
1

Formalisation and implementation of motivational
tactics in tutoring systems

Teresa del Soldato

and

Benedict du Boulay

The explicit teaching knowledge implemented in the current generation of Intelligent

Tutoring Systems (ITSs) concerns mostly domain-based aspects of instructional

processes, overlooking motivational aspects. This paper describes an instructional

planner able to make decisions (about the next task to do, whether to provide hints, etc.)

in order to achieve two goals: traversing the domain domain-based planning and

maintaining the learner’s optimal motivational state motivational planning. The

traditional ITS architecture is extended to include the activities of motivational state

modelling and motivational planning. For example, in motivational state modelling

further learners’ characteristics are diagnosed, e.g. effort and confidence. Sometimes the

advice offered by a motivational planner disagrees with a domain-based plan, while in

other cases both plans complement each other. A method of negotiation between the

motivational plan and the domain-based plan is provided in order to arrive at a decision

for action by the tutor.

Introduction

The explicit teaching knowledge implemented in the current generation of Intelligent

Tutoring Systems (ITSs) concerns mostly domain-based aspects of the instructional

process, overlooking its motivational aspects. However, teachers often interweave

motivational tactics with the domain-based decisions, aiming to build conditions that

stimulate the wish to learn
1
. Even in systems where attention is paid to motivational

issues, the theory which drives the decision making is essentially implicitly embodied in

the system in contrast to the explicit representation of the domain. For instance, the

coach WEST (Burton & Brown, 1982) follows pedagogical principles such as “Do not

tutor on two consecutive moves, no matter what”, in order to prevent excess

interventions that could affect the learner’s interest, independence or feeling of control
2
.

However, WEST does not include in its student model an explicit model of the learner’s

degree of independence or feeling of control. Theories of instructional motivation

elaborate the influence of issues like confidence, challenge, control and curiosity in

learning processes (Keller, 1983; Malone & Lepper, 1987) and suggest instructional

tactics to keep the student in an optimal learning state and provide more appealing and

effective interactions. The implementation of such motivational tactics in tutoring

systems requires the insertion of a motivational state modeller and a motivational

planner into the system’s teaching expertise (del Soldato, 1992a, 1992b).

1 According to (Lepper, Aspinwall, Mumme, & Chabay, 1990), expert teachers include among

their goals “first, to sustain and enhance their students’ motivation and interest in learning, ...

and second, to maintain their pupils’ feelings of self-esteem and self-efficacy, even in face of

difficult or impossible problems.”(p. 219).
2 The goal of such a principle is explicitly described in (Burton & Brown, 1982) as to “prevent

[the coach WEST] from being oppressive” (p. 91).

2

The motivational planner presented here is based on the motivational tactics defined by

Malone and Lepper (1987) and by Keller (1983)
3
, which were formalised and

implemented as production rules manipulating domain-independent teaching primitives,

such as problem, help, assessment, answer, etc.

Formalisation of motivational tactics

Whereas the motivational tactics discussed in (Malone & Lepper, 1987) and (Keller,

1983) apply to generic instructional contexts, the formalisation of such tactics presented

here is directed to the implementation of motivational issues in typical ITSs and therefore

characteristics of current systems, such as e.g. limitations of interface devices and

structures of domain representations, are taken into account. Implementing motivational

techniques demands shaping the system, including domain representation and student

model, in several respects. In particular, the system must:

1. detect the student’s motivational state;

2. react with the purpose of motivating distracted, less confident or discontented

students, or sustaining the disposition of already motivated students.

The detection of a student’s motivational state is obviously very much constrained by

interface limitations. However, student effort (rather than performance) is a reasonably

reliable indication of intrinsic motivation (Keller, 1983). Learners who display a high

level of effort (detected through their activities, suggestions, responses) deserve

emphatic praise even when their performance may not be optimal. A parallel way to

obtain information about the learner is through questions regularly applied during the

interaction, eliciting both students’ self-evaluation and their appreciation of the system’s

behaviour. The system should also exploit the pattern of standard reactions as, for

example, when students ask for help before attempting to solve a problem (possibly

indicating low confidence), or on the contrary, the total absence of help requests during

the entire interaction (possibly indicating extremely high confidence).

The notion of a system’s reaction triggering particular motivational tactics
suggests that a comprehensive instructional plan should consist of a “traditional”

instructional plan combined with a motivational plan. Wasson (1990) proposed the

division of instructional planning into two streams: content planning (“which topic to

teach next”), followed by delivery planning (“how to teach the next topic”). At first

sight the motivational plan seems to be completely embedded in the delivery plan.

However, motivational tactics do not always simply complete the traditional content

planning: sometimes they compete with it as well. A typical example of such a conflict is

the necessity for less confident students to build their confidence by accumulating

experience of success, in which case the system could provide problems likely to be

correctly answered based on topics that the student already knows.

While the detection of a learner's motivational profile shapes the student model, the

system’s reaction (e.g. suggesting an easier problem, asking a puzzling question)

depends mostly on the resources found in the domain representation.

3 Many of the motivational tactics formalised and implemented in the motivational planner were

also discussed in (Lepper, Woolverton, Mumme, & Gurtner, 1993).

3

Detection of motivational state

The detection of the learner’s general motivation is simplified by supposing that each

motivational state is reflected in a particular behaviour pattern (for example, that every

unconfident student behaves in a largely similar way). The tutor obtains information

about the students by analysing their actions. In principle there are four different sources

to analyse:

1. Questionnaires applied at the beginning of the first interaction, defining the learner’s

evaluation of her general level of self-confidence, affinity with challenging situations

and motivation to study that particular domain. Arshad (1990) used this method to

model the learners confidence state. Although useful to gather relevant information,

pre-interaction questionnaires are static, and the learner’s motivational state is likely

to change during the interaction.

2. Communication with the student during the interaction. This is a more dynamic

method, and it is possible to bypass the lack of natural language interface by limiting

learner input to a set of standard expressions, accessed by menus and including

possible answers to the tutor’s suggestions (e.g. “ok”, or “too difficult”, or “easy!”),

requests for help (e.g. “hint please”, or “give up”), etc. Particular answers are typical

of either less or more confident students (for example, “no, too difficult” for a less

confident learner), so they are labelled as low/high confidence answers. Although on

the one hand the communication with the learner is limited, on the other hand the

possible answers offer less ambiguous interpretations of confidence states.

3. Students’ requests for help and perseverance to complete the task. For example, a

learner who rejects any help from the tutor is probably very confident and

independent, whereas students who request help even before attempting to perform a

task are likely to be less confident. Similarly, students who often give up tasks do not

seem to display high confidence in their skills
4
.

4. Learners’ self-evaluation of their motivational state (e.g. confidence, boredom) during

the interaction. The best way to obtain this information is to provide a continuous

input channel that can be spontaneously updated by the student. Unlike the other

three sources of information, this one depends on features of the interface (scroll-bars,

icons etc.) and should be independent of prompts provided by the tutor.

The generation of the learner’s motivational model, through the channels mentioned

above, is described in more detail in the following sections.

Effort

Although it is not absolutely clear whether “effort” is a reliable measure of the learner’s

motivation, one assumes that motivated learners put more effort on the task they are

performing:

“Motivation is concerned, of course, with an individual’s willingness to persist and

contribute effort to the task in which he or she is engaged. (Shuell, 1992, p.32)”

4 ...providing that the task is not excessively difficult, in which case the students would indicate,

by giving up, that they are aware of their own skill limitations.

4

Therefore the motivational aspects of a student model should focus on effort rather than

performance. On the other hand, effort (or persistence) is measured through

performance, via the learner’s actions such as attempts to solve a problem, help requests,

etc. In order to establish a clear distinction between the concepts of effort and

performance, this work considers performance as the result of the process of solving a

task (e.g. right or wrong answer) whereas effort refers to how this result was achieved

(e.g. requiring much or little work).

Confidence

The detection of the learner’s level of confidence relies mostly on the students’ beliefs on

their efficacy to perform the instructional task. Schunk (1989) correlates low and high

confidence to persisting with or avoiding the task:

“People who hold a low sense of efficacy for accomplishing a task may avoid it,

whereas those who believe they are more capable should participate more eagerly.

...individuals who hold a high sense of efficacy ought to work harder and persist

longer than those who doubt their capabilities. (Schunk, 1989, p. 14)”

According to the quotes above, less confident learners are likely to

1. avoid tasks perceived as difficult, or

2. give up a task before attempting to perform it.

The first point can be detected by the tutor if the student is presented with options of

answers that explicitly mention the difficulty of the task (e.g. “No, thanks, it is too

difficult”, “I prefer an easier problem”). A student’s lack of persistence in solving a

problem can be defined in terms of help requests and the number of steps in the problem

solving process. Each time the learner reacts according to one of these patterns, the

learner confidence model will be decreased.

Another point discussed by Schunk (1989) relates to variations of the degree of

confidence as a function of a task’s outcome: accomplishing the task raises the learner’s

expectancies of future successes, whereas failures affect one’s sense of self-efficacy and

decreases the level of confidence.

Independence

Malone and Lepper (1987) discuss the importance of having students aware of their

degree of control over their success. In this sense, the student “independence model”

relates to the perceived feeling of needing or not needing the tutor’s help to accomplish

the instructional task. For instance, when the tutor frequently intervenes in the

interaction providing hints, the learner’ sense of independence decreases, whereas

students succeeding in a task on their own have their feelings of independence increased.

Therefore the student’s independence model is primarily modelled by the frequency of

tutor interventions during the interaction: low independence corresponds to situations in

which the tutor has intervened in excess, and the independence model increases when the

students are allowed to explore the problem on their own.

5

Domain-based vs. motivational-based planning

Typical domain-based planners select actions according to whether the learner knows a

topic or has mastered a skill. The methodology here is twofold: detecting the current

state of the learner’s knowledge and skill (student modelling) and reacting appropriately

in order to increase this knowledge and skill (teaching expertise). To take account of

motivational factors, the twin activities of “detecting the state” and “reacting

appropriately” are extended by adding a motivational state and motivational planning to

the traditional ITS architecture. Sometimes the advice offered by a motivational planner

disagrees with a domain-based plan, while in other cases both plans complement each

other. (In a similar way Lepper et al. (1993) consider these two cases, as well as a third

situation: when the motivational and the domain-based strategies are independent of each

other). Here we discuss motivational planning and compare its behaviour to the

decisions taken by typical domain-based planners.

Student succeeds performing the task

Let us consider, first, a situation in which the student succeeds in solving a problem. A

typical domain-based planner would acknowledge the right answer and suggest (or

directly provide) a harder problem, thus making sure the student is traversing the domain

in a progressive manner (see Table 1). Such behaviour is well exemplified by Peachey

and McCalla’s (1986) instructional planner: when the learner masters an instructional

goal, the planner focuses next on goals that require the topic just mastered as pre-

requisite, traversing the domain in the direction of a specific ultimate goal. Some

domain-based planners elaborate the performance feedback according to the instructional

context. The Meno-tutor (Woolf, 1984), for example, acknowledges the student’s

answer in three distinct modes: explicit, implicit and emphatic (adding details about the

domain topic in question).

Table 1- Domain-based planner: tutor’s actions when learner succeeds in solving problem

comment: performance feedback (and/or praise)

next prob: next in the pre-requisite sequence (or harder)

In this case, knowing or not knowing the topic, or exhibiting or not exhibiting the

relevant skill, is the only issue in the student model that drives the selection of suitable

actions, so the diagnosis methods basically aim at defining whether the student knows the

topic. Such a methodology characterises more detailed domain-based instructional

planners. For example, Wasson (1990) implemented a planner based on a domain

network representation which links topics through a variety of relations as well as “pre-

requisite”, and actions like review, focus, and re-achieve are selected to be executed.

Such decisions, however, are based only on the assumption of student knowing (or not)

topics. In some systems (e.g. see Anderson & Reiser, 1985), the student model has been

improved by expanding the knowing-or-not binary state to a more graduated mastery

scale, but still it is the learner’s knowledge which drives instructional decisions.

Motivational planning takes into account other variables in the student model and widens

the tutor’s space of possible reactions. Just by considering binary states of effort

(little/large) and confidence (low/ok) results in four different situations, each one

6

requiring a suitable set of actions from the tutor
5
. In one of the situations the

motivational planner generates the same action as the domain-based planner (which

corresponds to effort = large and confidence = ok). Table 2 presents the four cases and

the corresponding actions specified by the motivational planner.

When the student’s confidence is diagnosed as being low, the major goal for the planner

is to help the learner regain a reasonable level of confidence, and one of the tactics for

improving confidence is to increase the student’s experience of success. The tutor

should then select a task likely to be solved successfully again (e.g. a similar task to the

one the student has just accomplished). This is a clear example of disagreement between

the domain-based and the motivational planner, since simply traversing the domain to the

next harder topic has been deliberately avoided.

Table 2 - Motivational planner: tutor’s actions when learner succeeds in solving problem

confidence →→

effort ↓↓ low ok

(prevent disappointment) (stimulate challenge)

little comment: diff-level promotion comment: suggest challenge

next prob: harder next prob: much harder)

(increase experience of success) (ideal situation)

large comment: link effort to success comment: perf feedback

next prob: similar next prob: harder

On the other hand, if providing a right answer requires little effort from the student (even

an insecure one) the tutor should move to harder tasks. In this case the tutor should

make the difficulty-level promotion very clear, both by praising the successes obtained

so far and warning about the new difficulties which are likely to be encountered at the

harder level. The student is prepared then to cope with new failures without feeling too

de-motivated. Let us now consider the case of a task that does not require very much

effort from a normally confident learner. For a typical domain-based planner such a

situation would be ideal, whereas from a motivational perspective the task could be

perceived as being irrelevant or “boring”, or in other words, de-motivating. The tutor

should then increase the degree of challenge provided by the interaction, by adjusting the

difficulty level to a harder one where the student would not always (easily) perform the

task, and some effort would have to be spent to achieve success.

Student fails performing the task

In the case of the student giving a wrong answer, the domain-based planner would

acknowledge the error and suggest a problem of the same difficulty, or an alternative

path to traverse that region of the domain (Table 3).

5 Just as for knowledge states, the binary states of effort and confidence could be expanded in a

more graduated scale.

7

Table 3 - Domain-based planner: tutor’s actions when learner fails in solving problem

comment: acknowledge (or correct) wrong answer

next prob: same difficulty (or easier)

The domain-based planner overlooks two issues:

1. Even if the student was not able to formulate a right answer, she may have spent a

good deal of effort trying to perform the task.

2. If the learner is not spending much effort on the task (therefore not succeeding) the

tutor should help to make the task more interesting and appealing.

The decisions described in Table 4 show possible ways to help an unsuccessful learner to

restore her confidence (if she is a less confident student) or to increase her interest in the

task.

Table 4 - Motivational planner: tutor’s actions when learner fails in solving problem

confidence →

effort ↓ low ok

(facilitate success) (stimulate curiosity)

little provide: hint provide: surprising result

insist (implicitly): on same prob insist (implicitly): on same prob

(facilitate success) (normal situation)

large comment: praise effort comment: performance feedback

provide: hint comment: praise effort

insist (implicitly): on same prob next prob: same difficulty

It has already been noted that experience of success should increase the learner’s

confidence, but what can the tutor do if there is no success at all? The simplest action in

this case is to overlook the failure (skipping the dreadful “wrong answer” statement, or

avoiding displaying the right solution the student was not able to produce), motivate the

learner to keep trying and provide hints to make success easier. In fact, Lepper et al.

(1990) show that this tactic is applied by expert and efficient tutors:

“Instead of providing explicit corrective feedback, these tutors rely on a much

more subtle and indirect strategy. They offer students hints — questions or

remarks that indirectly imply the inaccuracy of their poor response, suggest the

direction in which they might proceed, or highlight the section of the problem that

appears to be causing them difficulty.” (p. 229)

Such a tactic should not be carried out indefinitely: the tutor could consider a “maximum

failure limit” and move on to another task if a particular problem is excessively effort

consuming. In the case where the student has already tried hard to perform the task, the

effort should be explicitly acknowledged (for both cases of low confidence and of normal

confidence).

If the planner is not concentrating its actions on restoring the student’s confidence, other

actions may be selected. Often a wrong answer provides a good clue about an

inconsistency in the learner’s comprehension of the topic. Provoking an incongruous or

8

paradoxical event is one of the tactics to stimulate cognitive curiosity (Keller, 1983;

Malone & Lepper, 1987). Depending on the nature of the answer and the learner’s

mistake, the tutor may be able to use the wrong answer to generate a “clash” between

what the student believes and what the domain model states
6
.

Student gives up performing the task

Producing right or wrong answers are not the only ways of having a task done. The

student may sometimes give up and request a new task, abandoning an incomplete

problem.

Table 5 - Motivational planner: tutor’s actions when learner gives up, after good general

performance

confidence →

effort ↓ low ok

(remind success) (encourage effort)

little comment: previous successes comment: on lack of effort

provide: hint suggest: help

insist (implicitly): on same prob insist (explicitly): on same prob

(facilitate success) (normal situation)

large comment: praise effort comment: praise effort

provide: hint next prob: same difficulty

insist (implicitly): on same prob

For the less confident learners (see Table 5), this situation is very similar to failing when

performing a task, and again the tutor could ignore the failure (for a certain number of

times) and provide hints to help perform the task correctly. If the student has presented

a generally good performance, previous successes should be mentioned, making the

learner aware of her capabilities.

From more confident students a bit more of effort could be required (if the effort spent

on the task was low), especially if later the tutor praises the resulting effort linking it to

good performance. Note that in this case rather than providing hints at once, the tutor

negotiates the help delivery with the student. When interacting with reasonably

confident learners the tutor should not be intrusive but should share decisions with the

student. Another situation concerning the tutor’s “intrusion” in the interaction is

discussed in the following example.

Student requests help

The situations cited so far concerned the effect of confidence and effort in motivational

planning, referring to tactics for stimulating challenge, curiosity and confidence. Another

important issue in motivation is the degree of control the student is able (or allowed) to

exert in the interaction.

6 Such an “entrapment” tactic is used by systems which perform Socratic dialogues (see e.g.

Clancey, 1982).

9

Tutors usually provide hints and clues when the student requests help. Lepper and

Chabay raise the question of whether help should be always available to the student:

“Should the tutor always intervene when the student requests help, or should some

evidence of effort and independent work be demanded first?” (Lepper & Chabay,

1988, p. 248)

The approach adopted in this work is that independence should be encouraged, specially

if the tutor has already intervened too much, and therefore decreased the student’s

feeling of control and independence over the interaction. Avoiding further interventions,

at least for a while, is the most basic action to take in order to restore the learner’s sense

of independence. Help can be skipped in two situations:

1. if the student is requesting help in excess, or

2. if the student is lost and help should be delivered, but at the same time the tutor

assumes that it has already intervened in excess
7
.

However, if the confidence model is low, help should be provided in order to facilitate

the learner succeeding on the task. The priority of confidence over independence

assumed here is due to the fact a less confident student is eager to be helped, and less

likely to feel annoyed by excessive interventions from the tutor. Examples of a

motivational tutor’s behaviour when the learner requests help are presented in Table 6.

Table 6 - Motivational planner: tutor’s actions when learner requests help

confidence →

independence ↓ low ok

(facilitate success) (increase independence)

low provide: specific help comment: encourage independence

skip: providing help

(facilitate success) (normal situation)

ok provide: specific help provide: generic help

One can note the distinction between providing specific help (to less confident students)

and providing generic help. Specific hints present more details about the problem and

help the student in a more direct way, whereas generic help is “less intrusive”.

Delivering help of different degrees of generality is a tactic also considered by Lepper at

al. (1993)
8
: “Increase or decrease the specificity of hints provided to the student as a

function of the student’s difficulty at a particular point” (p. 83).

The discrepancies between domain-based planning and motivational planning revealed

here suggest that the inclusion of motivational tactics in a tutor’s instructional planning

mechanisms alter in a significant way the behaviour of the tutor.

7 The second situation was included in the pedagogical principles of the coach WEST (see Burton

& Brown, 1982), as discussed previously in this paper.
8 Lepper at al. relate such a tactic to the goal of increasing (or decreasing) the challenge of a task,

whereas here the specificity of hints concern the degree of confidence presented by the student.

Nevertheless, strategies for enhancing challenge and confidence are closed related in (Lepper et

al., 1993).

10

Implementation of motivational tactics

The motivational tactics described above were implemented through the application of

production rules to a database consisting of information about the state of the

interaction, the student’s progress in mastering the domain and the motivational state of

the student. The set of production rules detects the student’s motivational state and

reacts in order to maintain the student’s motivation, producing a “MOtivational REactive

plan”. The system is named MORE.

Constructing the database required the definition of a set of instructional primitives to

represent objects and actions in a teaching interaction. Such instructional primitives are

dynamically manipulated by the instructional planner and student modeller.

This section describes:

1. the set of instructional primitives adopted;

2. the rules which represent the student modellers, concerning both progress across the

domain and motivational state;

3. the instructional planner, which is split into three different modules: the domain-based

planner, the motivational planner and the negotiation rules between the planners.

The instructional primitives, the student modellers and the instructional planners are

domain-independent, although it is assumed that the domain can be organised in a

particular problem-solving pattern. Examples of the system performance when applied

to a concrete domain (Prolog-debugging) are provided in this paper.

Instructional primitives

A language describing instructional primitives was defined in order to build a database

containing information about the interaction and the student. This language is not

intended to cover all aspects of instructional interactions: its goal is to establish the

necessary primitives to represent the learner’s motivational state and the motivational

tactics. The set of instructional primitives described here is versatile enough to be

included into more complex sets of instructional objects.

Objects (e.g. problem, help, answer) often require properties, or attributes, such as type

or content. Besides, many objects change “state” during the interaction: help, for

instance, may be requested or not-needed. The instructional objects used in this work,

along with their respective properties (possible types, contents and states) are described

here.

Problem

Problems are tasks that the student should perform (learn, master, solve), and basically

correspond to domain topics. As in a typical network representation of domain,

problems are linked through relations such as pre-requisite or similarity. Several

motivational tactics place special emphasis on the next task to be performed by the

student, such as e.g. suggesting a similar task to increase the learner’s experience of

success, therefore one of the properties of a problem is its relation to the previous task

performed by the student. Basically, tasks have to be ordered by difficulty level, so that

a problem can be harder or easier than the previous problem, or present the same degree

11

of difficulty (same-diff). Similar problems should also present the same degree of

difficulty, as well as require similar reasoning to be successfully performed.

Problems usually require a certain number of steps or attempts to be successfully solved

(see next section). While the learner is dealing with steps towards a final answer or

solution, the problem state is set as solving. When the student produces a final answer,

whether the task is considered successfully performed or not generates the states

succeeded or failed. This is a rather simplistic classification, since complex domains

include problems with many different degrees in which a solution may be considered

“correct”. However, the emphasis of this work does not rely on the aspects of

instruction related to the subject domain, although potentially it can include more

detailed domain-centred approaches. The learner may also give up working on the task,

or reject a task suggested by the tutor. All possible states and types for the object

problem are presented in Table 7.

Table 7 - Problem properties

Problem

states: suggesting, solving, rejected,

succeeded, failed, given-up

types: harder, easier, same-diff, similar

Step

The steps required to perform a task or solve a problem may depend on:

1. characteristics of the domain,

2. features of that kind of task,

3. characteristics of that particular task.

Therefore some steps in the problem solving process can be defined in advance, but the

complete list of possible steps to solve a particular task is set only at the moment the

student agrees to perform the task. MORE keeps a record of all the steps performed by

the learner, detecting whether a particular step is redundantly repeated.

Help

Help refers to hints and clues offered and provided by the tutor. Hints can be either

requested by the student (state requested), suggested by the tutor when the system

suspects the student needs help (state suggesting), or actually provided when the system

assumes the student surely needs support (state providing). Besides, the offer of help

may be rejected by the student (state rejected), or the tutor may decide that even if help

is needed, it would be more appropriate to avoid intervening in the interaction (state

skipping). Otherwise, the state not-needed is applied. Hints vary in their degree of

generality, here referred to as “detail”, and content. More detailed and helpful hints are

constructed from combinations of simpler hints.

The content of the hint provided by the tutor refers to the present step (when the student

requests help to complete a step), to the next step (in cases such as when the learner is

12

lost, performing the same step instead of progressing towards the solution) or to a

“surprise result”, which aims to present a contradiction to stimulate the student’s

curiosity. Previous steps or problems may also be re-presented to the student,

highlighting similarities between solutions already achieved and the present step.

The states of an object (in this case, the states of the object help), refer to the situation of

the object at every moment of the interaction. However, sometimes it is necessary to

establish a decision about an eventual state further in the interaction. When the student

rejects a help offer by the tutor, a second offer immediately following the first hint

suggestion should be avoided even if the conditions of the interaction indicate that help is

needed, in order to respect the learner’s decision and independence. For this reason the

property skip-next was created, which holds information about whether the following

help offer should be avoided.

Possible states, contents and degrees of detail are presented in Table 8.

Table 8 - Help properties

Help

states: suggesting, providing, rejected, skipping, requested

content: present-step, next-step, previous-step, surprise-result

detail: general, specific

skip-next: yes, no

Answer

Although every action performed by the learner does not directly relate to a question

proposed by the tutor, MORE refers to any action expected from the student as an

answer. Positive and negative answers refer to the learner’s reactions to suggestions

posed by the tutor. The student may agree or disagree with a suggestion, reflecting

different degrees of confidence as stated in the section on Confidence. Statements made

by the student are checked by the system and classified as right or wrong answers.

Answers which are not reactions to suggestions or statements are considered steps of the

problem solving process. MORE checks the step and classifies it according to the set of

all possible steps for that particular task.

Table 9 - Answer properties

Answer

states: get, check, checked

content: positive, negative, right, wrong, step, give-up, help-request

type: low-confidence, high-confidence, neutral

Answers, or actions performed by the student, are expected at certain moments during

the interaction. On such occasions, the answer state is set as get and the system does

nothing until the learner reacts (help may be requested at any time, though). As soon as

the student reacts, the answer is analysed by the student modeller (state check). The

13

state checked is set when the answer has been analysed and the system is planning its

next action. Answers consist of states, contents and types presented in Table 9.

Assessment

Assessment is feedback provided by the tutor on whether the student’s answer is right or

wrong. In many systems, e.g. SCHOLAR (Carbonell, 1970) and BUGGY (Brown &

Burton, 1978), positive assessment delivery may include or be replaced by a praising

element such as “Very good”. In this work assessment and praise are explicitly distinct.

Possible states and contents of assessment are listed in Table 10.

Table 10 - Assessment properties

Assessment

states: providing, not-needed

content: right, wrong

Comment

Several instructional (motivational) actions such as praising, encouraging and

challenging, are performed through comments provided by the tutor. The set of possible

comment states is very narrow: either a comment is provided (state providing) or not

needed. It is the scope of possible comment contents that bears the rich variety of this

object, as shown in Table 11.

According to Schunk (1989) praising the learners’ effort as opposed to their

performance produces different reactions in the students’ motivational state and should

be delivered on particular occasions. For example, praising effort should be avoided if

there is a reason to praise performance. Therefore the content of praising comments

eventually delivered by MORE consists of either effort (content praise-effort) or

performance (content praise-perf).

Table 11 - Comment properties

Comment

states: providing, not-needed

content: praise-perf, praise-effort, level-promotion, challenge, trying-harder,

previous-successes, encourage-indep

Content trying-harder refers to comments that encourage the learner to continue

working when the task is abandoned, suggesting that more effort is necessary to

complete the task. Other comments provided by the tutor may consist of reminding the

student that success in a similar task has been previously achieved (content previous-

successes), or encourage the learners to work on their own when help has been

excessively requested and delivered (content encourage-indep).

Previously in this paper we mentioned the necessity of having the less confident students

aware of their level promotions (i.e. when the task gets harder), preventing eventual de-

motivation caused by new difficulties immediately after a certain degree of success had

14

been achieved. In this sense, comments of content level-promotion inform the student

that the next tasks will get more difficult because the current topic or skill being studied

has already been mastered. On the other hand, increasing the level of difficulty of the

task may be necessary in order to challenge more confident students. Remarks provided

by the tutor to make the challenge more explicit are labelled as comments of content

challenge.

Student modelling

In typical ITSs, the student’s performance is analysed in order to build a model of what

the student knows. In MORE such a task is twofold: not only is the learner’s knowledge

important, but also the learner’s motivation is relevant. Therefore two sets of rules are

necessary to generate a model for the student’s performance and a model for the

student’s motivational state. The following describes the generation of both models, and

it is important to notice that since they are independent modules the generation of the

learner’s performance model could be replaced by another (more detailed) modelling

method.

Performance modelling

Since performance modelling is not the major focus of this work, the student’s

competence in mastering a skill is basically classified as good or bad according to the rate

between tasks tried and tasks completed successfully (see Table 12, rules P1 and P2). In

this work the threshold between good and bad performance has been set to the rate

(successfully completed tasks)/(total tasks) at 0.5, but such a limit can be adjusted to

different values. The performance modelling mechanism can be easily upgraded without

affecting the basic architecture of MORE.

A second feature in the performance model of the student refers to the path traversed by

the learner to solve the problem. In the event of the student repeating the same step for

a pre-determined number of times (which is set as the step-repetition-limit), the solution

path is modelled as lost (rule P3), therefore the student needs help (but whether help will

be suggested or provided is decided by the instructional planner). Rule P4 restores the

value ok for path, when the student’s focus moves from the repeated step to a to a

different step. The step-repetition-limit is set for every task according to its degree of

difficulty.

Table 12 - Performance modelling

rule rate right/total tasks performance model

P1 above perf-threshold good

P2 below perf-threshold bad

rule last-step-repetitions path model

P3 above step-repetition-limit lost

P4 below step-repetition-limit ok

A similar but more elaborate mechanism to detect deviations from an optimal learning

path is adopted in the Meno-tutor (Woolf, 1984). There the learner’s state of

“confusion” is measured “as a function of the number of questions asked, the number of

15

incorrect responses given, and the extent to which the student’s frontier of knowledge

has been explored” (p.80). The Meno-tutor implementation also includes a wrong-

answer-threshold (similar to the step-repetition-limit), defined as “the number of

permitted wrong answers” (p. 67).

Confidence modelling

Confidence is represented as a value (conf-value) in a linear scale, and the limits for the

lowest and the highest possible confidence values are set before the interaction with the

student takes place. The confidence value is incremented and decremented in large or

small (normal) steps. The values for these steps (named conf-inc, conf-dec, large-conf-

inc, large-conf-dec), are previously set like the confidence limits. As a trial value, the

confidence limits were set as 10 and 0, the conf-inc as 1 and the large-conf-inc as 2 (and

the values for conf-dec and large-conf-dec were set as -1 and -2 respectively), so that

the student’s confidence model at any moment during the interaction corresponds to any

integer value within the range 0-10. A threshold value (conf-threshold) is defined to

distinguish between low and high confidence. For instance, if the conf-threshold value is

set to the value 4 then conf-value 5 corresponds to a normal degree of confidence, and

conf-value 3 is considered low confidence. The limits for the confidence scale and the

low confidence threshold value may be altered if more precision is required.

The student’s confidence model (the numerical value associated to conf-value) is

dynamically adjusted during the interaction according to the rules described in Table 13.

Table 13 - Confidence modelling

rule answer type answer content confidence model

C1 low-conf pos/neg decrement by conf-dec

C2 high-conf pos/neg increment by conf-inc

rule steps answer content confidence model

C3 none help request decrement by conf-dec

rule problem state with / without help confidence model

C4 succeeded without help increment by large-conf-inc

C5 succeeded with help increment by conf-inc

C6 failed without help decrement by conf-dec

C7 failed with help decrement by large-conf-dec

Rules 1 and 2 refer to the answer expression, as explained in the description of answer

types (see previous section). Rule 3 reflects the case of a student asking for help from

the tutor before even trying to perform the task. The four last rules concern the result of

the task. If the task is accomplished, the student’s confidence in future successes rises,

whereas if the student failed in performing the task, the expectancy of a following

success decreases. Refining this model, successes obtained completely independent of

help from the tutor are likely to increase the learner’s confidence in a more dramatic way

than successes obtained after being helped. On the other hand, a failure despite the hints

provided by the tutor saps the learner’s confidence more than if the student fails but

success was not facilitated in any sense.

16

Effort modelling

Table 14 presents a model for classifying students’ effort as a function of their

persistence to solve the problem and requests for help to perform the task. It is assumed

that persistence to solve the problem can be measured through the number of attempts to

get a solution, or steps performed, so that many steps reflects a greater degree of effort

from the learner. The quantification of few/many attempts is defined by the domain

expert, according to each problem’s level of difficulty. A value is set as a threshold

between few and many steps (few-steps-lim), so any quantity of attempts higher than that

limit is considered many steps, otherwise the student has only performed few steps.

Besides the number of steps performed, a student who requests hints from the tutor or

accepts help offered by the tutor spends less effort than learners who try to perform the

task on their own. The result of the task performance is another relevant factor, and

giving up the task obviously denotes less persistence than working until the problem is

solved
9
.

Table 14 - Effort modelling

problem state steps with/without help effort model

given-up none none

given-up few without help little

given-up few with help ↓
succeeded few with help ↓
succeeded few without help medium

given-up many with help ↓
given-up many without help large

succeeded many with help ↓
succeeded many without help maximum

Independence modelling

The independence model (see Table 15) is similar to the confidence model in many

respects. Independence is represented as a numerical value (indep-value), and limits are

set for the highest and lowest indep-value, as well as incremental and decremental steps

(indep-inc/dec, large-indep-inc/dec) and an independence threshold (indep-threshold).

The aim of the independence model is to evaluate whether the tutor is intervening to

excess. In this sense, each time the tutor interrupts the interaction, e.g. offering help or

providing it directly, the indep-value is decremented (rules I1, I2 and I3). One assumes

that not only the “quantity” of interventions affects the learner feelings of independence,

but also the “quality” of such interventions is relevant. Offering a detailed hint, which

directs the learner to the task’s solution, implies that the learner needs help to succeed,

whereas a vague hint about the learner having solved a similar problem in a previous task

may affect the student’s feeling of independence in a less evident way. To accommodate

such distinction in the model, specific hints decrement the indep-value by a larger

9 If the student fails solving the problem, the effort model is evaluated as for the given-up case.

17

amount (rule I3). On the other hand, when the student rejects help, the indep-value is

obviously incremented (rule I4). The indep-value is also incremented when the tutor

skips offering help, even if the student is not following an optimal solution path (rule I5).

The student is not aware of the tutor refraining from intervening, otherwise the learner’s

independence would be affected anyway (there is no point in the tutor advertising that it

should intervene but will not in fact interrupt the interaction, since that would be an

interruption anyway). So in this case, the indep-value is incremented on account of the

balance between the tutor’s interventions and the student’s freedom to explore the

solution path, in favour of the latter.

Table 15 - Independence modelling

rule help state help detail independence model

I1 suggesting decrement by indep-dec

I2 providing general decrement by indep-dec

I3 providing specific decrement by large-indep-dec

I4 rejected increment by large-indep-inc

Instructional planning

The necessity to divide the student model into two independent parts (the performance

and the motivational aspects of the student’s state) was discussed earlier in this paper. In

an analogous way, the instructional planner comprises two modules, one referring to the

progress across the domain (domain-based planner) and the other referring to increasing

or maintaining the student’s motivation to learn. Whereas domain-based planning only

concerns the performance model, the motivational planner is driven by both the

motivational state and the performance state, especially when it concerns the refinement

of motivational top-level tactics. For instance, if the learner is not confident, the

motivational planner sets the goal increase confidence. Nevertheless, the tactics

appropriate to increase the student’s confidence after a task failure are different to those

required in the case where the learner succeeded the task.

Domain-based planner

The ultimate goal of a domain-based planner is to have the student master a particular set

of topics, or skills, in the domain. Usually topics are largely ordered through pre-

requisite links, and the planner reasons about sequences of topics to be learned,

navigating towards a goal topic. MORE includes a simple domain-based planner which

aims to “advance” across the domain every time a topic or skill is mastered by the learner

(see Table 16).

Rule D1 shows the case when the student succeeded and therefore the tutor suggests a

harder topic (or next in a pre-requisite progression). When the student does not perform

the task, one of rules D2, D3 and D4 provides an alternative path towards the topic goal,

by suggesting a problem of the same level of difficulty (same-diff). If the student

requests help, the tutor provides a hint about the topic (rule D5) and if the student is lost

the tutor intervenes with a hint about the next step (rule D7). Although the domain-

based planner does not “offer” help, rather providing it directly, the motivational planner

18

described in the next section may suggest help. Therefore rule D6 deals with the case of

a rejected offer of help, in which case the tutor does nothing.

Table 16 - Domain-based planner

rule STUDENT MODEL / HISTORY ACTION

D1 problem-state = succeeded provide assessment type right

suggest problem type harder

D2 problem-state = failed provide assessment type wrong

suggest problem type same-diff

D3 problem-state = given-up suggest problem type same-diff

D4 problem-state = rejected suggest problem type same-diff

D5 help-state = requested provide help content present-step

D6 help-state = rejected (help not-needed)

D7 path-state = lost provide help content next-step

Note: in order to make this table more clear, the actions were described in a

simplified format. For instance, in rule D1 the action “provide assessment type

wrong” actually means that the assessment-state is set to state providing and the

assessment-type is set as wrong .

Motivational planner

The motivational planner embedded in MORE determines tactics to increase or maintain

the student’s motivation to work. The decision about which tactics to apply depends

both on the state of the interaction, such as problem state, confidence value, etc., and on

the top-level tactics already present (or necessarily absent) in the motivational plan. For

example, the tactic increase experience of success is a specific tactic for the top-level

tactic increase confidence. If the planner sets the tactic increase confidence to be

executed and the student performs a task successfully, then the tactic increase

experience of success can be included in the plan, specifying the way the tutor should try

to increase the learner’s confidence. The set of rules that generate motivational tactics is

presented in Table 17.

Rules M1, M2 and M6 are straightforward: when the student model values for

confidence, effort or independence (control) decrease below the respective thresholds,

the tutor should apply tactics aiming to increase such motivational aspects. Increasing

the learner’s confidence and independence at the same time is a contradictory strategy

because less confident students need to succeed in order to raise their confidence, and

this may require a great deal of tutor intervention delivering hints that could facilitate the

student’s success. Excess of intervention, on the other hand, should be avoided when

learners need reassurance of their feelings of independence. One should note that in this

motivational planner, raising the student’s confidence (tactic increase confidence) was

given priority over raising student’s independence (tactic increase control, in rule M6),

assuming that a less confident student is not really annoyed by excessive help and

attention from the tutor. Once the student’s confidence is restored, the tutor is then able

to apply tactics to increase the student’s independence.

19

Table 17 - Motivational planner

rule student model / history top-level tactics tactic

M1 conf-value < conf-threshold increase confidence

M2 effort-value < medium increase effort

M3 effort-value > medium maintain effort

M4 help-state = rejected respect control

M5 problem-state = given-up

above giv-up-lim

 respect control

M6 indep-value < indep-threshold not increase confidence increase control

M7 problem-state = succeeded increase confidence inc. experience success

M8 problem-state = failed increase confidence facilitate success

M9 problem-state = given-up increase effort

not increase confidence

not respect control

encourage effort

M10 problem-state = given-up increase confidence

not respect control

facilitate success

M11 problem-state = succeeded increase effort stimulate challenge

M12 stimulate challenge

increase confidence

emphasise promotion

M13 problem-state = failed increase effort

not increase confidence

stimulate curiosity

M14 perf-value = good facilitate success

increase effort

remind successes

M15 path-state = lost increase control avoid intervention

M16 help-state = requested increase control encourage indep

M17 encourage indep avoid intervention

M18 help-state = rejected

help-skip-next = no

respect control avoid next intervention

M19 help-state ≠ rejected

help-skip-next = yes

 avoid intervention

M20 help-state ≠ requested not increase confidence

not stimulate curiosity

share control

Assuming that there is a direct correspondence between high effort and general

motivation, rule M3 aims to maintain the learner’s state of motivation when a great deal

of effort has been spent on the instructional task. The four rules discussed so far rely

exclusively on the motivational student model. Rules M4 and M5, on the contrary,

concern solely aspects of the interaction history. The point of both rules is that once the

learner has explicitly refused to be helped by the tutor, or insisted on abandoning the

task, the tutor should respect such decisions. The giv-up-lim parameter, or “giving up

20

limit”, defines a value for the number of times the tutor can insist on helping the students

when they explicitly abandon the task. Analogous to all the other parameters in the

system, the value for giv-up-lim is set for every interaction, and the trial value suggested

here is 2: if the learner gives up performing the task for the second time the tutor

respects the learner’s decision. Therefore Rule M5 still bears a certain degree of

malleability, since giv-up-lim may be set to a high value.

Rules M7, M11 and M12 formalise the situations described in Table 2, generating tactics

to challenge confident learners or encourage successful but less confident students. The

actual translation of the motivational tactics into actions (such as, for instance, stimulate

challenge resulting in suggesting a much harder problem) will be performed by the

negotiation planner. In the same way, rules M8 and M13 reflect the situations described

in Table 4, whereas rules M9, M10 and M14 correspond to Table 5. Since giving up

denotes a degree of decision from the student (whereas a failure is obviously

involuntary), even when the student’s confidence is low the “giving up limit” should be

observed, which explains the necessary absence of the tactic respect control in order to

activate rules M9 and M10.

The remaining rules concern raising or maintaining the learner’s feelings of independence

(see Table 6). Rule M15 forces the tutor to skip interrupting the student even when help

is needed, avoiding excessive intervention. Rules M16 and M17, on the other hand,

reflect the need of encouraging (M16) the tutor-dependent student to work without help

(M17) even if the learner is asking for clues. One should remember that skipping help

interventions raises the student independence model, so eventually the top-level tactic

increase control will be removed and the promised help delivered, if still needed or

requested. Rule M18, in conjunction with rule M4, avoids a possible help offer or

delivery immediately following the student’s rejection of hints, irrespective of the

independence model value or solving path state. If the possibility of a following help

offer actually arises, rule M19 applies the tactic avoid intervention, at the same time

dealing with the contradictory situation of a student requesting help immediately after

having rejected it, in which case the hint is delivered. Apparently rule M19 is in

contradiction with rules M16-M17, since the former prevents avoiding interventions in

case the student requests help, while the latter avoids interventions even when requested.

The contradiction is resolved by the fact that rules M16-17 only apply when the student’s

independence model is low, in which case the tutor does not intervene to offer help.

Rule M19, on the other hand, implicitly depends on a previous help offer rejected by the

student generating the tactic avoid future intervention (rule M18) which in turn

generates through the negotiation planner the condition help-skip-next = yes, as it will be

discussed later in this paper (see section on Negotiation planner).

Rule M20 does not radically restrain the tutor from intervening, but concerns the sharing

of responsibility over the help delivery. In other words, when the tactic share control is

applied the tutor should not intervene directly, but only offer to help instead. This rule

presents three negative conditions. First, the offer does not apply when there is need to

increase the learner’s confidence, for the same priority reasons discussed for rule M6.

Second, stimulating curiosity benefits from a degree of surprise, which could be affected

if a previous indication of intervention is given. Finally, it would be redundant to offer to

help soon after the student has explicitly requested help. One should notice that the

domain-based planner included in this work embeds an implicit instance of the tactic

share control concerning the delivery of tasks to be performed by the student, since

21

problems are always suggested rather than imposed. If a less negotiating domain-based

planner is adapted to MORE, it would be necessary to include in the motivational

planner a rule similar to rule M20, in order to share the control over the tasks to be

performed and widen the learner’s scope for relevant choices and responsibility.

Negotiation planner

MORE includes two independent planners in its instructional planning process, one

generating domain-based actions and the other generating motivational tactics.

Sometimes the actions and tactics are complementary, as in cases such as the action

provide help and tactic facilitate success. However, it may happen that the two planners

disagree, and a mechanism to negotiate between traversing the domain or increasing the

student’s motivation has to be applied. A third set of rules has been designed to

amalgamate the tactics suggested by the motivational planner with the actions suggested

by the domain-based planner in order to produce a combined action. Since MORE is

designed to investigate motivational states, the decisions taken by the motivational

planner overrule the domain-based planner. However, because the planners are

independent, the system can be set so that the motivational planner is by-passed and the

decisions are wholly taken by the domain-based planner only. The negotiation rules are

listed in Table 18. Examples of instructional plans generated by the three planners

described in these sections are presented later in this paper.

As mentioned in the previous section, the negotiation planner is responsible for

translating the motivational tactics into instructional actions to be performed by the tutor,

overriding (deleting), altering or complementing the actions already provided by the

domain-based planner. There are cases in which the “disagreement” between the actions

and tactics is not extreme, so the deleted action is actually replaced by a similar action.

For instance, if the domain-based action determines that general help should be provided

to the student, and the tactic increase confidence is generated by the motivational

planner, the negotiation planner combines both decisions resulting in specific help being

delivered. Therefore the domain-based action would be only partially altered. If the

motivational planner generates the tactic avoid intervention instead, the help delivery is

totally neglected by the negotiation planner and the tutor skips intervening, which is a

case of complete disagreement. In the case where the tactics in the motivational plan do

not interfere with the help delivery, and the negotiation planner decides that a comment

should be delivered together with the hint, then the domain-based plan and the

motivational plan complement each other.

The first three rules in Table 18 were discussed in the previous section (see Table 2).

Both rules N1 and N2 alter the degree of difficulty of the next task, still maintaining the

act of suggesting a new problem. The first rule decreases the difficulty of the problem in

order to provide a similar task, likely to be successfully performed and so increasing the

student’s confidence. The second rule, on the contrary, amalgamates the need to

challenge the student with the suggestion of a more demanding task, and adds a

comment about the challenge to make sure the increased level of difficulty is perceived

by the student. Rule N3 complements the suggestion of a harder problem with a

comment warning the student about the increasing level of difficulty. Completing the

cases described in Table 2, rule N6 provides the deserved praise in case the student has

spent a good deal of effort on the task.

22

The tutor’s behaviour envisioned in table 4 is generated through rules N4, N5 and N7.

Rules N4 and N5 generate actions which completely disagree with the domain-based

plan, encouraging the student to keep solving the problem instead of “accepting” the

learner’s failure. Rules N6 and N7 refer directly to the research results obtained by

Schunk (1989): facing the choice of praising both the student’s performance and effort,

the tutor favours the former (rule N6). Nevertheless, when large effort was spent

although success was not achieved, the tutor acknowledges the student’s persistence

(rule N7).

When the student gives up accomplishing the task (see Table 5), one of rules N8 or N9 is

activated. Whereas the domain-based plan moves to an alternative problem, the

motivational plan determines that either the student’s success should be facilitated (for

less confident learners, rule N8) or more effort should be encouraged (for confident but

not persistent learners, rule N9). In both cases, though, the negotiation planner

determines that the student should be encouraged to persist in solving the problem. If

the tutor is trying to facilitate the learner’s success, hints are directly provided, and if the

student has been successful in previous tasks, those results are flagged in order to

encourage the learner’s persistence (rule N10). For confident students, on the other

hand, the tutor comments on the lack of effort (the tutor does get a bit demanding

sometimes) and offers help. Obviously the learner may insist on abandoning the task

anyway by rejecting the tutor’s help, in which case the tutor moves to a new problem as

the domain-based planner determines, because the motivational tactic respect control will

be generated and prevents the tactic encourage effort being included in the motivational

plan again.

The last six rules concern whether to intervene to help the student succeeding with the

task or to skip interruptions at all, as stated in Table 6. Rule N11 simply disregards the

help delivery present in the domain-based plan in order to avoid interventions as decided

by the motivational planner. Therefore help is not delivered in that moment of the

interaction. If the motivational plan includes the tactic encourage independence as well

(rule N12), the tutor encourages the learner to work without support or suggests that

help will be delivered later (after the learner’s indep-value model rises above the indep-

threshold). Table 6 also states that if the learner’s confidence is low then help should be

delivered and it should be detailed (help-detail specific), which is accomplished by rule

N13. On the other hand, if help is needed and the student’s feelings of independence are

reassured, the tutor suggests help rather than directly intervening (rule N14). One

should notice that rule N14 is also activated in the case presented in the previous

paragraph, when the tutor offers help after complaining about the student’s lack of

effort. Finally, rule N15 states that the immediately next intervention should be avoided,

respecting the learner’s control. The action skip-next-help actually means that help-skip-

next value is set to yes.

23

Table 18 - Negotiation planner

DOMAIN-BASED PLAN MOTIVATIONAL PLAN NEGOTIATION PLANNER

rule action tactic delete action add action

N1 suggest problem type harder increase experience success

not stimulate challenge

suggest problem type harder suggest problem type similar

N2 suggest problem type harder stimulate challenge

not increase confidence

suggest problem type harder suggest problem type much-harder

N3 suggest problem type harder emphasise promotion provide comment level-promotion

N4 provide assessment type wrong

suggest problem type same-diff

facilitate success provide assessment type wrong

suggest problem type same-diff

provide help content next-step

N5 provide assessment type wrong

suggest problem type same-diff

stimulate curiosity provide assessment type wrong

suggest problem type same-diff

provide help content surprise-result

N6 provide assessment type right maintain effort provide comment praise-perf

N7 provide assessment type wrong maintain effort provide comment praise-effort

N8 suggest problem

not provide assessment

facilitate success

not respect control

suggest problem provide help content next-step

N9 suggest problem

not provide assessment

encourage effort suggest problem provide comment trying-harder

suggest help content next-step

N10 remind successes provide comment previous-successes

N11 provide help avoid intervention provide help skip help

N12 encourage indep provide comment encourage-indep

N13 provide help detail general increase confidence provide help detail general provide help detail specific

N14 provide help share control suggest help

N15 (help not-needed) avoid future intervention skip next-help

24

Application to a concrete domain

The formalisation and implementation of motivational tactics described in this paper

made use of domain independent elements (generic problem, help, answer, etc.).

However, evaluating the motivational planner requires its application to a concrete

domain. A simple tutor for teaching Prolog debugging was designed and implemented

with the purpose of being a “vehicle” for MORE
10

. In this sense, the tutor described

here is simply a illustrative example of how MORE interferes in the behaviour of a

tutoring system, providing the means to evaluate the motivational planner potentialities.

This prototype is not meant to “compete” effectually (in domain terms) with purpose-

built Prolog debugging tutors such as TADP (Brna et al., 1993).

The problems in the Prolog-debugging tutor consist of Prolog programs with bugs and

the task for the student is to find and correct the bugs
11

. In this implementation the set

of programs is limited to very simple programs, and each problem contains only one bug.

The solution for a problem in the domain space is the correct version of the respective

program.

Examples of bugs are a variable starting with a lower-case letter, a mistyped functor, or a

wrong argument in a clause. Each of these bugs presents many distinct possible

instances, even when one considers the application of the bug to one single program.

The level of difficulty of the problem depends on the complexity of the program

combined with the degree of difficulty of the bug. In this work, the complexity of a

Prolog program was defined according to Gegg-Harrison’s schemata (Gegg-Harrison,

1989). The degree of difficulty of bugs, on the other hand, is not as well determined as

the complexity of programs. For the purposes of the limited domain representation in

this tutor, we assume that a bug of a syntactic nature, such as lower-case variable, is

“easier” to detect than a semantic bug, such as a wrong argument in a clause. This

assumption originates from the idea that syntactic bugs may be noticed without the need

of running the program. Besides degree of difficulty, the other property for problems is

similarity. Similar problems in the Prolog debugging domain consist, for example, of

buggy programs generated by the application of the same bug to different programs of

the same degree of difficulty.

Preliminary formative evaluation studies were performed with subjects who volunteered

to interact with the Prolog-debugging tutor. The subjects were asked to report their

motivational state during the interactions (e.g. level of confidence) and the interactions

were recorded on video tape (both sound and screen image) through a scan converter. A

more detailed discussion about the data gathered in this experiment is provided in (del

Soldato, 1994). Nevertheless, this consisted of a simple study to help designing

forthcoming (and more complex) evaluation studies.

Here we present several examples of typical interactions with the Prolog-debugging

tutor, and discuss some questions raised from the preliminary evaluation study.

10 The tutor was implemented in Pop11 and Prolog, within the Poplog system. For a more

detailed description of the tutor discussed here, see (del Soldato, 1994).
11 A more elaborate tutor would embody a theory of debugging and teach that theory through the

student’s experience of debugging programs.

25

Student succeeds, with little effort but low confidence:

This case was discussed in Table 2: the problem was “easy” to solve, so the focus of the

interaction can shift towards the next level of difficulty, but because the student is not

confident the system comments on the level promotion.

Had the student been feeling more confident, the system would have highlighted the

increasing difficulty of the next task in a more challenging way (e.g. “The next problem

will be much harder!”). One subject, who was continuously challenged by the tutor,

reported being particularly stimulated by such comments (“It makes me feel more

interested about the next problem ... and I don’t need to check myself if the problem is

too easy, the tutor tells me”).

Table 19 - Level promotion

dialogue student model instructional plan

S — (promptly corrects the program) conf = 4 (low)

effort = little

S — There is no bug in the program. conf = 4

effort = little

provide assessment right

comment level-promotion

suggest prob harder

T — Right answer. This looks easy

for you now, it’s time to move

to harder problems.

How about this program?

...suggests harder problem

conf = 5 (ok)

effort = little

In the example provided in Table 19 (here “S” stands for “student” and “T” for “tutor”)

one can notice how the confidence model is increased by the right answer

acknowledgement. During the evaluation study, one subject provided a clear example of

confidence raised by successes. When the next problem was presented, the subject

spotted the bug at once (it was a syntactic bug). Nevertheless, she decided to go

through with the exercise, exclaiming: “I think it is easy, but I want to do it. It makes me

feel good!”.

Another interesting question about confidence modelling was raised by reports from

some subjects about their confidence on what they were doing at that moment, as

opposed to the idea of global confidence on their abilities. For example, subjects

expressed comments such as, e.g., “I am not sure why I am doing this” while performing

a particular step, showing low confidence on a local situation, even if their global

confidence about the eventual success in performing the whole task was not (apparently)

affected. In other words, there were situations where a distinction raised between global

confidence (“I don’t know if I can solve this problem”) and local confidence (“I don’t

know if this query is a good one”). This suggests that further research on confidence

modelling could explore the distinction and correlation between local and global

confidence, and how this affects instructional planning (e.g. should a “high global-

confidence” student be offered help in a case of “low local-confidence”?).

26

Student fails, effort large:

This case was discussed in Table 4. The tutor acknowledges the learner’s effort, even if

the performance’s result was not satisfactory (Table 20). One should note that in the

case where the confidence model is a value below the conf-threshold (which here is set

as 4), the tutor does not provide the performance assessment and offers help instead,

insisting on the same problem (Table 21).

Table 20 - Praising effort

dialogue student model instructional plan

S — (modifies and tests the program) conf = 5 (ok)

effort = large

S — There is no bug in the program.

(wrong answer)

conf = 5

effort = large

provide assessment wrong

comment praise-effort

suggest prob same-diff

T — Wrong... But it was a good effort!

How about

...suggests problem same-diff

conf = 4 (low)

effort = large

(wrong answer assessment:

conf value is decremented)

Table 21 - Insisting on same problem

dialogue student model instructional plan

S — (modifies and tests the program) conf = 4 (low)

effort = large

S — There is no bug in the program.

(wrong answer)

conf = 4

effort = large

provide help specific

comment praise-effort

T — Have a look at clause 1.

You have tried hard.

(insists on same problem)

conf = 4

effort = large

Student gives up, effort little:

If the student abandons the task after little effort, the tutor also insists on the same

problem, and offers (or directly provides) help, as discussed in Table 5. Here we show

two examples of such cases. The interaction reproduced in Table 22 presents the

situation where a less confident student gives up the task, although the overall

performance has been good (many tasks satisfactorily accomplished). The tutor can then

evoke the previous successes to encourage the learner’s persistence in solving the task.

27

Table 22 - Reminding successes

dialogue student model instructional plan

S — (works only a little)

I give up...

conf = 4 (low)

effort = little

perf = good

provide help specific

comment prev-successes

T — Have a look at clause 1.

You are doing fine,

keep trying.

conf = 4

effort = little

perf = good

In interactions with more confident students, as presented in Table 23, the system

“demands” further effort in a more direct way, without the need for extra

encouragement. However, subjects were not really pleased with such comments,

suggesting that the expressions included in this implementation for the trying-harder

type comments could be replaced by more supportive expressions.

Table 23 - Encouraging effort

dialogue student model instructional plan

S — (works only a little)

I give up...

conf = 6 (ok)

effort = little

comment trying harder

suggest help next-step

T — Maybe you can try a bit harder.

May I help you?

conf = 4

effort = little

A similar situation occurred in the preliminary evaluation study, when a confident but

bored
12

 subject abandoned finding the bug after little effort. The tutor “ignored” the

request to abandon the task, providing a hint instead, which annoyed the subject who

kept working, mumbling that the tutor was not “letting him leave”. However, another

subject in the same situation was quite pleased to be offered a hint after having given up

performing the task. The disparity between these two reactions shows that students can

abandon a task for different reasons: the first subject gave up performing the task

because he was annoyed with the task, whereas the second subject wanted to complete

the task but was not able to progress further. Maybe a better option for the second

subject would have been to request help, so the tutor coped quite well with the situation

by offering a hint. However, it is clear that motivational planning should also consider

the case of “bored students” giving up.

Student fails, confidence ok, effort little

If the student fails after little effort, the tutor also insists on the same problem and tries to

stimulate the learner’s curiosity, as discussed in Table 4. The actual behaviour of the

tutor in such a situation is showed in Table 24. In the case reproduced here the buggy

program being investigated by the learner was:

12 At the very start of the interaction he exclaimed in his first language the equivalent to the

English expression “How boring...”.

28

member(X, [X | Tail]).

member(X, [Head | Tail]) :- member(X, tail).

(Checking the head member of a list does not reveal the bug, whereas checking any

element in the tail of the list results in a buggy query).

Table 24 - Stimulating the learner’s curiosity

dialogue student model instructional plan

S — ?- member(1, [1, 2, 3]). conf = 5 (ok)

effort = none

T — Solution for this query:

yes

conf = 5

effort = little

S — There is no bug in the

program.

(wrong answer)

conf = 5

effort = little

provide help surprise-result

(insists on same problem)

T — The solution for

?- member(b, [a, b, c])

may surprise you...

conf = 5

effort = little

Students request help, confidence low/ok:

Comparing the tutor’s reaction to help requests when the conf-value is above or below

the conf-threshold, one can note the different level of detail on the hints provided to the

learner. The less confident student is given a more direct hint (Table 25) whereas the

confident learner is given a more general hint (

Table 26). In the former case the problem is the buggy problem

last (Item , [Item]).

last (Item , [First | Rest]) :- last (First , Rest).

(where the bug is in the second clause) and in the confident learner case the buggy

program is

last (Item , [Rest]).

last (Item , [First | Rest]) :- last (Item , Rest).

The independence model is not considered in the “low confidence” case, as priority is

given to restoring the learner’s confidence. For the confident student, the requested hint

is provided since the indep-value is above the indep-threshold. (In the next paragraph

we discuss the situation where the indep-value is below the threshold). Generic hints

were particularly appreciated by one of the subjects (“...it gives you some direction, but

still lets you work”).

29

Table 25 - Example of specific hint

dialogue student model instructional plan

S — Help, please conf = 4 (low) provide help specific

T — Hint: Have a look at clause 2 conf = 4

Table 26 - Example of general hint

dialogue student model instructional plan

S — Help, please conf = 6 (ok)

indep = 5 (ok)

provide help general

T — Look at the original problem:

there is a wrong argument

somewhere

conf = 6

indep = 4 (low)

(help is provided: indep

value is decremented)

Student requests help, independence low:

If the learner has already requested hints too many times, or the tutor has excessively

intervened on its own (if the conf-value was low), resulting in a low value for the

independence model, the student’s help request will not be satisfied at this moment and

postponed to a later help request or situation in which the student is lost (Table 27).

This situation was discussed in Table 6.

Table 27 - Skipping help

dialogue student model instructional plan

S — Help, please conf = 6 (ok)

indep = 4 (low)

skip help

T — I will help you later. conf = 6

indep = 6 (ok)

(indep value is incremented)

It is interesting to note that subjects were in general quite annoyed when the tutor would

“refuse” to provide help. Although the tactic of skipping help concerns the students’

independence, what seemed to disturb the subjects was the machine’s independence.

One subject made a particular remark: “I want to feel I am in control of the machine, and

if I ask for help I want the machine to give me help”. When reminded that human

teachers happen to encourage students’ independence the subject answered: “But a

human teacher knows when to skip help. I interact with the human teacher but I want to

be in control of the machine”
13

. Further evaluation should investigate if individuals with

minimal experience with computers feel less prompted to control the tutor, as this was

not possible to determine in this experiment using the strongly computer-related domain

of Prolog-debugging. Because the relationship between a student and a human teacher is

13 It is important to mention here that the subjects in the evaluation study, and this subject in

particular, were mostly Ph.D. students used to work with (and control) computers.

30

necessarily of a different quality to that between a student and a “machine teacher”, this

raises the issue of whether tactics which work well in a human-human interaction will

always translate into the human-machine context.

Conclusion

This paper presented:

1. a comparison between the behaviour of a typical domain-based instructional plan and

a hypothetical “motivational planner”, which reacts according to a set of motivational

tactics originated from theories of instructional motivation;

2. the elaboration and formalisation of techniques to detect the learner’s state of

confidence and independence and the degree of effort spent in every task (the

motivational modeller);

3. the formalisation, as a set of production rules, of the reactive motivational tactics

previously discussed (the motivational planner);

4. the elaboration and formalisation of a set of instructional primitives (prob, help,

answer, etc.), representing the instructional interaction through objects and properties

which are manipulated by the motivational modeller and the motivational planner;

5. the elaboration and formalisation of a simple performance modeller and a basic

domain-based planner;

6. the elaboration and formalisation of mechanisms to negotiate between the

motivational plan and the domain-based plan (the negotiation planner).

Although the tactics selected to be included in the motivational planner were extracted

from the Instructional Science literature, many features involved in the actual

formalisation/implementation had to be elaborated based on the characteristics and

limitations of current ITSs. For example, the techniques to model the student’s

motivational state were largely constrained by the limitations of typical interface devices.

The actual performance of the motivational planner is shaped (and limited) by the set of

instructional objects presented here and the efficiency of the motivational modeller.

Moreover, the whole behaviour of the system relies on the priorities defined in the

negotiation planner and the precision of the performance modeller, since the application

of motivational tactics depends both on the motivational state and the performance state.

The formalisation of the system in terms of explicit and variable parameters (such as the

thresholds for confidence and independence state, for instance) allows a degree of

manipulation of the motivational features, which can override the priorities set in the

motivational and negotiation planner. Coping with other limitations of the resulting

system would require, however, the inclusion of extra features in the set of instructional

objects. For instance, this work focusses on aspects of motivational tactics concerning

problem-solving-based domains. A richer domain representation, including e.g. a wider

variety of links between topics, would provide space for further formalisation of

motivational tactics: for example, the formalisation of curiosity-related tactics based on

the delivery of incomplete information in order to stimulate the learner seeking the

“missing” topics.

It was mentioned previously in this paper that several systems include an implicit theory

of motivation. In particular we mentioned WEST’s pedagogical tactic of preventing two

31

interventions in sequence (apparently WEST assumes that the learner’s independence

decreases after the first intervention). MORE, on the other hand, deals with the excess

of interventions by having an explicit independence model, which dynamically decreases

after any intervention from the tutor. In other words, WEST avoids two interventions in

sequence because it could affect the learner’s feeling of independence, whereas MORE

represents the learner’s independence through an explicit model and prevents excessive

interventions when the independence value in the model is considered low. In most

cases, MORE’s behaviour will result in avoiding a sequence of two interventions. There

are cases, though, when the learner’s independence model is so low that even the tutor’s

first intervention should be skipped, or cases when the learner’s feeling of independence

is very stable and two interventions do not compromise an excess of control from the

tutor. The explicit independence model represented in MORE allows the motivational

planner to reason about the learner’s feeling of control, instead of reducing to a single

and automated behaviour the tutor’s effort to encourage the learner’s control.

The explicit distinction between the motivational and the domain-based planners provides

an opportunity to insert the motivational planner in current systems, although it is

necessary to investigate in the future whether the domain-based and the motivational

tactics should actually be represented in separated modules, or if merging both planners

into a unique integrated planner would result in a more efficient system.

References

Arshad, F. (1990). The Design of Knowledge-based Advisors for Learning. Ph.D. thesis, School of

Education, University of Leeds, UK.

Brna, P., Hernandez, E. R., & Pain, H. (1993). Learning Prolog debugging skills. In Proceedings of

PEG’93 (pp. 561-568). Edinburgh: Scotland, UK.

Burton, R. R., & Brown, J. S. (1982). An investigation of computer coaching for informal learning

activities. In D. H. Sleeman & J. S. Brown. (Eds.), Intelligent Tutoring Systems (pp. 79-98).

London: Academic Press.

Carbonell, J. R. (1970). AI in CAI: An artificial intelligence approach to computer-assisted instruction.

IEEE Transactions on Man-Machine Systems, 11(4), 190-202.

Clancey, W. J. (1982). Tutoring rules for guiding a case method dialogue. In D. H. Sleeman & J. S.

Brown (Eds.), Intelligent Tutoring Systems (pp. 201-225). London, Academic Press.

del Soldato, T. (1992a). Motivational planning. In P. Brusilovsky & V. Stefanuk (Eds.), Proceedings of

East-West Conference on Emerging Computer Technologies in Education (pp. 293-298).

International Centre for Scientific and Technological Information, Moscow, Russia.

del Soldato, T. (1992b). Detecting and Reacting to the learner’s motivational state. In C. Frasson, G.

Gauthier & G. I. McCalla (Eds.), Intelligent Tutoring Systems: Proceedings of ITS’92 -

Montréal, June 1992 (pp. 567-574). New York: Springer-Verlag.

del Soldato, T. (1994). Motivation in Tutoring Systems. Tech. Rep. CSRP 303, School of Cognitive and

Computing Sciences, University of Sussex, UK.

Gegg-Harrison (1989). Basic Prolog Schemata. Tech. report, Department of Computer Science, Duke

University, Durham, NC 27706, USA,

32

Keller, J. M. (1983). Motivational design of instruction. In C. M. Reigeluth (Ed.), Instructional-Design

Theories and Models: An Overview of their Current Status (pp. 386-434). Hillsdale, NJ:

Lawrence Erlbaum Associates.

Lepper, M. R., Aspinwall, L. G., Mumme, D. L., & Chabay, R. W. (1990). Self-perception and social-

perception processes in tutoring: Subtle social control strategies of expert tutors. In J. M. Olson &

M. P. Zanna (Eds.), Self-Inference Processes: The Ontario Symposium, Vol. 6 (pp. 217-237).

Hillsdale, NJ: Lawrence Erlbaum Associates.

Lepper, M. R., & Chabay, R. W. (1988). Socializing the intelligent tutor: Bringing empathy to

computer tutors. In H. Mandl & A. Lesgold (Eds.), Learning Issues for Intelligent Tutoring

Systems (pp. 242-257). New York: Springer-Verlag.

Lepper, M. R., Woolverton, M., Mumme, D., & Gurtner, J. (1993). Motivational techniques of expert

human tutors: Lessons for the design of computer-based tutors. In S. P. Lajoie & S. J. Derry

(Eds.), Computers as cognitive tools. Hillsdale, NJ: Lawrence Erlbaum Associates.

Malone, T. (1980). What makes things fun to learn? A study of intrinsically motivating computer

games. Tech. rep. CIS-7 (SSL-80-11), Xerox Palo Alto Research Center, Palo Alto, CA 94304,

USA.

Malone, T., & Lepper, M. R. (1987). Making Learning Fun. In R. Snow & M. Farr. (Eds.), Aptitude,

Learning and Instruction: Conative and Affective Process Analyses, pp. 223-253. Hillsdale, NJ:

Lawrence Erlbaum Associates.

Peachey, D. & McCalla, G. (1986). Using planning techniques in intelligent tutoring systems.

International Journal of Man-machine Studies, 24, 77-98.

Shuell, T. J. (1992). Designing instructional computing systems for meaningful learning. In P. H.

Winne & M. Jones (Eds.), Adaptive learning environments. New York: Springer-Verlag.

Schunk, D. H. (1989). Self-efficacy and cognitive skill learning. In C. Ames & R. Ames (Eds.),

Research on motivation in Education: Goals and Cognitions, Vol. 3. London: Academic Press.

Wasson (Brecht), B. (1990). Determining the Focus of Instruction: Content Planning for Intelligent

Tutoring Systems. Ph.D. thesis, Department of Computational Science, University of

Saskatchewan, Canada.

Woolf, B. (1984). Context-dependent Planning in a Machine Tutor. Ph.D. thesis (COINS Tech. Rep.

No. 84-21), Department of Computer and Information Science, University of Massachusetts,

USA.

