the genotypes of each of two parent

control systems are combined in some way to form offspring genotypes which may have parts from each

parent. Small stochastic changes (mutations) are also made to the genotypes during breeding. The control

systems arising from the offspring genotypes are then evaluated to determine the desirability of the robot

20

I/O

I/O

I/O I/O

Figure 1: Part of an FPGA architecture.

behaviour they induce, and the process continues. The hope is that, starting from an initial population (of-

ten randomly generated), the evolving control systems cause the robot to get better at its predetermined

job over time, finally reaching acceptable performance [9, 3, 1].

Evolvable Hardware (EHW) is a piece of electronics which can be automatically physically recon-

figured to instantiate each individual control system in the changing population in turn. Hence, each con-

troller can be evaluated as an electronic circuit in the real world, not as a simulation of some other type

of system — not even as a simulation of an electronic circuit. Consequently, an implemented system is

evolved directly; the constraints imposed by the hardware are satisfied automatically, and all of its char-

acteristics can be brought to bear on the control problem. There is now the opportunity to evolve circuits

as parallel distributed processing (PDP) systems in their own right, and which are tailored to exploit the

exact internal physical properties of a chip1 (which a designer could never use or even know about).

What I have just described is sometimes known as “intrinsic” EHW to distinguish it from hardware

which can be reconfigured only a few times — “extrinsic” EHW.2 In the extrinsic case, a software simu-

lation of the hardware is used to evolve a configuration which, once providing satisfactory performance

in the simulation, is applied to the hardware in a separate implementation step. Many of the advantages

of EHW are lost by this approach, but it does have the benefit of being easy to achieve with 1994 off-

the-shelf components. Very soon, however, the availability of devices suitable for intrinsic EHW will no

longer be a problem, so this paper deals only with the the highly superior case of intrinsic EHW.

How can hardware be reconfigurable at all? One answer is to have some aspects of the behaviour of

the components, as well as the interconnections between them, determined by the values held in random-

access memory (RAM) cells. The values held in these cells determine the configuration and hence the

behaviour of the system, and can readily be changed under software or hardware control. A silicon chip

which can be built along these lines is shown in Figure 1 — a Field Programmable Gate Array (FPGA).

1There is a danger that the circuit could come to rely on the properties of one particular device, and not work when placed

on another which is nominally identical. It may be necessary to find ways of avoiding this; on the other hand, the effect could

be useful in coping with defects on a particular chip or wafer.
2The terms “intrinsic” and “extrinsic” EHW are due to Hugo de Garis.

21

The diagram is of a simple imaginary architecture, but its structure is pertinent to real devices [17].

FPGAs typically consist of an array of many hundreds of reconfigurable blocks, shown here as boxes

containing four dots. Each dot in this diagram represents one bit of RAM; for example, if these blocks

are capable of computing an arbitrary boolean function of two inputs, then a block’s behaviour can be

determined by the contents of four bits of configuration RAM controlling it (there are 24 boolean functions

of two inputs). Often, the blocks contain more functionality, such as multiple boolean functions and flip-

flops (allowing clocked systems to be evolved). Inputs and outputs of the blocks can be connected to

wires passing next to them; which wire is connected to which block is again controlled by RAM bits.

The connections between wires are also controlled in this way (in fact, a hierarchy of wiring resources of

different lengths is sometimes provided). The signals near the edges of the array are interfaced by special

reconfigurable input/output (I/O) blocks to the pins of the chip.

Even from this simplified overview, we can see that the configuration RAM bits determine what cir-

cuit is physically present on the chip, because they control transistor switches which determine what is

connected to what, and how blocks behave. If the content of the configuration RAM is placed under the

control of an evolutionary algorithm, then the circuits determined by each new set of configuration bits

it generates can be evaluated in the real world as real physical circuits on the chip. RAM-based digital

FPGAs are not the only way that reconfigurable hardware can be built, but are probably going to be the

dominant way over the next few years.

2 Accelerated Evolution

When artificially evolving robot controllers, the time taken before a satisfactory control system is obtained

is usually dominated by the amount of time it takes to evaluate each individual’s fitness. The time taken

by the genetic operations (breeding) and the expression of the genotypes (to produce the actual control

structures) is small in comparison.

The obvious way to evaluate a control system is to put it in the robot and see what the robot does in the

real world, in real time. This is a slow process: for a basic task it might take two minutes of behaviour in

the real world to evaluate a control system. With a population size of 30, then 30 generations would take

more than a day, and this is for the very simplest of tasks — the problem will only get worse.3 Methods of

speeding up fitness evaluation (and thus the whole evolutionaryprocess) are therefore of great importance.

In order to be evaluated in less than real time, the evolving hardware control system needs to be in-

terfaced to a high-speed simulation of the robot and its interactions with the world. It is suggested by

de Garis[2] that the environment simulation could be implemented in special purpose hardware situated

next to the evolving hardware control system on a VLSI chip. Implementing the environmental simula-

tor in hardware rather than software makes it faster, but does not solve the problem that it is extremely

difficult adequately to simulate the interactions between a control system and its environment, such that

a control system evolved for the simulated world behaves in a satisfactory way in the real world. This is

especially the case when vision is involved [1]. Nevertheless, it is likely that environment simulation in

special purpose hardware will be an important tool in evolutionary robotics as new simulation techniques

are developed [10].

The point of this section is that, even if it is possible to evolve hardware in a high-speed simulation of

the environment, there is a cost to be payed in terms of the efficiency of the evolved circuit. When a circuit

which evolved for behaviour in the high-speed simulated world is ready for use in the real world, all of its

dynamics must be slowed down by the same factor by which the real world is slower than the simulation.

(Imagine a controller which was evolved for a high-speed simulated world and was then let loose in the

real world without being slowed down. Everything in the environment would then be happening slower

than it “expected,” and the motor signals produced would tend to be too fast for the robot body and the

3Evolution times should be compared to the time for humans to design an equivalent system. Evolution times of a few years

will be acceptable if the final product would take at least as long to be designed by humans, or if it could not be designed at all.

Costs should also enter the comparison.

22

world. It would probably not work.) Hence, an EHW robot controller which was evolved for a high-

speed simulated environment, and then slowed down to operate in the real world, will not be making

maximal use of the available hardware. This is because it is capable of producing the same behaviour in

a world which is running faster, and the resources needed to allow this could be being used for real-world

performance.

In many cases, because of the huge power available from hardware, it will be sensible to trade off the

efficiency of the circuit produced in favour of accelerated evolution, and the high-speed environment sim-

ulation approach may be chosen. However, it is the main point of this paper that there is another option: it

is possible to increase the exploitation of the hardware’s resources by evolving circuits in real time. That

is the subject of the next section.

3 Real Time for Real Power

Work with the “gantry robot” at the University of Sussex [5] suggests that it may be feasible to carry out

evolution in a real-world environment with fitness evaluations taking real time. This immediately avoids

the problem identified in the previous section — no part of the hardware ever has to perform faster than it

does when the circuit is controlling the real robot in the real world. All of the capabilities of the hardware

can therefore be applied to the real-world control task (none need to be held in reserve to allow the circuit

to be run faster to match a high-speed environment simulation).

In fact, the implications are greater than this. We have seen that for accelerated evolution, the dynam-

ics of the evolving hardware robot control circuit must be speeded up and then slowed down again, but

we did not say how. In practice, it will almost certainly be through clocking. If only clocked circuits can

be developed by accelerated evolution, then this is a very tangible limitation to the technique. There is

no such limitation on evolution carried out in real time.4

Why might unclocked circuits be better than clocked ones? Firstly, notice that a clocked digital sys-

tem is a finite-state machine, whereas an unclocked asynchronous digital system is not. To describe the

state of an unclocked circuit, the temporal relationships between its parts must be included. These are

continuously variable analogue quantities, so the machine is not finite-state. This theoretical point gives

a clue to a practical advantage: in an unclocked digital system, it is possible to perform analogue opera-

tions using the time dimension, even when the logic gates assume only binary values (see for example,

the pulse stream technique [15, 16]).

For some types of system (perhaps including recurrent logic networks), clocking can be an unneces-

sary restraint on the circuit’s behaviour, imposed to ease design by humans. In contrast, there are also

situations in which clocking expands the useful dynamics of the system by providing easy control of the

time-scales involved. I am not arguing that clocking is always bad, just that it is not always good.

In considering the design by humans of asynchronous circuits, Gopalakrishnan and Akella [4] note

that asynchronous systems are best for certain kinds of applications: “Synchronous systems are simply

too unnatural for such applications. Synchronous clocking works best when many decisions can be made

statically (i.e. before execution time).” This condition is certainly not met when evolving the controller

of a mobile robot. In addition, they note that, “Synchronous systems are hard to expand or modify in-

crementally. .. .In comparison, asynchronous circuits permit such incremental expansion.” This suggests

that asynchronous circuits may be more easily evolvable than clocked ones. They continue: “In asyn-

chronous systems, the completion of an activity can immediately (i.e. without having to wait for the next

clock ‘tick’ to arrive) initiate any activity that can logically follow. This can give very fast execution times

in the average case.” Perhaps, then, asynchronous circuits can make more efficient use of the hardware

than clocked circuits.

It is also observed in [4] that asynchronous circuits minimise clock and power distribution problems

and that: “Many people see an inherent robustness in asynchronous circuits. They have been investigating

the widely believed ‘self testing’ nature of asynchronous circuits, or their low power consumption, or high

4For convenience, the environment could still be simulated, but it must be a real-time simulation.

23

immunity to voltage and temperature fluctuations.” All of these points indicate that it is more appropriate

to evolve asynchronous circuits for robot control than clocked ones. In fact, the reason that asynchronous

circuits are little used is because of their difficulty of design — artificial evolution may be the answer not

only in robotics, but in other areas of electronics too.

The evolution of circuits (either clocked or asynchronous) in real time allows maximal exploitation

and accommodation of the natural temporal behaviour of the implementation (its physics). In addition,

asynchronous circuits evolved in real time can put to use dynamics which would be considered as tran-

sients between clock-ticks in a clocked system. Circuits evolved in real time could be worth waiting for.

4 Conclusion

I have argued that when intrinsically evolving hardware to control a robot, the use of high-speed envi-

ronment simulation to accelerate the evolutionary process imposes limitations on the nature of the circuit

evolved. These limitations are not present when the circuits are allowed to behave in real time during

their fitness evaluations, allowing superior circuits to be produced. Both of these methods will have their

place in the growing field of evolvable hardware.

References

[1] Dave Cliff, Inman Harvey, and Phil Husbands. Explorations in evolutionary robotics. Adaptive

Behaviour, 2(1):73–110, 1993.

[2] Hugo de Garis. Evolvable hardware: Genetic programming of a Darwin Machine. In C.R. Reeves

R.F. Albrecht and N.C. Steele, editors, Artificial Neural Nets and Genetic Algorithms - Proceedings

of the International Conference in Innsbruck, Austria, pages 441–449. Springer-Verlag, 1993.

[3] David E. Goldberg. Genetic Algorithms in Search, Optimisation & Machine Learning. Addison

Wesley, 1989.

[4] Ganesh Gopalakrishnan and Venkatesh Akella. VLSI asynchronous systems: specification and syn-

thesis. Microprocessors and Microsystems, 16(10):517–526, 1992.

[5] Inman Harvey, Phil Husbands, and Dave Cliff. Seeing the light : Artificial evolution, real vision. In

Dave Cliff, Philip Husbands, Jean-Arcady Meyer, and Stewart W. Wilson, editors, From animals to

animats 3: Proceedings of the third international conference on simulation of adaptive behaviour,

pages 392–401. MIT Press, 1994.

[6] Hitoshi Hemmi, Jun’ichi Mizoguchi, and Katsunori Shimohara. Development and evolution of

hardware behaviours. In Rodney Brooks and Pattie Maes, editors, Artificial Life IV, pages 317–376.

MIT Press, 1994.

[7] Tetsuya Higuchi, Hitoshi Iba, and Bernard Manderick. Massively Parallel Artificial Intelligence,

chapter “Evolvable Hardware”, pages 195–217. MIT Press, 1994. Edited by Hiroaki Kitano.

[8] Tetsuya Higuchi, Tatsuya Niwa, Toshio Tanaka, Hitoshi Iba, Hugo de Garis, and Tatsumi Furuya.

Evolving hardware with genetic learning: A first step towards building a Darwin Machine. In Pro-

ceedings of the 2nd Int. Conf. on the Simulation of Adaptive Behaviour (SAB92). MIT Press, 1993.

[9] J. H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan

Press, 1975.

[10] N. Jakobi. Evolving sensorimotor control architectures in simulation for a real robot. Master’s

thesis, School of Cognitive and Computing Sciences, University of Sussex, 1994.

24

[11] D. Mange. Wetware as a bridge between computer engineering and biology. In Proceedings of the

2nd European Conference on Artificial Life (ECAL93), pages 658–667, Brussels, May 24-26 1993.

[12] Daniel Mange and André Stauffer. Artificial Life and Virtual Reality, chapter “Introduction to Em-

bryonics: Towards new self-repairing and self-reproducing hardware based on biological-like prop-

erties”, pages 61–72. John Wiley, Chichester, England, 1994.

[13] P. Marchal, C. Piguet, D. Mange, A. Stauffer, and S. Durand. Achieving von Neumann’s dream: Ar-

tificial life on silicon. In Proc. of the IEEE International Conference on Neural Networks, icNN’94,

volume IV, pages 2321–2326, 1994.

[14] Jun’ichi Mizoguchi, Hitoshi Hemmi, and Katsunori Shimohara. Production genetic algorithms for

automated hardware design through an evolutionary process. In IEEE Conference on Evolutionary

Computation, 1994.

[15] A. F. Murray et al. Pulsed silicon neural networks - following the biological leader. In Ramacher and

Rückert, editors, VLSI Design of Neural Networks, pages 103–123. Kluwer Academic Publishers,

1991.

[16] Alan F. Murray. Analogue neural VLSI: Issues, trends and pulses. Artificial Neural Networks,

(2):35–43, 1992.

[17] Trevor A. York. Survey of field programmable logic devices. Microprocessors and Microsystems,

17(7):371–381, 1993.

25

Miller, G. F., & Cliff, D. (1994). Protean behavior in dynamic games: Arguments for the co-evolution of

pursuit-evasion tactics. In Cliff, D., Husbands, P., Meyer, J.-A., & Wilson, S. W. (Eds.), From An-

imals to Animats 3: Proceedings of the Third International Conference on the Simulation of Adap-

tive Behaviour, pp. 411 – 420. MIT Press.

Robbins, P. (1994). The effect of parasitism on the evolution of a communication protocol in an artificial

life simulation. In Cliff, D., Husbands, P., Meyer, J.-A., & Wilson, S. W. (Eds.), From Animals

to Animats 3: Proceedings of the Third International Conference on Simulation of Adaptive Be-

haviour. A Bradford Book; MIT Press.

Rutkowska, J. (1994). Emergent functionality in human infants. In Cliff, D., Husbands, P., Meyer, J.-

A., & Wilson, S. W. (Eds.), From Animals to Animats 3: Proceedings of the Third International

Conference on Simulation of Adaptive Behaviour. A Bradford Book; MIT Press.

Todd, P. M., & Miller, G. F. (1993). Parental guidance suggested: How parental imprinting evolves

through sexual selection as an adaptive learning mechanism. Adaptive Behavior, 2(1), 5 – 47.

Werner, G. M., & Dyer, M. G. (1991). Evolution of communication in artificial organisms. In Langotn,

C. G., Taylor, C., Farmer, J. D., & Rasmussen, S. (Eds.), Artificial Life II - SFI Studies in the Sci-

ences of Complexity, Vol. X, pp. 659 – 687 Redwood City, California. Addison-Wesley.

Zahavi, A. (1975). Mate selection – a selection for a handicap. Journal of Theoretical Biology, 53, 205

– 214.

19

In: de Bourcier, Lemmen & Thompson eds., 1994 The Seventh White House Papers:

Graduate Research in the Cognitive & Computing Sciences at Sussex. University of

Sussex, School of Cognitive & Computing Sciences, Brighton, UK. Research Paper

CSRP 350.

An Overview of Motion Processing in Mammalian Visual Systems.

Stephen Eglen

stephene@cogs.susx.ac.uk

School of Cognitive & Computing Sciences

University of Sussex

Brighton

BN1 9QH

Abstract This paper summarises a talk given at the Isle of Thorns Conference in July 1994.

The paper is broken down into three main areas. Section 1 describes the importance of mo-

tion processing for visual systems of varying complexities, from the fly to humans. Section

2 gives an outline of the monkey visual system, as an example of a mammalian visual sys-

tem. This reveals the existence of a main pathway for motion processing. Finally, Section

3 considers two alternative ideas for how such a complex visual system could develop: ge-

netic specification and activity driven self organisation. It is concluded that both processes

are important for normal development of the visual system.

1 The importance of motion.

What is the starting point of vision? Light enters the eye and is transformed into a two dimensional neural

image by the photoreceptors in the retina. In humans, this two dimensional retinal image is then sent via

the optic nerve to the lateral geniculate nucleus (LGN) and then mainly onto the visual cortex. However,

just thinking of the retina as producing two dimensional snapshots of the world and sending them to the

cortex can be too restrictive. The retina is continuously processing light information both in space and

time. Hence, the retina can be thought of as producing two dimensional spatial images over time, i.e.

three dimensional spatiotemporal images. By detecting changes in both space and time, many important

features about the visual image can be extracted.

J.J. Gibson was one of the first people to introduce the idea of looking at how the visual image changed

over time (Bruce & Green, 1990, Chapter10). Gibson developed the notion of the optic flow field. Math-

ematically this is a vector field, with the vector at each point in the two dimensional field describing how

that point is moving. Two example flow fields are given in Figure 1.

(a) (b)

Figure 1: Two example flow fields. The direction of the arrow indicates the direction in which a point

in the visual field is moving at a particular time. The size of the arrow indicates the speed at which that

point is moving. In (b), the circles indicates that there is no movement at that point.

These two example flow fields are useful in that they demonstrate how analysis of optic flow can be

used to determine aspects of self motion. In the first case, the global expansion pattern indicates that the

26

observer is heading towards the point marked X. Hence, global expansion of the optic flow field reveals

the direction of heading. The second optic flow field in Figure 1 shows local movement within the optic

flow field. This indicates that the observer is stationary and that something in the world is moving to the

right. (There is an alternative interpretation: it could be that as the observer is moving, so is most of the

world in the same direction, but this is less likely.)

But, how useful is this notion of the optic flow field? Gibson is often (rightly) criticised for not spec-

ifying how the neural mechanisms in the visual system can produce and use such a flow field. However,

Lee (1980) was the first to show how simple it actually is to compute simple properties of the flow field,

such as the well known time to contact measure, τ. This measure, τ, indicates how long it will take before

the observer collides with the object which it is heading for, assuming the observer continues moving at

constant velocity. Empirical evidence ranging from basketball players jumping to punch a ball through to

gannets diving into water showed that the τ parameter was a good predictor of behaviour (Bruce & Green,

1990, p264).

The optic flow field is by no means the answer to all of the problems in vision. Computational meth-

ods of computing the optic flow field are not simple, typically requiring assumptions about the world

which do not hold. For example, one popular method of computing the flow field was introduced by Horn

and Schunck (1980). Here it is assumed that the overall intensity of the two dimensional image does not

change over time. This method also relies on an iterative relaxation scheme to compute the optic flow

field, which is computationally expensive.

Despite this computational problem, many natural visual systems seem capable of performing some

motion processing. For example, elementary motion detectors exist very early in the fly visual pathway.

These motion detectors then feed onto neurons in the lobula plate which are responsive to large field and

small field motion (Egelhaaf & Borst, 1993, p666). Also, in the frog retina, there are the classic bug

detectors — these are the ganglion cells in the retina that respond best “when a dark object, smaller than

a receptive field, enters that field, stops, and moves about intermittently thereafter.” (Letvin, Maturana,

McCulloch, & Pitts, 1959, p1951). If the dark object is not moving, these ganglion cells do not respond.

Rapidly approaching objects are normally important for an animal to recognise, and so it is reasonable

to expect to find ‘looming detectors’ in visual systems. As well as the previous examples, such detectors

have been found in the nucleus rotundus of the pigeon brain. A sub population of neurons in this region

are found to respond selectively to objects moving in the direction of the pigeon, responding over a range

of stimuli sizes and velocities (Wang & Frost, 1992, p236). Finally, in monkeys, neurons in area MST

(medial superior temporal) respond to global expansion and rotation patterns (Duffy & Wurtz, 1991; Or-

ban, Lagae, Verri, Raiguel, Xiao, Maes, & Torre, 1992).

It is worth noting here that many visual systems do some form of motion processing and that the ‘sim-

pler’ the creature, the earlier in the visual pathway it seems that the motion information is extracted. Mo-

tion processing is therefore important and maybe more so for simpler visual systems. When considering

more complex visual systems, such as the human visual system, things are less clear, as the next section

will show.

One last striking example of the importance of motion is shown by the biological motion displays,

created by Johansson in the early 1970’s (Bruce & Green, 1990, p327). Lights were attached to the joints

of a person who were then filmed walking or running. The contrast of the camera was adjusted so that

only the lights could be picked up by the camera, without any impression of the background or the person.

If subjects viewed a single frame of this film, all they would see is a meaningless jumble of dots. As soon

as they saw a few frames of the film, they instantly perceived the dots as belonging to a human body. This

is a good example of a spatiotemporal image that is spatially not very informative being very informative

when viewed temporally.

The aim of this section has been to show that motion processing is a very important part of visual

processing. This does not imply that motion processing is the only process for all visual systems, although

it does seem that simple visual systems rely quite heavily on it. The next section discusses in more detail

how motion is processed in mammalian visual systems.

27

2 Processing of motion in Mammalian Visual Systems.

[Although this section refers to mammalian visual systems, there are differences between the cat, monkey

and human visual system. For clarity, all specific details are taken from the macaque monkey.]

The visual cortex in mammals is located in the occipital lobe of the cortex, occupying about 55% of

the total cortical area in the macaque monkey (Felleman & Van Essen, 1991). Retinal ganglion cells form

the output from the retina, which passes to the LGN and onto area V1, the primary visual cortex. As well

as area V1, there are many other (extra striate) visual areas that have been described over the last thirty

years. These areas are normally defined according to various anatomical and physiological criteria, and

some debate exists over how many there are. A few years ago, the number was thought to be between 15

and 20 (Van Essen & Maunsell, 1983, p374), but this number has steadily risen to about 30 (Felleman &

Van Essen, 1991). Figure 2 shows the connectivity of some of the most commonly studied areas in the

cortex.

M P
Retina

V1

MT V3a

M P
LGN

V2

V3

V4MST

"Motion"

Magnocellular

"Fine form/colour"

Parvocellular

Figure 2: Outline of the main visual pathway found in the monkey visual system, from the retina to the

main areas in the cortex. Note that only feedforward connections between areas are shown — extensive

feedback connections do exist between areas but has not been shown for simplicity.

As can be seen from Figure 2, V1 is the first main visual cortical area. A vast amount of research has

gone into trying to understand what is happening in V1, leading to a popular classification of neurons in

V1 as either:

1. Simple cell — The cell responds optimally to a stimulus of a certain orientation at a certain spatial

location. The cell’s response is linear and can normally be predicted from the stimulus.

2. Complex cell — The cell responds to a stimulus of a certain orientation, but over a wider area than

the simple cell. The cell’s response is non-linear and cannot normally be predicted from the stim-

ulus.

3. Hypercomplex cell — The cell responds optimally to a stimulus of a certain orientation moving in

a direction which is usually perpendicular to the preferred orientation.

An example of the preferred stimulus for each of these cells is given in Figure 3. These cells are

topographicallyarranged, so that neighbouringcells in area V1 are activated by neighbouringpoints in the

retinal image. Secondly, these cells are arranged so that neighbouring cells respond to stimuli of similar

orientations.

28

Simple

Cells

Complex

Cells

Hyper-complex

Cells

Figure 3: Popular classification of V1 neurons into simple, complex and hypercomplex cells. The grey

bar indicates the optimal stimulus for the cell. The ellipse indicates the extent of the cell’s receptive field.

In the case of the complex cell, the bar can be in one of many positions– three possible positionsare shown

here. Finally, in the hypercomplex cell, the arrow indicates the preferred direction of stimulus movement.

Physiological Pathway

Criteria Magnocellular Parvocellular

Colour Selectivity No Yes

Contrast Sensitivity High Low

Temporal Resolution Fast Slow

Spatial Resolution Low High

Table 1: Characteristics of the Magnocellular and Parvocellular pathways. Data taken from Livingstone

and Hubel (1988, p746).

The initial discovery of the simple,complex and hypercomplex cells led to a serial view of visual pro-

cessing: retinal signals feed into the LGN and then into the simple cells. Simple cells feed into complex

cells, which in turn feed into hypercomplex cells, and so on. However, this view did not last very long, as

evidence accumulated for a more parallel, but not totally modular, approach (Merigan & Maunsell, 1993).

As Figure 2 shows, the current view is that there are two main streams. The magnocellular pathway is

responsible for motion analysis and broad spatial layout, whereas the parvocellular pathway is responsi-

ble for fine form and colour analysis (Livingstone & Hubel, 1988). It is interesting to note that even in

the serial pathway from the retina to the LGN to V1, there is a subdivision into large Magno (M) cells

and small Parvo (P) cells. These cells provide the major input to the Magno and Parvo channels. Table 2

gives an overview of the qualities of each of the pathways.

Returning to the problem of optic flow, neurons in areas MT (medial temporal) and MST are highly

selective for moving stimuli. Neurons in area MT have a good selectivity for motion over a receptive

field of up to 20�20 degrees. These neurons then project heavily to MST which are capable of detecting

global expansion and contraction or rotational motion over a receptive field area of up to 100� 100 de-

29

grees (Tanaka, Fukada, & Saito, 1988). Hence, a popular notion is to think of the magnocellular pathway

as important for motion processing, e.g. (Livingstone & Hubel, 1988). However, it should not just be re-

garded as a motion pathway, as it ultimately feeds into the parietal area, which is needed in tasks such as

finding the location of objects (Livingstone & Hubel, 1988, p744). This contrasts with the parvo pathway,

which leads to the temporal cortex. This area is normally associated with deciding what the object in the

visual field is. It is also important to note that the Magno and Parvo pathways should not be regarded as

completely segregated. Cells in both pathways can typically fire to most stimuli, with the exception of

colour, which is solely dealt with in the Parvo pathway.

3 Development of the Visual System.

The previous section outlined the organisation of mammalian visual systems. The initial discovery of

the simple, complex and hypercomplex cells was made in the early 1960’s by Hubel and Wiesel. There

is such a high degree of organisation found in the visual system that led Hubel and Wiesel to believe

that the visual cortex is genetically specified (Hubel, 1978 cited by Zeki 1993, p216). However, this is

in contrast to the widely held belief that the cortex is very adaptive. In 1959, Penfield discovered that a

lesion could destroy some aspects of language function, but if the patient was young enough, language

function could be recovered. If the patient was an adult, the same lesion meant that language function

could not be recovered (Zeki, 1993, p220). Could this plasticity be a general principle for the cortex, and

not just for the language areas?

Evidence for the importance of environmental input affecting development of the visual system began

accumulating in the 1960’s. One of the first experiments was performed by Wiesel and Hubel (1963). The

experiment involved covering one eye of a kitten from birth for the first ten weeks of life. The eye was then

uncovered, and the kitten examined. The covered eye still functioned normally, but the normal pattern of

ocular dominance (regular interdigitation of inputs from each eye across a patch of cortex) was not found

in area 171. Instead, most neurons respond only to inputs from the eye that was left open. None of the

cells in area 17 that were tested could be influenced by the eye that was covered. Another early visual

deprivation experiment was to raise kittens wearing goggles such that they could only see vertical lines.

After the first few weeks of life, neurons in area 17 only responded to vertically oriented stimuli (Hirsh

& Spinelli, 1970).

Many such neurophysiological experiments have since been performed, leading to the idea that activ-

ity of the visual system causes it to self organise. Consequently, non normal activity of the visual system

produces abnormalities in the visual system. Faithful supporters of the idea that the visual system is ge-

netically specified can always argue that the visual deprivation experiments are consistent with their ideas.

It may be the case that although the visual system is genetically specified at birth, cells that are not active

during the deprivation experiments die out, and so the mature animal loses some functions if they are not

used during early life.

However, an important experiment against this argument was performed by Sur, Garraghty, and Roe

(1988). The retinal inputs from the LGN (the normal innervation site) were redirected to the Medial

Geniculate Nucleus (MGN)2. The ferrets were then reared to adulthood in a normal visual environment.

It was found that many cells in the MGN and auditory cortex were visually driven, although receptive

fields tended to be larger than normal, showing a preference for moving spots of bars. Additionally, a

correct topographic map of the visual field was found in the MGN. Sur et al. concluded by saying:

“Functional visual projections can also be routed into non visual structures in higher mam-

mals, suggesting that the modality of a sensory thalamic nucleus or cortical area may be spec-

ified by its input during development.” (Sur et al., 1988, p1437)

1Area 17 is the cat equivalent of monkey area V1
2This is the auditory equivalent of the LGN.

30

As well as the neurophysiological experiments, another approach to understanding the development

of the visual system is by computer simulation. Typically, these simulations involve modelling neural

networks to see if they can self organise to produce neurons with similar response properties as real visual

neurons. The first main simulation of this type was produced by von der Malsburg (1973), initiating many

other models over the following twenty years. Here at Sussex, many simulations, modelling simple cells

(Barrow, 1987), complex cells (Barrow & Bray, 1992b), colour blobs (Barrow & Bray, 1992a) and ocular

dominance stripes (Goodhill, 1992) have been performed.

Given the importance of motion processing that has been mentioned earlier, it is surprising that the

modelling of motion cells has been quite rare, with the exception of (Wang, Mathur, & Koch, 1990) and

(Nowlan & Sejnowski, 1993). (Specific models of MT and MST development have been produced, but

these typically assume certain functions for the retina, V1 and V2, eg. (Sereno & Sereno, 1991; Tanaka

& Shinbata, 1994).) This is now a topic of research here at Sussex.

4 Conclusion.

An overview of the importance of motion processing has been given, along with the architecture of a mam-

malian visual system. The existence of a magnocellular pathway that deals with (amongst other things)

motion processing seems to reinforce the importance of motion. The final section outlined two main the-

ories for the development of the visual system: (1) genetic specification or (2) activity driven self organ-

isation. It is likely that a combination of both of these processes are needed to produce a normal visual

system, by working on different aspects of the problem. First, genetic specification can initially describe

the overall topography and connectivity of retinal inputs and cortical areas. Second, the activity driven

processes can then fine tune the connectivity and response properties of individual neurons in accordance

with the environmental input. Computer simulations of these activity driven processes can show how

much each process contributes to the development of visual systems.

Acknowledgments

I would like to thank my supervisor, Harry Barrow, and Julian Budd for all the help they have given me

during my first year at Sussex. I would also like to thank Geoff Goodhill for useful comments on this

paper.

Reference

Barrow, H. (1987). Learning receptive fields. In IEEE 1st International Conference on Neural Networks.

Barrow, H. G., & Bray, A. J. (1992a). Activity-induced “colour blob” formation. In Aleksander, I., &

Taylor, J. (Eds.), Artificial Neural Networks, 2: Proceedings of the International Conference on

Artificial Neural Networks. North-Holland.

Barrow, H. G., & Bray, A. J. (1992b). A model of adaptive development of complex cortical cells. In

Aleksander, I., & Taylor, J. (Eds.), Artificial Neural Networks, 2: Proceedings of the International

Conference on Artificial Neural Networks. North-Holland.

Bruce, V., & Green, P. (1990). Visual Perception: Phsyiology, Psychology and Ecology (2 edition). LEA.

Duffy, C., & Wurtz, R. (1991). Sensitivity of MST neurons to optic flow stimuli .1. a continuum of re-

sponse selectivity to large-field stimuli. Journal of Neurophysiology, 65(6), 1329–1345.

Egelhaaf, M., & Borst, A. (1993). Motion computation and visual orientation in flies. Comp. Biochem.

Physiol, 104A(4), 659–673.

31

Felleman, D., & Van Essen, D. (1991). Distributed hierarchical processing in the primate cerebral cortex..

Cerebral Cortex, 1, 1–47.

Goodhill, G. (1992). Correlations, competition and optimality: modelling the development of topography

and ocular dominance. CSRP 226, School of Cognitive and Computing Sciences, Sussex Univer-

sity, UK.

Hirsh, H., & Spinelli, D. (1970). Visual experience modifies distribution of horizontally and vertically

oriented receptive fields in cats. Science, 168, 869–871.

Horn, B., & Schunck, B. (1980). Determining optical flow. Tech. rep. 572, AI LAB, MIT.

Lee, D. (1980). The optic flow field: The foundation of vision. Phil. Trans. R. Soc. Lond. B, 290, 169–179.

Letvin, J., Maturana, H., McCulloch, W., & Pitts, W. (1959). What the frog’s eye tells the frog’s brain.

Proceedings of the IRE, 1940–1951.

Livingstone, M., & Hubel, D. (1988). Segregation of Form, Colour, Movement, and Depth: Anatomy,

Physiology, and Perception. Science, 240, 740–749.

Merigan, W., & Maunsell, J. (1993). How parallel are the primate visual pathways?. Annual Review

Neuroscience, 16, 369–402.

Nowlan, S., & Sejnowski, T. (1993). Filter selection model for generating visual motion signals.. In Han-

son, S., Cowan, J., & Giles, C. (Eds.), Advances in neural information processing systems, Vol. 5.

Morgan Kaufmann.

Orban, G., Lagae, L., Verri, A., Raiguel, S., Xiao, D., Maes, H., & Torre, V. (1992). 1st-order analysis

of optical-flow in monkey brain. Proceedings of the National Academy Of Sciences of the United

States of America, 89(7), 2595–2599.

Sereno, M., & Sereno, M. (1991). Learning to see rotation and dilation with a hebb rule. In Lippmann, R.,

Moody, J., & Touretzky, D. (Eds.), Advances in Neural Information Processing Systems 3, Vol. 3.

Morgan Kaufmann.

Sur, M., Garraghty, P., & Roe, A. (1988). Experimentally Induced Visual Projections into Auditory Tha-

lamus and Cortex. Science, 242, 1437–1441.

Tanaka, K., Fukada, Y., & Saito, H. (1988). Underlying mechanisms of the response specificity of ex-

pansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the

macaque monkey.. Journal of Neurophysiology, 62(3), 642–656.

Tanaka, S., & Shinbata, H. (1994). Mathematical model for self-organization of direction columns in the

primate middle temporal area.. Biological Cybernetics, 70, 227–234.

Van Essen, D., & Maunsell, J. H. R. (1983). Hierarchical organization and functional streams in the visual

cortex.. Trends in Neuroscience, 6, 370–375.

von der Malsburg, C. (1973). Self-organisation of orientation sensitive cells in the striata cortex. Kyber-

netik, 14, 85–100.

Wang, H., Mathur, B., & Koch, C. (1990). I thought I Saw It Move: Computing Optical Flow in the

Primate Visual System. In Gluck, M., & Rumelhart, D. (Eds.), Neuroscience and Connectionist

Theory, chap. 6, pp. 237–265. Lawrence Erlbaum Associates.

Wang, Y., & Frost, B. (1992). Time to collision is signalled by neurons in the nucleus rotundus of pigeons.

Nature, 356, 236–238.

32

Wiesel, T., & Hubel, D. (1963). Single cell responses in striate cortex of kittens deprived of vision in one

eye.. Journal of Neurophysiology, 26, 1003–1017.

Zeki, S. (1993). A Vision of the Brain. Blackwell, Oxford.

33

In: de Bourcier, Lemmen & Thompson eds., 1994 The Seventh White House Papers:

Graduate Research in the Cognitive & Computing Sciences at Sussex. University of

Sussex, School of Cognitive & Computing Sciences, Brighton, UK. Research Paper

CSRP 350.

Macroscopic Explanations

Philip Jones

philipj@cogs.susx.ac.uk

School of Cognitive & Computing Sciences

University of Sussex

Brighton

BN1 9QH

Abstract There is a whole body of thinking in the social sciences which asks about the rela-

tionship of individuals to groups. Some of it sees group behaviour as merely epiphenomenal

on the individual, but some makes claims that high level structures can exert a causal effect on

the behaviours and perceptions of the agents who comprise them. As cognitive researchers,

should we give these claims any serious consideration?

Introduction

“The explanations of animal societies offered by biologists are essentially reductionist.

That is, they attempt to explain the structure of societies as a consequence of the properties

of the individuals which compose them. By no means all sociological or anthropological

theories are of this kind. Theories in economics are reductionist.. . But many sociological

theories are not reductionist in even this limited sense. The properties of the individual are

seen as produced by society, and even as serving the purposes of that society, and not the

other way around.” (Maynard-Smith, 1982)

The quote comes from the introduction to a book on problems in sociobiology. And it neatly stakes out

the territory that a science such as biology lays claim to when it attempts to explain social behaviour. The

contrasting attitudes in Maynard-Smith’s quote can also be seen as two views on agency. The reductionist

sees agency as the emergent effect of multiple microscopic components. But Smith’s sociologist sees the

mind moulded by its environment and those macroscopic entities of which it is itself a sub-component.

In fact, social scientists are aware of the tension between these two interpretations of the relationship

between the individual’s behaviour, and the social structure which he or she inhabits. They label these

positions structure (or holistic or top-down) and action (or individualistic or bottom-up).

What is interesting about social science is that it looks very like cognitive science played in the mirror.

Cognitive science concentrates on two levels: the first is the causally mechanistic, physical level of the

brain; the second, the psychological, intentional level of the mind. The task facing engineers of artificial

intelligence and cognitive philosophers is to make these two levels compatible; to explain the relationship

between them in a way which fits the mind into natural science, but does not ride roughshod over our

intuitive feelings about it. The mind is seen as emergent out of, or supervenient upon, or in some way

above the mere mechanistic level.

By contrast, a social scientist, or at least one who falls into the holistic or structural camp, also sees two

levels - one of which is mechanistically causal, the other of which is intentional. But here, it is the higher,

macroscopic level which obeys causally mechanistic rules, and the low level which is intentional. Within

the field, there are also fierce debates between those who see the mechanistic level as being causally re-

sponsible for the intentional, and those who wish to defend intentionality from macro-reduction to these

principles. Emile Durkheim, for example, asks us to accept that

34

“society is not a mere sum of individuals. Rather, the system formed by their association

represents a specific reality which has it’s own characteristics.”

This superstructure so constrains the behavioural opportunities of the individual that it is seen as es-

sentially guiding (or causing) that behaviour.

Within social sciences, there has been a robust defence against this way of thinking. From J.S. Mill

in the 19th century to modern individualists, many are unhappy with the possibility of macroscopic struc-

tures being causal of microscopic properties. Two possible refutations seem to run as follows:

The first is to argue that these high level structures have no goals of their own. They merely inherit

their seeming intentionality from the intentional humans who comprise them.

But against this, the holist believes that structures may be acting according to their own agendas. No

one wants an economic recession or a bout of inflation; perhaps no one intends a moral norm to collapse.

Yet these things happen. How is this to be squared with the idea that the intention to behave has come

from the low level? One solution is the great man theory. That somewhere, there is someone who secretly

did want the change and, this time, has got his way. Cognitive scientists may recognise this as a parallel

to the idea of the grandmother sensor1 or undischarged homunculus.

A second strategy individualists use against structuralists is to ask directly: how does it work? How

can this high level system cause these low level people to do things? The answer demanded is a low

level causal one: a story of who did what to whom. When presented with such, they can then argue that,

this is obviously, only a story about individuals and their behaviour. In other words, this is a reductionist

argument of the kind which those cognitive scientists who wish to preserve the mind from being mere

brain behaviour, are continuously fighting against.

These are rough parallels, but nevertheless, our first glance into the distorting mirror of social science,

has been enlightening. Because the mirror reverses the levels that we normally consider intentional and

non-intentional, it might help us understand the opposing viewpoint to our usual one.

From our intuitions about folk psychology, we tend to reject the dogma of the holistic social scientist.

But from our intuitions as cognitive researchers, about both homuncular decomposition, and reductive

materialism, we are tempted to deny the arguments which the individualist social scientists use to deny

high level structures. Any argument which seems to deny high level structure in favour of individual

action, is dangerously close to one which would collapse the psychological into the neurochemical. By

contrast, any argument which could pump enough hot air into the mind to keep it afloat above the brain,

could probably launch a few leviathan like macroscopic entities.

There are, of course, further, arguments which separate out these two situations. Interlevel relation-

ships come in many subtle flavours and it is possible to argue that the relation between neural and psy-

chological is of a different kind than the relation between mental and structural.

But in this paper I intend to accept the possibility of these social structures and argue that not only

can they be useful for cognitive scientists, but that we are already beginning to use them. First though, I

will explore a little further what they are, and what claims they have to existing in the first place.

Living in Structure

Natural science provides views at multiple levels of abstraction upon the physical world. Quantum me-

chanics, classical atomic physics and chemistry are familiar examples. Each level provides a powerful,

simple theory in terms of the relationships between different entities or solids. Of these, some are seen

as candidates for being real, to use Dennett’s terminology: illata; while others, although useful are con-

sidered mere abstractions or abstracta. (Dennett, 1987)

There are two fundamental philosophical questions which can be asked about these illata. The first

is, ”Do they really exist?” and the second is ”How can we know them?”. To introduce some terminology

1How did this macroscopic mind manage to think about grandmother when all it is is a load of neurons firing? Well, obvi-

ously, one of the neurons is the neuron which thinks about grandmother.

35

which will be familiar to some and mysterious to others, the first of these is a question of ontology, and

the second epistemology. Martin Hollis (Hollis, 1994) thus summarizes the structural or holistic claim,

attributed to Durkheim, like this:

� “an ontology of ‘social facts’, forming an order external to individualconsciousness

and not explicable by reference to human nature.

� a methodology wherein social facts are explained by their function ‘in relation to some

social end.’

� functional mechanisms working through the medium of the ‘collective consciousness’

and connecting social ends to the overall level of social integration needed if a society

is to flourish.

� an epistemology, so far undisclosed, which warrants our subscribing to these compo-

nents.”

These “social facts” or illata, were traditionally seen as economic or political groupings such as class,

or state. And they were believed to have particular interactions with each other which could be captured

by scientific rules, regardless of the individuals who composed them. The relationship between high level

structure and component may be subtle and convoluted. For example, at one point, Durkheim makes a

claim which, though counterintuitive, illustrates the sophistication of the relationship he is promoting.

The State is a powerful, self supporting, system2 and criminals are not its enemies, but an essential com-

ponent, which helps hold it together. (Presumably because common outrage at criminal acts encourages

people to defend the state against them.) Were people to abstain from acts currently considered criminal,

the State would begin to redefine other acts as taboo, to restore the balance within itself, just as living

bodies balance the proportions of their components.

Another idea of this genre which deserves note, is that of ideology which is defined as false conscious-

ness. For some holists the high economic level of description is seen as the true level of illata; and a

viewpoint of an individual who sees the world only in terms of individuals and their personal beliefs and

desires is considered misguided. Individual consciousness is the intersection of falsehoods invented by

various high level illata such as Church and State as part of their homeostatic behaviour.

Here again, is a distorted inversion of a familiar idea. For some cognitive scientists, consciousness

is very nearly treated as a falsehood; a narrative spun by the brain, possibly out of multiple contradictory

threads of perception.

Some Recent Parallels

Not surprisingly, extreme holistic social science is often rejected, and many of the theories which were

created in the nineteenth century and flourished in the early part of this century, are discredited. But has

the idea of social structure really died out? One interesting recent area of study is Game Theory, which

has been explored by von Neumann, and others over the last half century. Extraordinarily, game theory

is held up as an individualist analytic tool and a rival to structure based explanations. It does start with

the idea of an individual, who is rational. In other words, the individual will predictably chose to behave

in a way which, as she perceives things, will maximise her gain in a particular situation. But then such

situationsare classified as being instances of one of several abstract games such as the Prisoner’s Dilemma

or Chicken. Thus the game provides a framework which is itself a kind of law.

If agent X is rational then agent X will perform action A.

Some social scientists see game theory as being in opposition to traditional holism, but the parallels

seem much stronger. There is not such a great difference between saying that agent X is in a situation

defined as a Prisoners Dilemma and should therefore do A; and saying that agent X is in a situation defined

2Today, we might say autopoeitic.

36

as a Class War and should therefore do A. Both allow an observer to tell the same kind of explanatory

stories about why X performed A (because A was the rational choice) and both can make the same kind

of predictions (assuming X is rational he will perform A). 3 Both are theories that there are situations or

relationships which agents can find themselves in, whose very nature makes a particular actor’s behaviour

meaningful, or more predictable.

Thinking in terms of high-level structures can occur when borrowing explanations from biological

sciences. Evolutionary theory is already shot through with intuitions that are top-down, and often criti-

cised for being based on tautology. Concepts such as fitness, are only defined in terms of a circle of high

level entities. No genotype is fit merely by virtue of its internal structure. Rather it is fit with relation to

the phenotype, and other genotypes and environment. Co-evolution or the evolutionary arms race, is a

high level structure introduced to provide explanations of current properties.

Evolutionary roboticists, who attempt to evolve solutions to problems, find themselves thinking in

terms of the evolutionary ”niche”; and trying to produce behaviour by designing the environment and

fitness function within which a particular control system will evolve. Hence there is some acknowledge-

ment of a world which is prior to, and causally responsible for, the behaviour of the individual. This is

particularly evident when one hears calls for a metric that will compare and classify environments ac-

cording to the behaviour they engender. As they attempt to evolve new agents, they are relying heavily

on the perceived causal power of an illata like co-evolution. Even Durkheim’s ideas about criminality

have found a parallel in a discussion of the virtues of parasitism.

Outside the Head

For this final section, I will change the subject slightly in order to emphasize another use that we might

make of macroscopic entities.

Consider Terrence Horgan’s (Horgan, 1993) assertion, that:

“Materialists who back away from type-type psychophysical identity claims, but who

also seek to vindicate the causal/explanatory efficacy of mental properties, are already com-

mitted to some form of compatibilism on the issue of mental quasation. Since they are stuck

with this compatibilist commitment anyway, they should take seriously the possibility that the

right kind of compatibility will vindicate the causal/explanatory efficacy of mental properties

that do not supervene on the properties that physically realize them, and perhaps will also

vindicate the causal/explanatory efficacy of mental properties that do not even supervene on

what’s in the head.”

This is a quote with some questionable anomalies. But consider only the emphasized portion of the

text. If, as Terrence Horgan seems to, we want to talk about mental entities as supervenient upon more than

what’s in the head, then we are going to need to consider physical contexts that have a far wider scope than

individual brain structures. The brain is already too complicated an organ to really think about in detail.

So considering brain and a context which could, itself, include many other intentional agents, will require

a high degree of abstraction. Those abstractions will be entities within some macroscopic theory and thus

be open to the sort of questioning that more traditional macro-entities receive. Macroscopic structure just

is the vocabulary needed to describe and model the context within which an agent operates.

Conclusion : Taking Society Seriously

This paper is only one step in a project dedicated to taking social, or macroscopic structure seriously when

thinking about minds. What, though, is the purpose of this attempt to resuscitate social or top-down ex-

3One difference may be that game theorists will deny that they are making strong ontological claims for Prisoner’s Dilemma

games. Prisoner’s Dilemmas do not exist. They are merely abstracta, not illata and have no causal power over the players who

find themselves in the relationship. By contrast, the holistic social scientist is making this claim about Class.

37

planations of agency when we seem to be making such progress through scientific and reductionist ap-

proaches? Isn’t this just obfuscating the issue, or worse, trying to sneak some dodgy political or human-

ities talk into cognitive science?

First, there is an issue of general macro-scopic causation. Can there be a flow of explanatory respon-

sibility back from the macroscopic entity to the individual? This relationship, sometimes known as qua-

sation or quasi-causation is still controversial.

A nice toy example that is often used to make points about levels of description is Conway’s Life

Game. One can argue that the Life game may be viewed either on the level of individual cells or at a

higher level of gliders and other abstractions. It is not that the Life game requires to be interpreted at

either one or the other of these levels. Both are contemporaneously appropriate.4

Consider a particular Life universe containingone glider which at a particular time t has passed through

cell C. At t we can say that cell C has become alive. The question ”did C become alive because it became

involved with the glider?” cuts right across carefully separated levels of description. In this case a macro-

scopic explanation is intuitively acceptable. It really does seem that the passing of the glider caused the

behaviour of C. But Maynard-Smith’s reductionist, while able to say that the glider passed through C at

t because C came alive then, ought not to phrase it the other way around.

The second issue is the particular problem of social illata: higher level structures to which rational,

intelligent agents belong. Does the fact that we are already intentional beings prevent these higher level

structures from influencing or causing our behaviour? Or, as claimed by holists, do we derive intention-

ality from those structures which we make up?

There are several good reasons for studying social illata. The first, as pointed out in the beginning

of the paper, is that social science provides a kind of distorted mirror image of cognitive science. Look-

ing into it we see some of our intuitions turned upside down, and some familiar arguments stretched and

squeezed into unfamiliar shapes. This may inspire us to new intuitions about the problems of relating

levels.

Secondly, it appears that, through considerable interest in evolutionary theory, researchers, particu-

larly in ALife, have already begun to call on some macro-structure to do explanatory work. The language

used by ethologists when studying animal’s group behaviour begins to blend into that of the sociologist.

Finally, macroscopic entities, can be seen as tools for talking about context and relationships within

that context. In this case, telling explanatory stories about mental illata may require one to include macro-

illata.

Reference

Dennett, D. (1987). The Intentional Stance. M.I.T.

Hollis, M. (1994). The Philosophy of Social Science. Cambridge University Press.

Horgan, T. (1993). From supervenience to superdupervenience. Mind, 102(408), 554–586.

Maynard-Smith, J. (1982). Introduction. In Group, K. C. S. (Ed.), Current Problems in Sociobiology.

Cambridge University Press.

4Although occasionally there are times during the evolution of the Life game, when there are NO patterns for which abstrac-

tion to an alternative levels would be appropriate. Imagine a large Life universe has just been filled randomly (a 0.5 probability

that any cell will be alive. For a while, it is uncertain whether any stable structures will appear. Although the beauty of Life is

that some nearly always do.

38

In: de Bourcier, Lemmen & Thompson eds., 1994 The Seventh White House Papers:

Graduate Research in the Cognitive & Computing Sciences at Sussex. University of

Sussex, School of Cognitive & Computing Sciences, Brighton, UK. Research Paper

CSRP 350.

Creativity in Writing and Music

Rafael Perez y Perez

rafaelp@cogs.susyx.ac.uk

School of Cognitive & Computing Sciences

University of Sussex

Brighton

BN1 9QH

Abstract This paper gives a short overview of my approach to studying creativity. Specifi-

cally, it introduces the notions of experiential and reflective state and it tries to show why and

how these will figure centrally in an account of creativity.

1 Introduction

The goal of my research is to study creativity in arts, placing special emphasis on the fields of music,

and writing. The core of my investigation will concentrate on the relationship between reflective and

experiential states and its role and importance for the creative process. Experiential state can be described

as a state in which a flow of ideas is generated in order to build a piece of music, to write a story, etc. Such

a flow of ideas is guided by tacit constrains like cultural background, the use of specific style or technique,

etc. Although everybody can experience such states (like for example day-dreaming), in the case of artists

some of the tacit constraints are the result of years of experience, the development of certain skills, and

training in specific areas. These further constraints allow artists to produce works of art of which it is

difficult to imagine that they could have been produced by the layman. Reflective state can be described

as a state where the artist structures and/or evaluates his/her work. Again, during such state artists are

helped by tools like music theory, writing techniques, etc. which they have learned during their training

and experience as artists.

The main hypothesis of this research is that both states participate actively during the creative process,

although during such process artists can have preferences for one of them. For example Chandler (1992)

defines two types of writers, the Planners and the Discoverers:

- Planners tend to think of writing primarily as a means of recording or communicating ideas

which they already have clear in their minds;

- Discoverers tend to experience writing primarily as a way of ‘discovering’ what they want

to say.

Aarond Copland talks about different kinds of composers, ”The type that has fired public imagination

most is that of the spontaneously inspired composer–the Franz Schubert type, in other words... this type

[of composer] is more spontaneously inspired. Music simply wells out of him...” (Copland 1955, p.22).

The second type, called ”The constructive type” by Copland, starts with a musical idea or theme, and then

s/he analyses and plans how to work with it.

In Beethoven’s case there is no doubt about it, for we have the notebooks in which he put

the themes down. We can see from his notebooks how he worked over these themes, how he

would not let them be until they were as perfect as he could make them. Beethoven was not

a spontaneously inspired composer in the Schubert sense at all. He was the type that begins

with a theme; make it a germinal idea; and upon that constructs a musical work, day after

day, in painstaking fashion (op.cit., p.22)

39

Terms referring to such preferences like Mozartians-Beethovians, The Makers-The Possessed, Executors-

Discoverers, Doers-Thinkers, etc. are found in the literature (see Chandler 1992).

Thus, the research in the interaction of the Experiential-Reflective states can help to better understand

the creative process.

2 Research Questions

Some of the questions I attempt to answer with my research are:

� Are Experiential-Reflective states important for creativity?

� What is the relation between them?

� Are these two states enough to provide bases for an explanation of creativity?

� Is it possible to develop a computationalmodel of creativity which engages in Experiential-Reflective

states?

� What is the importance of personal experiences and of cultural background for the Experiential-

Reflective states?

� What is the relationship of feelings like ”lack”, ”incompleteness” or ”satisfaction” that artists ex-

perience towards their work to Experiential-Reflective states?

3 Methodology

The methodology I will follow during my research is based on the study and analysis of:

1. Artists’ self-accounts.

2. Reports regarding to the creative process and products of other artists.

3. Examples of such creative processes and products.

There are many critics with respect to self-reports (see for example Weisberg 1992). Some of the

disadvantages of this methodology are that it is not possible to select the people you are going to get the

information from and that it is not possible to have any control on the accuracy of their accounts. Vicente

Lenero (1983) has written that when journalistsor researchers have asked him to talk about ”the intimacy”

of his most famous book Los Albaniles, in order to defend himself from adverse comments or to capitalize

in his favour positive appraisals, he has invented social worrying, narrative searches, etc. which never

were really present during the process of writing. Thus, sometimes self-accounts are shaped for diferents

kinds of pressures like expectations about how the creative process works, artist’s intentions or messages

expressed through his/her work, political positions, etc.

However, it does not follow that all self-accounts are misleading. In fact, this methodology offers

impor tant advantages; the most significant of them is the opportunity to get information from an impor-

tant number of well known creative artists with completely different background which would be impos-

sible to get in a different way. And although sometimes there can be difficulties with the accuracy of

self-accounts, they are invaluable sources of information and clues of the creative process. In order to

minimize this problematicity, I will compare different artists’ self-accounts, and researchers’ and artists’

opinion about the creative process in other artists with my own analysis and opinion. In this way I attempt

to get a set of common characteristics between them, which will then form the framework of my model

of creativity. Finally, I will attempt to design a computational system of such creative-process.

In the next paragraphs I will briefly give an interesting example of this kind of analysis to show how it

can help in making a framework for the study of the creative process.

40

Mario Vargas Llosa (1966) describes how experiences in Victor Hugo’s life influenced him to write

Les Miserables. When Victor Hugo was young, he was impressed by a line of prisoners he saw on the

street. He decided to write a short story about prisoners and prisons. When he was looking for information

to write his book, he visited the prison and discovered that there were individuals serving life sentences

because they had stolen a piece of bread. This situation made him feel angry and he came to realise how

much social injustice there was. He tried to find a solution for this injustice: he talked in the Parliament,

wrote articles, and at the same time tried to write a story about convicts’ lifes. However, something was

wrong with the story, it did not satisfy him, and he left it. When he was trying to improve prisoners’ lifes

and change the penal code, he heard about a wonderful, charitable and compassionate bishop who was

living in a small town in France. Victor Hugo got excited with the story of this man and he decided to

write a novel in which the main character was a similar bishop. Thus, he signed a contract with a publisher

and began to write. However, when he finished the first version of the book he got the same feeling he

had got when he wrote the book about the prisoners: something was lacking and he left the project again.

He kept himself writing verses, novels, etc. for some years, until one day he got the idea to mix both

themes and write a new novel. Nevertheless, this project failed as well; he had the feeling that the text

was not real enough and he abandoned it when the French revolution started in 1848. Victor Hugo played

an important role as mediator during the war; he visited all the barricades trying to achieve a truce while

his house was invaded by the insurgents. However, in all those moments – writes Vargas Llosa – without

being aware of it, he was accumulating that definitive third experience which would give to the convicted

and bishop’s stories that social and historical dimensions, that street’s fervour which gives Les Miserables

all its greatness. Victor Hugo wrote the last version of the novel many years later, when he was exiled on

an island in the pacific.

The example of Les Miserables is very useful in many ways: First, it shows how certain events in

the writer’s life are decisive in his/her work (in this case, to come to recognise social injustice). Second,

it shows how for some writers the development of a novel is based in a first image or idea (in this case

the prisoners’ line and the bishop). Third, it shows how important imagination is for writing, i.e., Les

Miserables is not an historical book but a book which took real events, transformed them, and created a

new way to see that reality. And forth, it shows how a worthwhile book requires a lot of hard work.

References

Chandler, D. (1992) The Phenomenology of Writing by Hand. In Intelligent Tutoring Media Vol. 3 No.

2/3, pp. 65-74.

Copland, A. (1955). What to Listen for in Music. New American Library, New York.

Lenero, V. (1983). Sobre Los Albaniles. In N. Klahn y W.H. Corral (eds.) Los Novelistas como Criticos,

Tomo II, 1991. Mexico, D.F.: Fondo del Cultura Economica.

Smith, F. (1982) Writing and the Writer. London: LEA Publishers.

Vargas Llosa, M. (1966). La Novela. In N. Klahn y W.H. Corral (eds.) Los Novelistas como Criticos,

Tomo II, 1991. Mexico, D.F.: Fondo del Cultura Economica.

Weisberg, R.W. (1992). Creativity: Beyond the Myth of Genius. W. H. Freeman and Company.

41

In: de Bourcier, Lemmen & Thompson eds., 1994 The Seventh White House Papers:

Graduate Research in the Cognitive & Computing Sciences at Sussex. University of

Sussex, School of Cognitive & Computing Sciences, Brighton, UK. Research Paper

CSRP 350.

Cognitive Science as the Study of Consciousness

Ronald Lemmen

ronaldl@cogs.susx.ac.uk

School of Cognitive & Computing Sciences

University of Sussex

Brighton

BN1 9QH

Abstract Consciousness is to cognitive science what life is to biology. It is by having con-

scious experiences that cognizers have content. This content sits at the level of the whole

cognizer, which is why I call it organismal content. Other notions of content depend on or-

ganismal content. I argue that from taking experiences seriously, it follows both that the no-

tion of mental representations is incoherent and that the processes that underly organismal

content aren’t themselves contentful, at least not literally. Section 2 discusses some of the

fallacies that often lead to the confused ideas that consciousness is epiphenomenal and that

organismal content would have to be explained in terms of lower-level contents. Finally, sec-

tion 3 looks at some of the consequences with respect to explanations in cognitive science.

1 A Science of the Mind

Once upon a time, cognitive science was supposed to be the study of symbol systems. Those days are

behind us now, and now we are in the strange situation that it no longer seems clear what cognitive science

is the study of. I am not asking for a definition of cognition, but for a concept which will hold the field

together in the way “life” does with respect to biology. It may be proposed that cognitive science is the

study of intelligent or adaptive behaviour. For reasons that I hope will become clear in this paper I reject

such proposals. Instead, I want to suggest that cognitive science is–or at least should be–the study of

consciousness.1

The concept of mind has always implied consciousness. I want to maintain that this is right, in opposi-

tion to the concerted effort in cognitive science to separate the mind from consciousness. As Jackendoff

(1987) puts it, cognitive science makes a distinction between a computational mind and a phenomenal

mind. Since all the action supposedly takes place in the computational mind, there is no role to play for

the phenomenal mind: experiences qua experiences do not matter. Consciousness is considered to be an

epiphenomenon, something without causal efficacy. Against this, I claim that epiphenomenonalism mis-

conceives the mind. Epiphenomenalists–virtually all cognitive scientists–treat the (conscious) mind as

something “over and above” the body, or as something “inner” to it. But, like life, consciousness is not

something separate. Mind is an aspect of certain bodies, not a part. This is part of what it means to say

minds are embodied. As a point of terminology: I use the terms cognizer, mind-body, and experiencer

interchangeably, depending on the precise point I am trying to make.

Cognitive scientists either want to explain the way cognizers perceive, know, understand, desire, in-

tend, communicate, etc., or they want to know how to build systems that can do all that. This makes it

quite understandable that their focus tends to be on the mechanisms that give rise to intelligent behaviour

and not on such a difficult phenomenon as consciousness. However, it does not follow that these are com-

pletely different issues, or that the notion of a computational mind is even coherent. The reason is that

1Note that I am using a very basic notion of consciousness. It does not imply self-awareness, it does not even necessarily

imply “consciousness of” in a full sense. It is just the having of experiences, like pleasures and pains.

42

there has to be something that validates the use of mental terms. Usually this is not taken to be conscious-

ness, but the fact that content (or meaning) is involved. We need to ask the question how something comes

to have content.

When I spoke of content earlier, it was in the context of the consciousness of and understanding by a

whole cognizer. This is usually referred to as personal level content, but because personhood is a much

stronger notion than cognition, I prefer to use the neologism organismal content instead. Likewise I re-

place sub-personal content with organal content2, hoping to get across that it is content carried by subsys-

tems of a whole organism. Mental terms, including organismal content, are applicable to whole cognizers

only. It is important to realise what this means: there is no cognition at organal levels. Parts of cogniz-

ers, even when they are functional parts, do not understand, intend, represent, etc., because they are not

themselves experiencers. Whatever mechanisms and structures underly cognition, they are not cogniz-

ing. There is no unconscious cognition.3 In another paper (Lemmen, 1994a) I argue from this that the

notion of mental representations is incoherent. Part of that argument is also that if a representation is to

be used as a representation, it has to be external to the representation user (i.e. cognizer).

Organismal content is “what is available in experience”. It is for this reason it is intrinsic content.

Experiences cannot be but meaningful to the experiencer, otherwise they would not count as experiences.

It is because cognizers have experiences that things matter to them, that they have reasons to do one thing

and not another. Without experiences one event is as meaningless as the next. Thus, content is essentially

intertwined with consciousness. But since most approaches in cognitive science treat consciousness as

epiphenomenal, they treat content as epiphenomenal too! Hence cognitive science appears to be neither

about consciousness nor content. How can it claim to be about cognition?

In summary, a science of the mind should take experiences seriously (see also Lemmen, 1994b). Only

experiencers engage in cognition. We should reject views that lead us to treat consciousness as epiphe-

nomenal, like functionalism or the idea that content can be treated independently of consciousness.

2 Cognitive Subsystems and other Common Fallacies

The reader may think it problematic to organise a science around such a difficult concept as consciousness.

Wouldn’t we be better off studying systems that behave intelligentlyor adaptively? A first response to this

is to point out that biology is not the study of things that behave as if they are alive. It is certainly true that

an entity’s behaviour is of vital importance with respect to whether or not we have reason to claim it is an

experiencer (or alive). Its behaviour provides us with a way of finding out what it is. But behaviour isn’t

everything: if a robot behaves as if it knows what it is doing, but we find out it is nothing but a giant look-

up table hooked up to some hardware, we will take back any mental ascriptions we may have made. More

generally, as Searle (e.g., 1992) keeps pointing out, ontology (“what is it?”) and epistemology (“how to

find out about it?”) are not the same thing.

A widespread source of the rejection of consciousness as the defining characteristic of cognition is

the atomist conviction that wholes are made up out of parts that somehow constitute the wholes. This

conviction leads cognitive scientists to try and decompose cognitive systems into cognitive subsystems.

But since such systems could only be cognitive in virtue of being experiencers, a move like that is not

warranted in the case of cognizers. In the words of McDowell (1994), the underlying processes enable

cognition, but they do not constitute it. This also defies the popular philosophical project of “naturalizing

content”, which tries to show how things can objectively have content, independently of any subjects, i.e.,

experiencers. I will not discuss this project head-on, but will merely point out some of the mistaken ideas

surrounding it and making it look plausible.

2These terms were originally coined by Ron Chrisley.
3I possibly need to be as explicit as possible about what I mean here. I am claiming that there is no unconscious understand-

ing, desiring, intending or representing. I am not denying that there are internal processes which we do not experience but are

nevertheless essential to our cognition. Such processes may be said to enable cognition and they are perfectly valid objects of

cognitive scientific research. However, we should be somewhat wary of calling them cognitive, unless we would be prepared

to also call metabolic processes cognitive.

43

First, the fallacy of taking metaphors literally. When we are trying to get an understanding of how

some things work, it can be quite useful to say that certain events “mean” something. For example, we

can say that smoke “means” fire or that the cigarettes in the ash-tray “represent” the fact that uncle Harry

has just payed a visit. In a similar way we can talk about “meanings” and “representations” in car engines

or control systems (like brains). But these are only metaphorical meanings and representations. We use

these notions merely to indicate that we are aware of a reliable and causal correlation between two events.

Second, the fallacy of objectifying representational content. We often treat words as if they have ob-

jective meanings. However, what a word means depends on the ways it is used by the language com-

munity. In general, representational content is not intrinsic but dependent on the organismal contents of

representation users. We sometimes forget this, because we take our own content for granted. The impor-

tant implication for cognitive science is that, although it is often supposed to be self-evident, it is not true

that content implies representation. Organismal content can’t be explained in terms of representations,

because we have to explain representational content in terms of organismal content.

Third, although it is relatively obvious that the consciousness of a cognizer is not to be explained in

terms of lesser consciousnesses of its parts, this is not so obvious when the notion of intelligence is sub-

stituted for consciousness. In fact, it is a well-established strategy to try and show how the intelligence

of the whole agent arises out of the interaction of the intelligences of sub-agents. The idea is that by de-

scending the resulting hierarchy, the intelligence of the whole agent is gradually discharged. The process

is supposed to bottom out at the level at which the tasks are so simple we can readily see how they can be

performed by material entities, like neurons. However, as Searle (1992, pp. 55-7) points out, this strategy

only looks plausible because we oscillate between two interpretations of what it means to be “intelligent”.

The strategy relies on a purely behaviouristic interpretation: being intelligent means behaving in an intel-

ligent way. Under this interpretation we would have to say that neurons are a little bit intelligent. From

a purely behaviourist-cum-functionalist perspective, neurons cannot be denied their fair share of intelli-

gence; after all, they perform very complex “computations”. We know this is preposterous. Neurons are

not intelligent in the least, they have no idea what they’re doing. So we have oscillated to the second inter-

pretation of intelligence, the one that says that intelligence is a property of whole cognizers only. Hence,

the initial decomposition of the whole agent in sub-agents was a mistake we shouldn’t have made in the

first place.

When we ascribe intelligence to another cognizer we do so because we have some appreciation of

what it would take us to perform the way it does: a certain understanding and some mental skills. In other

words, we implicitly suppose that the entity to which we ascribe intelligence, is the kind of creature we

are. We assume we are dealing with somebody, i.e., we are again taking organismal content for granted. If

it turns out not to be there, we transfer our admiration and intelligence-ascription from the original entity

to its designer(s), even when it is a designer only in a metaphorical sense, like Mother Nature.

Fourth, and this may well be a major source of the previously discussed “evils”, there is the com-

mon idea that what we are conscious of is just the tip of the cognitive iceberg. Since there is supposedly

so much unconscious cognition, it has to be assumed that there is content that does not depend on con-

sciousness for being content. It is the putative content at this lower level that many philosophers try to

naturalise. I do not have the space here to comprehensively discuss the reasons for thinking mistakenly

there must be unconscious cognition. But among them are the following ideas: the mind as an “inner”

entity, memory as a store-house, content implies representation, and “if the input to the system is mean-

ingful and the output is meaningful, then all the processes in between must be meaningful as well,” even

when we don’t experience them (see also Searle, 1992, p. 246). These ideas should have lost much of

their force, however, in these days of connectionism and dynamical systems approach. “If the brain can

cross complex cognitive gaps without passing through intermediate representational states, then we are

no longer compelled to posit unconscious representational processing to explain the data” (Lloyd, 1991,

p. 453; “representation” is to be read metaphorically, of course).

44

3 Conclusion

Cognitive science is a science of mind, hence of consciousness. Since a cognizer is a whole–a mind-body,

not an aggregate of a mind and a body–it is imperative that explanations of cognition should be neither in

purely physical or behaviouristic terms nor in purely mentalistic terms. In the former case consciousness

and content are treated as epiphenomenal, in the latter the mind is wrongly treated as disembodied. In

order to give both experiences and the body their due, we need to reject all assumptions that lead to the

view of the mind-as-inner or epiphenomenalism.

In ordinary language, representations are talked of as things outside of cognizers. However, when we

talk of mental representations, such a reading leads to the conception of the conscious mind as an inner

part of the cognizer. Usually even a part that makes no difference (epiphenomenalism). It is because

of such dualistic implications that cognitive scientist have tried to establish a “respectable”, technical

reading instead, which says something like this: ‘the contents that figure in experience are a selection

of contents at an organal (i.e., sub-organismal) level. The vehicles which carry these organal contents

are what we call mental representations’. However, such gerrymandering with language does not answer

the philosophical question whether there really are mental representations. It merely leads us to describe

the internal workings of a cognizer as if there were representations in there. But in the absence of proper

representation-users in there, such talk is merely “as-if” talk (Lemmen, 1994a). But there is a deeper

problem, which is the implicit assumption that organismal content is to be explained in terms of organal

content. This is getting things exactly backward. It is organismal content that is intrinsic, organal con-

tent is metaphoric. Hence, a major consequence of the arguments in this paper is the rejection of mental

representations. Similar views are held by Searle (1992) and McDowell (1994).

The processes and structures that underly cognition are not themselves cognitive. Organismal content

is not built out of organal contents, because organal contents are “contents” only through the metaphorical

story of how one part of the brain “talks to” another part. This is an extremely useful metaphor, but it is

a metaphor nonetheless. As McDowell puts it, “The ‘as if’ content that is usefully deployed at the lower

level helps make intelligible the genuine content that appears at the higher level by way of ‘enabling’

explanations, not as somehow constituting that content” (McDowell, 1994, pp. 201-2). Real content is

only to be found at the organismal level. This has important consequences for cognitive science. One

is that it “radically alters the ontology of cognitive science explanation by eliminating a whole level of

deep unconscious psychological causes.” (Searle, 1992, p. 237, original emphasis). This will, albeit in-

directly, have its consequences for those who study the enabling processes, because it changes the whole

perception of what cognition is. Another positive consequence of the rejection of unconscious cognition,

when combined with the taking seriously of the whole of our experiences, is that it “enables us to repos-

sess the phenomenology of perception” (McDowell, 1994, p. 204). Furthermore, there is the surprising

conclusion that maybe common sense was right all along: experiences really make a difference.

Reference

Jackendoff, R. (1987). Consciousness and the Computational Mind. MIT Press, Cambridge, MA.

Lemmen, R. (1994a). A dissolution of the representation debate. In Smithers, T., & Moreno, A. (Eds.),

On the Role of Dynamics and Representation in Adaptive Behaviour and Cognition, III Interna-

tional Workshop on Artificial life and Artificial Intelligence, pp. 177–179 San Sebastian, Spain.

Universidad del Pais Vasco.

Lemmen, R. (1994b). Taking experiences seriously. Psycoloquy, 5(28). Psycoloquy is an electronic

journal at ftp://princeton.edu/pub/harnad/.

Lloyd, D. (1991). Leaping to conclusions: connectionism, consciousness, and the computational mind. In

Horgan, T., & Tienson, J. (Eds.), Connectionism and the Philosophy of Mind, pp. 444–459. Kluwer,

Dordrecht.

45

McDowell, J. (1994). The content of perceptual experience. The Philosophical Quarterly, 44, 190–205.

Searle, J. (1992). The Rediscovery of the Mind. MIT Press, Cambridge, MA.

46

In: de Bourcier, Lemmen & Thompson eds., 1994 The Seventh White House Papers:

Graduate Research in the Cognitive & Computing Sciences at Sussex. University of

Sussex, School of Cognitive & Computing Sciences, Brighton, UK. Research Paper

CSRP 350.

Problems Caused by Ineffective Communication in

Requirements Engineering

Amer Al-Rawas

ameral@cogs.susx.ac.uk

School of Cognitive & Computing Sciences

University of Sussex

Brighton

BN1 9QH

Abstract Large software projects involve many participants exchanging information through

complex and recursive interactions. Effective communication is of vital importance through-

out the project life cycle and particularly during the early phase of requirements specification.

The various stakeholders must be able to communicate their requirements to the analysts,

and the analysts need to be able to communicate the specifications they generate back to the

stakeholders for validation. This paper describes some of the problems of communication

between disparate communities involved in the specification activities.

1 Introduction

It is widely recognised that communication problems are a major factor in the delay and failure of software

projects (e.g. see Curtis, Krasner, & Iscoe, 1988). This is especially true of “socio-technical” software

systems, which must exist in a complex organisational setting. Communication is at its worst during the

early phase of requirements specification where user and developers, in most cases, meet for the first time.

Requirements specifications for software systems are based on domain knowledge, be it technical,

functional, administrative, or social. Ideally, the requirements team members are selectively recruited so

that both the levels and distribution of knowledge within the team cover all aspects of the domain. How-

ever, this is seldom the case because of knowledge shortfalls such as the thin spread of application domain

knowledge in most organisations (Curtis, Krasner, & Iscoe, 1988). In general, individual members do not

have all the knowledge required for the project and must acquire additional information before accom-

plishing productive work (Walz, Elam, & Curtis, 1993). Knowledge acquisition and sharing can only be

achieved through effective communication between the various stakeholders (e.g. sponsors, management,

end-users, developers, etc.).

A great deal of information is exchanged amongst these communities throughout the project life cycle

and in particular during the process of requirements specification. The interactions are based on commu-

nication channels provided by various software engineering methodologies. These channels provide a

restricted one-way communication in the form of documents. This paper describes the communication

difficulties and the problems caused by the inability to communicate effectively during the requirements

specification phase of software projects.

2 Research Method

A combination of learning, data gathering and analysis techniques were applied to investigate the com-

munication problems, their causes and consequences. The two main sources of information were the lit-

erature and an empirical study that was performed as an integral part of this research. The ever growing

47

literature on software engineering, computer supported co-operative work and related social science ar-

eas was surveyed to gather information about the software development problems, particularly those that

occur in the early phases, and the sort of tools and techniques employed to overcome these problems.

The empirical work was carried out in two stages. The first consisted of informal interviews and ob-

servations to establish some knowledge about practices and methodologies of both developers and their

customers. These interviews concentrated mainly on the communication channels between agents par-

ticipating in any software development project, as well as on the problems that can be attributed to the

ineffectiveness of those communication channels. Other management and technical issues were also dis-

cussed. Most of these interviews were taped for further analysis and reference. The second stage of our

empirical work is based on two questionnaires; one for clients and one for developers. These question-

naires were designed to address some issues that were not addressed in the first stage.

To ensure representative coverage, our subjects included users and developers of various levels of

experience, qualification and background. The users included some who had just had a software system

installed and some with an ongoing project. Their work areas covered a combination of civil services and

purely business environments. Their experience with computers ranged from absolute computer illiteracy

to reasonably qualified expertise.

The developers were all involved in either developing a new software system or maintaining an exist-

ing one. Some were also involved in the provision of hardware systems. Their working area covered all

aspects of software development from requirements gathering through to maintenance and project man-

agement.

3 One Way Communication Channels

In many ways, software engineering methodologies are communication methodologies. Much emphasis

is placed on the notations used to convey information both within the development team and to the various

stakeholders. Ideally, the channels of communication between these various communities would be per-

fect, so that all knowledge is shared. In practice, it is expensive and time-consuming to support extensive

communication between the communities, and the channels are restricted to one way communication in

the form of specification documents.

In most software development projects there is an implicit “over-the-wall” model: at each stage in

the project, a specification is thrown over a wall to the next team who are waiting to proceed with the

next phase. The metaphorical wall is sometimes encouraged by management practices, but more often is

merely a result of the practicalities of co-ordinating a large team.

4 Informal Communication Between Stakeholders

Organisations are traditionally described in terms of an organisational chart which is often the first thing

handed out to anyone inquiring about the structure of the organisation. However, many important power

and communication relationships are not represented in the organisational chart. Henry Mintzberg (1979)

makes an analogy between the organisational chart and a road map, where the map is invaluable for find-

ing towns and their connecting roads, but it tells us nothing about the economic or social relationships

between the regions.

Our empirical study showed that many difficulties are caused by unexpected interactions between

elements of the system, be they software modules or humans. In spite of the time and effort spent on

studyingorganisational structures and the flow of power and information through them, our subjects admit

that they can never account for all possible interactions and often have had to backtrack as a result of

discovering a new relation or line of communication that has to be incorporated into the system. These

interactions are often too complex to be traced or regulated.

48

5 Unstated Assumptions

There is no trivial way to elicit background assumptions, for the very reason that they are background

assumptions: they are often made unconsciously. One cannot just ask “what assumptions have been

made?”, as this will receive at best a vague and generalised answer. Many of the assumptions will be

mundane or trivial, and will already be shared by all the communities. Capturing and representing these

is not only wasted effort—it also reduces the effectiveness of documentation by unnecessarily increasing

verbiage.

However, some assumptions can alter the interpretation of the problem and/or misguide the solution.

Thus they must be recorded and communicated to the appropriate participants for acknowledgement and

clarification.

Scenario

The following real world scenario took place during a software development project for a large civil ser-

vice institution (C1). The project is used as a part of the empirical work for our research into the nature,

causes and consequences of communication problems.

In this scenario, the analyst asks a user for an identifier that can be used as a unique key for customer

records. The user is not quite sure what the analyst means. The analyst explains that it is something that

he can use to identify customers.

User: How about the customer’s name?

Analyst: No, we can not use the name, because name duplicates may occur, unless we use a full name

field (3 forenames followed by a surname) which will slow down the search operation. How about

the passport number?

User: Yes, in fact we ask for the applicant’s passport number in our current application form.

The analyst considers this problem solved and bases his following work on it. A few weeks later, the

issue was raised again during a requirements review meeting with the head of Data and Statistics depart-

ment (HDS) in the client organisation. In addition to his domain knowledge, HDS has a good background

of data processing and management. He senses a problem with using the passport number as a unique pri-

mary key, hence he asks for time to investigate this issue personally.

HDS made the appropriate contact with people in the Applications Section where forms are prepared

and filled by customers. He also made contacts with the passport and immigration authorities. The con-

clusion of his research was that a passport number can not be used as a unique key. During the next review

meeting, HDS explains that they only used passport numbers as an additional identification key to pre-

vent problems in the case of more than one customer have the same full name. He adds, passport numbers

change when replaced by a new one which can happen for a number of reasons. At this stage, the analyst

realises that a single identifier will not work and starts to re-investigate the possibility of using a combi-

nation of two or more keys to identify customer records uniquely.

The above scenario illustrates some of the issues discussed earlier in the section and shows the power

of inter-personal communication in the form of review meetings. The delay in communicating the an-

alyst’s assumption to the more informed members of the users team costs the analyst purchase time in

backtracking some of the decision that were based on that assumption.

6 Inconsistency

Standard software development cycles rely heavily on documentation as an exit condition in moving from

stage to stage. Documents are also used for communicating ideas and exchanging information between

various stakeholders. Consequently, a colossal amount of paper work is generated. These documents

49

often consist of sections written in different notations by different authors with different styles which make

it almost impossible to maintain consistency.

For example, the recipient of a service from one of the projects examined in our empirical work was

referred to as citizen, client, customer, applicant, candidate and property-owner by different participants

who contributed to the production of the specification documents. All these names were used to describe

the same entity. The names used reflected the concerns of each stakeholder.

7 The Notations War

Many clients do not understand computer terms. Analysts, software designers, and programmers do not

understand the clients business terms. In general, the different communities involved in the specification

process prefer different types of notation, and various people will be unfamiliar with various notations.

For example, a user would not want to learn to read formal specification languages, but the programmer

may require these to obtain an appropriate level of detail.

Most users express their requirements in natural language. Then it is the job of the analyst to trans-

late requirements statements into some kind of representational objects in a domain model. However, in

many cases, due to time constraints, analysts pass raw natural language requirements to programmers.

A programmer who was interviewed in our empirical study complained that he often has to read large

amount of text in order to understand a single requirement which could have been represented very con-

cisely using a diagram or a formal notation. In one case he had to read over a page of text to understand

the requirements for the database screen layout for a particular database form. This, he said, could have

been represented more concisely by drawing a diagram which indicate the required dimensions of each

section of the screen.

8 Poor Traceability for Requirements and Design Rationales

Requirements Traceability refers to the ability to describe and follow the life of a requirement, in both

a forward and backward direction (Gotel & Finkelstein 1993). Requirements Traceability is vital for all

phases of the software development cycle to aid reasoning about requirements and justify changes, thus

improving the quality and cost effectiveness of software development and maintenance.

Despite growing numbers of specialised tools which support requirements traceability, their use is

not widespread, and requirements traceability problems are still cited by practitioners who do not use

them (Gotel & Finkelstein 1993). In fact, none of the practitioners we interviewed used requirements

traceability specialised tools and those who used the more general CASE tools were not able to see any

major improvements in requirements traceability. This is due to the constraints imposed by many of the

CASE tools, the time and effort put into following their strict methodologies, and their limited support to

the early stages of requirements specification.

Rationales of design decisions are rooted in the requirements specification. Many design decisions

involve trade offs between competing requirements. The decision taken might not be the best solution,

but one that is acceptable to all parties. Information about theses decisions and the rationales behind them

is crucial for the later phases of the software development, particularly the maintenance phase. Because of

the limitations of the conventional software engineering methodologies and notations, many of the design

rationales go unrecorded.

9 Conclusions

There are a number of pitfalls in trying to make effective use of restricted communication channels. One

of the dangers is that each community interprets things in the light of their own background assump-

tions. This is especially problematic with non-interactive communication, such as specification docu-

ments, where there is no opportunity to check that the reader has interpreted them as was intended.

50

The problems described in this paper provide the motivation for my PhD research. My research aim

is to come up with an approach that will help in facilitating better communication without the need to in-

troduce new methods or notations. It is hoped that such an approach will overcome some of the problems

described in this paper.

References

Curtis, B., Krasner, H., & Iscoe, N. (1988). A Field Study of the Software Design Process for Large

Systems. Communications of the ACM, 31(11).

Dasgupta, S. (1991). Design Theory and Computer Science. New York, Cambridge University Press.

Easterbrook, S. M. (1991). Resolving Conflicts Between Domain Descriptions with Computer-Supported

Negotiation. Knowledge Acquisition: An International Journal, 3, 255-289.

Easterbrook, S. M. (1993). Domain Modelling with Hierarchies of Alternative Viewpoints. In Proceed-

ings, First IEEE International Symposium on Requirements Engineering, San Diego, California, 4-6 Jan-

uary 1993:

Finkelstein, A. (1991). Reviewing and Correcting Specifications. In The Fourth Annual Conference on

Computers and the Writing Process, University of Sussex, Brighton, U.K.

Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., & Goedicke, M. (1992). Viewpoints: a frame-

work for integrating multiple perspectives in system development. International Journal of Software En-

gineering and Knowledge Engineering, 2(1), 31-58.

Finkelstein, A. C. W., Easterbrook, S. M., Kramer, J., & Nuseibeh, B. (1993). Requirements Engineering

Through Viewpoints. In Proceedings of the DRA Colloquium on Requirements Engineering, Malvern,

UK: Defence Research Agency.

Gotel, O. & Finkelstein, A. (1993). An Analysis of the Requirements Traceability Problem. Forthcoming.

Hymes, C. M. & Olson, G. M. (1992). Unblocking Brainstorming Through the Use of a Simple Group

Editor. In (CSCW ’92) ACM 1992 Conference on Computer-Supported Cooperative Work. ”Sharing Pre-

spectives”, Toronto, Canada, ACM Press.

McDermid, J. A. (1993). Requirements Analysis: Orthodoxy, Fundementalism and Heresy. In M. Bick-

erton & M. Jirotka (Eds.), Requirements Engineering. London: Academic Press.

Mintzberg, H. (1979). The Structuring of organisations. Prentice-Hall.

Walz, D., Elam, J. and Curtis, B. (1993). Inside a software design team : Knowledge aquisition, sharing,

and integration. Communications of the ACM. 36(10): 63-77.

51

In: de Bourcier, Lemmen & Thompson eds., 1994 The Seventh White House Papers:

Graduate Research in the Cognitive & Computing Sciences at Sussex. University of

Sussex, School of Cognitive & Computing Sciences, Brighton, UK. Research Paper

CSRP 350.

Informal Interfaces: Informality in Human-Computer Interaction

Ian Cullimore

ianc@cogs.susx.ac.uk

School of Cognitive & Computing Sciences

University of Sussex

Brighton

BN1 9QH

Abstract This paper discusses the notion of informality in HCI, leading to the design of in-

formal interfaces. Such an interface exhibits tolerance in its input and variance in its output.

Informal interface representations are internally composed of informal objects that are a com-

bination of a prototype, such as a straight line, and associated informal dimensions such as

shakiness and thickness. In an informal interface it is the gist of human-computer interac-

tion, instead of a higher level of formalism, which is paramount. Internal representations of

informal objects can be decomposed, manipulated, and recomposed. An example is given of

a software tool that has been developed to investigate the design of informal interfaces.

1 Introduction

The aim of this paper is to outline a framework for informal interaction between a computer and a human.

By using the term informal in user interface design, we do not simply mean the converse of formal, nor

sloppiness. Rather we are referring to interfaces that are tolerant of the user’s input (the user has flexibility

in choice of action) and that show variance in their output. More specifically, in an informal interaction

there is no one-to-one mapping between an input event (e.g. a menu selection) and a state change in the

notional machine, nor a simple mapping between the state of the notional machine and an output presen-

tation. Consider the classic example of a pull-down menu system; here the user is constrained to a finite

set of possibilities of function choices, each of which maps onto one state, and each such state is shown

as a single presentation by the interface. Conversely, an informal interface may map a number of differ-

ent input events onto a single state of the notional machine, with the states representing the gist of the

interaction. The states of the notional machine may be presented in a variety of forms, governed by the

constraints of the internal representation and the restrictions of the output device.

2 Why Informal Interfaces?

Informality suggests a lack of precision, an easing of social or linguistic conventions. The benefits of in-

formality include being able to express a vague or partially-understood idea, and being able to explore

the essence of a concept without being committed to its eventual form. Sketching, for example, has long

been recognised, from the days of Leonardo da Vinci [5], as a powerful aid to allowing the mind to run

freely and creatively. The sketch serves as a framework on which the mind can build. An informal inter-

face is an analogy of the sketch in human-computer interaction, relaxing the conventional input/output

constraints of current user interfaces, in order to offer the user a more evocative and richer environment

in which to react and be creative.

3 Background

The study of any area of Human-Computer Interaction encompasses a necessarily wide range of disci-

plines, such as computer and cognitive sciences, psychology, formal methods, art and design, and philos-

52

ophy. Some work relates indirectly to informal interfaces, in that researchers have been experimenting

with different concepts behind the human-computer interaction by using more intuitive graphical inter-

faces.

3.1 Sketching and Informal Representations

In art and design there has been some work in analysing the principles behind sketching [5]. The authors

explain how Leonardo da Vinci advocated the use of “untidy indeterminacies” for working out composi-

tions, because he believed that sketches stimulated visual invention. Research from cognitive psychology

[1] suggests that this is the case, in the way that a mental-imagery model is used by the human brain. It

is suggested [16] that the brain can create a mental image of a sketch, and then apply processes to alter

or enhance that image to useful and creative effect. Negroponte [14] notes that “Sketch recognition is as

much a metaphor as fact. It is illustrative of an interest in those areas of design marked by vagary, incon-

sistency and ambiguity. While these characteristics are the anathema of algorithms, they are the essence

of design.” Lohse [12] indicates how research into cognitive models for the perception and understand-

ing of graphs can be applied to informalism; rough-sketch representations of graphs are inherently in-

teresting as informal objects. One of the key concepts from informal interfaces is the relaxation of the

invariance of output by computers, so it is revealing to study how people perceive and process meaning

from graphical information. Lohse describes a computer program UCIE (Understanding Cognitive Infor-

mation Engineering), which models the underlying perceptual and cognitive processes used by people to

decode information from a graph, and considers results from the analyses of bar charts, line graphs and

tables. Lansdown [10] points out that computer graphics designers tend to aim at photographic realism

when “convincing naturalism” might be more appropriate.

Dix [4] explores the concept of non determinism and informal reasoning in user interfaces, and pro-

poses that deliberately introducing non determinism can sometimes help in the system by actually reduc-

ing apparent non determinism for the user in a “limited non deterministic” system, i.e. one instance of

non determinism can partially or fully cancel out another.

In his paper on Informalism in Interfaces [15], Reeker studies some examples of adaptive interfaces,

and analyses concepts such as representations of visual knowledge, and projecting cognitive representa-

tional structures onto computational representations.

3.2 Cognitive Dimensions

Green proposes the notion of “cognitive dimensions” [9] as a descriptive vocabulary to more accurately

describe relevant interface qualities in cognitive rather than computational terms. He introduces notions

such as viscosity (resistance to change), role-expressiveness and premature commitment. These concepts

are further explored in [7] and [8].

3.3 Constraints and Other Implementation Methods

Leler examines one central element of informal interface construction: the application of constraint sat-

isfaction mechanisms [11]. This concept was used much earlier in Ivan Sutherland’s seminal work on

the constraint-based graphical interactive system Sketchpad [18] and in Alan Borning’s ThingLab [2], as

later expanded by the author [3] and others such as Stefik [17].

4 Informal Interface Structures

To put a conventional structure in place for informal interfaces, we can concentrate on the three key el-

ements of the system — input, output and the internal representation. The example above assumed that

the input device would be a stylus, drawing pen-ink on a screen (probably a hand-held LCD device), with

output displayed directly on the LCD. Stylus input and tablet screen output is the closest technology at

the moment to the natural and informal situation of drawing or sketching on a piece of paper.

53

4.1 The Input Mechanism

The input mechanism in the case of a stylus is as follows: a flow of pen-ink is input from the stylus posi-

tion and both displayed on the screen and also stored in an internal pixel video buffer as a bit map or vector

trace. Vector traces or bounding portions of the bit map buffer can them be passed to an informal object

recogniser, which creates a set of frames [13], chosen from a database of prototype frames, by first ex-

tracting a prototype for each screen object. For instance, the object recogniser might first start to best-fit a

straight line through the pixel group; if this was not successful it would try the next object in turn (a second

order polynomial, perhaps) until it had exhausted its embedded list of possibilities or had found a match.

An analysis would then be made of the residue, i.e. the difference between the actual pixel bit map and

that forming the extracted prototype. This residue would be analysed, by working through a database of

informal cognitive dimensions. For instance, the bit positions would be analysed for their perpendicular

variance from the prototype to extract a measure of shakiness, and so forth for other required dimensions.

Hence fillers for the slots of the particular frame are constructed.

4.2 The Output Mechanism

The output mechanism works by taking as input only the frame name (e.g. “straight line”) and filler values

(e.g. values for shakiness, thickness and so forth) as parameters; the image builder takes this primitive and

creates its image on the screen with its informal object drawing engine. So the recreated image (e.g. of

a roughly-drawn straight line) may not be an exact copy of the original, but it is perceptually equivalent

in that the objects it comprises will be recognised as the same objects as in the original, with the same

variance.

4.3 The Internal Representation

A key element to the underlying architecture of an informal interface is the structure of the internal core,

constructed using frames (as also detailed in other literature [6]), bound together by a purpose-designed

spatial constraint satisfaction mechanism [11]. An operator from the input mechanism creates a change

in a frame; the constraint satisfaction mechanism then propagates the changes and arbitrates constraints

between all frames in the model; the resultant is then sent (again as an operator) to the output mechanism

for redrawing. For instance, rotating a roughly-drawn square 45 degrees will result in another, percep-

tually equivalent, roughly-drawn square, although again the rotated image will not actually be an exact

bit-map copy.

5 Future Research Work

Current research is being focused on a number of areas, such as the construction of internal represen-

tational structures for informal objects, the decomposition and recomposition of such objects, and the

application of functional operations (such as translation, rotation and addition) on informal objects. Soft-

ware is being developed to experiment with these structures, and to allow for the examination of potential

advantages and disadvantages for the users of such systems.

6 Conclusions

This paper has shown an outline of a new area of research in HCI, with the introduction of informality into

interaction between human and computer. By coupling this notion of informality with internal frame and

object representations and spatial constraint satisfaction mechanisms, we expect to be able to demonstrate

novel computer interfaces which, while not necessarily appropriate for all interactions, may often allow

for greater fluidity and expressiveness.

54

References

1. Boden, M. The Creative Mind; Myths and Mechanisms. Basic Books, 1990.

2. Borning, A. ThingLab — A Constraint-Oriented Simulation Laboratory. Xerox PARC paper and Stan-

ford Computer Science Department Report STAN-CS-79-746, 1979.

3. Borning, A., & Duisberg, R. Constraint-Based Tools for Building User Interfaces. ACM Transactions

on Graphics, Vol. 5, No. 4, October 1986. pp 345-374.

4. Dix, A. Non Determinism as a Paradigm for Understanding the User Interface. Cambridge University

Press. Paper in Formal Methods in Human-Computer Interaction. Harrison & Thimbleby (eds.) 1990.

5. Fish, J. & Scrivener, S.A.R. Amplifying the Mind’s Eye: Sketching and Visual Cognition. Leonardo,

Vol 23, No. 1. pp 117-126, 1990.

6. Gonzalez, A.J. & Dankel, D.D. The Engineeringof Knowledge-Based Systems — Theory and Practice.

Prentice-Hall, 1993.

7. Green, T.R.G. The Cognitive Dimension of Viscosity: a Sticky Problem for HCI. In Human-Computer

Interaction — INTERACT ’90. Diaper, D., Gilmore, G., Cockton, G. & Shackel, B. (eds.). Elsevier.

8. Green, T.R.G. Describing Information Artifacts with Cognitive Dimensions and Structure Maps. MRC

Applied Psychology Unit. Paper in HCI ’91: Usability Now. Diaper, D. & Hammond, N.V. (eds.).

Cambridge University Press.

9. Green, T.R.G. Comprehending and Manipulating Complex Information Structures. Queen Mary &

Westfield College, London 1991. Summer School on ‘Theory & Methodology of Cognitive Science

Applied to HCI Problems’.

10. Lansdown, J. Not Only Computing — Also Art. Computer Bulletin, Series III, 1 (Part 2), pp 18-19,

1985.

11. Leler, W. Constraint Programming Languages: Their Specification and Generation. Addison-Wesley,

1988.

12. Lohse, J. A Cognitive Model for the Perception and Understanding of Graphs. CHI ’91 Proceedings,

ACM Press.

13. Minsky M. A Framework for Representing Knowledge. A.I. Memo 306, MIT Artificial Intelligence

Laboratory, 1974.

14. Negroponte, N. On Being Creative with Computer Aided Design. Information Processing 77, I.F.I.P.,

Amsterdam, pp 695-704, 1977.

15. Reeker, L. Informalism in Interfaces. Paper presented at the Workshop on Informalism, Santa Cruz,

California, May 28- 30 1991. Incremental Systems Corp.

16. Scrivener, S.A.R. The Interactive Manipulation of Unstructured Images. International Journal of

Man-Machine Studies (1982) 16, pp 301-313. Received 23 May 1981, revised 23 September 1981.

17. Stefik, M. Planning with Constraints. Artificial Intelligence 16 (1981), pp 111-140.

18. Sutherland, I.E. Sketchpad: A Man-Machine Graphical Communication System. Ph.D. thesis, MIT,

Cambridge, Mass, 1963.

55

In: de Bourcier, Lemmen & Thompson eds., 1994 The Seventh White House Papers:

Graduate Research in the Cognitive & Computing Sciences at Sussex. University of

Sussex, School of Cognitive & Computing Sciences, Brighton, UK. Research Paper

CSRP 350.

A Proposal for the

Detection of Software Interactions

Joseph A. Wood�

joew@cogs.susx.ac.uk

School of Cognitive & Computing Sciences

University of Sussex

Brighton

BN1 9QH

Abstract This is a position paper, which presents my views on software interactions, why

they cause complications and what can be done to overcome these obstacles. A notion of in-

teraction is defined, and the concept of “misfocusing” between groups is introduced. Finally,

a brief outline of how an automatic tool might tackle this problem is described.

1 Introduction

I have lost count of the projects I have seen where various modules work in isolation, but the integrated

modules do not work as expected. All such systems were designed and reviewed; so what went wrong?

This paper examines what I believe are some of the underlying reasons for this situation.

Before progressing further, I should explain that I am interested in what is called Programming-in-

the-Large, (de Remer and Kron, 1976). I assume that all experienced software engineers can produce

small programs correctly.

1.1 Paper’s Structure

Section 1.2 presents an example of a software interaction from a large industrial project. Section 2 briefly

explains my usage of the term software interaction. Section 3 looks at the kinds of interactions that cause

problems in large software projects. Section 4 considers how these problems might be handled, and finally

section 5 outlines my future research plans.

1.2 Software Interactions: an example

Before attempting to explain interactions, let me give a real example from one project. As part of a large

multi-processor Ada1 project, one group supplied the message handling (MH) capability for use by other

(“user”) groups. Being written in Ada the interface to MH had been made available and the meaning of

each data-type had been defined. Message handling worked in isolation; the user modules compiled with

the supplied interface and ran with stubs. When the first integration test was run, no messages where suc-

cessfully exchanged—why? On creating a new message, MH had calculated the length of the message

plus its workspace, when the user modules filled in the message, they also filled in the length of the mes-

sage, (excluding MH’s workspace). In short each group had a different view of the semantics2 of message

creation. This example is in essence trivial, but it is on such interactions that projects flounder. The sit-

uation becomes much worse with legacy systems (see for example (RE, 1994)); where the requirements

may not exist and the original designers are no longer available.

�Supported by a CASE award from the Engineering and Physical Sciences Research Council in association with British

Telecom Laboratories (ML 464531).
1Ada is a registered trademark of the US Department of Defense, Ada Joint Project Office.
2Capturing such semantics is a non-trivial problem.

56

2 What is a Software Interaction?

I have loosely used the term interaction above, without giving it a meaning. This section examines the

nature of interactions in more detail.

An interaction occurs whenever a ‘concept’ passes across a ‘boundary’, i.e. a ’concept’ is shared be-

tween parts of a system. The exact definitions of concept and boundary are domain dependent, but I shall

give a couple of examples which should clarify their meaning.

In a language such as FORTRAN IV a boundary can reasonably be taken as a block and a concept as

anything shared between blocks. For example, an integer array could be used to represent a date, with

the caller believing that the date is expressed in British order3 whilst the callee believes that the date is

expressed in US order4. Of course, this particular problem is largely overcome in modern languages by

shared data types.

In an object-oriented paradigm, objects respond to messages from other objects, so objects can be

regarded as the parts of our system, and concepts generally map onto messages. Several exceptions to

this mapping are possible, for example when an object uses knowledge of the internal details of an other

object.

The essential property of all interactions being that some concept (or understanding) has to be shared

across a boundary for the project to operate as intended. I believe that there are two basic kinds of inter-

actions, namely:-

abstract The concept is intellectual, and there may be no visible connection between the parts.

material The concept has a material existence in the implementation. That is, we can point to the imple-

mentation and say that these two components are connected by sharing this ‘resource’. Resources

include such things as variables, types, messages, etc..

It is clear that a material interaction must have an underlying abstract interaction, but the converse is of

course false. The parts that share a concept may be fully nested, overlap or wholly disjoint.

It could be argued that a monolithic system has no parts and therefore no interactions, as I have used

the term. This might be technically true of the actual implementation, but it is not true of the underlying

logical model, i.e. the system must have been conceived as interacting parts even if the expression of the

system is monolithic. Further, to suggest using a single ‘lump’ of code as the system would be to lose all

the advantages of information hiding, see (Parnas, 1972; Meyer, 1988).

3 What sorts of interactions cause problems?

It may be felt that this definition of an interaction is too broad. For example, if a routine calls a local routine

some concept flows across the routine boundary, and yet I claimed earlier that software engineers could

produce programs-in-the-small. Certainly, a routine call is an example of an interaction, but it constitutes

what I consider to be a safe interaction because the concepts are used by only one engineer.

So, what sorts of interactions cause problems? Frankly, this appears to be an open question. Small

programs do not appear to present significant problems whereas large programs do. Does this arise just

because different components are produced by different people, i.e. this is a project management phe-

nomenon, or is there another explanation? I do not believe that this is just an attribute of project man-

agement, not least because it happens on a wide spectrum of projects with diverse management styles. I

attribute the cause to a break down of the shared understanding. The MH group in the example above

had their own view of message creation, whereas the user groups had their own understanding of message

creation which was slightly different from the MH group’s.

The problem is not that different groups have a different understanding, it is rather that they believe

that they have a common understanding,which is not true in all specifics. This explains why (for example)

3Standard British order being day-in-month/month/year.
4Standard US order being month/day-in-month/year.

57

shared maths libraries do not cause problems; all engineers have a shared (common) understanding of sin

(say).

How does such a situation arise? All too easily, both parties think that the concept is obvious, and

the user simply wants to use the provided service. I regard this as a type of misfocusing. By focusing

I mean that an engineer’s attention is focused on a particular activity, and other (non-central) issues are

only peripheral. Hence as long as the periphery looks OK, no further notice is taken.

Many kinds of material interaction are now checked for in the later stages of a project, for example,

type checking. However, the early stages of project development are less well supported, and in particular

there are no checks for abstract interactions. How does this impact on software architecture?

Firstly, in the early stages of designing a system, i.e. when the architecture is being developed, atten-

tion focuses on the kinds and uses of services, not on the specifics of an interface. That is, designers are

more interested in the broad nature of components rather than the exact details of how a service is pro-

vided. For example, message handling shall provide facilities for creating and sending messages to other

parts of the system. Observed defects from this focusing are “we cannot provide this service because the

information is not available”. Hence, interfaces are broadened or shared data areas become a little more

global. This I suspect is the cause of much software rust in legacy systems.

Secondly, it is during the architectural design phase of a project that concepts are introduced, and

undergo rapid evolution as ideas are resolved and the overall structure of the system is resolved.

4 Preventing Interactions

Clearly, we cannot prevent interactions, because, if an entity has no interactions, it cannot form part of the

solution. So how do we detect interactions? The easiest interactions to spot are when interface packages

(say) are shared between (i.e. withed) other packages, because this gives a concrete indication of a shared

concept. Far harder, and more important, are when a concept is passed by consensus5, such as when a

requirement is shared between two components.

Material interaction is been tackled by such things as data types, information hiding and coupling.

Far harder to tackle is the abstract interaction, or the ‘unknown’ shared concept, for which there appears

to be no support.

4.1 Automatic detection of Interactions

A partial solution to interactions would be to keep a dictionary of shared concepts, much as a data dic-

tionary is kept. However, maintaining and accessing such a dictionary would not be easy. Certainly a

manual system seems doomed to be error prone, constantly out of date and bureaucratic.

5 Future Work

Work in the reverse engineering field has been done by Calliss (Calliss, 1989), taking monolithic code,

and using the technique of program slicing (Weiser, 1984), to produce modularised code. I believe that the

ideas of grouping functional entities together are strongly reminiscent of the process engineers go through

during forward engineering high quality software. I propose therefore to tackle the interaction problem

at the design stage, by capturing a design and examining it, with a view to reporting badly structured

(i.e. heavily interacting entities) and possible alternatives. I think that in order to detect abstract interac-

tions it will be necessary to capture requirements possibly using some form of requirement tracing.

I believe that this supports and enhances the normal design review activity, by providing feedback on

potential problem areas.

5i.e. Unspoken agreement, perhaps even subconsciously.

58

5.1 How Does an Engineer Benefit?

Constructing a network of the system as an evolving whole encourages the view that a system is a set

of interconnected pieces, highlighting the need to identify components and how they fit together. It also

serves as the front-end to a central project database. This has implications for integration, since quite

often components operate in isolation, but do not co-operate as a system.

An additional contribution of constructing a network is to identify missing pieces, or inappropriate pa-

rameters. A component as yet unresolved can be referenced (upon creation), have constraints, and notes

recorded about it. So that when it needs to be referenced elsewhere, or the time comes to design it, the

requirements and ‘expectations’ are already collected in one central point not just in disconnected docu-

ments, etc.. A component has to be designed to provide a service (Meyer, 1988), in response to its invo-

cation. A significant part of designing a component is gaining an understanding of what the component is

expected to provide and how other components expect to utilise its services. By capturing this information

in a database, the system will be able to identify related components. For example, if a system is required

to save and load data, the components that provide this facility must have a common understanding of

data formats.

As the design of a system continues a model of the component relationships must be built in an engi-

neer’s head. By positing alternative arrangements the tool will help the designers to achieve better mod-

ularity, with all its attendant benefits.

6 Acknowledgements

I am pleased to acknowledge the help and suggestions made by Betsy Cordingley and Dr. Jeremy Wilson.

My special thanks go to my supervisor Dr. Rudi Lutz.

References

Calliss, F. W. (1989). Inter-Module Code Analysis Techniques for Software Maintenance. PhD thesis,

School of Engineering and Applied Science (Computer Science), University of Durham.

de Remer, F. and Kron, H. H. (1976). Programming-in-the-large versus programming-in-the-small. IEEE

Transactions on Software Engineering, 2(2):80–86.

Meyer, B. (1988). Object-Oriented Software Construction. Prentice-Hall International, Hemel Hemp-

stead, Hertfordshire.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. Communications

of the ACM, 15(12):1053–1058.

RE (1994). Communications of the ACM. volume 37, number 5, special issue on Reverse Engineering.

Weiser, M. (1984). Program slicing. IEEE Transactions on Software Engineering, 10(4):352–357.

59

In: de Bourcier, Lemmen & Thompson eds., 1994 The Seventh White House Papers:

Graduate Research in the Cognitive & Computing Sciences at Sussex. University of

Sussex, School of Cognitive & Computing Sciences, Brighton, UK. Research Paper

CSRP 350.

Towards an Intelligent Debugging System for ML Programming Language

Changiz Delara

changiz@cogs.susx.ac.uk

School of Cognitive & Computing Sciences

University of Sussex

Brighton

BN1 9QH

Abstract We propose an intelligent debugging system with a knowledge representation that

is independent from the programming language of a particular program to be debugged. We

employ a knowledge representation technique called the Plan Calculus which has been de-

veloped by Rich [Rich, 1981b]. In order to debug a program we translate a given program

to a surface plan representation, parse the surface plan to understand the overall function of

the program, and use near-miss information to known plans to locate bugs and repair them.

Since our system will locate bugs by manipulating programming knowledge which is inde-

pendent from any programming language, it can be used to debug programs written in any

procedural language provided that the front end to the system is maintained. Our system is

aimed at debugging student’s ML programs and can be incorporated into an ITS (Intelligent

Tutoring System) system as an Expert module or can be used as it stands.

1 Introduction

The aim of our system is not the general task of debugging which notoriously is beyond the state of the

art, but the simple task of finding bugs and repairing them in student programs for known exercises. Our

research proposal is implementing an intelligent debugging system for ML based on the plan calculus

formalism. The plan calculus is a knowledge representation formalism for representing programs and

programming knowledge such as algorithms and data structures in a procedural language. Our Bug De-

tection module is responsible for locating and detecting the logical errors of the given program and re-

pairing them. In order to do that we translate (by way of a translation module) the student program into

an internal representation called the surface plan. This is a representation of the program in terms of its

control and data flow. Then we parse the surface plan by a chart parser (a plan recognition module, de-

veloped and implemented by [Lutz, 1989]) against a plan library to derive the highest level description

of the semantics of the program. The plan library contains many common data structures and algorithms

which are represented in the plan calculus formalism. The results of this understanding/description are

stored in a “chart” in Lutz’s [Lutz, 1992] term. In fact, there is one chart (database) for fully instanti-

ated plans (complete chart) and another for partially instantiated plans (partial chart)1. There also is a

reference library, which contains the high-level goal(s) for each programming task assigned to students.

2 The Bug Detection Module

In this section we shall give more explanation concerning the Bug Detection module which is the focus

of our research. Suppose that a program is submitted to the Bug Detection module and has passed the

translation phase and plan recognition phase. Having reached this stage, the program surface plan and the

chart have been built and are ready to be used by the Bug Detection module. By also using the knowledge

1There are other databases for data plans and data overlays as well.

60

pre-stored in the plan and reference libraries, the Bug Detection module attempts to locate any logical

errors in the student program. Subsequently it reports them (if any) either to the student so that he/she

can correct his/her program, or to a tutoring module in a complete ITS system which tutors the student

accordingly. In the debugging process for a given student program several cases can occur. The best

case is that the student program achieves what it is supposed to do (i.e., it is correct). An alternative case

would be that the student program achieves what is expected but there is some redundant code. Another

case may be that the student program might achieve a similar task to the desired task. For instance, if the

task is sorting a list of numbers in ascending order, but the student program sorts the list in descending

order. Still another case that might occur is that the student program fails to achieve the highest-level goal

but there is a partially instantiated plan for the goal in the chart. We consider this a near-miss situation.

Yet another case might be that there is no fully or partially instantiated plan in the chart for the high-level

goal. The worst case may be that none of the above case happens which implies that the knowledge of the

system is not sufficient to understated the implemented program or the student program is so wrong that

it does not fit in any of these categories. Here is the detailed explanation of the cases summarized above:

1. A highest-level plan (highest-level goal) of a given program referenced in the reference library ex-

ists in the complete chart and all of its sub-plans cover the student program in a one-to-one mapping.

2. This case is similar to case 1 except for the one-to-one correspondence. This means that the student

program contains superfluous programming constructs which have produced extra plans at the sur-

face plan level. In this case the Bug Detection module asserts that the given program is a correct

implementation of the given programming task while reporting the redundancies.

3. The complete chart contains the student program high-level goal referenced in the reference library

but differs from it. That is, there is a similar plan in the chart for the high-level goal. This difference

might be wholly or partly with the input tie-points2, output tie-points, controlling condition, or in

the ordering of the input/output tie-points. In this case, the Bug Detection module will traverse the

similar plan and examine its sub-plans to detect where the discrepancies have occurred. Then it

deletes these sub-plans and creates new but correct corresponding sub-plans while making note of

the modifications to be reported at the end of the debugging process and finally reconnects the new

plans to the surrounding sub-graphs.

4. By examining the complete chart, the Bug Detection module can not find a plan corresponding

to the highest-level goal. But the examination of the partial chart reveals the existence of several

corresponding partial plans for the goal. Having multiple partial plans for a specific plan is due

to the bottom-up parsing nature of the plan recognition module3. Now the module must select the

“best” of those partial plans. To do this we have assigned quantitative values or scores to each

plan of the plan library. For each surface-plan-level plan which we call primitive plan we assign

a fixed score and store them in a database (actually in a hash table). Then the score of other plans

such as temporal plans and overlays are computed out of the score of their primitive sub-plans. For

the moment, the computation of score is just summing the scores of every sub-plan of a plan, but

the process is recursive because a sub-plan of a plan may be a temporal plan - which it usually is.

Therefore, the question which partial plan to choose is straightforwardly reduced to only selecting

the partial plan with the maximum score. But the partial plan must have related tie-point(s) with the

goal. Having chosen the compatible, related, and best partial plan, we choose each of the required

un-instantiated sub-plan of the partial plan and debug the program for it.

5. By examining the complete chart and the partial chart, the Bug Detection module can not find a

corresponding plan for the goal. In this case, it takes a corresponding rule 4 which can be used for

2In the plan calculus formalism we assign a number for each constant, variable, result of any primitive computation, etc.

which is called a “tie-point” [Lutz, 1992].
3In circumstances where there is no high-level plan/goal to start with, the bottom-up approach is the most appropriate.
4We will use the expressions rule and plan interchangeably.

61

an instantiation of the goal and then takes the right-hand side of that rule as the current goal and

continues the process recursively. If there is more than one rule which can implement the current

goal then the Bug Detection module must select a “compatible” rule with the current goal. In this

regard it applies another heuristic which says to take a compatible rule with minimum score in this

category. A compatible rule is a rule which if it has an instantiated tie-point, then it must be the

same as the corresponding tie-point in the current goal (if any). If the selected rule resulted in a

contradiction with what has been done so far, it backtracks to select the next rule according to the

above heuristic and the debugging continues.

6. If none of the cases occurred during the phases of the debugging then the Bug Detection module

assumes that the student has come up with “bizarre code” [Johnson, 1986], which does not conform

to any rational pattern, or he/she has introduced an algorithm which is beyond its knowledge. In

this case it does not insult the student but just prints a message conveying the above conclusion.

3 An Example

For the sake of brevity we present a simple example, but the general idea is applicable to large programs

as well. Suppose the following programming task is given to the students who are taking an elementary

course in ML.

write a computer program to compute the sum of

elements in a list.

A typical correct solution to this problem is :

fun sum nil = 0 | sum (a::rest) = a + sum rest;

But the student has come up with the following incorrect solution:

fun sum nil = 0 | sum (a::rest) = sum rest;

In other words, the student for some reason has forgotten to accumulate the numbers generated in the

recursion.5 The surface plan for the student program which automatically is generated by the translation

module is shown in figure 1. The highest-level plan (i.e., goal plan) which the Bug Detection module

will look for in order to debug this program is depicted in figure 2. This goal, along with other goals, is

pre-stored in the reference library. Before continuing with our explanation of the debugging process for

this example, let us present plans which are involved in the goal for the student program (i.e., sum). This

plan hierarchy is shown in figure 3. Note that the leaf nodes of the tree in figure 3 are primitive plans

(i.e., surface-plan-level plans) and non-leaf nodes correspond to another plan in the plan library and the

dangling arrows show the existence of other plans, but for clarity we did not include those. Surface-plan-

level plans are those plans which are generated by the translation module. From the surface plan of the

student program the plan recognition module found (instantiated) about forty complete plans from the

plan library and stored them in the complete chart. Along with those plans several partial plans which

failed to be completed are left in the partial chart. The most closely related plans for our example6 are

cons2 + @ ml binrel + test, @ binrel, @ binrel composite, and @ predicate. There is no complete or

partial plan for sum, aggregate, reverse iterative aggregation, or @ aggregative in the chart. There are

several partial patches (plans) for reverse iterative aggregation in the partial chart.

Now we outline the debugging process of the student program. If the program had been implemented

correctly, the module would have found the sum plan (shown in figure 2) in the complete chart. But this

is not the case and therefore the Bug Detection module tries the second, third, and fourth cases as alluded

5For the moment we are not very concerned with students’ misconceptions.
6There are many other plans in the chart but they are not important for the moment.

62

cons_tuple2

@_ml_binrel

@_function

join-output

.S

.S .F

nil$argument=

@_equals_+_true

.F

split_cons

equals_+_true

::

0

Figure 1: surface plan of the student buggy program

sum

t2

t1

where :

t1= list_>_set(

the function

argument tie-point)

Figure 2: sum goal

to in section 2 and realizes that these are not the cases to proceed with. Then it moves to case 5 and figures

out that this is the one. That is, the Bug Detection module could not find a complete or partial plan either

in the complete chart or in the partial chart. As described earlier, it fetches the corresponding rules for

this goal from the plan library and selects those rules which are compatible with the current goal.7 Then

it propagates any instantiated tie-points from the current goal to those rules and takes a rule. Now the

right hand side of this rule becomes the current goal to proceed with. When a rule succeeds it discards

the remaining rules for the current target, otherwise it tries the next rule in this category. For this example

there is only one rule which is the aggregate rule (see figure 4) and the module sets it as the current goal

and attempts to debug the given program for that goal.

Likewise, by examining the complete and partial chart for the current goal, it realizes that there is no

corresponding plan for it. Consequently, it fetches the corresponding rules from the plan library. In this

case there are two rules namely, reverse iterative aggregation and iterative aggregation. In situations

such as this–where there is no preference between the rules to be chosen–the Bug Detection module ap-

plies a heuristic which says to first try the rule which recurses in reverse manner. Therefore, it chooses

reverse iterative aggregation rule8 first and if it fails to account for the implementation of the student

program and repair it then attempts the iterative aggregation rule. Having done that, the current goal be-

comes reverse iterative aggregation (see figure 5). Any instantiated tie-points from the goal hierarchy

are propagated to this current goal.

7Some rules have pre-assigned fixed tie-points which may not be compatible with the current goal.
8Because the natural way of implementing recursion in ML is not tail recursion.

63

sum

aggregate

reverse_iterative_aggregation

@_predicate recursive join_output

@_binfunction

cons_tuple2 @_ml_function

Key: component of

drive to

cons2_+_@_fun

@_aggreagative

@_binrel_composite

@_binrel

cons2_+_@_ml_binrel_+_test

cons_tuple2 @_ml_binrel @_equals_+_true

Figure 3: Plan Hierarchy for the student sum function

sum

t1

aggregate

t2

t1

t2

+

Figure 4: sum as aggregate overlay

By consulting the plan library again, it realizes that there is no rule derivable from this rule (see figure

3 for plans hierarchy).9 Now the whole debugging process culminates in debugging the student program

for the reverse iterative aggregation plan and debugging this case falls into case 5. For this goal, the

module finds several partial plans in the partial chart and it selects the most suitable one. In order to do

so, it applies a heuristic which says to choose those partial plans whose score so far is greater than or

equal to half of their score when they were complete. This implies choosing those partial plans which

have more instantiated sub-plans. Furthermore, between those plans choose plans that have any tie-point

in common with the current goal. Still between them choose partial plans of which if join output is a

sub-plan then this sub-plan must not be an overlay of another join output. Finally, from the recognized

partial plans choose the ones whose sub-plans have no output tie-point of a global constant. Note that

these factors help the Bug Detection module to reason in uncertain circumstances.

Now in our example, it chooses one of these partial plans, examines it, and realizes that it has two

un-instantiated sub-plans (out of four) namely, @ aggregative and recursive. In these situations, it must

debug the given program for each of the sub-plans involved. Which sub-plan to choose first is the next

question to be answered. In this regard, the Bug Detection module applies another heuristic which states

that it should concentrate on non-recursive sub-plans first10 and among them choose the one with the

maximum score. Note that for each plan in the plan library, we have maintained a property list in the

9Note that we are traversing the plan hierarchy in a top-down manner.
10Without debugging the non-recursive sub-plan debugging recursive sub-plan becomes very hard. Since non-recursive sub-

plans affect the input/output tie-points of a recursive sub-plan.

64

@-aggregative

@_predicate

.S .F

join_output

.T .F

.criterion .input

t2

aggregate

recursive

 t1 = list_>_set(accumulation stream (

+

t1

.add.binop

.add.input
.init

 reverse_iterative_aggregation(.add.input)

where :

Figure 5: aggregate as reverse iterative aggregation overlay

@_aggregate @_binfunction

.op(function)

.input1(object)

.input2(object)

.output(object)

.op(function)

.input1(object)

.input2(object)

.output(object)

Figure 6: @ aggregative as @ binfunction overlay

@_ml_function

cons_tuple2

.output(object)

.input1(object)

.op(function) .input2(object)

.op(function)

.input1(object)

.input2(object)

.output(object)

@_binfunction

Figure 7: cons2 + @ fun as @ binfunction plan

@_ml_function

cons_tuple2

.output(object)

.input1(object)

.op(function) .input2(object)

Figure 8: cons2 + @ fun plan

65

cons_tuple2

@_ml_binrel

.S

@_equals_+_true

.F

equals_+_true

t2
t3t1

Figure 9: cons2 + @ ml binrel + test plan

cons2_+_@_ml_binrel_+_test

.S .F

t1 t2 t3
equals_+_true

@_binrel

.S .F

t2
t3t4

where:

t4 = predicate_of_tuple_>_binrel(t1)

Figure 10: cons2 + @ ml binrel + test as @ binrel overlay

form of a hash table which contains the plan type and its score. In this case it chooses the @ aggregative

sub-plan to proceed with. Now the current goal for the module is the @ aggregative plan. Debugging

this falls under case 5 (because there is no complete or partial plan in the chart) which in turn directs the

debugging the program for @ binfunction. Figure 6 shows the corresponding overlay. There are four

rules corresponding to this plan in the plan library and the Bug Detection module chooses a rule from the

extracted set which is related to the current target. If this choice led to a discrepancy with what has been

asserted, then the module backtracks the process to select the next rule according to its heuristic again.

This process continues until it succeeds or it abandons the whole process because of contradictions.

At this stage, the module selects cons2 + @ fun plan (see figure 8) as the current goal and debugs the

program for it. This falls into case 5 again, but this time all of its sub-plans are primitive plans. Therefore,

it asserts that the student program has failed to produce such plans and it creates a corresponding plan for

each of the sub-plans involved and passes them to the plan recognition module. This invocation entails

the addition of the sub-plans to the complete chart as well as the instantiationof other pertinent plans such

as cons2 + @ fun, @ binfunction, and @ aggregative.

Now it is the turn of the recursive sub-plan to be debugged. This case is more tricky because it requires

the deletion of an existing rule for the recursion and the creation of a modified version of the rule.11 This

involves including new tie-points which are introduced in newly created plans while omitting old tie-

points (in the case of the removal of any old plan).

In order to activate the new modified recursion rule which is added to the plan library we create a

primitive plan (i.e., a nape) of the type of @ function with the operation tie-point assigned to the student

function name in the translation phase. Its argument tie-point is the one which was in the old @ function

and its output tie-point is the one coming out of the recursive sub-plan. This activation causes the re-

verse iterative aggregation plan, aggregate plan, and sum plan to become fully instantiated and added to

11The translation module generates a new rule for each student function it processes.

66

the complete chart.

Since the whole debugging process is recursive, at this stage of the analysis, the debugging process

completes and recursion unwinds. Since the highest-level goal (i.e., sum) plan is found in the complete

chart, the whole debugging process is terminated. This means that the Bug Detection module found the

highest-level goal but only by repairing the student program. In the final stage, the Bug Detection module

reports on what has been done, for example: stating that @ binfunction plan was missing and has been

created and added to the chart, implying that the student had missed a binary operation (i.e., +) to sum

up the ‘head’ of the list in the way back of the recursion.

This example shows how the Bug Detection module locates and repairs the bug. For the interest of

the reader we have included the graphical representation of the plans and overlays referred in figure 3.

We omitted their logical definition for the sake of clarity. Interested readers concerned with the logical

foundation of the plans and overlays in the plan calculus are referred to [Rich, 1981b] and [Rich, 1981a].

4 Conclusion

In this short paper we delineated the overall strategies used by the Bug Detection module. We showed

how the module locates and identify the bugs and repair them. Finally we closed our report by presenting a

simple example (but comprehensive in content) to give some flavour of how a bug is located and repaired

by our proposed tutoring system.

Acknowledgement

I am grateful to my academic supervisor Dr. Rudi Lutz for his comments and willingness to discuss the

material presented here. This research has been fully supported by the Ministry of Culture and Higher

Education of the Government of Islamic Republic of IRAN.

References

[Johnson, 1986] W. L. Johnson. Intension-Based Diagnosis of Novice Programming Errors. Morgan

Kaufmann Pub. Inc., USA, 1986.

[Lutz, 1989] R. Lutz. Chart parsing of flowgraphs. In In proceedings of 11th Int. Joint Conf. Artificial

Intelligence, pages 116–121, Detroit , Michigan, 1989.

[Lutz, 1992] R. Lutz. Towards an Intelligent Debugging System for Pascal Programs: On the Theory

and Algorithms of Plan Recognition in Rich’s Plan Calculus. technical report, The Open University,

Milton Keynes , UK, 1992.

[Rich, 1981a] C. Rich. A formal representation for plans in the programmer’s apprentice. In Proc. of the

7th Int. Joint Conf. on Artificial Intelligence, ICJAI, pages 1044–1052, August 1981.

[Rich, 1981b] C. Rich. Inspection Methods in Programming. technical report no. 604, Artificial Intelli-

gence Laboratory, MIT, June 1981.

67

In: de Bourcier, Lemmen & Thompson eds., 1994 The Seventh White House Papers:

Graduate Research in the Cognitive & Computing Sciences at Sussex. University of

Sussex, School of Cognitive & Computing Sciences, Brighton, UK. Research Paper

CSRP 350.

Goal Formulation as an AI Research Issue

Remedios de Dios Bulos

remedios@cogs.susx.ac.uk

School of Cognitive & Computing Sciences

University of Sussex

Brighton

BN1 9QH

Abstract Although research in AI Planning systems has made considerable progress from its

humble beginnings, much is still to be desired. A lot of research work remains to be explored

to address several unresolved issues and problems. An important research issue in AI Plan-

ning systems that needs to be addressed, investigated, and solved concerns the problem of

endowing an artificial resource-bounded rational agent with the ability to formulate its own

goals, as it navigates a world that is characterizable as complex, dynamic and uncertain. This

paper cites and discusses the main reasons and issues as to why goal formulation is an impor-

tant research topic to be tackled in Artificial Intelligence. First, a definition of goals is given.

Next, several reasons are identified as to why goal formulation is a research issue in AI. A

summary and analysis of related work on goal formulation is then presented. Lastly, a list of

research questions that need to be resolved is enumerated.

1 Introduction

Research work in AI Planning systems has progressively evolved from the simple operation of identify-

ing and generating possible action sequences to achieve a set of specified goals (classical AI Planning)

to the more sophisticated process of integrating the different functions of planning, execution, monitor-

ing/controland learning. Moreover, the characteristics and environment of the domain of experimentation

and application have gradually metamorphosed from simple, static and predictable to complex, dynamic

and uncertain.

However, although research in AI Planning systems has made considerable progress from its humble

beginnings, much is still to be desired. An important research issue in AI Planning systems that needs to

be addressed, investigated, and solved concerns the problem of endowing an artificial resource-bounded

rational agent with the ability to formulate its own goals, as it navigates a world that is characterizable as

complex, dynamic and uncertain.

1.1 What are Goals?

In order to fully understand and address the various issues involved in the formulation of goals, a clear

definition of what goals are is first needed. As used throughout this paper, goals shall refer to the end re-

sults that an agent would like to achieve or avoid. They are primarily acquired through association with

other agents, objects, events, symbols and behavior. They are often multiple, occur simultaneously and

may interact with each other. They are stored and organized according to a dynamic hierarchy. They are

activated by the stimuli generated by the environment, and are chosen depending on the relative posi-

tion they occupy in the hierarchy and their potential for realization. [Ford, 1992; Pervin, 1991; Read &

Miller,1989; Koontz & Weihrich, 1988]

69

1.2 What is Goal Formulation?

As agents operate in complicated, dynamic and unpredictable worlds, many promising goals of varying

degrees of importance and potential of realization could be acquired and detected. However, due to their

resource limitations, agents need to decide wisely on what goals to respond to and when. As Pollack has

said ”intelligent behavior depends not just on being able to decide how to achieve one’s goals, but also

being able to decide which goals to pursue in the first place, and when to abandon or suspend the pursuit

of an existing goal” [Pollack, 1992].

In this paper, Goal Formulation shall refer to the intelligent behavior that an agent exhibits when rea-

soning (and deciding) what goals to pursue and when to pursue them. It may be described as the integra-

tion of several processes, namely: detecting which goal is to be accomplished (Goal Detection), assessing

the feasibility of accomplishing the goal (Goal Assessment), determining the relative position of goals in

the hierarchy (Goal Prioritization), evaluating whether a newly detected goal is to be accepted, rejected,

or modified and whether a currently active goal is to be pursued (continued), terminated, suspended, or

modified (Goal Evaluation) and determining ways of modifying goals (newly detected or active) to suit

present circumstances (Goal Modification).

2 Goal Formulation as a Research Issue

In the artificial intelligence field, most of the AI planning systems that have been designed and developed

so far operate on the basis of an already existing, predetermined goal or set of goals. That is, they start

with a set of goals that have been previously identified and assigned by the user.

A truly intelligent agent, whether a person or an artificial system, must be able to make the most out

of any given situation, whether the situation proves to be adverse or pleasant. As the situation permits, he

should either maximize his gains, or satisfice whatever he could accomplish and should be able to explore

other possible goals that could be achievable in the light of present circumstances. As a rational agent and

a survivor, an intelligent individual does not wind up in oblivion or in the state of inactivity should the

situation become most uncooperative in achieving his current goals. He either postpones or terminates the

achievement of current goals, but at the same time looks for possible opportunities and then formulates

new goals to take advantage of the prevailing conditions. Should he possess prioritized multiple goals,

he diverts his attention to accomplishing goals of lesser priorities.

Most AI planning systems are not capable of exhibiting a ”genuine” goal-oriented or goal-directed

behavior. They are not built with the capability to monitor and analyze the environment and to formulate

their own goals. They lack the ability to take advantage of opportunities being presented by changing

environmental conditions. They do not have the flexibility of behavior to change their focus of attention

or direction when needed most. They are bereft of the ability to make a rational choice in the light of

present circumstances. [Georgeff, 1990]

However, goal formulation is not merely the detection or inferring of one’s goals. More than this, it

involves reasoning and decision-making on which of the newly detected goals are to be pursued and which

of the currently pursued goals should be continued, postponed or abandoned. To be able to reason and

decide regarding the validity of its goals, the agent should possess the knowledge and behavior needed

to assess the feasibility of achieving goals, to detect and analyze the consequences of both positive and

negative interaction of goals, to resolve conflicts arising from negative goal interactions, and take full

advantage of the promising benefits created by positive goal interactions.

In real world domains, planning agents are resource-bounded. Although they may have unlimited

wishes, they have limited supply, access to, and use of resources. A planning agent endowed with the

capability to formulate its own goals can enumerate or detect an infinite number of goals (achievable and

non-achievable alike). However, constraints as well as limitations force it to reason, decide, and even-

tually choose the set of goals it considers possible and practical to achieve. It also has to consider the

relationship of its goals among each other because goals can compete for the limited resources or share in

the use of resources. In the light of limited resources, it also has to prioritize its goals according to their

70

importance, i.e. which goal should be accomplished first.

However, due to the dynamism and uncertainty of the environment, decisions that were made previ-

ously (in terms of plans and goals) may be affected and become inapplicable later. During such trying

and unexpected situations, the agent must be able to decide quickly, react and respond appropriately, be

able to cope up with the new constraints and conditions, regain full control of the situation, and resume

its normal functions.

When present circumstances become too difficult for plans to succeed, the agent must be able to de-

cide whether it has to continue achieving the goal (that is, by adopting another alternative plan of lesser

expected value or replanning), postpone the pursuit of a goal, terminate the pursuit of a goal completely,

or come up with a modified goal that is tailored to the prevailing circumstances. It should also be able to

decide when to suspend the attainment of the goal temporarily, to redirect or refocus its attention to goals

that must be desperately accomplished during that time.

However, a dynamic and uncertain environment does not always spell trouble for the agent. At times,

various opportunities that were not present before or not predicted to come may emerge. In these situa-

tions, an agent should also have the capability to decide whether to take advantage of these opportunities

or not. It has to make a good judgement of whether another goal should be formulated in order to capi-

talize on the merits of the situation or to just pursue the status quo.

3 Addressing the Goal Formulation Problem through AI

This section aims to present the most relevant and related literature to date that deals with the goal for-

mulation research issues discussed in the preceding section. It discusses how some AI researchers have

touched or tackled some issues concerning goal formulation.

When speaking of goal formulation, the first important question that comes to mind or needs to be

determined is where do goals come from or how are they acquired? In the AI research community, this

question was addressed by Schank & Abelson in their research on story understanding [Schank & Abel-

son, 1977]. In their book ”Scripts, Plans, Goals and Understanding”, Schank and Abelson emphasized

the importance of knowing the different kinds of goals plus their interaction among each other to formu-

late expectations. They also stressed the need to recognize the existence of a goal for an actor in order to

be able to predict his future actions. They postulated a GOAL MONITOR which recognizes the trigger-

ing of goals, interprets the nature of goals, keeps track of the fate of goals, and makes predictions about

goal-related events. [Schank & Abelson, 1977]

Wilensky also recognized the need for an AI planning system to formulate its own goals. He has

stressed the significance for an autonomous planner to be equipped with the capabilities of inferring ”its

own goals based upon its overall mission together with the situation in which it finds itself”. [Wilensky,

1990]

In the development of the Berkeley Unix Consultant Project, Wilensky together with his co- researchers

has identified the UCego as one of the components of the Unix Consultant (UC). The UCego, which was

developed by Chin, determines UC’s own goals and attempts to achieve those goals. [Wilensky, Chin,

Luria, Martin, Mayfield & Wu, 1988]

Georgeff, Lansky & Ingrand, in their work on the Procedural Reasoning System (PRS) have stressed

the need for a planning system to have its own set of beliefs, desires and intentions. Although the PRS

does not have the ability to formulate its own goals, it has been endowed with the capability to reason

about its own internal state. It reflects upon its own beliefs, desires, and intentions and modifies them

when the appropriate situation arises. [Georgeff & Ingrand, 1989; Georgeff & Lansky, 1990]

Lizotte and Moulin, in their model SAIRVO, also tackled some aspects of goal formulation. SAIRVO

possesses components that could verify and recognize goals. The process VERIFY A GOAL ”examines

the contents of the accumulations facts and facts to be inferred to find new facts (positive interactions) that

will enable some of its goals” [Lizotte & Moulin, 1990]. On the other hand, the process RECOGNIZE A

GOAL chooses the goals of the planner. The motivation rules which contain the goals or conclusions to

71

be detected given a set of premises are applied on all information. [Lizotte & Moulin, 1990]

4 Unresolved Issues on Goal Formulation

Analysis of the above cited works indicates that by and large, research on goal formulation has concen-

trated on the goal detection aspects. Goal detection is the process of signalling or reminding the system

(planner) that it has a goal(s). The goal is usually detected when a situation or condition that gives rise

to the goal is sensed by the planner. Although such a method is valid and effective, it is most probably

not the only means to detect the occurrences of goals. Also, further elaboration is needed on the types of

situations that emerge and how such situations give rise to goals.

Another important issue that needs further study is the reasoning and decision-making process that is

undertaken when evaluating whether a newly detected goal should be accepted, rejected, or possibly mod-

ified. It is essential for the agent to detect changes that affect the acceptance or rejection of the goal during

deliberation to prevent or minimize the waste of further effort and resources. It is equally significant to

determine when the evaluations should take place.

Assessing the feasibility of a goal could be a long, tedious and delicate process. Given preliminary

knowledge and estimates of the minimum constraints to achieve a goal, some goals may be obviously

classified as ”non-achievable”. Possible problems that may arise during feasibility assessment of the goal

should be investigated.

Currently held goals should also be regularly evaluated. Some goals may need to be abandoned and

others be temporarily suspended. This is brought about by the changing conditions in the environment as

well as the introduction of new goals into the agent’s overall repertoire and hierarchy of goals.

Dealing with goal interactions is a very important aspect in goal formulation. The goal formulator

must know whether negative goal interactions can be resolved and whether newly detected goals have

positive interactions with other currently held goals. Although research on goal interactions has generated

the interest of some researchers, the bulk of the research work is mainly concentrated on the development

of mechanisms for resolving goal and plan conflicts through the application of critics [Sussman, 1975;

Sacerdoti, 1977], constraints [Stefik, 1990], and meta-planning [Stefik, 1981; Wilen sky, 1983]. However

research on what should be done should unresolvable goal conflicts occur is wanting.

The prioritization of goals is another issue of goal formulation that needs to be investigated. Accord-

ing to Schank and Abelson there is no known calculus on how to prioritize goals [Schank & Abelson,

1977]. It is therefore necessary that a study concerning the reasoning and decision-making utilized by the

agent when prioritizing goals should be tackled. Vague and immeasurable terms such as ”importance” of

a goal need be defined. Modifying rejected or unsuccessful goals is another issue that needs to be studied.

An agent should find ways of redefining its goals if previously evaluated to be unachievable or proven to

be unsuccessful.

Goal Formulation is not a lone and isolated process. It is a part of the management process system and

integrated with the other processes that comprise the system. Goal formulation interacts with the process

of analyzing the environment to enable the detection of goals. It interrelates with the planning process

in assessing the feasibility of achieving the goals detected. It interacts with the monitoring and control

and execution processes to regularly evaluate the status of the goals, that is, whether a goal should be

continued to be pursued, suspended, or terminated. To ensure the proper and timely formulation of goals,

the relationships with other components and the conditions that would call for the interactions should be

identified and defined.

5 Conclusion

Most of the existing AI Planning systems were developed based on the working assumption that a goal

is supplied to the agent (planner). However, to be truly called ”intelligent” an agent must not only be

capable of knowing how to achieve its given goals. It must also have the capability to formulate its own

72

goals. It must reason and decide what goals to achieve and when to achieve them. It must be able to detect

its own goals, assess their feasibility, prioritize them, evaluate their validity (continuation, termination,

suspension, modification) and modify them in the light of present circumstances. An intelligent agent’s

success in pursuing its goal-directed activities will largely depend on the behavior it exhibits during the

formulation of goals. These above-cited reasons justify the research issue that an agent should be endowed

with the capability of formulating its own goals.

References

Allen, J. F. (1979), A Plan-Based Approach to Speech Act Recognition, Doctoral dissertation, Department

of Computer Science, University of Toronto. Also available as Technical Report No. 131, University of

Toronto.

Chin, D. N. (1988), Intelligent Agents as a Basis for Natural Language, UCB:CSD-88- 396, Division of

Computer Science, (EECS), University of California, Berkeley, CA.

Faletti, J. (1982), PANDORA – A program for Doing Common Sense Planning in Complex Situations, in

Proceedings of the Second Annual National Conference on Artificial Intelligence, pp. 185-188, August,

PA.

Ford, M.E. (1992), Motivating Humans Goals, Emotions, and Personal Agency Beliefs, USA: Sage Pub-

lications, Inc.

Georgeff, M.P. (1990), Planning, in Allen, J., Hendler, J. & Tate, A. (eds.) Readings in Planning, San

Mateo California, USA: Morgan Kaufmann Publishers, Inc.

Georgeff, M.P. & Ingrand, F.F. (1989), Decision-making in an Embedded Reasoning System, in Proceed-

ings Eleventh International Joint Conference on Artificial Intelligence, pp. 972-978, Detroit, Michigan.

Georgeff, M.P. & Lansky, A.L. (1990), Reactive Reasoning and Planning in Allen, J., Hendler, J. & Tate,

A. (eds.) Readings in Planning, San Mateo California, USA: Morgan Kaufmann Publishers, Inc.

Koontz, H. & Weihrich, H. (1988), Management 9th Edition, New York: McGraw- Hill.

Lizotte, M. & Moulin, B. (1990), A Temporal Planner for Modelling Autonomous Agents, in Demazeau,

Y. & Muller, JP. (eds.) Decentralized A.I., pp. 121-136 Amsterdam, Netherlands: Elsevier Science Pub-

lishers.

Pervin, L.A. (1991), Self-Regulation and the Problem of Volition, in Maehr, M.L. & Pintrich, P.R. (eds.)

Advances in Motivation and Achievement Vol. 7, Greenwich, Connecticut: JAI Press Inc.

Pollack, M.E. (1992), The Uses of Plans, Artificial Intelligence, 57, pp. 43-68.

Read, S.J. & Miller, L.C. (1989), Inter-Personalism: Toward a Goal-Based Theory of Persons in Relation-

ships, in Pervin, L.A. (ed.) Goal Concepts in Personality and Social Psychology, Hillsdale, New Jersey:

Lawrence Erlbaum Associates.

Schank, R.C. & Abelson, R.P. (1977), Scripts, Plans, Goals and Understanding,New York, USA: Lawrence

Erlbaum Associates.

Stefik, M. (1990), Planning with Constraints (MOLGEN: Part 1), in Allen, J., Hendler, J. & Tate, A. (eds.)

Readings in Planning, San Mateo California, USA: Morgan Kaufmann Publishers, Inc.

Stefik, M. (1981), Planning and Metaplanning (MOLGEN: Part 2), Artificial Intelligence, 16, pp. 141-

169.

Sussman, G. J. (1975), A Computer Model of Skill Acquisition, New York: American Elsevier.

Wilensky, R. (1990), A Model for Planning in Complex Situations, in Allen, J., Hendler, J. & Tate, A.

(eds.) Readings in Planning, San Mateo California, USA: Morgan Kaufmann Publishers, Inc.

73

Wilensky, R. (1983), Planning and Understanding A Computational Approach to Human Reasoning,

Reading, Mass.: Addison-Wesley Publishing Company

Wilensky, R., Chin, D.W., Luria, M., Martin, J., Mayfield, J., & Wu, D. (1988), The BERKELEY UNIX

Consultant Project, Computational Linguistics, 14, No.4.

Wood, S. (1990), Planning in a Rapidly Changing Environment, DPhil Thesis, School Of Cognitive and

Computing Sciences, University of Sussex, Brighton, UK.

74

In: de Bourcier, Lemmen & Thompson eds., 1994 The Seventh White House Papers:

Graduate Research in the Cognitive & Computing Sciences at Sussex. University of

Sussex, School of Cognitive & Computing Sciences, Brighton, UK. Research Paper

CSRP 350.

Structural Extensions for the ELKA Model

Ricardo Garza M. �

ricardom@cogs.susx.ac.uk

School of Cognitive & Computing Sciences

University of Sussex

Brighton

BN1 9QH

Abstract In this paper the forked link is used in the construction of extended relationships

for the design of ELKA database conceptual model. The properties of such relationships are

defined as structural extensions to the semantics of the model. The introduction of these ex-

tended relationships allow the capture more meaning during the conceptual database design

process. The specification of generalization/specialization hierarchies may be perceived as

a particular case of the extended relationships.

1 Introduction

This paper presents the main characteristics of the forked link, as an extension to the semantic modelling

power of the ELKA (Entity, Link, Key, Attribute [1]) model approach for the design of conceptual database

models, and some properties of the extended relationships that can be modelled with them. The main con-

tributionof the forked link consist in allowing the specification and representation of objects with complex

structures that can not be adequately modeled in conventional modelling techniques such as the Entity Re-

lationship (ER) or the ELKA models.

In the model a relationship between entities is is establish with the link as a reference made by an entity

to another using a key of the referred-to entity. A link class is a set of links which are referenced from all

entities in one entity class to entities in another entity class. There are three types of link classes in the

model, the 1-to-1, the weak-n-to-1 and the strong-n-to-1 link classes described by functions from an en-

tity class A to an entity class B with the followings characteristics: In a 1-to-1 link class for every entity

‘a’ in A there exist exactly one entity ‘b’ in B, and for every entity ‘b’ in B there exist zero or one entity

‘a’ in A; in a weak-n-to-1 link class for every entity ‘a’ in A there exist exactly one entity ‘b’ in B, and

for every entity ‘b’ in B there exists zero, one or more entities ‘a’ in A; and, in a strong-n-to-1 link class

for every entity ‘a’ in A there exists exactly one entity ‘b’ in B, and for every entity ‘b’ in B there exists

one or more entities ‘a’ in A.

The graphical representation of the ELKA model uses lines to represent link classes. The 1-to-1 link class

uses an arrowhead pointing to the front of the link, indicating the direction of the function. The weak and

strong n-to-1 link classes use diamonds in the back of the link indicating the ‘n’ side of the link. A white

diamond is used for the weak link and a black for the strong link.

We conceive the forked links as a special link constructed by merging the front side of two or more link

classes into a common front side while its branches are the back sides of the merged links. The grade of

the fork is given by the total number of link classes merged together to form the forked link class.

The entity class at the front of the fork is called the superentity class while every entity class at the back

of the fork is called subentity class. The forked link class is defined as a set of forked links which are

referenced from entities at the back of the entity classes to entities at the front entity class.

�Supported by Consejo Nacional de Ciencia y Tecnologı́a and Instituto de Investigaciones Eléctricas, México.

75

2 Properties of the Forked Links

We can conceive three independent properties for these newly created forked link classes. The first one

is a dichotomous property related to its possibility of sharing, i.e. a forked link may be overlapping or

disjoint; the second one distinguishes also two possibilities for the existence dependence, i.e. a forked

link may be strong or weak; and the last one, the multiplicity, is a three-valued property derived from

the semantics of the ELKA links merged to form the forks, i.e. a forked link may be single, multiple or

mixed. The characteristics and description of these three independent properties are as follows:

2.1 Overlapping vs Disjoint Forks

This property denotes whether the forked link can or cannot allow the migration of the key attribute val-

ues from the superentity class through one or more of its back sides. In an overlapping forked link, the

link allows the migration of its key attribute values from the superentity class through zero, one or more

of its n (n� 2) back sides. It is disjoint if instead it causes the migration of any key value from the front

side of the fork to at most one of its back sides.

Graphically, an overlapping forked link is shown with the use of a diamond at the merging opposite di-

rection at the merging point.

2.2 Strong vs Weak Forks

This property denotes if each key attribute value at the superentity must or must not migrate through the

fork to at least one of its back sides. If the fork is strong it requires the migration of every particular key

value from the superentity through the forked link class to at least one of its back sides. On the other hand,

if the fork is weak, the migration of every key attribute value from the superentity class is not required.

Graphically, a strong forked link is show with a black diamond/triangles at the merging point, while the

weak fork is represented with a white diamond/triangle, in direct analogy with the ELKA graphical rep-

resentation for the strong and weak n-to-1 link classes [1]

2.3 Single, Multiple and Mixed Forks

This property reflects the semantics of the basic ELKA link classes that have been merged to construct

the forked link classes. A forked link is said to be single if all merged links were 1-to-1 link classes; the

fork is multiple if all merged links were weak-n-to-1 link classes; and finally, the forked link is said to be

mixed if it has been constructed by merging both 1-to-1 and weak-n-to-1 link classes.

Graphically, a single forked link is represented using an arrowhead pointing to the superentity at each

of its branches; a multiple forked link is depicted using white diamonds at its back sides, and a mixed

forked link uses both arrowheads and diamonds at their back sides, i.e. white diamonds at the back o the

weak-n-to-1 links merged and arrow heads at the back of the 1-to-1 link merged.

2.4 Forked Link Synthesis

From the combination of the three independent properties it is possible to synthesize twelve forked links,

whose the graphical representation is shown in Figure 1. In the figure every forked link is depicted show-

ing the superentity class. The Fork Cardinality is defined as the minumum and maximum number of

subentities that may be selected to transmit the front entity key value at any particular time.

3 ELKA Extended Relationships with Two or More Subclasses

With the introduction of the forked link, the model is now fitted with the constructs required to represent

two main sets of extended ELKA relationships: one composed of relationships at the front of only one

subentity class, and the second constituted by relationships at the front of two or more subentity classes.

76

N

G

L

E

S

I

M

X

X

I

E

M

U

L

T

I

P

L

E

0,10,10,10,1

0,N0,N

0,N

0,N 0,N

0,10,10,1

0,N0,N0,N 0,N

0,N

0,1

1

11

1 1

11 1 1

11

1

0,1 0,1 0,1 0,N0,10,N

DISJOINT OVERLAPING

STRONGWEAKSTRONGWEAK

Figure 1: Forked Link Used to Construct Extended ELKA Relationships.

In this paper we are going to concentrate on the latter case.

These extended relationships have four main components: a forked link, the superentity class, the suben-

tity classes, and a subtype defining entity class. The superentity stores the common attributes of the indi-

vidual entities and includes a discriminatoryattribute whose value is used to determine in which subentity,

if any, its specific attributes are to be stored. Each one of the subentity classes includes the particular at-

tributes that describe in detail the specific characteristics of the subentity classes.

The subtype defining entity class has as entity members the subtype defining rules with the criteria for

the population of the subentity classes. These rules are similar to the ones used in [4] for their specializa-

tion hierarchies, but in our approach every subentity can have various subtype rules suited to represent

different cardinality constraints.

3.1 Disjoint Extended Relationships

The six disjoint forked links in Figure 1 are used to define disjoint extended relationships. In these re-

lationships, the forked link class causes the migration of the superentity key values to zero or one of its

N (N � 2) mutually disjoint subentity classes, while for every entity a j in a subentity class Ai there is

exactly one entity b in the superentity class. The six disjoint relationships, that may be described by func-

tions from its subentity classes to the superentity class, are described at continuation:

77

3.1.1 Weak-1 Disjoint Relationship

We use the single disjoint-weak forked link to represent a weak-1 disjoint relationship. Here for every en-

tity a j in a subentity Ai there exists exactly one entity b in the superentity, and for every b in the superentity

there exist zero or one subentities Ai, i= 1; :::;n, that inherit once the value of b.

3.1.2 Strong-1 Disjoint Relationship

We use a single disjoint-strong forked link to represent the strong-1 disjoint relationship. Here for every

entity a j in a subentity Ai there is exactly one entity b in the superentity, and for every entity b in the

superentity there exists one entity a j in exactly one subentity Ai, i = 1; :::;n, that inherits once the key

value of b.

3.1.3 Weak-N Disjoint Relationship

We use a multiple disjoint-weak forked link to represent the weak-N disjoint extended relationship. Here

for every entity a j in a subentity Ai there is exactly one entity b in the superentity, and for every b in the

superentity there are zero or one subentities Ai, i= 1; :::;n, that inherit one or more times the value of b.

3.1.4 Strong-N Disjoint Relationship

We use a multiple disjoint-strong forked link to represent the strong-N disjoint extended relationship.

Here for every entity a j in a subentity Ai there exists exactly one entity b in the superentity, and for every

entity in the superentity there exists exactly one subentity Ai, i= 1; :::;n, that inherits one or more times

the value of b.

3.1.5 Weak-Mixed Disjoint Relationship

We use a mixed disjoint-weak forked link to represent the weak-Mixed extended relationship. Here for

every b in the superentity there are: (a) No subentities that inherits the value of b, or (b) one subentity

Ai, i = 1; :::;n, at the back of a 1-to-1 branch that inherits once the value of b, or (c) one subentity Ai,

i= 1; :::;n, at the back of a weak-n-to-1 side that inherits one or more times the value of b.

3.1.6 Strong-Mixed Disjoint Relationship

We use a mixed disjoint-strong forked link to represent the strong-mixed extended relationship. Here for

every entity in the superentity there either is: (a) one subentity Ai, i= 1; :::;n, that inherits once the value

of b, or (b) one subentity Ai, i= 1; :::;n, that inherits one or more times the value of b.

The six overlapping forked links of Figure 1 are used to assemble extended overlapping relationship struc-

tures with characteristics described by functions from its n � 2 subentities to the superentity. These six

overlapping relationships are the Weak-1, Strong-1, Weak-N, Strong-N, Weak-Mixed and Strong-Mixed

overlapping extended relationship.

In these relationships, the forked link class is capable of causing the migration of the superentity key val-

ues to zero, one or more of its n (n� 2) subentity classes, while for every entity a j in a subentity class Ai

there is exactly one entity b in the superentity class. These six overlapping relationships are the Weak-1,

Strong-1, Weak-N, Strong-N, Weak-Mixed and Strong-Mixed overlapping extended relationship.

3.1.7 Weak-1 Overlapping relationship

We use a single overlapping-weak forked link to represent the weak-1 overlapping relationship. Here for

every entity b in the superentity there are zero, one or more subentity classes Ai, i= 1;2; :::;n, that inherit

once the key value of b.

3.1.8 Strong-1 Overlapping relationship

We use a single overlapping-strong forked link to represent the strong-1 overlapping relationship. Here

for every entity b in the superentity there are one or more subentity classes Ai, i = 1;2; :::;n, that inherit

once the key value of b.

3.1.9 Weak-N Overlapping relationship

We use a multiple overlapping-weak forked link to represent the weak-1 overlapping relationship. Here

for every entity b in the superentity there are zero, one or more subentity classes Ai, i = 1;2; :::;n, that

78

inherit one or more times the key value of b.

3.1.10 Strong-N Overlapping relationship

We use a multiple overlapping-strong forked link to represent the strong-1 overlapping relationship. Here

for every entity b in the superentity there are one or more subentity classes Ai, i = 1;2; :::;n, that inherit

one or more times the key value of b.

3.1.11 Weak-Mixed Overlapping relationship

We use a mixed overlapping-weak forked link to represent the weak-mixed overlapping relationship.

Here for every entity b in the superentity there are: (a) zero, one or more subentity classes Ai, i=1,2,...,n,

that inherit once the key value of b and (b) zero, one or more subentity classes Ai, i=1,2,...,n, that inherit

one or more times the key value of b.

3.1.12 Strong-Mixed Overlapping relationship

We use a mixed overlapping-strong forked link to represent the strong-mixed overlapping relationship.

Here one or both of the following conditions must be satisfied: for every entity b in the superentity there

are (a) one or more subentity classes Ai, i=1,2,...,n, that inherit once the key value of b, and/or (b) one

or more subentity classes Ai, i=1,2,...,n, that inherit one or more times the key value of b.

4 Conclusions

The extended relationships described give more semantic power to the database modelling design process

and have been constructed and described using ELKA-like descriptors. The semantics for both complex

objects and generalization/specialization hierarchies found in [5, 6, 7, 8, 9] can be derived from the se-

mantics of the single forked links. The use of the multiplicity property of the forked links in constructing

extended relationships have not been found in the literature. The new relationships facilitate the applica-

tion of the ELKA methodology to the analysis and design of object oriented applications in wich complex

structures frequently occur.

References

[1] G. Rodriguez, The ELKA Model Approach to the Design of Database Conceptual Models, PhD

Dissertation, University of California, Los Angeles, 1981.

[2] P.P. Chen. The entity-relationship model: toward a unified view of data, ACM Trans. Database Sys.

1(1), 1976.

[3] R. Garza, Extensions and Dynamic Properties for the ELKA Model, in Lissoni, Richardson, Miles,

Wood-Harper & Jayaratna (eds.), Inf. Syst. Methodologies Conference, BCS-ISM 94, Edinburgh.

[4] ter Hofster, van der Weide, Expressiveness in conceptual data modelling, Data & Knowledge Engi-

neering, 10, 1993.

[5] P. Beynon-Davies, Entity Models to Object Models: Object Oriented analysis and database design,

in Information and Software Technology, Vol 34, No. 4, 1992.

[6] C. Batini, S. Ceri, S.B. Navathe, Conceptual Database Design An Entity-Relationship Approach,

The Benjamin Cummings, 1992.

[7] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-Oriented Modelling and De-

sign, Prentice-Hall International, Inc. 1991.

[8] R. P. Whittington, Database Systems Engineering, Clarendon Press, Oxford, 1988.

79

[9] J. Iivari, Relationships, Aggregations and Complex Objects, Information Modelling and Knowledge

Bases III, S. Ohsuga et al eds, IOS Press, 1992.

80

In: de Bourcier, Lemmen & Thompson eds., 1994 The Seventh White House Papers:

Graduate Research in the Cognitive & Computing Sciences at Sussex. University of

Sussex, School of Cognitive & Computing Sciences, Brighton, UK. Research Paper

CSRP 350.

Feature Extraction Using Wavelets for the Classification of Human in Vivo NMR

Spectra

Rosemary Tate

rosemary@cogs.susx.ac.uk

School of Cognitive & Computing Sciences

University of Sussex

Brighton

BN1 9QH

Abstract This paper reports the use of the discrete wavelet transform to extract features for

classification from in vivo Magnetic Resonance 13C spectra. Normally peak areas or heights

are used to analyse MR spectra, but these can be difficult to quantify and the use of wavelet

coefficients, which implicitly represent the shapes of the peaks,was investigated as an alter-

native. The spectra were obtained at Hammersmith Hospital for a study into the effects of

diet on subcutaneous fats, using volunteers from three dietary groups: vegans, vegetarians

and omnivores. These spectra had already been successfully classified according to dietary

group, using linear discriminant analysis, with peak heights as the variables. The use of se-

lected wavelet coefficients was equally as successful and eliminated the need for direct quan-

tification of the peaks.

Introduction

Magnetic resonance spectroscopy provides information on the chemical compositionof certain substances.

The peaks in the spectra represent nuclei in different molecular sites, resonating at slightly different fre-

quencies. The quantities of a particular substance are normally calculated by measuring the area or the

height of each peak.

MR spectra obtained in vitro generally have sharp peaks which can often be easily quantified. MR

spectra obtained in vivo, however, are far less easy to analyse, particularly those obtained using the com-

paratively low magnetic fields which must be used when obtaining data from human subjects. Further-

more, the many technical problems involved in obtaining signals from living tissue may result in a low

signal-to-noise ratio and various artefacts, such as those caused by motion, make identification and quan-

tification of peaks in individual spectra extremely difficult. The aim of this work is to investigate ways of

analysing in vivo MR spectra using techniques which do not necessarily rely on such quantification but

instead look for general patterns in the whole data set.

A pattern recognition approach requires the extraction of features which can be used to describe and

classify the data. While quantification of peaks may not be directly possible, any features would need to

be implicitly related to their relative widths and heights. Wavelets are good for modelling spectra since

they are localised in space (as are peaks) and are also localised in frequency which characterises spatial

scale. Wavelet coefficients were therefore calculated in an attempt to provide features for classification.

In order to carry out this investigation we used a set of high quality in vivo spectra which had already been

successfully classified using automatically extracted peak heights as the variables. We found that the use

of selected wavelet coefficients as features provided equally good classification. The following sections

describe the results.

81

Data

The subject of this investigation was a set of 13C spectra of subcutaneous fat in the thigh, obtained from a

group of 75 healthy volunteers. Figure 1 shows a typical spectrum. The area under each peak represents

the level of Carbon nuclei resonating at a particular frequency. The frequency at which a certain nucleus

(in this case the 13C nucleus) resonates will vary according to its molecular site. Thus each peak gives a

measure of a different chemical compound or bond, and thus a measure of the different types of fats.

Figure 1: A typical 13C spectrum

The spectra were obtained as part of a study carried out at Hammersmith Hospital to investigate how

the type of fat that people eat affects that stored in the body. The volunteers were classified as being either

vegan (class 1, n=33), vegetarian (class 2, n=8) or meat-eaters (class 3, n=34). The spectra were of a high

quality and most of those from the two main groups could be classified reasonably easily by eye. They

were therefore ideal for investigation in this study.

Methodology

The Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) transforms a data vector of length n (where n is a power of two)

into another vector of n ”wavelet coefficients”. The transformation is carried out using a set of basis

functions called ”wavelets”, which are dilations and translations of a single function called the ”mother

wavelet”. Wavelets are localised in both space and in characteristic scale, and thus can be used to model

spiky data such as spectra. If the basis functions approximate the shape of the peaks in the spectra closely

enough, only a small number of wavelet coefficients will be needed to represent the original data vector,

and these can be used as features for classification. Figure 2 shows one of the set of basis functions used

in this study. Note the similarity in shape of the function to the shape of the peaks in the typical spectrum.

Figure 2: A typical wavelet basis function

82

Processing the Spectra

Each spectrum was represented by a data vector of length 1024. Pre-processing was carried out to make

the spectra compatible. The peaks, which had slightly different positions in each vector due to instru-

mentation variables which changed between data acquisitions, were aligned by centering each spectrum

on the largest peak, simultaneously reducing the vector to the 512 central points which included all the

peaks except one (see figure 3). The resulting vector was normalised to length 1 to compensate for ar-

bitrary scaling differences. Each vector was transformed into a set of 512 wavelet coefficients using a

Discrete Wavelet Transform (DWT), with the Daubechies 20 coefficients to form the mother wavelet [1].

Figure 2 shows a spectrum and its wavelet coefficients. The boxed area of the spectrum shows the points

of the spectrum that were transformed, the boxed wavelet coefficients were those used for classification.

Figure 3: A spectrum and its wavelet transform

The resulting 512 wavelet coefficients, together with the class of each individual were then entered

as variables into the SPSS package for statistical analysis.

Calculation of correlation coefficients showed significant correlations between some of the wavelet

coefficients and class. The greatest correlations were shown by coefficients 35 (-.68), 37 (-.66), 38 (-.64)

and 58 (.6) which suggested that the region including the first four peaks would be most significant in

determining class. This was as expected since the first four peaks represent unsaturated fat, which show

distinctly higher levels in the vegans. The magnitudes of all other correlations were less than 0.6 and

no significant correlations were found for the last 361 wavelet coefficients. Linear Discriminant Analy-

sis had proved successful in distinguishing between vegans and meat-eaters when peak heights had been

used as the variables and it was also the method of choice for this study using wavelet coefficients. It was

first necessary to select the variables for the discriminant function. Since many of the wavelet coefficients

were highly correlated with one another it was decided to carry out Principal Component Analysis of the

wavelet coefficients and to see whether a few of the PC’s might be used as the variables. Discriminant

Analysis was carried out on all three groups and then on the two main groups (the meat-eaters and veg-

ans). A test set was produced from 15 randomly selected cases. The remainder were used to produce the

discriminant functions.

Results

Only 60 wavelet coefficients (numbers 5–64) were necessary to produce results comparable with those

of the previous study using peak heights as the variables for the discriminant function. Although the first

two PC’s accounted for only 35% of the variance in the data, the second PC was highly correlated with

class (.69). The first PC had the only other significant correlation (-.34). When the first two PC’s were

entered as the variables for DA, and the vegetarians were excluded from the analysis, 93% of the training

set and all except one of the test set were classified correctly. The same success rate was achieved when

83

another random sample was selected. When the vegetarians were included, the results were not so good:

67% and 71% of the two training sets, and 73% of both test sets, which each included two vegetarians,

were classified correctly. This poorer result was probably due to two factors: firstly the number of vege-

tarians may be too small for them to be included in such an analysis, and secondly because the differences

between the diets of vegetarians and the other two groups is not nearly as great. This was shown by the

fact that almost all of the misclassifications were omnivores being classified as vegetarians or vice versa.

These results were very similar to those obtained when peak variables were used.

Conclusions

This study demonstrates an application of wavelets for feature selection in the classification of data. While

these particular spectra could be classified equally successfully by other means, use of the wavelet trans-

form removed the need for selecting and quantifying peaks, thus reducing the amount of pre-processing

needed. This could be very useful when automated processing is required. The localised property of the

wavelet transform, apart from its advantages in in modelling the peaks, also allows us to identify the most

important contributory features to classification. These spectra were unusual for in vivo human spectra in

that the quantification of the peaks was relatively easy. This is not generally the case. The results from

this study indicate that wavelets might provide a useful tool in analysing more problematic and complex

spectra. One major problem with localised spectra is known as the rolling baseline, resulting in a fairly

arbitrary mean level of the spectrum, which contributes to the difficulties of estimating the heights of the

peaks. A feature of the DWT that may prove useful is that the mean level is represented by the first four

wavelet coefficients. While these first four coefficients contain large-scale information about the spectra,

they may not be necessary for classification, as was indicated in this study.

Acknowledgements

I should like to acknowledge the support given by D. J. Bryant, E. L. Thomas and J. D. Bell of the Robert

Steiner NMR Unit at the Hammersmith Hospital and by P. M. Williams of the School of Cognitive &

Computing Sciences, University of Sussex. I should also like to acknowledge the financial support from

the Science and Engineering Research Council.

References

[1] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes

in C: The Art of Scientific Computing. Cambridge University Press, second edition, 1992.

84

In: de Bourcier, Lemmen & Thompson eds., 1994 The Seventh White House Papers:

Graduate Research in the Cognitive & Computing Sciences at Sussex. University of

Sussex, School of Cognitive & Computing Sciences, Brighton, UK. Research Paper

CSRP 350.

MML, a Modelling Language with

Dynamic Selection of Methods

Vicente Guerrero-Rojo�

vicenter@rsuna.cogs.susx.ac.uk

School of Cognitive & Computing Sciences

University of Sussex

Brighton

BN1 9QH

Abstract Second generation knowledge based systems often incorporate multiple problem

solving methods. Up to day, there is a need for modelling languages capable of handling, in-

voking, evaluating and choosing multiple methods at run-time. There are several modelling

languages with such capabilities. With them it is possible to develop robust, more flexible

and less brittle systems. Unfortunately, those languages are not flexible enough to cope with

the behaviour of the systems when more methods are incorporated. In this paper we propose

a new modelling language which overcomes these shortcomings.

1 Introduction

Second generation knowledge based systems (systems) often incorporate multiple problem solving meth-

ods. The advantages of having multiple methods in a systemhave become apparent: robustness [Simmons

93], flexibility [Vanwekenhuysen, Rademakers 90], broader kind of reasoning [Delouis 93], less brittle-

ness, reusability [Punch, Chandrasekaran 93].

The decision about which method to use is very much an open problem [David et al. 93]. Nowadays

there is a need for modelling languages capable of handling, invoking, evaluating and choosing multiple

methods at run-time [Chandrasekaran, Johnson 93].

There are several modelling languages with such capabilities. With them it is possible to develop

robust, more flexible and less brittle systems. These capabilities are mainly derived from the addition into

the systems of more than one method and specialized activities such as selection, ordering and evaluation

of those methods. The success of those languages so far is due to the use of general methods. In other

words, no interaction at all between methods exist. However, problems may appear when: the methods

involved are sub-methods (part of other methods), in particular when some of those combinations are

invalid, effective for specific problems or inefficient; when the user of the systems have preferences for

specific combinations rather than for single methods; when no method can be chosen because of a lack

of information about the context of the problem; when some of the methods require a particular handling

that differs from the others. Thus, it can be said that those modelling languages are not flexible enough

to cope with the behaviour of the systems when more methods are incorporated.

As an initiative to overcome those shortcomings in the next section a new modelling language is pro-

posed. The objective of that section is to describe briefly MML (Multiple Method Language), a flexible

modelling language capable of overcoming the above mentioned problems. The last section provides

some conclusion. Throughout the text the ideas are clarified by examples from the problem known as

Sisyphus-92 (from now on the Sisyphus problem) [Linster 91, Linster 92].

�sponsored by CONACyT, MEXICO.

85

2 MML - Multiple Method Language

The MML is a task-independent modelling language for the explicit representation of systems with flexi-

ble control strategies which allow dynamic selection of methods. MML is being designed as an initiative

to overcome some of the shortcomings that current modelling languages present [Guerrero 94], as well

as to easy the representation and acquisition of the knowledge, activities and control strategies involved

in such systems. It can be said that MML is a generalization of a number of modelling languages such as

LISA [Delouis 93] and TIPS [Punch, Chandrasekaran 93]. The underlying ideas of this approach are:

� A modelling language should be a reflective language in which the following basic components can

be defined explicitly [Guerrero 94]: an object-level system, a meta-level system, meta-level objects

and their features (properties and abstract structures), meta-level activities (what can be done at this

level), and control strategies (when it is done).

� At the same time, the underlying architecture should be open ended in order to allow the addition

of new components, components’ instances or instances with extended or modified descriptions.

This facility represents a generalization from current approaches.

� The objects in the system should be described not just in terms of their features (properties and

abstract structures) but also in terms of how those properties are used: what and when (activities

and control strategies).

� A general modelling language should be meta-task specific. It means that it should provide some

primitives meta-level activities for specific groups (i.e. method selection, explanation, monitoring).

For example it might have method related meta-level activities primitives.

� Brittleness might be reduced not just by providing multiple methods and the capability for their

dynamic selection but also, incorporating a number of other method related activities. For example,

monitoring the development of the execution of the method, fault diagnosis and repair, analysis of

results (e.g., quality, quantity). At the same time it should provide a minimum set of those elements

for easy of system development. This idea represents an improvement in current approaches.

� Flexibility might be increased providing facilities for defining not just one general control strategy

but rather, providing the facilities for defining specific control strategies for each node in the control

structure, in particular for tasks. Control strategies can be shared or assigned by default to several

nodes in the control structure. This facility represents a generalization from current approaches.

� The problems, the methods defined for solving those problems, the activities and the control strate-

gies that are applied to those methods are modelled explicitly at the knowledge-level and clearly

separated from each other. The language is represented in a task-method control structure in which

two types of control knowledge can be identified and clearly separated: knowledge for control-

ling the decomposition (sequencing) of subtasks or sub-methods, and knowledge for controlling

meta-level activities. Both might be represented in procedural or heuristic terms depending on the

specific application.

In the proposed approach there are two levels: meta and object. Both levels are controlled by a sin-

gle interpreter. At the meta-level there are basically two objects: tasks and methods. The underlying

architecture resembles the so-called subtask-management [Harmelen 91]. The system follows an object

level plan (control structure) and hands over control to the meta-level in specific situations such as task

activation.

The following subsections provide an outline of MML.

86

[define propose

properties:

[type task]

[goal 'The goal of this task is the allocation (solution) of ...]

[input components resources]

[output allocations]

[control-terms NameOfMethod]

abstract structures:

[associated-methods decomposition random-init sequential]

[satisfaction-crit allocations not = empty]

[preferences [random-init all] [sequential decomposition]]

[code

collect-methods(associated-methods) -> SetOfMethods;

while SetOfMethods /= [] do

select-a-method(SetOfMethods, appropriateness-crit)

-> NameOfMethod;

applicable(NameOfMethod) -> Applicable;

if Applicable = true then

apply-method(NameOfMethod);

test-satisfaction(satisfaction-crit) -> TaskSuccess;

if TaskSuccess = true then

return;

endif;

endif;

endwhile;

]

activities:

[applicable((NameOfMethod) -> boolean using same in NameOfMethod]

[apply-method((NameOfMethod) using same in NameOfMethod]

[collect-methods(associated-methods) -> SetOfMethods using getprop]

[select-a-method(SetOfMethod) -> NameOfMethod

using select-by-appropriateness]

[test-satisfaction(satisfaction-crit) -> boolean]

control strategies:

[apply-task(code) using code-interpreter]

]

Figure 1: The propose task in the Sisyphus problem

2.1 Meta-level objects

MML has basically two meta-level objects: tasks and methods. Tasks represent the problems to be solved

while methods the different ways in which problems can be solved. Both tasks and methods are related by

means of a control structure. In order to describe those objects, MML relies in the distinction of four fea-

tures: properties, abstract structures, meta-level activities, and control strategies. Every feature consists

of an attribute and a value. The value might be implicit or explicit. Implicit values refer to basic infer-

ences, methods, or tasks, that once activated, can generate the expected (explicit) value or the desired

behavior.

2.2 Properties

Properties are a collection of basic features of objects. An object might have any number of properties and

new ones can be defined. Properties might be further classified in at least two sets: static and dynamic.

The former are defined by the knowledge engineer and the later by the interpreter. For example, static

properties are: a goal, the type of object, the type of control knowledge. The status of an object is an

example of dynamic properties.

87

2.3 Abstract structures

They are structures that categorize and represent the knowledge about the relations and constraints be-

tween the objects (at both levels) in the system. The different categories in this knowledge helps in its

acquisition. Several abstract structures have been identified. They might be included as primitives in

a modelling language. For example: satisfaction criterion, failure criterion, associated methods, prefer-

ences, code.

2.4 Meta-level Activities

These activities are processes that run at a meta-level. They are the components that interpret and manip-

ulate abstract structures. For example, activate a task, select a method, evaluate the results of a method,

select a domain model. In other words, they are the semantics attached to abstract structures. Activities

in MML might be specified as basic inferences, meta-methods or tasks, some of which might be primi-

tive. For example, the activities might be simple as basic inference that evaluates a structure to true or

false (e.g. test-satisfaction see figure 1), or so complex that a method or a task is required (e.g. select-

a-method see figure 1). The decision of how to specify activities represents a departure from the current

languages since MML has great flexibility in this respect. So, depending on the complexity of the activity,

its representation varies.

2.5 Tasks

Tasks characterize the set of problems to be solved. A task has a goal which is a specification of what

needs to be achieved. A task by itself does not include, as part of its description, any specification of how

it will be accomplished. At most it just describes the strategies that apply to the methods that are known to

satisfy its goal. In this framework a task is decomposed into methods and not into subtasks. Tasks may or

may not have associated (on a priori basis) methods that are known to satisfy its goal. Among the prop-

erties that a task might have, the following are the most common: goal, input, output. For example, the

propose task in the Sisyphus problem can be described as in figure 1. This description can be interpreted

as: the task will succeed if there is an non empty allocation (components into resources). The methods are

collected and then applied until task satisfaction or no more methods remain. They are selected by a prim-

itive activity called select-by-appropriateness. The activities applicable and apply-method are defined as

external activities through the control term NameOfMethod since they are activities that depend on the

method selected. The way in which the task is applied is defined in a control strategy named apply-task.

2.6 Methods

Methods characterize the set of mechanisms: algorithms, plans of actions, sets of heuristics, that are avail-

able for the satisfaction of tasks. Methods, as tasks, are represented by the four components mentioned

above. Methods do not have also, a fixed set of features. For example, the decomposition method in the

Sisyphus problem can be described as in figure 2. This description can be interpreted as: the decom-

position method is a non-terminal, non-backtracking method with two sub-methods (i.e. assemble-plan,

assign-resources). Its control knowledge is procedural. It has two activities, one determines if the method

is applicable and the other how to apply its control knowledge. This method has no associated control

strategies.

A method can be decomposed into subtasks or sub-methods. Both the decompositionand the sequenc-

ing knowledge needed to control such decomposition are stated explicitly. Among the properties that a

method might have, the following are the most common: goal, input, output, type (terminal, non-terminal,

basic inference), structure (method decomposition), ck-type (formalism involved in the description of its

sequencing knowledge: procedural, heuristic), backtracks (capability of backtracking). MML recognizes

three different types of methods:

88

[define decomposition

properties:

[type method]

[goal 'To allocate components into resources using ...']

[input components resources]

[output allocations]

[m-type non-terminal]

[ck-type procedural]

[backtracks false]

[structure assemble-plan assign-resources]

[control-terms NameOfMethod]

abstract structures:

[applicable-crit

components-value exist and

resources-value exist]

[appropriateness-crit

time = bound and

a-plan exist and

problem-type in [sisyphus researchers]

[code ...

debug(m, 'Executing decomposition');

getdomain(components, value) -> Components;

getdomain(resources, value) -> Resources;

for Res in Resources do

putdomain(store, allocations, Res, []);

endfor;

...]

activities:

[applicable(applicable-crit) -> boolean]

[apply-method(code) using code-interpreter]

control strategies:

]

Figure 2: Decomposition method in the Sisyphus problem

� Terminal. This method is a method whose internal structure is not known or is not worth worrying

about (named black box). For example, statistical routines. These methods can only be applied

rather than monitored for example. There is a distinguished set of terminal methods, namely basic

inferences. These are methods which cannot be split into subtasks any more although they do not

represent black boxes. For example, the method assign-resources or the user of the system who

may also participate as a terminal method.

� Meta-method. This method is used to store some of the control strategies and activities. They are

methods at the meta-level which have access to data not available at the object-level. Besides this

fact, meta-methods are similar to methods. For example, the meta-method single-method (see fig-

ure 3) that can be used as a default strategy in the Sisyphus problem. This description says that the

method single-method consists of a single activity, how to apply its abstract structure code. It has

no associated control strategies.

� Non-terminal. This method proposes the sequence of subtasks or sub-methods that carry out a task.

The sequencing knowledge in these methods is either deterministic (procedural control) or non-

deterministic (heuristic control). This approach does not worry about the control knowledge in-

volved in the terminal methods and the basic inferences.

A number method related control activities have been identified in the dynamic selection of methods

(e.g., collection, ordering, selection, evaluation of methods) and might be included as primitive activities

89

[define single-method

properties:

[goal 'call an object-level method']

[type meta-method]

[ck-type procedural]

[m-type meta-method]

[structure take-method applicable

apply-method test-satisfaction]

[control-terms NameOfMethod]

abstract structures:

[code

vars NameOfMethod, Applicable, TaskSuccess;

take-method(associated-methods) -> NameOfMethod;

applicable(NameOfMethod) -> Applicable;

if Applicable then

apply-method(NameOfMethod);

test-satisfaction(satisfaction-crit) -> TaskSuccess;

if TaskSuccess = true then

return;

endif;

endif;

]

activities:

[apply-m-method(code) using code-interpreter]

control strategies:

].

Figure 3: Single-method meta-method in the Sisyphus problem

in a modelling language (e.g. select-by-appropriateness see figure 1).

2.7 Control strategies

They are a collection of (control) statements that prescribe the order in which meta-level activities are ap-

plied. They not only incorporate the control knowledge associated with the activities but also the control

knowledge specified by the methods to which those activities are related to. For controlling meta-level

activities MML uses high level control statements and built-in functions (i.e. conditional, loops). This

represents another difference with current environments. The control in some of them is full of symbol-

level constructs. In MML the need for using symbol-level constructs is minimized since some constructs

and built-in functions are predefined and a library of them is included in the language. Control strategies

are represented as any other activity (e.g. apply-task see figure 1).

3 Conclusions

This paper has proposed MML, a new modelling language which incorporates the following features:

� MML is an open ended reflective language.

� MML describes objects in terms of both their properties and how those properties are used.

� The language facilitates dynamic selection of multiple methods along with other method-related

activities such as diagnosis and repair.

� Control strategies are represented at each node in the control structure.

90

� The language distinguishes between control knowledge for decomposition of methods and control

knowledge for method-related activities.

MML has been designed to capture some of the more desirable features required for solving problems

with multiple methods. Initial experiments with the Sisyphus problem indicates that MML is not only a

more flexible system but also it has led to an improvement in the specification of the knowledge about

methods.

Further work will involve extending the range of methods defined in MML and evaluating its mod-

elling capabilities on a variety of selected problems.

Acknowledgments

The author expresses his appreciation to Sharon Wood and Steve Easterbrook for their support and

contributions. This work has been supported by a scholarship of the Consejo Nacional de Ciencia y Tec-

nología, México.

References

[Chandrasekaran, Johnson 93] Generic Tasks and Task Structures: History, Critique and New Directions,

in: David J.M., Krivine J.P., Simmons R. (editors), Second Generation Expert Systems: a step

forward in knowledge engineering, Springer, 1993.

[Delouis 93] Delouis Isabelle, LISA : un langage réflexif pour la modélisation du contrôle dans les

systèmes à bases de connaissances: application a la planification des réseaux électriques, DPhil

Thesis, June 1993.

[David et al. 93] David J.M., Krivine J.P., Simmons R. (editors), Second Generation Expert Systems: a

step forward in knowledge engineering, Springer, 1993.

[Guerrero 94] Guerrero Rojo Vicente, MML, a Modelling Language with Dynamic Selection of Meth-

ods, Research Paper CSRP 344, School of Cognitive & Computing Sciences, University of Sussex

at Brighton, UK, 1994.

[Harmelen 91] van Harmelen Frank, Meta-Level Inference Systems, Pitman, London, 1991.

[Linster 92] Linster Marc, Sisyphus’92 Models of Problem Solving, Arbeitspapiere Der GMD 630,

Gesellschaft Fur Mathematik, Und Datenverarbitung MBH, March 1992.

[Linster 91] Linster Marc, Sisyphus’91 Models of Problem Solving, Arbeitspapiere Der GMD 663,

Gesellschaft Fur Mathematik, Und Datenverarbitung MBH, July 1992.

[Karbach, Voβ 92] Karbach W., Voβ A. Reflecting about expert systems in MODEL-K in: Chapter 8,

Harmelen van F. (editor), Knowledge-level Reflection: Specifications and Architectures ESPRIT

Project P3178 KADS-II Doc. RFL/UvA/III/2, 1992.

[Punch, Chandrasekaran 93] Punch W.F., Chandrasekaran B. An Investigation of the Roles of Problem-

Solving Methods in Diagnosis, in: David J.M., Krivine J.P., Simmons R. (editors), Second Gener-

ation Expert Systems: a step forward in knowledge engineering, Springer, 1993.

[Simmons 93] Simmons Reid, Generate, Test and Debug: A Paradigm for Combining Associational and

Causal Reasoning, in: David J.M., Krivine J.P., Simmons R. (editors), Second Generation Expert

Systems: a step forward in knowledge engineering, Springer, 1993.

91

[Vanwekenhuysen, Rademakers 90] Vanwekenhuysen J., Rademakers P. Mapping a Knowledge Level

Analysis onto a Computational Framework, in: Aiello Loigia C. (Editor), Proceedings of the 9th

European Conference on AI, 1990.

92

In: de Bourcier, Lemmen & Thompson eds., 1994 The Seventh White House Papers:

Graduate Research in the Cognitive & Computing Sciences at Sussex. University of

Sussex, School of Cognitive & Computing Sciences, Brighton, UK. Research Paper

CSRP 350.

Anaphora Processing: A Cross-Linguistic Discussion

Marco Rocha�

marco@cogs.susx.ac.uk

School of Cognitive & Computing Sciences

University of Sussex

Brighton

BN1 9QH

Abstract This paper raises questions about anaphora processing from both a psycholinguistic

and a computational point of view. The cross-linguistic aspect involved derives from the

observation of anaphoric relations in English and Brazilian Portuguese, focusing on spoken

language. The occurrences are extracted from two corpora of dialogues: the London-Lund

Corpus of Spoken English for the English examples; and the NURC (Norma Urbana Culta)

for the Brazilian Portuguese examples. The final purpose of the research is to create a corpus

annotation that successfully incorporates all the relevant elements of anaphora processing.

The possibility of automatically annotating any similar corpus is an important concern of the

research, although it will not be discussed in this paper.

1 Anaphora Resolution

As it is well established in the literature about anaphora, the term in fact encompasses a variety of cohe-

sion phenomena. There is quite a bit of controversy on how wide the range of phenomena included should

be. Nevertheless, the main focus of investigation is on anaphora resolution, that is, how the processor1

finds the antecedent for an anaphoric term. One significant share of antecedents for anaphors can be found

using a ‘naive’ algorithm such as the one spelled out in Hobbs (1986). The algorithm is said to be ‘naive’

because it does not involve any semantic processing. Antecedents are found through a relatively simple

mechanism using recency and syntactic information like the notion of c-command (Reinhart 1983) within

a parse tree. Thus, the antecedent for the pronoun it in the example below could be found without resort-

ing to semantic processing:

(1)

A: how's the thesis going

B: uh I'm typing it up now

B: typing up the final copy

A: hm

Hobbs concentrates on pronoun resolution, and therefore nonpronominal anaphoric noun phrases -

like final copy in the example above - would have to be resolved in some other way, probably involving

world knowledge, in a complete processor. However, even if only pronouns are taken into consideration,

an algorithm dealing exclusively with syntactic information would not be able to find the antecedent in all

�This research is funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under grant

no.200608-924
1The word Processor is used here with the meaning widely assigned to it in psycholinguistic work, that is, anything able to

process, whether human or machine.

93

cases. Hobbs acknowledges this, but the percentage of correct antecedents found (83%) is still encour-

aging, although the figure may be quite a bit lower for spoken language. Example (2) below reproduces

the continuation of the dialogue which began in (1).

(2)

A: uh when are you submitting it ,

B: erh - well it it would have been

A: next term ,

B: this - autumn -

The pronoun it in the second sentence can only be interpreted if the processor makes use of lexical

information contained in lemmas to infer the antecedent noun phrase submissionout of the verb in the pre-

ceding sentence. The following utterances bring a number of new demands on the anaphora interpreter.2

(3)

B: but er - I had to go to work -

B: this winter -

B: and that really <3 sylls> ,

A: but if you're typing it up now er <why can't 1 syll> yes ,

B: it's going so slowly though you know

B: it's this it's these awful these awful symbols .

A: mm ,

B: you know it's a combination of of the phonetic alphabet

A: mm

B: plus the reformed spelling

The demonstrative in the third utterance refers to the fact that B had to go to work. This antecedent

cannot be determined using only syntactical information. The following utterance by A contains a pro-

noun it whose antecedent is again B’s thesis, which cannot be retrieved without discourse knowledge

involving topicality. The next it in the fifth utterance may refer to typing, and thus involve lemma pro-

cessing, or to thesis, creating a chain with the distant anaphora in the previous utterance. However, it is

not essential for overall understanding whether the chosen antecedent is one or the other (see Sampson

1988 for a discussion of antecedent indeterminacy).

On the sixth utterance the antecedent for it seems to be some kind of discourse element like ‘the prob-

lem’ or ‘the point’. Discourse understanding might be hampered if the pronoun were considered simply

as nonreferential, although the antecedent is not a specific object. The next occurrence of it seems to refer

to the set of symbols mentioned before. Some kind of adjustment - at least to deal with the conflicting

agreement - must be carried out for the correct antecedent to be recognised. In a relatively short fragment,

as shown, many problems might arise for a purely syntactic algorithm.

2 Evidence from Portuguese

Anaphoric relations in Portuguese may involve the use of very different knowledge. To begin with, there

is no equivalent to the pronoun it nor is it required by the grammar that all independent sentences have a

2Speech between angle brackets, often with the number of syllables therein contained, contain a word or words that could

not be precisely identified for transcription.

94

phonetically expressed subject. No simple introduction of a prodrop notion will solve the problem, as the

insertion of dummies which are nonreferential or have indeterminate antecedents seems strongly counter-

intuitive and not at all helpful from a processing point of view. One example3:

(4)

justamente �e isso...�e liberdade...você pode ser uma artista

exactly is that(it) is freedom you can be an artist

famosa... passa pela rua tranq�uilamente...

famous pass3rsg by the street peacefully

The first utterance presents a few problems with anaphors that cannot be handled easily by adding a

trace index to mark pronoun dropping. In fact, such index would create new problems which may lead

to unnecessary processing complications. For instance, the phrase which would translate é isso in this

context into English would be that’s it. Assigning separate antecedents for that and it in such phrases

seems not only difficult but pointless. People most probably process the phrase as a collocation which

stands on its own, referring to the point in process of being made throughout the discourse fragment.

In the second phrase é liberdade, a possible ‘dropped’ pronoun to be reintroduced would be nonrefer-

ential. It is hard to understand why a pronoun should be introduced and then dismissed as nonreferential.

It is anyway very unlikely that native speakers of Portuguese understand anaphoric references using this

sort of strategy. It does not seem to be a good option for anaphora resolution in a NLP system either. Even

when the antecedent is explicit and a specific object represented by a noun phrase in the discourse, it still

does not seem necessary or advantageous to introduce elements that are not phonetically realised.

(5)

você disse que () que as

you said3sg that that DefArt

pessoas s~ao todas iguais n�e...uma que n~ao s~ao...

persons are all equal, isn't it? one that not are

At the end of the utterance, the inflected form of the verb ser (to be) seems to be quite enough for

the processing to locate directly the antecedent pessoas without resorting to any equivalent for they. Al-

though the pronoun is a necessary feature of English syntax and thus must be interpreted by a processor,

the same does not hold for Portuguese. The observation of data in these two corpora seems to point to-

ward distinct referencing processes for each of these two languages. The higher amount of information

provided by morphological features in Portuguese makes it possible for a verb form or adjective to refer

directly to an antecedent. There seems to be no need to postulate hidden elements, such as trace indexes

to mark dropped pronouns. A processor would spot the verbs without a subject or noun phrases without a

head noun and search for antecedents on the basis of morphological data. The crucial information needed

would then be how to use syntactic, lexical - including collocations - and discourse knowledge dealing

with topicality to find the correct antecedent.

3 The Approach Chosen

The main tool for the investigation of anaphoric relations in both corpora is an annotation created specifi-

cally for the purpose of this research. The analyst then searches the dialogues to spot anaphors and subse-

quently their antecedents in order to enter the annotation manually. As topicality is an essential aspect in

the approach, the dialogues are previously segmented according to topic continuity. There are three dis-

tinct levels in the segmentation: discourse fragments, with the same overall discourse topic; discourse

3Glosses for the Portuguese examples have been provided. They are intended on a word-by-word basis and are not full

translations. For instance, the Portuguese word order is not changed into English word order. The conventions used are 3sg,

meaning third person singular, and DefArt, meaning definite article.

95

segments, with the same local topic; and subsegments, which contain subtopics related to the segment

topics.

The annotation is made up of eight slots. The three first slots refer to the segment or subsegment.

The first one specifies whether the unit is a segment or subsegment, together with a number that fits the

unit into a sequence within a fragment - in the case of segments - or within a segment - in the case of

subsegments. The second slot specifies a discourse function from a set which is kept as small as possible.

It is not possible to discuss every option for each slot in this paper for reasons of space. The third slot

specifies a topic for the segment or subsegment.

The next two slots refer to each anaphor token. The first one specifies the anaphoric word or phrase,

a nontrivial task in some cases of Portuguese.4 The second slot codifies the anaphor grammatically - like

for instance, demonstrative pronoun (DPRO). It has been necessary to create subdivisions specifically for

the purposes of the research, as one-anaphora with modifier (one anaph modif).

The other three slots concern the antecedent. The first one specifies whether it is implicit or explicit,

where some special or difficult cases appear. The second relates the antecedent to topicality, specifying if

it is for instance the segment topic, the discourse topic, the subsegment topic or a thematic element related

to it, to mention the main options. The last slot attempts to define the kind of knowledge predominantly

involved in the processing. This is of course a very troublesome decision, but important conclusions may

be drawn as a result of this analytical effort.

Once the annotation of a sizable amount of text is completed, an attempt will be made to establish

statistically significant relationships between the different elements in each slot of the annotation. The

final aim is to produce an antecedent-likelihood theory relating each kind of anaphor to a possible kind of

antecedent, as well as to a form of knowledge prevailing in the processing. Possible applications will then

be discussed, the most immediately visible ones being automatic annotation of corpora to show anaphoric

relations and support for machine translation from English into Portuguese and vice-versa. The approach

might possibly be extended to other languages.

References

Hobbs, J.R. (1986) Resolving pronoun references. In B.J. Grosz, K. Sparck-Jones, B.L. Webber & C.

Sidner (eds.) Readings in Natural Language Processing. Los Altos: Morgan Kaufmann

Reinhart, T. (1983) Anaphora and Semantic Interpretation. London: Croom Helm

Sampson, G. Machine Translation: A Non-Conformist View. In King, M., ed. (1987) Machine transla-

tion today: the state of the art. Edinburgh: Edinburgh University Press.

4Some anaphors are verb ser copulas that occur without a subject, making it hard to determine precisely which words concur

for the finding of an antecedent, because the second element in the copula becomes essential and may involve more than one

constituent.

96

In: de Bourcier, Lemmen & Thompson eds., 1994 The Seventh White House Papers:

Graduate Research in the Cognitive & Computing Sciences at Sussex. University of

Sussex, School of Cognitive & Computing Sciences, Brighton, UK. Research Paper

CSRP 350.

Doing a PhD with Hindsight

Julian M. L. Budd and Eevi E. Beck

julianb@cogs and Eevi.Beck@nr.no

School of Cognitive & Computing Sciences

University of Sussex

Brighton

BN1 9QH

Every PhD is different; there are no general rules to help you. Our experiences differ, as you see below

in the slightly different emphasis we place on what we’d like to ‘pass on’ to others. We hope, however,

that some of what we say below (which is based on our experiences of going through this process) will

be useful to you. In hindsight, these are issues which we wished we’d paid more attention to ourselves.

Don’t Let It Take Over Your Life

The most important thing to remember is that the PhD is not your life. It can easily take over if you let

it. Make sure that there is time to relax and do other things, otherwise you can get too wrapped up in

your work so that every bad day is a disaster and criticism is taken as a death-blow to your research. You

should, perhaps, treat it like a normal job. Work for a set number of hours, and then try to forget about it.

Julian 1:

It’s your thesis

Another thing to remember is that it’s your thesis not your supervisor’s. Of course you should be ready

to listen to advice, but you should decide what to do. Equally, don’t become too dependent upon your

supervisor for help. Get regular feedback on your work and discuss your problems with other people

whose opinion you respect. Don’t assume your supervisor is an all-knowing, infallible God: supervisors

are human too (it’s a fact).

Get advice regularly

Try to get the advice you want from your supervisor. For example, make them be explicit about what they

are suggesting you should do. Don’t just accept vague generalities, make sure you get practical advice

about how to implement their suggestion. This way it should reduce both misunderstandings and the need

to go back and get further information.

Don’t let yourself get stuck

It’s very easy to get yourself stuck without seeking advice. You think you should be able to solve the

problem on your own and you don’t want to bother your supervisor or any one else. You don’t want

anyone to think that you’re stupid. But it’s likely that you’re not stupid, it’s just that the problem is hard.

It is very important to keep the ”momentum” in your research or in writing up your thesis. When a problem

arises it’s all to easy to spend too long trying to solve it on your own and getting depressed about it. After

a while, you may start to avoid the work/writing problem and as time passes you become frustrated with

your inability to solve the problem. And this just gets worse, until finally you don’t seem to be making

any progress at all, and it seems impossible to get started again. That’s why ”momentum” is important.

110 months since submission; 3 months since viva (successful).

97

Make friends

Lastly, don’t become isolated from other research students. It’s possible they have already encountered

your problem and know how to solve it. Moreover they can give you support when things are not going

well and you need cheering up.

Eevi 2:

Go to conferences

If you can, go to conferences. Discuss your work and your ideas with people there. If you don’t know

anyone before you go, it’ll be a good opportunity to meet people in your field. Chances are that you’ll

find that some people are really interested in what you’re trying to do, which can be a great boost to your

confidence! Also, seeing that there’s nothing unusual in lots of people not being interested can be good:

it’s not you or your work there’s anything wrong with, it’s just the reaction that everyone gets. Some are

going to be interested, many not.

Be critical of criticism

If someone – your supervisor, another student, a prestiguous name, or anyone else – criticises your work,

try not to take it personally. Evaluate it calmly, if you can: does it make sense to you? Has she (or he)

misunderstood what you’re trying to do? Are there aspects you need to clarify, like what limitations you

have set on your work? If you think they’re misguided, might there still be something to their criticism;

an angle you hadn’t thought about, or a pitfall you’re in danger of falling into?

If it makes sense to you, follow advice. If it doesn’t, try to work out why it doesn’t, and defend it

(in later conversations, in your thesis, or wherever). In an existence where feedback on your work is a

scarce resource, try to learn something from it either way. At the same time, if you feel radical, be radical.

It’s your thesis. In fact, many established researchers expect PhD students to be the ones to rock the boat

of established truths in the discipline. If you are convinced you have grounds to do that (or will have

grounds), then go for it. Follow your convictions!

Enjoy life!

To stay healthy, physically and emotionally, you have to make sure you don’t just think thesis (yours and

others’) all the time. Do your favourite sport or start another one; spend time with friends; set up your life

so you’re regularly and frequently reminded that there are other things which are more important than your

thesis. If you have children, you’re probably getting reminded of this already, but many a single preson

has become a social hermit, and many a relationship has felt the strain after a while of one or both doing

a PhD. Try to make your weekly routine include things you really enjoy which have nothing to do with

academic work.

Keep your distance

The interest of people who’re not doing a PhD and never have done one is not going to last if you’re

constantly talking thesis. That’s why I think it’s really important to spend time with others – you’re forced

to talk and therefore think about other things.

Keeping a distance from your thesis makes it less likely that you’ll turn into a social hermit. What it

also can do is help you work better when you are working: occasionally distancing yourself from your

work can help you see its weaknesses and strengths, where you have to put in more effort and where you

don’t.

I got into seriously unhealthy ways towards the end of writing up, thinking about little else than the

thesis, not eating properly and constantly tired but often not able to sleep even so. I started noticing how

22 weeks since submission; not yet examined.

98

the work I did at times of prolonged immersion was... well, I might have interesting ideas, but it was often

not what I needed to get on with to meet the deadlines I’d set. Coming back to it after a day out walking

(or whatever), I’d often only then realise how I was taking myself off on a tangent which I could ill afford.

Don’t kill yourself

This one is no joke. People have committed suicide where lack of progress in a PhD has seemed to be

a big part of the depression. Don’t let the next one be you. If you feel miserable, stop. If a day is not

enough, stop for a week, a month, a year, or forever. Within the university there are structures for taking

a formal break in your PhD. Use them. I know several people who have taken a break to reassess whether

they really want to be doing what they are doing, and have decided that although they felt competent to

finish the PhD, that wasn’t what they really wanted after all. They stopped, and were probably happier

for it. Others, like myself, have taken breaks completely away from the thesis to deal with other things

in life, and have later chosen to go back to it and continue. The important thing is that you know that

you don’t have to finish just because you started, and that it doesn’t affect who you are as a person if you

choose not to. In many ways that can be a sign of greater strength than carrying on doing what everyone

expects of you!

99

