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Abstract

In a recent paper, Wilson (1994b) described a `zeroth-level' classi�er system (ZCS). ZCS

employs a reinforcement learning technique comparable to Q-Learning (Watkins, 1989). This

paper presents results from the �rst reconstruction of ZCS. Having replicated Wilson's re-

sults, we extend ZCS in a manner suggested by Wilson: the original formulation of ZCS has

no memory mechanisms, but Wilson (1994b) suggested how internal `temporary memory'

registers could be added. We show results from adding one-bit and two-bit memory registers

to ZCS. Our results demonstrate that ZCS can e�ciently exploit memory facilities in non-

Markov environments. We also show that the memoryless ZCS can converge on near-optimal

stochastic solutions in non-Markov environments.

Following the discussion of adding memory, we present results from trials using ZCS

in Markov environments requiring increasingly long chains of actions before reward is re-

ceived. Our results indicate that inaccurate over-general classi�ers can interact with the

classi�er-generation mechanisms to cause catastrophic breakdowns in overall system perfor-

mance. Basing classi�er �tness on accuracy may alleviate this problem. We conclude that

the memory mechanism in its current form is unlikely to scale well for situations requiring

large amounts of temporary memory. Nevertheless, the ability to �nd stochastic solutions

when there is insu�cient memory might o�set this problem to some extent.
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1 Introduction

In a recent paper, Wilson (1994b) described a `zeroth-level' classi�er system (ZCS). ZCS is

strongly inspired by Holland's original \Michigan" classi�er system framework (Holland, Holyoak,

Nisbett, & Thagard, 1986; Goldberg, 1989; Wilson & Goldberg, 1989), but is intentionally mini-

malist: several common classi�er system features have been stripped away from ZCS in order to

clarify the e�ects of the basic learning mechanisms. In doing so, Wilson was able to show that

learning in ZCS bears strong similarities to the widely studied reinforcement-based Q-Learning

technique (Watkins, 1989; Watkins & Dyan, 1992).

In its original formulation, ZCS has no memory mechanisms: the input-output mappings

learned by ZCS are therefore always purely reactive, in that the current output of the system

is determined solely by the current input. Wilson recognized this limitation, and proposed

a method by which extra internal state, conceptualized as the system's \temporary memory",

�
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could be added to ZCS.Wilson's proposal involved adding an internal memory register consisting

of a few binary digits (bits), and augmenting the system's set of possible actions to include actions

which set or reset individual bits in the register. Over time, ZCS should adapt to manipulate

and exploit internal state in situations where this is appropriate.

In this paper we present results from experiments with ZCS extended to incorporate Wilson's

proposed memory system: we refer to the extended system as ZCSM. Our results demonstrate

that Wilson's proposals do work, at least for small (b < 3) b-bit internal registers.

For completeness, Section 2.1 gives a summary of ZCS, followed by our replication of Wilson's

published results in Section 2.2. Section 3 presents our results from extending ZCS to incorporate

temporary memory. Results from testing ZCSM in a variety of environments indicated that

occasionally an adapted population of classi�ers could exhibit severe failures in performance

which were both sudden and unpredictable. To explore the cause of these failures, Section 4

describes results from extended testing of ZCS in situations where increasingly long chains of

sequential actions are required to reach the reward state: we found that ZCS grew less stable as

the chain-length increased. We argue that this is due to two factors: greedy classi�er creation

and con
icting over-general classi�ers. The second factor could be alleviated by basing the

�tness of classi�ers on their accuracy.

To demonstrate that the e�ects we identify are not artifacts of the spatially discrete `grid-

world' environments employed in our experiments, Section 5 presents results from using ZCS

for animat guidance in environments where the animat's spatial location is continuous and its

sensory input is more �rmly analogous to visual sensing: we show that similar stability problems

occur. Conclusions are drawn in Section 6.

2 ZCS: Overview and Replication

2.1 Overview

The de�nitive paper on ZCS is (Wilson, 1994b), to which we refer the reader for full details.

For the sake of completeness, we include an overview here.

ZCS is viewed as a mechanism which interacts with some environment: detectors supply a

binary encoded sense-vector which a�ects the action chosen by ZCS: these actions are executed

by e�ectors which may alter the state of the environment in some manner.

ZCS maintains a single population, [P], of N condition-action classi�ers. The conditions are

encoded using the ternary alphabet f0; 1;#g where 0 and 1 are used to match against sensory

input, and # acts as a \don't-care" wild-card, allowing generalization. Actions are also encoded

using a discrete alphabet. The conditions and actions in the initial population are set randomly:

the probability distribution of characters c (i.e. `alleles') at each locus in the condition is given

by: Pr(c = `#') = P

#

; Pr(c = `0') = Pr(c = `1') = 0:5(1:0 � P

#

). Each classi�er has an

associated scalar strength, set initially to a value S

0

for all classi�ers.

ZCS operates iteratively in discrete time-steps. On each time-step, the system passes through

stages of performance, reinforcement, and discovery.

In the performance stage, the current sensory input is compared with the conditions of all

classi�ers in [P]: a condition matches the input if there is a 1 in the input at each locus where

there is a 1 in the condition, and likewise for 0's; a wild-card # in the classi�er condition matches

either a 0 or a 1 in the input. All matching classi�ers become members of the match-set [M].

If ever there are no matching classi�ers in [P] (i.e. if [M] is empty), or if the total strength of

the classi�ers in [M] is less than a �xed fraction � of the mean strength of classi�ers in [P],

a covering process is invoked: a classi�er is selected for deletion (using roulette selection on

reciprocal of strength) and is replaced by a classi�er whose condition is a copy of the current

sense vector with characters at each locus changed to # with probability P

#

. The action for this

classi�er is chosen at random using a uniform distribution over the space of possible actions,
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and its strength is set to the population average.

The members of [M] will often have di�erent actions: [M] is partitioned into a number of

potential action-sets, where each member of a given action-set advocates the same action. The

strengths of the classi�ers in each action-set are summed, and one action-set is chosen using

roulette-selection on these total strengths: this action-set is referred to as [A]. The potential

action-set with the highest total strength (which we refer to as the max-set [H]) is also retained

for use in the reinforcement stage. The action a advocated by the classi�ers in [A] is sent to the

system's e�ectors for execution. Depending on environmental circumstances, a scalar reward

reinforcement value r

imm

may be supplied to ZCS as a consequence of executing a.

In the reinforcement stage, a \Bucket-Brigade" credit-assignment policy similar to Q-Learning

is employed: each member of [A] has a �xed fraction � : � 2 (0; 1] � R deducted from its strength

(� modulates the `learning rate' of the system). Next, each classi�er in [A] has its strength in-

creased by �r=jAj where jAj is the number of classi�ers in [A] and (in the work reported here)

r 2 f0; r

imm

g : r

imm

> 0 (i.e. the reinforcement value is either zero or a �xed positive value).

After this, the classi�ers in the previous action set (denoted [A]

�1

) have their strengths incre-

mented by a value �
S

[H]

=jA

�1

j where: 
 is a discount factor 
 2 (0; 1] � R; S

[H]

is the total

strength of classi�ers in [H]; and jA

�1

j is the number of classi�ers in [A]

�1

. Finally, all classi�ers

in the set di�erence [M]{[A] have their strengths reduced by a small fraction � , which acts as

a `tax' to encourage exploitation of strong classi�er sets. The similarities between this learning

regime and Q-Learning are described in detail by Wilson (1994b); Dorigo and Bersini (1994)

have also discussed the relationship between classi�er systems and Q-Learning.

In the discovery stage, classi�ers are generated via a panmictic genetic algorithm (GA).

On each iteration, there is a probability � that the GA is invoked:

1

if it is, two classi�ers are

roulette-selected on the basis of their strengths; these are copied with mutation and/or crossover

to form two new classi�ers. Mutation operates with probability � at each locus during copying:

if a mutation occurs, the character (allele) at that locus is mutated equiprobably into one of the

other allowed alleles. Crossover operates with probability �: if it occurs, a single crossover point

is chosen at random with uniform probability over the classi�er loci. Half of the strength of

each parent classi�er is deducted in discovery and assigned to its copy: if crossover occurs then

the strengths of the o�spring are set to the mean of the two inherited strengths. The o�spring

replace two classi�ers chosen for deletion at random, using roulette selection on the reciprocals

of the strengths of the classi�ers in [P].

Following completion of discovery, the system returns to the performance stage: the execution

of action a may have altered the state of the environment su�ciently to change the sense-vector.

The iteration through these stages continues until the system reaches some halting condition,

such as having received a prede�ned number of rewards.

Although ZCS is su�ciently general to be applied in a wide variety of domains, in this paper

we concentrate on applying ZCS to the problem of guiding an idealized autonomous mobile

agent through an environment which is initially unknown. Results for such problems were also

presented by Wilson (1994b); we describe the environments and show replication of Wilson's

results in the following section.

1

Wilson (1994b, p.5) formally de�nes � as the \average number of new classi�ers generated by the GA per

time-step: : : ". Strictly, our implementation of � di�ers: on each pass through the discovery stage, there is a

probability � that the GA will be invoked once. As a single invocation of the GA creates two new classi�ers, the

average number of new classi�ers generated by the GA per time-step is 2� in our implementation. Furthermore,

in our implementation � only takes meaningful values in the range [0; 1], whereas under Wilson's de�nition values

of � > 1 would be possible. However, Wilson's published results are with � = 0:25; we therefore set � = 0:125 in

our system, yielding the same net e�ect.
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2.2 Replication of Wilson's Results

Wilson (1994b) gives results of ZCS operating in `woods'-style environments (cf. Wilson, 1985;

Cli� & Bullock, 1993). In both, the classi�er system is considered as being responsible for

guiding an `animat' (i.e. an arti�cial creature: (Wilson, 1985, 1987, 1991)) through environments

composed of two-dimensional grids of cells. Cells may be occupied by an obstacle (represented

as T for `tree'), by a reward (represented as F for `food'), or may be blank. The animat can

occupy blank cells, and can move into F reward-cells but not into T obstacle-cells. The animat

moves in discrete steps: on each step it may move into one of the eight surrounding cells. In all

the environments discussed in this paper, toroidal wrap-around occurs if the animat attempts

to move o� an edge. At each cell, the animat `senses' the contents of the eight surrounding cells,

encoding the contents of each using a 2-bit binary code (i.e.: 11=F; 10=T; 00=blank) to form

a 16-bit sense-vector against which classi�er conditions can be matched.

A single `run' of the animat adapting to its environment consists of a set number of trials.

Before the �rst trial in each run, the classi�er population is randomly initialized. At the start

of each trial, the animat is positioned at a randomly chosen blank cell. The animat then makes

a number of steps: on each step, the ZCS selects a movement action, then attempts to execute

that action (attempting to move onto a T results in the animat not moving at all). If the animat

moves onto a F cell, r

imm

is supplied to ZCS, and the trial ends. Given such an experimental

regime, the `aim' of the animat is to move onto an F cell in as few steps as possible (attempting

to move onto a T counts as a step, despite the lack of movement). To monitor improvements

in performance, a running average of the number of steps to food over the previous 50 trials is

calculated at the end of each trial: this performance measure is referred to as stpsav.

Wilson demonstrated the progress of ZCS-guided animats in two environments, referred to

as woods1 and woods7: �gure 1 shows woods1. Woods1 is aMarkov environment for the animat:

the environment is such that the values in the animat's sense vector are, at any time, su�cient

to determine the global state of the environment (i.e. the animat's position), and the e�ects

of the animat's action depends only on the chosen action and the current global state of the

environment; hence the current values in the sense-vector should always be su�cient in principle

to determine an action which takes the animat nearer to the F.

2

Results from runs using ZCS with the animat in woods1 are shown in Figure 2.

3

As can be

seen, the average value of stpsav very rapidly falls to near-optimal levels. Figure 3 shows a

`vector-�eld' representation of the movements exhibited by the adapted ZCS classi�er popula-

tion: because the action-set is chosen stochastically from the match-set, the animat's movement

policies are non-deterministic, so the vectors indicate a probability distribution over the possible

actions at each cell.

Figure 1: The environment woods1. Trees denoted by T; Food (reward) by F.

A more challenging environment, woods7, is illustrated in Figure 4. Woods7 is non-Markov

in that current sensory input is not always su�cient to uniquely determine a move which takes

2

It is important to note that it is the interaction between the environment and the agent's sensory sampling

strategy (cf. Cli� & Bullock, 1993) which determines whether the environment is Markov or not.

3

Copies of the code, in both C and Pop-11, are given in (Ross, 1994).
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Figure 2: ZCS in woods1. Average of 10 runs. Ordinate is trial number. Abscissa: solid line is

mean stpsav; dashed line is mean plus one standard deviation. Parameter values as for (Wilson,

1994b), i.e.: N = 400, P

#

= 0:33, S

0

= 20:0, � = 0:2, 
 = 0:71, � = 0:1, � = 0:5, � = 0:002,

� = 0:25, � = 0:5, r

imm

= 1000.

Figure 3: Vector �eld for ZCS adapted to woods1, after 10000 trials. Each blank cell has up to

eight vectors indicating the probability that the animat will move in each of the eight possible

directions: the longer the vector, the nearer the probability is to unity; normalized so maximum

vector length is equal to half the side-length of a cell.

the animat in the direction of the nearest F. This is because many of the cells in the environment

are perceptually aliased (cf. Whitehead & Ballard, 1990): the same sensory input is received

at more than one position in the environment, and hence sensory input alone cannot determine

the global state. In particular, there are large numbers of cells in woods7 where the animat

is surrounded by blank cells, so all the bits in the sense vector are zero: in these perceptually

aliased cells, there is insu�cient information to determine an appropriate action (i.e. one which

moves the animat towards the nearest F). Results for using ZCS in woods7 are shown in Figure 5.

Again, the system rapidly adapts to generate near-optimal movement patterns, but perceptual

aliasing helps prevent truly optimal movement policies from being discovered. Further discussion

of reinforcement learning in non-Markov environments can be found in (Whitehead & Lin, 1993).

The results in Figures 2 and 5 are in close agreement with Wilson's results for using ZCS in
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Figure 4: The environment woods7.
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Figure 5: ZCS in woods7. Average of 10 runs. Format and parameters as for Figure 2.

the same environments (Wilson, 1994b, Fig.3 p.7 and Fig.6 p.9), with the same ZCS parameter

values (Wilson, 1994b, p.7). Thus, to the best of our knowledge, our data presented here

constitute the �rst replication of Wilson's published results.

3 Adding Memory

3.1 Wilson's Proposal

As was noted in Section 1, the absence of internal state in ZCS restricts it to learning only

reactive input-output mappings, where the current output of the system is determined solely by

the current input. Wilson (1994b, pp.11{12) noted this limitation and proposed an extension

to ZCS where the system is given an internal b-bit `memory register', and the set of possible

actions is extended to include operations which may set or reset individual bits in the register.

These internal actions could be performed in parallel with external actions (in the animat

context, external actions are movements in the environment). The system is also given a null

external action: in principle this allows for the execution of sequences of internal actions without

performing any external actions. (Metaphorically, this can be viewed as giving the system the
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opportunity to \sit and think"). Wilson describes this extension as the addition of \temporary

memory": for consistency, we will use the same terminology, although we acknowledge (and agree

with) the comments of Colombetti and Dorigo (1994, pp.250-251), who note that terms such

as memory and representation are often deceptively subjective labels referring to the agent's

internal state, and that internal state is a more neutral term.

We refer to ZCS with b bits of memory as ZCSMb: when discussion of ZCSMb is independent

of the value of b, we refer simply to ZCSM.

3.2 Implementation

ZCSM was implemented in the manner proposed by Wilson. The classi�er condition is divided

into two sections: the �rst is used to match against the sense-vector, as in ZCS; the second

is a sequence of b characters from the ternary alphabet f0; 1;#g which is matched against the

current settings of the b bits in the memory register. The classi�er action is also in two parts: the

�rst part speci�es one of the 9 possible external actions (eight movements and one null), encoded

as two characters from f0; 1;#g. The second part is the internal action, being a sequence of

b characters from the same ternary alphabet: a 0 or 1 in the internal action speci�es that the

corresponding bit in the register should be set to that value; a # indicates that the corresponding

bit of the register should be left unaltered.

In the formation of the initial random population of classi�ers in ZCSM, characters for both

conditions and both actions are generated at random, using the same probability distribution

as for the generation of the sensory condition in ZCS. At the start of each trial, the register is

initialized by setting all bits to zero. In breeding, crossover can occur at any point in the string

formed by concatenating the characters representing the sense-condition, memory-condition,

internal-action, and external-action; in that order.

4

Adding the internal register does not require the introduction of any new parameters. In

the experiments reported below, all parameter values were the same as those used in the ZCS

replication experiments described previously in Section 2.2.

3.3 Results

Although internal state can be an advantage in a variety of situations, our primary interest was

to test the ability of ZCSM in dealing with non-Markov woods-style environments. Depending

on the structure of the environment, ZCSM should be able to employ the memory mechanisms to

disambiguate perceptually aliased global states. That is: if a given sense vector can correspond

to one of several global positions with con
icting appropriate actions, it is possible in certain

environments for the internal state to be manipulated in such a way that the memory register

augments the (aliased) sensory input so that an appropriate action can be selected. This is well

illustrated by considering the environment woods101 shown in Figure 6.

5

There are two distinct cells in woods101 which generate the same sense vector (see Figure 7),

but have opposite appropriate actions. In principle, a one-bit memory is su�cient to disam-

biguate these aliased states. For example: the system could adapt so that whenever it is in any

of the unaliased cells on the west side of woods101 it sets the register to 1, while at all other

cells it leaves the register alone (recall that all the bits in the memory register are initialized to

0). If the animat's input is the sense-vector for the aliased cells, then the correct action is to

move south-east if the value in the register is 1; otherwise move south-west and set the register

to 1.

4

This is a slight di�erence from Wilson's proposal, where the order was sense-condition, memory-condition,

external-action, and internal-action. We reason that placing the memory-condition and internal-action closer

together at crossover reduces the chances of good internal condition-action pairs being separated in breeding.

5

This environment is perhaps better known as \McCallum's maze" (Littman, 1994, p.243). We refer to it as

woods101 for consistency with the woods102 environment introduced later.



8

35

7

9

1 2 4

6

8

0

Figure 6: The environment woods101. The numbers in the cells are labels used in analysis (see

Figure 10).

T T T

� * �

� T �

Figure 7: Sensory alias in woods101: there are two cells (labeled 2 and 3 in Figure6) where the

animat (*) samples a sense-vector illustrated here by the pattern of neighbouring cells (blank

cells represented by `.'). In one, the correct action is to move westward; in the other, the correct

action is to move eastward.

Results for ZCSM1 in woods101 are shown in Figure 8: as can be seen, it learns to move in

a near-optimal fashion. Figure 9 shows the vector �eld for the adapted system: the population

of classi�ers is using the memory register in a manner similar to that outlined above. If the

animat starts a trial in one of the two cells on the vertical center-line of woods101 then it moves

directly toward the F (because the register is always initialized to zero). If it starts at any cell

to the left of the center line, then it can only enter the left-hand aliased cell with memory=0,

which moves the animat onto the cell immediately adjacent to the F. If the animat starts in any

cell to the right of the center line, it will switch state to memory=1 in either one or two steps,

landing on the right-hand aliased cell with memory=1. This also results in the animat moving

onto the cell immediately adjacent to the F. Figure 10 summarises the most likely trajectories

resulting from this vector �eld. As can be seen, the memory is being used to avoid the problem

of aliased cells with con
icting appropriate actions.

As a control, we ran experiments with ZCSM0 in woods101. Our expectation was that the

absence of memory would prevent the co-adaptation of e�ective sets of classi�ers. Results are

shown in Figure 11. As can be seen, the values for stpsav at each trial are generally higher

with ZCSM0 than with ZCSM1 (cf. Figure 8), but they are nevertheless signi�cantly lower than

values expected from a random walk strategy. The vector �eld for a ZCSM0 classi�er population

adapted to woods101 is shown in Figure 12: the signi�cant point to note in the vector �eld is

that the (memoryless) ZCSM0 has adapted to a state where the aliased cells have two actions

advocated with almost equal probability; in both aliased cells, one of the actions takes the

animat to a cell where the F falls within the sense vector, and the other action has the e�ect

of moving the animat to a cell where the sole action is to return the animat to the aliased cell.

Hence, the two actions at the aliased cells correspond to an e�cient stochastic solution to the

problem of insu�cient sensory information: �guratively, we can think of the animat as \
ipping

a coin" to decide between the two alternative actions when faced with aliased sensory input;

with no memory, it can do no better given that the uniformly distributed starting positions lead

to it visiting both aliased cells with equal probability.

To test the capabilities of ZCSM2, we designed a new environment: woods102, illustrated
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Figure 8: Results for ZCSM1 in woods101. Average of 10 runs. Lower horizontal dashed line

shows theoretical optimum performance; upper horizontal dashed line shows mean performance

using random walk.

Figure 9: Vector �eld resulting from ZCSM1 adaptation in woods101 after 10000 trials. Display

format as for Figure 3, extended to indicate manipulation of internal state. Left-hand �gure is

vector �eld when memory=0; right-hand �gure is vector �eld when memory=1. Cells with a

double-border indicate that the most likely internal action in that cell involves 
ipping the value

of the memory-bit, while performing the external action indicated.
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Figure 10: Most likely trajectories resulting from the vector �eld shown in Figure 9. Each line

in the table shows a starting cell, followed by the most likely trajectory from that cell through

woods101 to the F. The cell labels are those introduced in Figure 6. The subscript to each label

shows the contents of the memory register. Note that the memory register is set to 0 at the

start of each trial.

    2

    1.5

    1e+02

    7

    5

    3

    2

    1.5

    1e+01

    7

    5

    3

    0     2000     4000     6000     8000     10000

Figure 11: Results from ZCSM0 in woods101. Average of 10 runs. Format as for Figure 8.

in Figure 13. This environment is more challenging than woods101 in two respects: �rst, there

is a sense-vector which acts as an alias for four di�erent cells, all of which require a di�erent

appropriate action; second, there is another sense-vector which acts as an alias for two other cells,

which again require di�erent actions: these aliased sense-vectors are illustrated in Figure 14.

Given that one of the sensory aliases in woods102 can be generated when the animat is at one

of four di�erent positions in the world, in principle two bits of memory (giving 2

2

= 4 distinct

internal states) should be su�cient to disambiguate the aliases. Results for ZCSM2 in woods102

are shown in Figure 15. Again, with su�cient memory ZCSM is capable of learning e�cient

sets of classi�ers. As with woods101, we ran control experiments using ZCSM with insu�cient

memory: Figure 16 illustrates average performance for ZCSM1, and Figure 17 shows a vector
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Figure 12: Vector �eld from ZCSM0 in woods101, after 10000 trials.
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Figure 13: The environment woods102. The numbers in the cells are labels used in analysis.
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Figure 14: Aliased sensory input in woods102: the input pattern on the left occurs in four cells

(labels 4, 5, 17, and 18); the input pattern on the right occurs in two cells (labels 2 and 15).

For both patterns, di�erent appropriate actions are required at the di�erent cells.

�eld from a ZCSM1 classi�er population adapted to woods102. Once again, in the absence of

su�cient temporary memory, the system has converged on a solution which, although giving

worse performance than that obtained with su�cient memory, is nevertheless an e�ective solu-

tion to the problem of aliased sensory states. In the case of the vector �eld shown in Figure 17,

the adapted solution does not depend on stochastic e�ects at the aliased cells. Rather, long

circuitous routes are taken through woods102: some examples of these are listed in Figure 18.

As can be seen, the circuitous routes avoid the problems of sensory aliasing at cells 4, 5, 17, and

18 by ensuring that, if the trial starts in the southern half of woods102 (cells 14 to 26) then the

F is approached from the east (i.e. via cell 17 with memory=1), regardless of whether the trial

started in the east or west of the environment. Likewise, in the northern half (cells 1 to 13) the

F is always approached from the west (i.e. via cell 4 with memory=0), again regardless of where
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the trial started: the circuitous routes ensure that the memory bit is set in such a way that

when the aliased cell is reached, an appropriate action is generated. As can also be seen from

the trajectories in Figure 18, the most likely trajectories from the aliased cells on the vertical

center-line (i.e. cells 2 and 15) use the memory register in a similar manner.

It should be noted that the performance graphs for ZCSM in both woods101 and woods102

are less smooth than those for woods1 and woods7: even after several thousand trials, the average

values of stpsav can return to high levels close to those exhibited in the early trials (i.e. before

adaptation has converged on a good set of co-adapted classi�ers). The nature of this apparent

loss of stability is discussed further in Section 4.

    2
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    5
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Figure 15: ZCSM2 in woods102. Average of 10 runs. Format as for Figure 8.

    0     2000     4000     6000     8000     10000
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Figure 16: ZCSM1 in woods102. Average of 10 runs. Format as for Figure 8.

Figure 19 shows the progress of a single run with the memoryless ZCSM0 in woods102. As

can be seen, there are extended periods where stpsav is close to the theoretical optimum value:

during these periods a co-adapted classi�er population has developed a stochastic solution to

the problem of aliased states. Figure 20 shows the vector �eld during one of the periods of

good performance (at trial 800 in the run shown in Figure 19): in almost all unaliased cells a

single appropriate action is advocated; in the four aliased cells there are two actions of similar

strengths, corresponding to a stochastic solution to the problem. As is also clear from Figure 19,
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Figure 17: Vector �eld resulting from ZCSM1 adaptation in woods102, after 10000 trials: format

as for Figure 9.

Starting Cell Most Likely Trajectory

2

0

1

0

F

12

0

12

1

10

1

10

0

4

0

1

0

F
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0

13

1

11

1

5

1

3

1

4

1

8

1

6

1

4

0

1

0

F

15

0

16

0

17

0

21

0

21

1

17

1

14

1

F

25

0

23

1

19

1

19

0

21

0

21

1

17

1

14

1

F

26

0

24

1

20

1

18

0

16

0

17

0

21

0

21

1

17

1

14

1

F

Figure 18: Most likely trajectories resulting from the vector �eld shown in Figure 17. Each line

in the table shows a starting cell, followed by the most likely trajectory from that cell through

woods102 to an F. The cell labels are those introduced in Figure 13. The subscript to each label

shows the contents of the memory register. Note that the memory register is set to 0 at the

start of each trial. See text for discussion.

the stochastic solutions are unstable: occasionally, the value of stpsav rapidly rises to values

close to those given by the system before adaptation has taken place. Figure 21 shows the vector

�eld during one of these periods of failure (at trial 10000 in the run shown in Figure 19): as can

be seen, the previously well-adapted classi�er population has been almost entirely disrupted,

leading to a failure in system performance. The nature of these failures is explored in detail in

Section 4.

3.4 Discussion

The results presented in this section have demonstrated two main points: �rst, that ZCSM as

proposed by Wilson can exploit available internal state to disambiguate aliased sensory inputs;

second, if there is insu�cient internal state-space, ZCSM can converge on e�cient stochastic

solutions.

Although our implementation demonstrates thatWilson's proposed memory mechanism does

indeed work, we have doubts about its extensibility. The combinatorics of implementing Wilson's

proposal are unappealing: the number of possible internal actions rises exponentially with the

number of bits of temporary memory (for b bits of memory, there are 3

b

possible internal actions).
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Figure 19: ZCSM0 in woods102: stpsav over one run.

Figure 20: ZCSM0 vector �eld at trial 800

from the run shown in Figure 19: see text

for discussion.

Figure 21: ZCSM0 vector �eld at trial

10000 from the run shown in Figure 19:

see text for discussion.

For the purposes of discussion, let n

a

denote the total number of actions (internal-external

combinations, including null actions) that it is possible to encode on a ZCSM classi�er. Because

each classi�er can advocate both an internal action and an external action, the animat with 9

possible external actions and b bits of memory has n

a

= 3

2+b

. We believe that adaptation is

likely to be signi�cantly retarded if n

a

is appreciably higher than the population size N . In all

the experiments reported above, we have used N = 400, and the highest number of possible

actions that we have worked with is n

a

= 3

2+2

= 81 in ZCSM2. Hence in our experiments the

initial random population of classi�ers should contain, on the average, about �ve classi�ers per

possible internal-external action combination in ZCSM2, about 15 in ZCSM1, and about 44 in

ZCSM0. The key issue here is that, on the average, the space of possible actions is densely

covered by the initial classi�er population.

Now consider ZCSM8: eight bits of memory is not an outrageously large internal state-space,

but in ZCSM8 n

a

= 3

2+8

= 59049; if N is kept at 400, then no more than 0.68% of the possible

internal-external action combinations can be represented in the initial classi�er population!

Hence the space of possible actions is only very sparsely populated by the initial classi�ers, and



15

so the system will have to rely on crossover and mutation to generate action combinations not

represented in the initial population, with a corresponding reduction in the rate of adaptation.

If the population size is increased in line with n

a

then the problem should be alleviated, but

at the cost of increased storage expense and longer search times when forming the match-set.

Also, partial remedy may be o�ered by restricting the space of possible actions encoded on the

classi�ers to just the union set of external actions and internal actions, so the action advocated

by each classi�er is either internal or external but never both, giving n

a

= n

e

+ 3

b

for a system

with n

e

external actions.

Further e�ciency problems may be caused by the relatively unsophisticated memory ma-

nipulation facilities in ZCSM as presented here: although in principle the set/reset/leave-alone

operators at each bit position may be su�cient to e�ect sophisticated internal processing capa-

bilities, it would require long chains of internal actions to achieve either simple Boolean logic

operations or simple binary math capabilities; in Section 4 we question the ability of ZCS to

form and maintain such long chains of actions. For this reason, a more pro�table path to follow

may be extending ZCS to employ memory-manipulating s-classi�ers (where the classi�er action

is a parse-tree in the manner similar to that used in Genetic Programming (Koza, 1992)) as

suggested by Wilson (1994b, p.15).

Despite these misgivings, it is nevertheless encouraging that when there is insu�cient internal

state the ZCS/ZCSM adaptation mechanisms can converge on productive stochastic solutions

to the problem of aliased sensory input.

4 Failure on Extended Action-Chains

4.1 Motivation

The results for ZCSM show that internal state can be e�ciently exploited to learn pro�table

sensory-motor mappings in non-Markov environments. However, as was mentioned in the previ-

ous section, there is an apparent instability in that the system can occasionally su�er signi�cant

failures in performance. Such failures are not evident in the results for ZCS in woods1 or woods7,

yet were seen in a number of experiments using ZCSM in environments such as woods101 and

woods102. In some cases, the failures were catastrophic: once the system had converged to

near-optimal performance, the running average stpsav could intermittently return to levels

close to those at the start of the trial, before learning had occurred. Di�erent trials in identical

conditions (except for alteration of the random number seed) indicated that such failures were

unpredictable.

The failures for ZCSM0 in woods101 and woods102 are perhaps unsurprising, given the lack

of su�cient internal state. However, it was worrying that similar failures occurred when using

ZCSM with su�cient memory for the given environment. Our initial suspicion was that the

addition of memory had introduced an unforeseen instability into the adaptation process; hence

we were concerned to explore the nature of this instability.

One possibility is that these intermittent failures were caused by Deceptively Lucky Explo-

ration. Once the system is (at least partially) adapted to the environment, there is the familiar

explore/exploit tradeo�: in some situations a given sense-vector will have several possible action

sets. If some of the action sets are relatively strong, they indicate actions which have led to

reward in the past, and this past experience can be exploited by selecting those actions in order

to continue to collect reward. However, it isn't necessarily the case that the weaker actions in

the given action set are less productive: they may just have been selected less often, and hence

had less opportunity to accumulate reward; thus these weaker action sets should be explored

occasionally in order to further investigate their e�ects. The roulette-selection of one action

set from those currently available in the match-set is an elegantly simple method of addressing

the explore/exploit issue. If the environment is dynamic, then exploration is vital (so as to
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continue to adapt in light of changes in the environment). Furthermore, if the environment is

non-Markov, then the given sense-vector may be an alias for more than one global state, and

the weaker action sets may indicate actions which occasionally lead to a reward. As we saw in

Section 3.3, insu�ciently large internal state-space could lead to the formation of action sets

which correspond to stochastic solutions to the problem of aliased inputs, with the relative dis-

tribution of strengths over actions for that state being an indication of the probability of reward

following from each action.

We use the phrase Deceptively Lucky Exploration to refer to the case where a low-strength

action is selected for exploration, and circumstances just happen to be such that the relevant

action set receives a high payo�. If this occurs over consecutive trials, the strength of the (pre-

viously weak) classi�ers in the action set will be increased and the strength of the (previously

stronger) classi�ers could be reduced, with a corresponding deterioration in overall system per-

formance. That is, a suboptimal move might be converged on if it is selected several times

in a row, because the tax on non-selected actions decreases the strengths of better moves. For

example, consider two actions a and b for an aliased sense-vector ~v in a non-Markov environment

where a is the optimal action in 1% of the global states which generate ~v and b is optimal for the

remaining 99% of global states generating ~v. Say that the system has adapted so the relative

strengths of the actions sets advocating a and b for ~v are 0:01 and 0:99 respectively. Then if

by chance there is a consecutive sequence of trials in which a is selected and luckily a really is

appropriate to the global state, then the relative strength of a could increase to, say, 0:1 while

that of b reduces to 0:9; so the system has become more likely to execute action a in situations

where really b is appropriate, so performance has degraded. Such degradations of performance

would be rare (the reasoning above implies that the severity of degradations would follow a

Poisson distribution, so more severe degradations would be less frequent than less severe ones).

Although deceptively lucky exploration may be a problem in environments where it is a

possibility, data presented in the next section indicates that ZCS can su�er catastrophic failures

even in environments where there is no possibility of exploration interfering with adaptation.

4.2 Experiments with Woods14

Further experimentation with ZCSM in non-Markov environments indicated that the problem

became more pronounced in environments with greater optimal expected number of steps-to-

food. That is, it seemed that the severity of the failures became more extreme as the average

length of the sequential chain of actions leading to reward increased.

In order to test the hypothesis that the problem was due to factors other than deceptively

lucky exploration, we designed a Markov environment which is a simple linear path of blank

cells through a �eld of Ts, with an F at one end of the path. We call this environment woods14:

see Figure 22.

Figure 22: The environment woods14.
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Figure 23: The environment woods14-14. Figure 24: The environment woods14-06.

As can be seen from Figure 22, woods14 has 18 blank cells, and at each cell there is a unique

sense-vector, and only one action which takes the animat nearer to the F. Because there is only

one action in each cell, deceptively lucky exploration cannot occur.

Given its simple nature, we expected that woods14 would represent a fairly trivial learning

problem. We planned to �rst generate some control data using ZCS on woods14, and then to

test ZCSM on the same environment to see whether the addition of memory mechanisms had

caused the problem: because woods14 is Markov, ZCS should be capable of learning appropriate

classi�ers, so the comparison between ZCS and ZCSM would be fair.

Our intention in working with woods14 was purely to identify whether chain-length was a

major factor underlying the observed instability. For this reason, we did not vary any of the ZCS

parameters from the values used in the work reported in Sections 2.2 and 3. To our surprise,

we found that even ZCS could not learn reliable strategies for woods14. Apparently the chain-

lengths required in this environment are su�ciently long that stable sets of classi�ers could not

be found.

Problems with long chain maintenance have been noted before in the classi�er systems

literature. Wilson and Goldberg (1989, p.247) state:

\: : :research has suggested that besides being slow to reinforce, bucket brigade

chains are also quite fragile in the sense that earlier members tend to have less

strength, regardless of the number of sequence repetitions. This seems partly due to

a combination of two e�ects: (1) the probability of reaching payo� starting with an

earlier classi�er is less than starting with a later one, because of stochastic e�ects

at each step; (2) later classi�ers tend to have many sequences leading into them, so

they are reinforced more often."

It is our belief that, because ZCS is a minimal system, working with ZCS may further

illuminate the reasons for failure to maintain long chains in similar classi�er systems.

We therefore embarked on a series of experiments to determine the relationship between

chain-length and stable adaptation in ZCS. To do this, we generated a set of environments

based on woods14: path (i.e. chain) length was decreased by �lling blank cells at the end of

the path with Ts. The environments were given names using the format woods14-p where p

denotes the number of blank cells in the path. Thus the original woods14 (Figure 22) becomes

woods14-18. For illustration, Figures 23 and 24 show two other variants of woods{14.

Each trial with the woods14-p environments was run in the same way as the experiments

described in earlier sections of this paper: a blank cell was chosen as a random initial starting

position, and the number of steps to F was recorded for each trial in order to generate stpsav.

Given the simplicity of the woods14-p environments, the theoretical optimum performance is

simply calculated from 1 + ((p � 1)=2). The expected number of steps under a random-walk

strategy was determined empirically for each woods14-p.
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Figure 25: ZCS Scores in woods14-06. Average of 10 trials. Ordinate is trial number. Abscissa:

solid line shows mean stpsav; dashed line shows mean plus one standard deviation. Lower

horizontal dashed line shows theoretical optimum performance; upper horizontal dashed line

shows expected performance using random walk.

Results for using ZCS on the environments woods14-06 to woods14-14 are shown in Figures 25

to 33. As can be seen, while the results for woods14-06 are similar in nature to those for

woods1 and woods7, in woods14-09 there are some `spikes' showing temporary degradation of

performance. These become steadily more severe as the path length increases. In woods14-10,

there is a spike where average performance is close to that exhibited in the early trials before the

system had adapted. For woods14-13 the spikes from the ten trials start to merge into extended

periods of degraded average performance, and for woods14-14 the average performance is only

very rarely at all close to the theoretical optimum level.

To summarize these data, Figure 34 shows the peak value of stpsav averaged over ten runs,

plotted against p for woods14-p. As can be seen, for values of p > 11 the worst performance is

higher than would be expected from a random search policy. The peak average stpsav values

for low p are better than random search, but this is at least in part a consequence of the fact

that for low p much of the system's adaptation occurs in the �rst 50 trials, before stpsav can

be calculated.

To some extent there is a loss of clarity caused by averaging the results from several runs.

To better illustrate the performance in woods14-13 and woods 14-14, Figures 35 and 36 show

stpsav over single runs. As can be seen, on individual runs the system does �nd sets of classi�ers

which give near-optimal performance, but there is an instability which can result in such well-

adapted classi�er sets being disrupted, giving worse-than-random performance. For instance, in

Figure 35 there is a sustained sequence of about 500 trials (starting around trial number 8520)

where stpsav is worse than random-walk performance.

Given the linear nature of the woods14 environments, there is no opportunity for Deceptively

Lucky Exploration to occur. An alternative explanation for the failures is therefore required.

By careful analysis of the state of the classi�er system during the collapse from near-optimal

to worse-than-random performance levels we have been able to determine a likely cause of such

failures: collapses in performance in woods14-p environments are due to an interaction between

greedy classi�er creation and con
icting over-general classi�ers. We discuss each of these in

turn below.
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Figure 26: ZCS Scores in woods14-07.

Format as for Figure 25.
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Figure 27: ZCS Scores in woods14-08.

Format as for Figure 25.
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Figure 28: ZCS Scores in woods14-09.

Format as for Figure 25.
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Figure 29: ZCS Scores in woods14-10.

Format as for Figure 25.

4.2.1 Greedy Classi�er Creation

Although the woods14-p environments may appear super�cially unchallenging, the increased

incidence of failures as p increases can be understood when one considers the amount of time

spent in each cell.

Let us assign identi�er labels to each cell: label the cell nearest the F as c

1

, and the cell

furthest from the F in woods14-p as cell c

p

; with the intermediate cells labeled c

i

for i 2 f2; : : : ; p�

1g. Now on each trial the starting position (i.e. the cell at step zero, C(0)) is chosen at random,

i.e. Pr(C(0) = c

i

) = p

�1

; i 2 f1; : : : ; pg.
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Figure 30: ZCS Scores in woods14-11.

Format as for Figure 25.
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Figure 31: ZCS Scores in woods14-12.

Format as for Figure 25.
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Figure 32: ZCS Scores in woods14-13.

Format as for Figure 25.
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Figure 33: ZCS Scores in woods14-14.

Format as for Figure 25.

However, the linear nature of the woods14-p environments guarantees that if the animat is

at cell c

i

then all cells c

j

: j < i have to be visited before the trial can end. So when the starting

position is chosen uniformly at random, an estimate of the proportion of trials in which cell c

i

is visited under an optimal policy is given (as a percentage) by 100(1 + p � i)=p. Therefore,

even under an optimal movement strategy, c

1

is visited on average p times more often than c

p

.

Furthermore, because c

1

is closest to the reward at F (i.e. at the end of any chain of actions in

woods14-p), classi�ers matching the sensory input at c

1

will increase in strength most rapidly,

and hence be more likely to be selected for reproduction in the GA.

This e�ect will be exacerbated by the e�ects of the discount factor 
: classi�ers active
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Figure 34: Peak (worst) performance vs. path-length p. Ordinate is path-length. Abscissa is

number of steps: solid line is peak stpsav value from data presented in Figures 25 to 33; dashed

line is empirically derived expected performance of random walk strategy.
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Figure 35: ZCS in woods14-13: stpsav

over one run.
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Figure 36: ZCS in woods14-14: stpsav

over one run.

toward the end of a chain of actions receive more absolute reward than do earlier classi�ers

in the chain. This is a consequence of the Q-like learning mechanisms in ZCS: Q-Learning is

based on optimizing the discounted sum of future rewards

P

1

j=0




j

r

t+j

where r

t+j

is the reward

received at timestep t+ j. This use of 
 is a means of giving a higher rating to a reward received

recently than to an equal reward received later. Recall that in our experiments r = 0 at all

timesteps except the �nal step in a chain, when the animat moves onto a F and r = r

imm

. If


 2 (0; 1), it is fairly easy to show (at least when [H ] = [A] on each step in a chain) that the 


discount factors in a chain compound to give exponential decay of absolute reward received with

respect to distance from the end of the chain. That is, the reward-based strength increment

passed back through the implicit bucket brigade to an action set will be modulated by a factor

of 


s�1

where s is the number of steps between the action set being active and the reward being
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received. In the case of an action set which moves the animat onto a F, s = 1 so the reward

received is modulated by a factor of 1:0. For an action set active at cell c

p

in woods14-p, the

reward-based increment will be modulated by a factor of 


p�1

: e.g. for 
 = 0:71 and p = 14,

the compounded discount modulating factor is approximately 0:0117, so action sets in c

1

receive

around eighty-�ve times as much reward as those in c

14

. The exponential decay may be further

exaggerated by the e�ects of the learning rate � compounding through time in a similar fashion.

So the animat spends proportionately more of its time at cells near the F, and classi�ers

matching the sensory input at these cells will gain strength and reproduce more frequently than

classi�ers matching the sensory input for more distant cells, which are earlier in the chains of

actions. Moreover, classi�ers for the more distant cells will in general be weaker (because rewards

passing through the bucket brigade are discounted more heavily as distance from the F increases)

and are hence more likely to be selected for deletion. Therefore weak classi�ers matching at F-

distant cells will be deleted to make way for the o�spring of strong classi�ers which match at

F-near cells. The interaction of these factors leads us to expect that, in a classi�er system with

a �xed population size, the failures may be caused by such `greedy classi�er creation', i.e. by

excessive deletion of classi�ers matching at distant cells, to make space for the disproportionate

growth of classi�ers which match the sensory input close to the F. To demonstrate that this is

indeed the case, Figure 37 shows the number of classi�ers matching the sense-vector (i.e. the

size of the match-set) at each cell c

i

: i 2 f1; : : : ; 14g in woods14-14 with N = 400. As can be

seen, the cells nearest the F have a disproportionately large number of matching classi�ers.

    140
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Figure 37: Number of classi�ers matching at cell c

i

for i 2 f1; : : : ; 14g in woods14-14 with

N = 400: ordinate is i; abscissa is average of match-set sizes recorded at trials 2000, 4000, 6000,

and 8000 from the run shown in Figure 36.

These data indicate that for woods14-p with large p, a signi�cant factor in the occurrence

of catastrophic failures is that cells most distant from the F have comparatively few classi�ers

matching the sensory input, and these few classi�ers are su�ciently weak that they are probable

candidates for deletion. If they are deleted, then the system has to re-learn the appropriate

action at that cell.

Now consider the most extreme case, where the only classi�er matching the sensory input at

a given F-distant cell is deleted. The next time the animat visits that cell, it will need to generate

a new classi�er via the covering operation. In the woods14-p environments the probability of

randomly choosing the correct action when covering is the reciprocal of the number of possible
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external actions: for the experiments described here, this is 0:125 so the probability of randomly

choosing an inappropriate action is 0:875. If an inappropriate action is (randomly) chosen

for the classi�er created in covering, then the system has to repeatedly perform that action

until its strength is su�ciently diminished (by repeated decrements during reinforcement) that

covering is re-activated. It is not inconceivable that this process (of covering generating a sole

inappropriate action which requires many steps to be `deselected') could be repeated several

times in succession within a particular trial, leading to a very large number of steps to F on that

trial.

However, once the F has been reached on such a trial in woods14-p, covering must have

generated the correct action, and so on subsequent trials the problem should be much less

likely to occur. Therefore, while greedy classi�er generation clearly can account for sudden

spontaneous decreases of performance (i.e. one `bad' trial, taking a large number of steps), it

is less clear why the breakdowns in performance are sustained over large sequences of trials

(because, for the `bad' trial to have ended, ZCS must have generated classi�ers advocating the

correct action in each cell in the woods14-p environment, so the next trial should not present

any problem).

Although it is possible that `chain reactions' (where inappropriate covering in one distant cell

could trigger deletions of weak classi�ers at other distant cells, giving rise to further inappropriate

covering which causes further deletion of crucial classi�ers, and so on) could be the reason for

the sustained failures, there is another factor we have identi�ed which appears to play a much

stronger role in causing and sustaining the observed failures: this factor is the formation of

con
icting over-general classi�ers, discussed further in Section 4.2.2. It should be noted that

Wilson (1994b, pp.13-15) anticipated the problem of greedy classi�er creation in long-chain

maintenance, and proposed an extension to ZCS involving a niche GA (cf. Booker, 1989) as

one potential remedy.

4.2.2 Con
icting Over-General Classi�ers

The inclusion of wild-card characters in the classi�ers e�ects a generalization mechanism. Gen-

eralization is a powerful feature if there are several global states whose sense-vectors di�er in

some respects but for which the same action is appropriate: one classi�er advocating an ap-

propriate action can match multiple states if it has su�cient wildcards to ignore the di�erences

between the sense-vectors. For example, in the woods environments, if there is a F in a particular

cell adjacent to the animat, then a classi�er with wildcards at all positions in the sense-vector

except for the two bits corresponding to the position of the F can advocate moving in the correct

direction (i.e. onto the F, generating a reward) regardless of the particular surrounding pattern

of Ts and blank cells. Such a classi�er should gain a high strength, at the expense of less general

classi�ers.

However, introducing a generalization mechanism raises the problem of con
icting over-

general classi�ers. A con
icting over-general classi�er is one which matches multiple sense

vectors for which di�erent actions are appropriate. Given the mutual exclusivity of actions in

the woods environments, a con
ict arises: the action speci�ed by the over-general classi�er will

be appropriate sometimes, and inappropriate other times. On the occasions when the classi�er's

action is appropriate it will (eventually) collect reward, and on the occasions when its action is

inappropriate it should lose strength. Depending on circumstances, such over-general classi�ers

may take considerable periods of time for their strengths to diminish su�ciently that they are

deleted. Dorigo (1993) refers to such classi�ers as oscillating classi�ers.

Examination of vector �elds for woods14-p environments showed that, even when the system

had adapted to give near-optimal performance, the more distant cells often had match-sets

which strongly advocated wholly inappropriate actions, i.e. moving away from the F or into

a neighboring T. Figure 38 shows one such vector �eld for woods14-13 (at trial number 8543,

same run as illustrated in Figure 35). As can be seen, for i > 7, cells c

i

have match-sets which



24

advocate inappropriate actions.

Figure 38: Over-generalization in woods14: vector �eld generated in woods14-13 at trial number

8543 in the run shown in Figure 35. See text for discussion.

Inspecting the classi�ers advocating these inappropriate actions, two things were clear: their

strength was signi�cantly higher than the strength expected if they had been generated by

covering, and they were su�ciently general to match the sense-vectors at cells nearer the food.

On re
ection, this is not a particularly unlikely occurrence. In the woods14-p environments,

the sense-vectors for all cells c

i

: 1 < i < p � 1 will encode six surrounding T cells and two

blank cells, with two bits encoding the contents of each cell. Such regularities imply that the

sense-vectors for di�erent cells may only vary in the contents of one or two cells. For example:

cells c

2

and c

7

are only distinguishable by the contents of the north and north-west cells (see

Figure 39); therefore the Hamming distance between their binary-encoded sense-vectors is 4,

and so it is possible to create an over-general classi�er with four wildcards which will match the

sensory input at both cells, yet the appropriate actions in the two cells are opposites: in the

terminology of Yates and Fairley (1993), the over-general classi�ers subsume the more speci�c

classi�ers active at F-distant cells.

The problem of over-general classi�ers is signi�cantly worsened by greedy classi�er creation:

classi�ers active at cells near the F will rapidly gain strength and be selected for breeding, where

more general classi�ers can be created. As sense-vectors of the F-near cells are only a short

Hamming distance from the sense-vectors of more distant cells, strong over-general classi�ers

can be created which advocate incorrect actions in distant cells, which (being earlier in the chain

of actions) generally have weaker classi�ers. Hence the over-general classi�ers which generate

T T �

T * T

T � T

T # #

T * T

T � T

T � T

T * T

T � T

Figure 39: Over-generalization in woods14-p : p > 8. Left-hand �gure: surrounding cells when

animat (*) is at cell c

2

: appropriate action is to move south. Right-hand �gure: surrounding

cells when animat is at cell c

7

: appropriate action is to move north. Center �gure: an over-

general classi�er which matches at both c

2

and c

7

: \#" denotes cells whose corresponding pair

of bits in the classi�er condition are both wildcards.
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Figure 40: Over-generalization in woods14: vector �eld generated in woods14-18 from a popu-

lation of classi�ers exposed only to woods14-04 for 5000 trials. Cells c

5

to c

18

should be blank,

because the system has not been exposed to their sense-vectors. Over-general classi�ers generate

inappropriate actions in several of the previously \unseen" cells.

Cell in woods14-04 Cell in woods14-18 Sensory Hamming Distance

c

1

c

7

1

c

6

5

c

2

c

6

4

c

7

4

c

10

4

c

13

4

c

16

4

c

3

c

9

4

c

4

c

5

2

c

15

6

Figure 41: Table showing cells in woods 14-18 a�ected by adaptation to woods 14-04, and the

Hamming distance between the sense vectors for those cells. Note that c

4

in woods14-04 is the

most distant cell and hence has a T in the position occupied by c

5

in woods14-p : p > 4. Hence

the Hamming distances from c

5

and c

15

in woods14-18 to c

4

in woods14-04 are less than the

respective distances measured in woods14-p : p > 4.

appropriate actions nearer the F are inappropriately favored by the action selection process at

distant cells, and their high strengths mean that it takes proportionately more steps before their

strengths are su�ciently reduced to allow other, more appropriate, actions to be generated.

To demonstrate the e�ects of over-general classi�ers, Figure 40 shows a vector �eld for

woods14-18 generated from a population of classi�ers which had been trained for 5000 trials

on woods14-04. As would be expected, cells c

1

to c

4

have appropriate classi�ers. However,

the previously `unseen' cells c

i

: i > 4 have inappropriate actions strongly advocated in the

match-sets. Examination of the classi�ers active in the previously `unseen' cells revealed that

they were over-general classi�ers which also matched one or more of the `seen' cells c

i

: i �

4. In this particular experiment, cells c

i

: i 2 f5; 6; 7; 9; 10; 13; 15; 16g, all have inappropriate

actions advocated by classi�ers formed in the adaptation to woods14-04. The table in Figure 41

illustrates which cells in woods14-04 have a�ected cells in woods14-18 over a number of such

trials, and indicates the Hamming distance between the sense vectors.

It is also worth noting in Figure 40 that c

18

has also been a�ected by the exposure to woods14-

04, but the e�ect has been that an appropriate action is advocated: here an over-general classi�er
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has a bene�cial side-e�ect.

4.2.3 Summary

The combined e�ects of greedy classi�er creation and over-general classi�ers are the primary

causes of the collapses in performance that we have analyzed on a step-by-step basis. The worse-

than-random performance times for the system when initially adapting and when re-adapting

after a collapse seem to be due mainly to the large number of steps required to diminish the

strength of inappropriate over-general classi�ers to such a degree that covering can take e�ect in

the F-distant cells. Similar trials with ZCSM1 and ZCSM2 in woods14-p environments indicated

that the addition of memory o�ered no improvement: in fact, the results were signi�cantly

worse.

Although the fragility of long chains has previously been discussed in the classi�er systems

literature (e.g. Wilson & Goldberg, 1989; Compiani, Montarini, & Serra, 1990), we believe that

the experiments reported here are informative because they demonstrate that the fragility is

present even in the minimalist ZCS. Furthermore, the e�ects of con
icting over-general classi�ers

may reveal a more fundamental issue: the over-general classi�ers are retained in the population

because there is no provision in ZCS for penalizing classi�ers lacking accuracy or consistency.

As Wilson (1994a) notes, other authors have discussed the need for including such mechanisms

(see e.g. Holland, 1976; Holland & Reitman, 1978; Frey & Slate, 1991; Grefenstette, Ramsey, &

Schultz, 1990; Dorigo, 1993). Most recently, Wilson (1994a) describes a classi�er system, XCS,

which is based on ZCS with extensions to allow classi�er �tness to be based on accuracy. Our

results indicate that, at least in applications requiring long chains of actions, XCS should be

more e�cient and robust than ZCS.

5 ZCS in a continuous-space environment with distal sensing

The results of the previous sections appear to indicate that the prospects of using ZCS and/or

ZCSM in animat guidance are limited by the problems of long chain maintenance. A �nal

possibility we explored was whether these problems are due to the cellular nature of the sim-

ple `grid-world' woods environments. Such environments have been criticized in the past for,

amongst other things, their tenuous links to the real physical environments faced by animals and

robots, their treatment of time and space as discrete variables, and their con
ation of sensing and

recognition (Brooks, 1992; Cli� & Bullock, 1993). Nevertheless, it is also sometimes said (e.g.

Brooks, 1992, p.5) that the lack of realistic noise and stochastic processes makes the dynamics

of cellular worlds more brittle than those of the real world. For these reasons, it is tempting to

test ZCS in more challenging conditions than those o�ered by the woods environments. In this

section we brie
y present results which indicate that the problems of ZCS are not necessarily

eased in more complex environments.

In our more complex environments space is a continuous variable. The animat is still consid-

ered as a 2-dimensional (2-D) entity traversing a plane, but movement is uncertain. The animat

is a circular agent whose circumference is divided equally into a number of radially oriented

`distal sensors' which can be used to detect the presence of circular obstacles scattered around

the planar space. The distal sensors are idealized and grossly simpli�ed one-bit binary `photode-

tector' units, all with the same �xed threshold. If more than this threshold proportion of their

`angle of acceptance' is occupied by obstacles then their output is 0, otherwise 1. This `
atland

vision' is e�ected by solving the relevant 2-D projection equations:

6

see Figure 42. Although

simplistic, such a system does provide a facility for examining the e�ects of limited visual acuity,

occlusion and disocclusion, etc. For brevity, we refer to these studies as flava experiments (from

FLAtland Vision for Animats). One of the primary inspirations for our flava experiments was

6

Further details of flava, including copies of the C code, are given in (Cli�, 1994).
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A

2

4 3

5

1

7

6

0

Animat

B

C

Figure 42: Schematic illustration of the 
atland vision system. The circular animat is shown

with 8 equal-angle `visual' sensors occupying its circumference. The dark circles are obstacles in

the world. The dashed line indicates the `optical axis' of sensor 1, and the dotted lines indicate

the limits of its angle of acceptance. Obstacle A has no e�ect on sensor 1 because it is outside the

angle of acceptance.. Obstacle B subtends over half the acceptance angle of sensor 1. Obstacle

C has no e�ect on sensor 1 because it is occluded by obstacle B: if B was removed, C may be

too distant to subtend a su�cient proportion of the sensor's angle of acceptance to a�ect it.

prior research in modeling visual localization and navigation in bees and wasps (Cartwright &

Collett, 1983, 1987; Collett, 1992), which used similarly minimal models.

In the current flava work, time proceeds in discrete timesteps. On each timestep, the

animat makes a movement: the movement is a step of �xed length, whose direction is chosen

randomly within some range speci�ed by the classi�er's external action. For compatibility with

our earlier experiments, we gave the ZCS-flava animat 8 external actions: as with the cellular

woods environments, the action speci�es one of eight directions of movement, with 45

�

between

successive directions. On each step, a uniform random deviate over [-22.5

�

,22.5

�

] is added to the

speci�ed movement direction before the step is taken. The net e�ect is that an animat applying

a constant external action will wander in a consistent direction with random drift: a biased

\drunkard's walk" over a continuous space.

The animat can move in the two spatial dimensions, but maintains a constant orientation.

It cannot move into space occupied by an obstacle. It has a one-bit omnidirectional \collision

detector" which outputs 1 if the animat attempts to collide with an obstacle, and 0 otherwise.

There is no noise or uncertainty in either the `visual' sensors or the `collision detector'. Drawing

inspiration from studies of visual navigation in animals, the location of rewards in our flava

studies are not detectable by the animat's sensors: the animat has to �nd its way to a reward

by reference to `visual landmarks' alone.

Further realism is introduced by making the length of each random movement-step small

in comparison to the size of the world: sequences of small movement steps can be considered

as an approximation to spatiotemporally continuous movement. However, this approach raises

the problem of the temporally discrete nature of the classi�er system: ZCS, like most other

classi�er systems, operates in discrete timesteps, each composed of one run through the sense-

act-reinforce-discovery sequence. If �t represents the inter-timestep interval, then reducing �t

(to get a better approximation to continuous movement) compresses the timescale over which

chains of actions can be supported. To avoid this problem, we use ZCS in a sensory interrupt

fashion: once an external action is selected, that (noisy) action is applied on each timestep in

a pure sense-act loop (i.e. without reinforcement or discovery) which is only interrupted when
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Figure 43: A simple flava environment.

The large dark circle is an obstacle; the

small light circle denotes the zone where

the animat will receive reward (the ani-

mat cannot sense this zone). See text for

discussion.

Figure 44: Sensory signature neighbor-

hoods for the environment illustrated in

Figure 43. See text for discussion.

either a reward is received (in which case the trial ends) or when the sense-vector alters (either

by a change in the `visual' inputs or by the collision detector becoming active). When a sensory

interrupt occurs, reinforcement and discovery may take place, followed by roulette-selection of a

new action; the system then re-enters the pure sense-act cycle. This interrupt technique employs

ZCS as a system which selects a new action only when the sense-vector changes, rather than

at the end of each movement step. Classi�er actions now specify changes in movement policy,

rather than actual changes in position, and hence short chains of actions may underlie temporally

extended sequences of movement steps, consisting of arbitrary numbers of �t intervals.

Figure 43 shows a very simple flava environment. The world measures 52� 52 (arbitrary)

distance units, and the animat takes steps 0:5 units long. There is a single small patch of

reward (radius=1.0) 12 units west of a single circular obstacle (radius=5.0) which might act as

a `landmark' for locating the reward. The animat has 8 `visual' sensors, all with threshold 0.5,

arranged as illustrated in Figure 42, and has a radius of 1.0 units.

Figure 44 shows a map of this environment's sensory signature neighborhoods (cf. Mahadevan

and Connell (1992, p.334)): the lines partition the 2-D environment into neighborhoods; the

sense-vector is identical at all points within each neighborhood (recall that the reward cannot

be detected by the animat's sensors). Because there is only one circular obstacle, and the

animat's visual sensors are radially symmetric, the signature map is also radially symmetric.

At the outer edges of the environment, the obstacle does not subtend a su�cient proportion

of the acceptance angles of any photoreceptor units to register. As the animat moves closer

to the obstacle, there are large neighborhoods where one of the eight photoreceptors registers

the obstacle, smaller neighborhoods where two photoreceptors register, and some very small

neighborhoods where three register. The sensory signature neighborhoods can be considered as

de�ning a particular non-Cartesian `grid-world' around which the animat moves. Within any

signature neighborhood, the sense-vector is identical and hence the animat cannot determine its

precise location in the world; the best it can do is determine an appropriate (adaptive) action.

Readers of a constructivist philosophical persuasion will have noticed that the grid is de�ned by
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Figure 45: ZCS scores in the flava envi-

ronment of Figure 43. Solid line is mean

(over ten runs) of a running average (over

50 trials) of trial path distance; dashed

line is mean plus one standard deviation.

Upper horizontal dashed line is average

behavior of random action choice. Lower

horizontal dashed line is lower bound on

optimal behavior. See text for discussion.
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Figure 46: ZCS performance in a single

trial. Solid line is running average of path

distance over last 50 trials. See text for

discussion.

the interaction between the animat's sensory sampling strategy (cf. Cli� & Bullock, 1993) and

its environment: there is no `objective reality' for the agent that is independent of the agent; if

it had a di�erent number of sensors, or a di�erent arrangement of 8 sensors, then the signature

neighborhoods, and hence the space of possible agent-environment interactions, could be very

di�erent.

Because the obstacle is `invisible' from all the edges of the world, toroidal wraparound can

still be used if the animat tries to move o� an edge of the environment: the e�ect of the

wraparound is to tile the 2-D plane with copies of this environment, extending in�nitely in all

directions.

As with the woods experiments, each trial starts with animat at a random location (neither

colliding with an obstacle or within the reward zone). Each trial ends when the animat moves

onto the reward zone. The measure of performance on a trial is the line integral of the animat's

trajectory, i.e. total distance traveled from the start location to the point of contact with the

reward zone. The average distance using random selection of action when a sensory interrupt

occurs is approximately 790 units. The average distance under an optimal movement strategy

with perfect information in the absence of obstacles is approximately 20 distance units: this

serves as a lower bound on the average optimal performance in the presence of obstacles.

Figure 45 shows results from ZCS adapting to this environment. The performance measure

is a running average of path distance over the last 50 trials. As can be seen, there is little

evidence of adaptation having occurred, but the scores are better than random performance.

Once again, this is due to the system converging on well-adapted populations of classi�ers which

then undergo catastrophic failures. Figure 46 shows the running average of path distance over

one trial. As can be seen, the transients between adapted and non-adapted behaviors are very

brief.
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Figure 47: Vector �eld for ZCS in the

flava environment of Figure 43, from the

run illustrated in Figure 46, after trial

5340. Vectors generated on a regular grid:

dot indicates vector basepoint.

Figure 48: Fifty individual trial trajecto-

ries, trials 5290 to 5340 of the run illus-

trated in Figure 46. The dense concentra-

tion of trajectories leading to the reward

zone from the south-west is caused by the

animat alternating between two adjacent

signature neighborhoods.

The behavior produced by populations of well co-adapted classi�ers can be visualized using

vector �elds to show average expected behavior, and plots of individual trial trajectories to show

actual generated behavior. Results from deriving a vector �eld at regularly spaced points over

the environment are shown in Figure 47: as can be seen, the signature neighborhoods near the

reward zone have appropriate vectors, but some of the neighborhoods more distant from the

reward have vector distributions that are not distinguishable from the `background' distribution

in the perimeter neighborhood, where the obstacle is not `visible'.

While this is not necessarily a sign of poor adaptation, examining individual trial trajecto-

ries, as illustrated in Figure 48, indicates a problem. ZCS has developed sets of classi�ers for

sense-vectors near to the reward zone which advocate actions that `bounce' the animat between

adjacent signature neighborhoods (i.e. the action in a neighborhood N

1

sends the animat to some

other neighborhood N

2

, and the action in N

2

sends the animat back to N

1

). While this clearly

can lead the animat to the reward, each transition between neighborhoods generates a sensory

interrupt and hence counts as a step in a chain of actions, so the problem of long-chain mainte-

nance re-occurs; classi�ers active in signature neighborhoods more distant from the reward zone

will be deleted to make way for classi�ers active in neighborhoods nearer the reward.

That this problem occurs in the simple environment of Figure 43 is worrying: as more obsta-

cles are added, the number of signature neighborhoods is likely to grow dramatically: Figure 49

shows an environment with just three obstacles. As can be seen, the number of signature neigh-

borhoods has increased markedly from the 25 neighborhoods of the single-obstacle world shown

in Figure 43. As the number of neighborhoods grows, so does the need for dealing with long

chains of actions, because even when ZCS is driven by sensory interrupts each transition across a

neighborhood counts as one action. If we allow noise in the sensors, then sensor values may 
uc-

tuate within signature neighborhoods, which may require that the sensory interrupt approach

is abandoned. But if the interrupt approach is abandoned then the problem of the �t tradeo�

between approximate spatiotemporal continuity of motion and the temporal compression of ac-

tion chains requires some alternative solution. From these observations, we conclude that the
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Figure 49: Sensory signature neighborhoods for a flava world with three circular obstacles. See

text for discussion.

problems faced by ZCS are not artifacts of the cellular woods environments.

6 Conclusions

Our overall conclusion is that, while ZCS plays an important role in bringing out the similarities

between classi�er system learning and Q-Learning, its minimalism may cause problems if it is

to be used in applications requiring either large amounts of internal state, or the maintenance of

long chains of actions. However, these two issues are problematic for most classi�er systems, so

ZCS is no worse than many other systems; moreover, its minimalism o�ers clarity in determining

the causes of the problems, and in assessing the e�ects of proposed remedial mechanisms.

To summarize, there are three signi�cant contributions to the literature in this paper.

First, we have demonstrated a reconstruction of ZCS as described by Wilson (1994b) and

have shown that Wilson's published results can be replicated. Replication of published results

is an important (if unglamorous) task in any scienti�c �eld.

Second, we have implemented Wilson's proposal for adding temporary memory to ZCS.

Although our results demonstrate that Wilson's proposals work when the number of bits of

temporary memory is small, combinatorics indicate that the approach will not scale well as the

number of bits required increases. Nevertheless, our demonstration that ZCS could converge on

stochastic solutions when there was insu�cient internal state to disambiguate sensory aliases

implies that there may be applications for which insu�cient memory is not an insurmountable

problem.

Third, we have demonstrated the limits of performance for ZCS in maintaining long chains of

actions. It is informative that even the minimalist ZCS su�ers from fragility reported in other,

more complex classi�er systems. The causes of the fragility lead us to conclude that ZCS in

its basic form has an urgent need for the incorporation of mechanisms which will alleviate the

problem: without such remedial mechanisms, the prospects for using ZCS for anything more

advanced than generating primitive adaptive behaviors in simple cellular worlds would appear
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to be poor.

7

One plausible mechanism is to allow accuracy to play a role in calculating classi�er

�tness: Wilson's recent work on XCS (Wilson, 1994a) is clearly a promising development in this

direction.
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