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Abstract

Second generation knowledge based systems (KBS) often incorporate multiple problem solving meth-

ods. However the decision about which method to use is very much an open problem. The control

involved in the dynamic selection of methods is considered a complex activity that requires the acquisi-

tion of speci�c knowledge and strategies. There is a need for modelling languages capable of handling,

invoking, evaluating and choosing multiple methods at run-time. There are several modelling languages

with such capabilities. With them it is possible to develop robust, more exible and less brittle sys-

tems. Unfortunately, those languages are not exible enough to cope with the behaviour of the systems

when more methods are incorporated. In this paper we propose a new modelling language which over-

comes these shortcomings. In doing this a framework is provided for reviewing the exibility of current

modelling languages.

1 Introduction

Second generation knowledge based systems (KBS) often incorporate multiple problem solving methods. In

some systems the methods are specialized for a particular subtask [Bylander et al. 93]. For example, the

GTD system (Generate, Test and Debug) [Simmons 93] incorporates a di�erent method for each of its main

tasks. In this kind of system the decision about which method to use is taken by the knowledge engineer at

the design stage. A number of systems provide facilities in choosing which methods to use. For example,

the COPILOTE system [Delouis 93], and a medical diagnosis system in TIPS [Punch, Chandrasekaran 93]

incorporate, as part of their problem solving, the selection of the most appropriate method for a given task.

The decision about which method to use is taken by the system itself at run-time. Finally, other systems

allow multiple methods to work on the same problem simultaneously. For example the Guardian system

[HayesRoth et al. 89].

The advantages of having multiple methods in a system have become apparent: robustness [Simmons 93],

exibility [Vanwekenhuysen, Rademakers 90], broader kind of reasoning [Delouis 93], less brittleness [Punch,

Chandrasekaran 93], reusability [Punch, Chandrasekaran 93].

The decision about which method to use is very much an open problem [Davis, Krivine 93]. The control

involved in the dynamic selection of methods is considered a complex activity that requires the acquisi-

tion of speci�c knowledge and strategies [Reinders et al. 91, Delouis 93]. Nowadays there is a need for

modelling languages capable of handling, invoking, evaluating and choosing multiple methods at run-time

[Chandrasekaran, Johnson 93].
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There are several modelling languages with such capabilities. With them it is possible to develop robust,

more exible and less brittle systems. These capabilities are mainly derived from the addition into the

systems of more than one method and specialized activities such as selection, ordering and evaluation of

those methods. The success of those languages so far is due to the use of general methods. In other words,

no interaction at all between methods exist. However, problems may appear when: the methods involved are

sub-methods (part of other methods), in particular when some of those combinations are invalid, e�ective

for speci�c problems or ine�cient; when the user of the systems have preferences for speci�c combinations

rather than for single methods; when no method can be chosen because of a lack of information about the

context of the problem; when some of the methods require a particular handling that di�ers from the others.

Thus, it can be said that those modelling languages are not exible enough to cope with the behaviour of

the systems when more methods are incorporated.

As an initiative to overcome those shortcomings a new modelling language is proposed. Thus, the

objectives of this work are:

� To determine what the basic characteristics a exible modelling language should provide,

� To see how exible current modelling languages are, and

� To de�ne a modelling language that incorporates such characteristics and be capable of overcoming

the above mentioned problems.

With that in mind, the next section provides the basic terminology and an application problem (the

Sisyphus-92 problem). The third section contains a framework de�ned to describe modelling languages

and an analysis of the following languages: MODEL-K [Karbach, Vo� 92], TroTelC [Vanwekenhuysen,

Rademakers 90], TIPS [Punch, Chandrasekaran 93], and LISA [Delouis 93]. The fourth section provides the

description of MML (Multiple Method Language) a exible task-independent modelling language for the

explicit description of systems that allow the dynamic selection of method. Finally, in the last section the

conclusion are given.

2 Terminology

In order to avoid confusion in the terminology used in this work some of the terms will be de�ned.

The term task has been used elsewhere to denote an instance of a problem, a problem class, and both

a problem class and an abstract description of a method [Chandrasekaran, Johnson 93]. We use the term

task to refer to a type of problem (a set of problems with something in common). Thus, resource allocation

1

is a task. A task has a goal which is a speci�cation of what needs to be achieved. A task by itself does

not include, as part of its description, any speci�cation of how it will be accomplished. A task may be

decomposed into subtasks.

The same situation appears with the term method. It has been de�ned in di�erent ways for example,

as a procedure that de�nes, selects, instantiates, and executes actions [Werner et al. 89]. We use the term

method to de�ne a way in which the goal of a task can be achieved. Accordingly, it is possible to talk

about the application of the Heuristic Classi�cation [Clancey 85] method to the fault diagnosis task in the

car engine domain. Methods might be of many kinds, for example, a precompiled algorithm, a search in a

state space, a connectionist network and so on [Chandrasekaran, Johnson 93]. A Method can be described

in terms of subtasks, the sub-methods it employs, plus any control knowledge about how to organize subtask

or sub-method application to satisfy a task goal. There are some distinguished methods named terminal

methods and basic inferences.

The structure that represents the relationships between tasks and methods is called the control structure

(see �gure 1). This structure is an AND/OR tree in which an AND node indicates that all its children

1

A resource allocation problem is characterized by two sets of objects where each element of one set is assigned to one

element from the other satisfying a set of requirements or constraints. Sometimes these problems have an objective function to

evaluate the quality of the assignment.
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Figure 1: A control structure

participate in the satisfaction of the node. An OR node indicates that just one of its children is su�cient.

Such a structure may be a tangled hierarchy since a task or method can appear at several places in the tree.

In terms of the model of expertise in KADS methodology [Wielinga et al. 92] the control structure refers to

the inference layer and the task layer.

2.1 A case study, Sisyphus-92

Throughout the text the ideas are clari�ed by examples from the problem known as Sisyphus-92 (from now

on the Sisyphus problem) [Linster 91, Linster 92]. Sisyphus was a project that has aimed at comparing

di�erent approaches of knowledge modelling. Modelling of knowledge and the inuence of those models

on the knowledge acquisition activity were the main objectives. A sample problem concerned with o�ce

assignment (resource allocation) in a research environment was provided.

The problem consisted on the allocation of some members of the research group YQT to rooms on a new

oor. This problem introduced the issue of brittleness. The main interest was to see how a model reacts to

unusual situations. In this case, an over-speci�ed problem. This problem was selected because it presents

given some interesting characteristics:

� It is a well known problem in the knowledge modelling area.

� Di�erent methods have been applied to the solution of this problem (single method approaches): a gen-

eral backtracking one (KARL [Angele et al. 92] and MODEL-K [Drouven et al. 92]), a decomposition

one (KADS-I [Schreiber 92]), a case-based (MODEL-K), and constraint-based method (MODEL-K

and CARMEN [Tong 92]).

� Those approaches embody some assumptions which makes them brittle when they are not satis�ed.

For example, the KARL approach assumes there is time and space enough to search over the complete

search space of possible allocations. The KADS approach assumes a separable problem which can

be separated into disjoint subsets whose respective solutions can be joined together later on. The

CARMEN approach assumes knowledge that may not be available (i.e.. constraints can be ordered by

importance and have associated �x knowledge -what to do in case a constraint cannot be satis�ed)

2

.

� This problem presents a subset of the problems found in a most general areas such as scheduling which

can be solved with di�erent techniques such as constraint satisfaction, simulated annealing, genetic

algorithms, tabu search, repair heuristics, and so on [Prosser, Buchanan 94].

2

It is interesting to note that even though all these methods were part of a single system the brittleness problem is still not

solved. It might happen that, although the problem has a solution, no method could be activated .
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Figure 2: Control structure of the Sisyphus problem

In order to test our ideas about dynamic selection of multiple methods, we envisage a system that solves

resource allocation problems, and in particular the Sisyphus problem, with the following characteristics:

� It incorporates several methods which are capable of solving allocation problems.

� Those methods are selected dynamically.

� The system contains strategies that overcome the already mentioned disadvantages of current modelling

languages and in particular those of the single method approaches.

� The system incorporates methods belonging to the PCM family of methods. Those methods are:

constraint-based [Tong 92], simple backtracking, and backtracking with the min-conicts heuristic

[Minton et al. 92] (see �gure 2). They consist of three tasks: Propose, Critique and Verify. The �rst

task proposes a solution to the problem. The second one veri�es whether the solution satis�es all

the constraints. The last one makes the required modi�cations (e.g., ordering of input data, relaxing

constraints) in order to get a solution, or a partial one in over-speci�ed situations.

In the next section we review a number of current modelling languages that allow the development of

systems which incorporate dynamic selection of methods.

3 Modelling Languages with Dynamic Selection of Methods

Nowadays, there are several modelling languages that provide dynamic selection of methods. Unfortunately,

the terminology used is not homogeneous. Every language de�nes its own terms and graphical representation.

Thus, in this section a framework for describing modelling languages is proposed and a number of them are

briey analyzed and criticized based on this framework.

3.1 The Framework

In order to have a common way to refer to other modelling languages it is necessary to establish a common

terminology. The proposed framework consist of a set of basic components and their instances. The basic
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components of a modelling language are:

� An object-level with its control structure and associated control knowledge.

� Meta-level objects and their properties.

� Abstract structures.

� Meta-level activities.

� A meta-level.

In the following paragraphs these components will be described although not in the same order as they

appear above. The instances are the speci�c entities in each component (i.e. methods and tasks in meta-level

objects, di�erent criteria in abstract structures).

� Control structure. There is a trend to develop modelling languages which adhere to leading method-

ologies. Following an established methodology determines the kind of entities (i.e. knowledge sources,

roles, tasks, goals, methods, basic inferences) and control structure that the systems will have. Thus,

identifying the underlying methodology of a language determines the control structure and entities.

For example, the AND/OR tree is one of the most common control structure [Delouis 93]. It is based

on hierarchical decomposition of entities (e.g. tasks and methods). Methodologies such as Components

of Expertise [Steels 90] or GT [Chandrasekaran 90] propose a clear separation between the problems

(tasks) and the description of the methods available to solve them. Such a control structure does not

entail any kind of control knowledge. It just describes the relationships between the tasks and methods.

� Meta-level activities. An underlying idea in this work is that there are two types of control knowledge

which can be identi�ed and clearly separated: knowledge for controlling the decomposition (sequencing)

of subtasks or sub-methods, and knowledge for controlling meta-level activities

3

. Thus, while talking

about modelling languages it is necessary to address issues such as: is there an explicit meta-level?

Does the language support meta-level activities? If so, what are they? How are they represented and

activated? Are they implicit or explicit? Is it possible to de�ne new meta-level activities? Are those

activities method related or system related? Are they global (applicable to every node in a control

structure) or local (just for a few of those nodes)?

� Control strategies. Since the main interest in this work is about modelling languages with multiple

methods, special attention is reserved for method related meta-level activities contained in control

strategies

4

. Thus, it is necessary to ask questions such as: what kind of control strategies can be

de�ned for controlling methods? Are they explicit? What are the basic activities in those strategies?

How are those activities are controlled? Can new control strategies be de�ned? How exible are those

control strategies? For example, Can a strategy be de�ned that reselects a method once it has been

previously selected (e.g., a backtracking method)? Is it possible to de�ne strategies that incorporate

tie-breaker mechanisms in case of method draws? Can a new method be added to a control structure?

Are the properties involved in the selection of methods a �xed set? What kind of control statements

does it provide?

� Meta-level objects. A number of those activities require a certain amount of knowledge about system

entities (e.g., methods, domain models). This knowledge can be explicit or implicit. In general this

knowledge is represented implicitly through the use of domain entities as in GTD [Simmons 93] or in

the Sisyphus problem (e.g., the existence of an allocation implies that the propose task has succeeded).

However, some of those activities treat methods as entities themselves which can be ordered, selected,

3

A meta-level activity is an activity that occurs in a meta-level system. A meta-level system is a system that has as domain

another computational system called its object system. A meta-level system reasons about and acts upon another system [Maes

87]. Meta-level activities can be grouped into groups: method related activities (e.g. method selection, method monitoring,

diagnosis and repair) [Chandrasekaran, Johnson 93], and system related activities (e.g. sensible explanation, competence

assessment, knowledge base maintenance, performance validation) [Harmelen 92].

4

A control strategy is the set of meta-level activities that carried out under an speci�c control allow the satisfaction of a

task. It incorporates the control knowledge speci�ed by the methods that achieve the task as well as the control knowledge for

controlling the meta-level activities related with those methods.
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etc. Therefore, a number of entities need to be de�ned as meta-level objects incorporating meta-

knowledge in their descriptions. Thus, it is important to answer questions such as: what kind of

objects are de�ned at that level? Are they implicit or explicit? Where and how are they described and

manipulated? Do they have a static or dynamic description? Can such descriptions be modi�ed?

� Control Knowledge. Sequencing knowledge, commonly known as control knowledge, has been dealt

with in di�erent ways. Languages following KADS methodology propose control primitives such as

loops and conditionals (procedural representation) [Fensel, Harmelen 93] while languages for the GT

methodology propose heuristic approaches based on operators and preconditions in a search-space

(heuristic representation). Thus, it is necessary to describe what is the nature of the sequencing

knowledge in the language.

� Abstract structures. Finally, it is important to highlight the roles that certain abstract structures

5

play in control strategies as well as the vocabulary involved in their description. For example, in

method related activities a number of these structures might be found: satisfaction and failure criteria

- to identify when a task has been achieved; categorical criterion - to avoid excessive deliberation;

applicability criterion - to verify whether a method can be activated or not; appropriateness criterion

- to identify the appropriateness of a method to a current situation; tie-breaker criterion - to choose

just one method in case of draws, preference lists - ordering of methods by preference.

Having described the framework, the modelling languages are briey analyzed and criticized.

3.2 MODEL-K

MODEL-K [Karbach, Vo� 92] is a language for operationalizing KADS models of expertise. It introduces

KADS-speci�c modelling primitives. Thus, an operational model can then be built by attaching code to those

primitives. It is considered as a language for the implementation of a �nal system [Fensel, Harmelen 93].

Systems are described in three layers: domain, inference and control layers. In the domain layer the concepts

of the domain are represented. In the inference layer, the knowledge is represented in terms of knowledge

sources (basic operators) and meta-classes (stores of knowledge). In the task layer, the methods

6

, which

determine the control that has to be applied to knowledge sources, are represented by 'task structures' (a

control structure). A method is described in terms of its preconditions, goal, sub-methods and its body

(sequencing knowledge). A sub-method can be another method or a knowledge source (basic inference).

Although MODEL-K does not provide explicit facilities for dynamic selection of methods, it presents

interesting features and it is one of the fewest languages that implements KADS models with a strategic

layer. This layer essentially consist of a meta-level system, and some additional constructs for accessing and

modifying the object system. This layer is used to model reective problem-solving. According to [Fensel,

Harmelen 93] a reective system consist of: an object system - modelled in terms of the three lower levels;

one or more reective modules (meta-level activities) - modelled in the three levels as well (in this case the

domain layer contains the model of the object system); a scheduler - it de�nes the control ow (control

strategy) between the reective modules in order to decide what reective module or object task comes next

and what meta-level activities are applied before, during, or after the methods.

MODEL-K is an open ended language. It supports any number of meta-level activities. They can be

added or modi�ed. The activities can be method or system related activities though these concepts do not

exist in MODEL-K. Their representation is explicit. Almost every object-level method can have attached a

meta-level activity which controls its execution.

The scheduler provides a procedural language consisting of sequences, branches, and loops. Thus, exible

control strategies can be made (see �gure 3).

5

An abstract structure is the representation of the knowledge about objects in both levels and their relationships. It is

important to note that sometimes an abstract structure might be considered a property of a meta-level object. In fact, a

meta-level object property is an evident fact by itself whilst an abstract structure requires certain processing to determine its

value.

6

A task in MODEL-K represents a method in this work since the concept of task does not exist in MODEL-K.
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In this language the objects at the meta-level (meta-objects) can be described as having as many prop-

erties as needed. There is no a prede�ned set of properties other than those in the structures in each

layer.

In summary, MODEL-K is one of the few general purpose modelling language that provides a meta-level

in which any number of objects and activities might be de�ned explicitly.

The disadvantages that can be appreciated in this language are:

� Control structure. This language does not have the concept of task. It just provides the concept of

method. Therefore, its control structure consist uniquely of AND nodes.

� Meta-level activities. MODEL-K does not provide any primitive meta-level activity. The knowledge

engineer has to develop the required activities from scratch.

� Control strategy. Although this language represents a exible language, it does not provide any activity

for the dynamic selection of methods. Therefore, the knowledge engineer has to design the control

strategies from scratch.

In particular, the scheduler de�ned in this language is a rigid scheduler (it prescribes a �xed method

sequence) [Bartsch-Sp�orl, Bredeweg 91] as opposed to a exible one which is necessary for this type

of activity (OR nodes with attached activities). The exibility of the scheduler has e�ect only on the

top most methods in the control structure. The tasks below are not directly a�ected by the scheduler.

Thus, an intermediate method cannot have an associated meta-level method. In other words, it cannot

be an OR node. In the Sisyphus problem it would represent a shortcoming; since the propose task

is an intermediate task it cannot have associated meta-level activities (see �gure 3). A task might

have an associated meta-level activity whenever the control knowledge that controls it is taken over by

such meta-level activity. In other words the control knowledge is passed from the object level to the

meta-level.

� Abstract structures. Since this language does not provide any facility for these type of structures. The

knowledge engineer has to develop the required abstract structures from scratch.

3.3 TroTelC

TroTelC [Vanwekenhuysen, Rademakers 90] is a language with a computational framework which bridges the

gap between a knowledge-level model and the actual implementation. It consists of an abstract language for

describing knowledge and control. Its goal is to explicitly represent the tasks, methods and domain models

of a knowledge-level model into a computational framework. Its underlying methodology is Components of

Expertise [Steels 90]. Its control structure is a named task hierarchy. This hierarchy does not imply any

control. In it a problem is decomposed into subproblems. Problems are known as tasks. A method speci�es
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how a task can be solved. Two types of methods are distinguished: decomposition methods (they decompose

a task into subtasks), and action methods (they provide direct solutions for a task).

Only two meta-level activities (method related) are found in this framework: the selection and activation

of methods. In this framework the selection of methods depends on characteristics of the task such as:

knowledge availability, runtime constraints, cost of observation and so on. Thus, the dynamic selection of

methods is carried out by the satisfaction of the applicability criteria of the methods. This activity is implicit

in the language.

Its control strategy is simple. It consists of the selection of the best method and its activation. This

control strategy is implicit. All the tasks in the framework share the same control strategy.

Tasks, methods and domain knowledge are explicitly represented as objects. This makes them available

for inspection, modi�cation, or adaptation. A task is characterized by its: inputs, outputs, domain knowl-

edge, and the practical problems that occur in the domain (incompleteness of information, uncertainty, etc.).

A method is characterized by: its decomposition, control knowledge over the decomposition, and conditions

indicating when a method is applicable to a task (applicability criterion). It is not clear if such descriptions

can be extended or modi�ed.

It is not clear as well what kind of control statements and abstract structures the language provides.

In summary, this language provides an implicit and simple control strategy which can be applied to every

task in the control structure. Its objective is just to choose a method. It is based on a simple cycle applying

an applicability criterion: the �rst method that satis�es the criterion is activated.

The disadvantages that can be appreciated in this language are:

� Meta-level activities. This language does not provide facilities for any additional meta-level activity.

Therefore other activities such as method ordering and method monitoring cannot be represented.

� Control strategy. Since it has an implicit �xed control strategy it is neither possible to modify it nor

to de�ne new or speci�c strategies. For example, a strategy that iterates over the methods in case of

method failure.

� Abstract structures. TroTelC has a single abstract structure, namely the applicability criterion. There-

fore, its criterion must contain other embedded criteria (i.e. necessity, appropriateness) which make it

complex and di�cult to explain the reasons why a method cannot be selected.

3.4 TIPS

TIPS [Punch, Chandrasekaran 93] is a task-speci�c language for diagnosis that allows the development

of systems involving the integration of multiple methods and their dynamic selection. This language is a

response to the dynamic selection of methods problem in the GT approach. The TIPS approach is to provide

only enough mechanism to allow monitoring of tasks (goals in TIPS terms) and a mapping of methods that

can achieve a task. The design of those methods is outside the TIPS approach.

In TIPS the control structure consists of a task-subtask-method tree. In this tree a node can be a task

or a method. An initial task is decomposed into subtasks and so on. Only the last subtasks are carried

out by methods. Most of the tasks are de�ned as AND nodes while a few of them (named control choice

points) are de�ned as OR nodes. The control knowledge associated with the AND nodes is heuristic. The

control knowledge associated with the OR node is called a Sponsor-Selector structure. This structure is a

combination of abstract structures (applicability, appropriateness and tie-breaker criteria) and meta-level

activities (e.g. veri�cation of task satisfaction, identi�cation of special cases, ordering methods, and method

selection).

The basis for the representation of its method selection activity is the Sponsor-Selector structure. It is

a hierarchy of three elements: a selector, a set of sponsors and a method for each sponsor. Each task with

multiple methods (control choice point), has such an associated structure. At any control choice point, the

8



sponsors are activated to rate their associated methods, then the selector chooses one of those methods based

on the sponsor values and other data.

Each sponsor is independently coded without taking into account other sponsors (local knowledge).

They provide a measure of the appropriateness of their associated methods (appropriateness criteria) to a

given context. The measure provided by the sponsors is a result of a pattern matching process (a table

that contains patterns associated with appropriateness measures) about two kinds of information: dynamic

method information - this describes which methods have run so far and when they ran; dynamic task

information - Its concern is task achievement. For example, has the �nding been explained? This information

is provided by the knowledge engineer.

The technique of rating methods based on an appropriateness measure is a good one since it concentrates

just on the events (set of conditions) that makes a method appropriate. It provides an ordering of the

methods for every recognized context.

The objective of a selector is then to decide what method to activate next. The criteria involved in this

decision are:

� Appropriateness measures. The highest measure wins. If no clear candidate is available and no other

criterion is available, then a random choice from the best candidates is selected. The former is an

appropriateness criterion and the latter is a tie-breaker one.

� Priority list. This is a list of methods which specify which method should be preferred in the case of

ties. It is a tie-breaker criterion.

� Pattern matching. This structure is similar to the one used by sponsors, but in this case instead of

an appropriateness measure, the name of the method is returned. It is used in special situations to

override the normal choice mechanism (categorical criterion). According to [Punch, Chandrasekaran

93] an example of this situation is when a method has been applied but not yet completed, then it

should be the next selected method. In cases where no matching occurs, the priority list is used.

There are two distinguished sponsors: return and fail. They indicate when a selector-sponsor has �nished,

that is whether the task associated with the selector has been achieved or not. These are the satisfaction

and failure criteria respectively.

In summary, TIPS has a �xed and implicit control strategy based on a cycle of four meta-level activities,

each using a criterion (abstract structure): verify satisfaction using distinguished sponsors, identify special

cases using pattern matching, order the methods using appropriateness criterion, and choose only one using

a priority list or a random process. This control strategy is the same for all the tasks.

The disadvantages that can be appreciated in this language are:

� Meta-level activities. Although TIPS has a number of method related activities it does not have an

explicit meta-level. Thus, it does not allow additional method or system related activities. Other

activities such as method monitoring, method assessment (can the method be activated?) cannot be

represented explicitly.

� Control strategy. Although, in TIPS each task has its own control strategy, the sponsor-selector

structure, it is a �xed control strategy which can be neither extended (e.g., adding new activities)

nor modi�ed (e.g., adding new abstract structures). Thus, for example, it is not possible to de�ne

strategies that iterate over the available methods in case of method failure, or that activate a task in

case of the most appropriate method cannot be activated.

� Meta-level objects. TIPS has �xed meta-object descriptions. While methods are described using

basically dynamic properties (run-time properties), tasks are only represented implicitly in the selector-

sponsor structure [Punch, Chandrasekaran 93].

� Abstract structures. TIPS does not have applicability criteria. These criteria are sometimes embedded

in the appropriateness criteria. Thus, sometimes it might be not clear why a method is not selected.

It might be because it is not applicable or it is not the most appropriate.

9
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3.5 LISA

LISA [Delouis 93] is a general purpose knowledge modelling language. Its design was inuenced by the KADS

and COMMET [Steels 90] methodologies. This language has three underlying principles: the modelling

of expertise using three perspectives - methods, problems and domain knowledge; the dynamic selection

of methods and the explicit description of activities and control knowledge intervening in the process of

selection.

In LISA the control structure is a task-method tree (a task in LISA is named a goal). A node can be a

task or a method. A task is decomposed into methods and a method into tasks or terminal methods. Tasks

are OR nodes, whereas methods are AND nodes.

LISA is a reective language which contains and explicit meta-level. It contains a double control structure,

one for the object-level and the other for the meta-level. In the meta-level the activities are represented

explicitly. LISA supports several meta-level activities and new ones might be de�ned. They are method

related activities. The activities identi�ed in this language are: collect methods - this collects the methods

that might achieve a task; select a method - this is in charge of selecting a method from the collected

methods; activate a method - this applies a method; results evaluation - this veri�es whether the task has

been achieved.

These activities are represented in the same terms as tasks, so, it is possible to de�ne di�erent ways to

carry them out. These ways are represented in LISA as methods. Therefore, tasks meta-tasks, methods and

meta-methods can be identi�ed.

In LISA just a single control strategy can be de�ned. It might be user-de�ned or system-provided. This

strategy is applied to every task in its two control structures. A control strategy in LISA is de�ned explicitly

in terms of tasks and methods (see �gure 4). The tasks de�ne the activities whilst the methods the ways to

carry them out. This ingenious representation allows de�nition of di�erent ways to carry out those activities.

New tasks and methods can be added, eliminated or modi�ed. Therefore, a control strategy in LISA is as

exible as any other object level strategy. LISA has a meta-control strategy to interpret its control strategy.

This meta-control strategy is a control strategy as well but, in this case, it is �xed and implicit. In fact both

are the same, one is the implicit representation of the other (this avoids an in�nite tower of meta-levels).

The system-provided control strategy basically consists of a single task with two associated methods: step-

by-step (control strategy) and procedural (meta-control strategy). In order to avoid confusion the tasks and

methods in the control strategy will be preceded by the term 'meta-'. The meta-tasks in the step-by-step

meta-method are the following:

� Verify context. This meta-task veri�es whether the current context is suitable for a given task.

� Construct a solution. This meta-task is the heart of LISA's control strategy. It is in charge of collecting,

selecting and applying a method.

� Validate results. This veri�es if the task has been achieved.
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Since the construct meta-task is the most important in LISA it will be described in detail. This meta-task

is carried out by a single meta-method which has the following meta-tasks:

1. Identify possible methods. This meta-task generates a list of methods that might carry out a task. It

has three associated meta-methods:

� Collect associated methods. This activity just obtains those methods assigned on an a priori basis

to a task.

� Dynamically collect possible methods. This activity collects those methods in the system whose

results satisfy the task (called pertinent methods in LISA) and whose inputs and requirements

(applicability criteria) are available in the context (applicable methods in LISA).

� Collect non-applicable pertinent methods. This activity (known elsewhere as subgoaling) collects

non-applicable methods and generates a new activity whose goal is to activate any of those non-

applicable methods. It is used when the pertinent methods cannot be activated and so the task

cannot be satis�ed.

2. Select one method. This activity is in charge of selecting one method from the methods collected in

the previous activity. It has the following associated meta-methods:

� Select one. Used when there is only one method available.

� Select by favorable contexts or preferences. This activity eliminates from the associated methods

those whose context is not appropriate. It applies the favorable contexts criterion. This meta-

method has three sub-meta-methods to choose just one method: ask the user, use preferences

(preference lists) and at random.

3. Activate a method. This is in charge of recognizing the type of method (terminal, non-terminal or rule

based) and calling the speci�c interpreter to activate the method.

4. Evaluate the success of a method. This activity veri�es whether the task has been achieved and whether

the results of the method are of the expected quality.

Tasks and methods are the only entities considered meta-level objects. They have an explicit description

which consists of prede�ned sets of properties. Most of them are abstract structures. The abstract structures

identi�ed in this language are: criterion of success - this is a satisfaction criterion; favorable contexts - this

is an appropriateness criterion; associated methods - a list of methods that are known to satisfy a task;

preferences - this is tie-breaker criterion.

In summary, it can be said that LISA is a language that allows the explicit description of control strategies

which can be adapted for each application (just the explicit one). Each activity in the control strategy might

be carried out in di�erent ways. New activities can be incorporated into the control strategy. The control

strategy in LISA basically consists of four method related activities: method collection, method selection,

method activation, and evaluation of methods' results. These activities are controlled using a task-method

control structure.

The disadvantages that can be appreciated in this language are:

� Control strategy. In LISA there is only a single control strategy associated with tasks in both levels.

The language has been designed to apply the same control strategy to every task in the system. Thus,

a speci�c task cannot have its own control strategy. The control strategy needs to be too general to

satisfy any possible task requirement or to have dedicated activities for speci�c tasks.

� Meta-level objects. The meta-level objects in LISA have a �xed description. This means that it is not

possible to add new properties or abstract structures to them. Thus, when an extra property is needed

in an activity it has to be included implicitly by means of symbol-level constructs (Lisp predicates).

This represents a shortcoming in those cases in which the methods involved can only be di�erentiated

by those additional properties. For example, in those cases in which there is a trade-o� between time

and space.
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� Control knowledge. In LISA there is a lack in the language with respect of control in the method

decomposition. Lisp code is used instead which implies that such representations are not fully at the

knowledge level.

3.6 Discussion

After reviewing a number of modelling languages some disadvantages can be summarized:

� Some of those languages have concentrated almost exclusively on the dynamic selection of methods

ignoring basic method related activities such as diagnosis and repair, and competence assessment.

� In most languages, the meta-level objects are characterized by a �xed number of descriptors, namely

inputs, outputs and requirements. This represents a shortcoming since the addition of new methods

might require the use of new descriptors to di�erentiate those methods. For example, important

properties such as how many solutions can a method provide, or completeness

7

. Sometimes that

information is not described or is implicit [Prosser, Buchanan 94]).

� Most of the languages do not include all the method related activities or all the criteria already

mentioned, namely: satisfaction, categorical, applicability, appropriateness, and tie-breaker. Applying

one or two activities limits the exibility of the language. Using only one or two criteria implies that

the criteria used are more complex than they should. They embody di�erent types of knowledge that

depend on the activity and situation at hand.

� Current environments provide a single control strategy. Every task in the system uses the same

strategy. A single control strategy not only implies an overhead in some systems, but also represents

a shortcoming in others. This strategy represents an overhead in those systems in which not all tasks

require the same control. For example, in the Sisyphus problem most of its tasks are carried out by a

single method (see �gure 2).

It represents a shortcoming in those applications which require a speci�c control strategy in a number

of its tasks. For example, in the propose task a strategy is needed that avoids selecting methods when

the decomposition method (a backtracking one) has been activated previously, whereas in the PCM

method such a strategy does not make sense.

Note that in a number of those languages it is not clear whether a method will be activated once

or several times, or be interleaved with other methods. It is not clear whether the selection activity

has to be carried out every time till task satisfaction or just when a method has exhausted its results

(backtracking method).

� All the languages with the exception of TIPS de�ne their abstract structures in terms of local knowl-

edge. It means that that knowledge does not involve any reference to other methods or tasks. There-

fore, those languages do not provide any support for representing the relations and constraints between

methods associated with di�erent tasks. Associating a new method to a task might generate both a

number of novel or invalid combinations. These relations and constraints should be represented in

order to be known and to avoid generating strategies that include them during problem solving. The

lack of these facilities does not encourage the addition of new methods at the lower levels in the control

structure.

� Last but not least, all the languages described assume that the necessary features that allow choosing

one method instead of another are always provided as part of the problem at hand. In the real world,

most of the time this assumption is not satis�ed and so it might generate strategies in which no method

is applicable. In order to tackle this situation, a system needs to accept assumptions from the user or

to use prede�ned strategies with their own assumptions For example, given just the employees and the

rooms in the Sisyphus problem, a strategy might have one or several of the following assumptions: the

problem is separable (a decomposition method is suitable), and simple (not over speci�ed and so no

relaxation methods are needed); a solution is enough (a non optimizer method is suitable); or there is

limitation of time (use the fastest method).

7

The lack of results in a method does does not necessarily imply that the problem is insoluble [Prosser, Buchanan 94].
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In summary, it could be said that current languages provide environments for de�ning single control

strategies with a few meta-level activities and a few abstract structures in which no assumptions are con-

sidered and the separation of methods is required (addition of methods only at upper levels in the control

structure).

4 MML - Multiple Method Language

The MML is a task-independent modelling language for the explicit representation of systems with exible

control strategies which allow dynamic selection of methods. MML is being designed as an initiative to

overcome the above mentioned shortcomings, as well as to easy the representation and acquisition of the

knowledge, activities and control strategies involved in such systems.

This approach has been inuenced by the languages LISA [Delouis 93] and TIPS [Punch, Chandrasekaran

93], and the methodologies KADS [Wielinga et al. 92] and Generic Tasks [Chandrasekaran 90]. In fact it

can be said that MML is a generalization of LISA and TIPS. The underlying ideas of this approach are:

� A modelling language should be a reective language in which instances of the components mentioned

in Section 3.1 can be de�ned.

� At the same time, the underlying architecture should be open ended in order to allow the addition of new

instances or instances with extended or modi�ed descriptions. This facility represents a generalization

from current approaches.

� The objects in the system should be described not just in terms of their features (properties and abstract

structures) but also in terms of how those properties are used (activities and control strategies).

� A general modelling language should be meta-task speci�c. It means that it should provide some

primitives meta-level activities for speci�c groups (i.e. method selection, explanation, monitoring).

For example it might have method related meta-level activities primitives.

� Brittleness might be reduced not just by providing multiple methods and the capability for their

dynamic selection but also, incorporating a number of other method related activities

8

. For example,

monitoring the development of the execution of the method, fault diagnosis and repair, analysis of

results (e.g., quality, quantity), etc. Thus, a language for the speci�cation of second generation expert

systems should be capable of representing and controlling those activities, and the related abstract

structures and properties involved in them. At the same time it should provide a minimum set of those

elements for easy of system development. This idea represents an improvement in current approaches.

� Flexibility might be increased providing facilities for de�ning not just one general control strategy

but rather, providing the facilities for de�ning speci�c control strategies for each node in the control

structure, in particular for tasks. Control strategies can be shared or assigned by default to several

nodes in the control structure. This facility represents a generalization from current approaches.

� The problems, the methods de�ned for solving those problems, the activities and the control strategies

that are applied to those methods are modelled explicitly at the knowledge-level and clearly separated

from each other. The language is represented in a task-method control structure in which two types of

control knowledge can be identi�ed and clearly separated: knowledge for controlling the decomposition

(sequencing) of subtasks or sub-methods, and knowledge for controlling meta-level activities. Both

might be represented in procedural or heuristic terms depending on the speci�c application.

In the proposed approach there are two levels: meta and object. Both levels are controlled by an

interpreter. At the meta-level there are basically two meta-level objects: tasks and methods. The underlying

architecture resembles the so-called subtask-management [Harmelen 91]. The system follows an object level

plan (control structure) and hands over control to the meta-level in speci�c situations such as task activation.

8

According to [Bartsch-Sp�orl, Reinders 90] there are twelve groups of meta-level activities amongwhich the dynamic selection

of methods is just one of them.
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[define propose

properties:

[type task]

[goal 'The goal of this task is the allocation (solution) of the

employees (components) of the YQT company into the offices

(resources) in the 3rd floor. Only one solution is required']

[input components resources]

[output allocations]

abstract structures:

[associated-methods decomposition random-init sequential]

[satisfaction-criteria

get-domain("allocations", "value") not = empty ]

[appropriateness-criteria external]

[preferences [random-init all] [sequential decomposition]]

activities:

[collect-methods take-assoc-methods]

[select-a-method appropriateness]

[tie-breaker take-first-one]

[applicable external]

[apply-method external]

[satisfaction eval-boolean]

control strategy:

[satisfy-task-goal-strategy

collect-methods with associated-methods

while more methods do

select-a-method with selection-criteria

tie-breaker with preferences

if applicable then

apply-method

if satisfaction with appropriateness-criteria then

return

endif

endif

endwhile

]

Figure 5: The propose task in the Sisyphus problem

The environment envisioned tries to combine the search-space and the procedural-space in an e�ort to

bring together certain aspects of KADS and GT methodologies. It means that the control structure can be

described in procedural or heuristic terms

The following subsections provide an outline of MML.

4.1 Meta-level objects

MML has basically two meta-level objects: tasks and methods. Tasks represent the problems to be solved

while methods the di�erent ways in which problems can be solved. Both tasks and methods are related

by means of a control structure. In order to describe those objects, MML relies in the distinction of four

components: properties, abstract structures, meta-level activities, and control strategies. Every component

consists of an attribute and a value. The value might be implicit or explicit. Implicit values refer to basic

inferences, methods, or tasks, that once activated, can generate the expected (explicit) value or the desired

behavior.

4.2 Tasks

Tasks characterize the set of problems to be solved. A task has a goal which is a speci�cation of what needs

to be achieved. A task by itself does not include, as part of its description, any speci�cation of how it will

be accomplished. At most it just describes the strategies that apply to the methods that are known to

satisfy its goal. A task may be decomposed into subtasks. In this framework a tasks may or may not have
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associated (on a priori basis) methods that are known to satisfy its goal. Among the properties that a task

might have, the following are the most common: goal, input, output.

For example, the propose task in the Sisyphus problem can be described as in �gure 5. This description

can be interpreted as: the task will succeed if there is an non empty allocation (components into resources).

The methods are collected and then applied until task satisfaction or no more methods remain. They are

selected by a primitive activity called appropriateness which makes decisions based on external criteria. In

the case of a method draw it uses a tie-breaker activity. The activities applicable and apply-method are

de�ned as external activities since they are activities that depend on the method selected.

4.3 Methods

Methods characterize the set of mechanisms: algorithms, plans of actions, sets of heuristics, that are available

for the satisfaction of tasks. Methods, as tasks, are represented by the four components mentioned above.

Methods do not have also, a �xed set of features. When a method have especial requirements such as:

preparation of inputs, interpretation of output, its control strategy is the place to store the respective

activities. This situation is very common when third party software is used. For example, statistical routines

or simulation packages. For example, the decomposition method in the Sisyphus problem can be described

as in �gure 6. This description can be interpreted as: the decomposition method is a non-terminal non-

backtracking method with two sub-methods (i.e. assemble-plan, assign-resources). Its control knowledge is

procedural. It has two activities, one determines if the method is applicable and the other how to apply the

method.

A method can be decomposed into subtasks or sub-methods. Both the decomposition and the sequencing

knowledge needed to control such decomposition are stated explicitly. Among the properties that a method

might have, the following are the most common: goal, input, output, type (terminal, non-terminal, basic

inference), structure (method decomposition), ck-type (formalism involved in the description of its sequencing

knowledge: procedural, heuristic), backtracks (capability of backtracking).

4.3.1 Types of methods

MML recognizes three di�erent types of methods:

� Non-terminal. This method proposes the sequence of subtasks or sub-methods that carry out a

task. The sequencing knowledge in these methods is either deterministic (procedural control) or non-

deterministic (heuristic control). For example, the method PCM has three subtasks (propose, verify

and adapt) which might be controlled heuristically. This approach does not worry about the control

knowledge involved in the terminal methods and the basic inferences.

� Terminal. This method is a method whose internal structure is not known or is not worth worrying

about (named black box). For example, statistical routines. These methods can only be applied rather

than monitored for example. There is a distinguished set of terminal methods, namely basic inferences.

These are methods which cannot be split into subtasks any more although they do not represent black

boxes. For example, the method assign-resources; the user of the system may also participate as a

terminal method.

� Meta-method. These methods are used to store some of the control strategies and activities. They are

methods at the meta-level which have access to data not available at the object-level. Besides this fact,

meta-methods are similar to methods. For example, the meta-method single-method (see �gure 7)

that can be used as a default strategy for the Sisyphus task. This description says that the method

single-method consists of four activities: collect the method, verify its applicability, apply it and verify

whether the task has been satis�ed or not.

4.4 Properties

Properties are a collection of basic features of objects. An object might have any number of properties.

Properties might be further classi�ed. For example, in the method case, they are classi�ed in four sets:
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[define decomposition

properties:

[type method]

[goal 'To allocate components into resources using ...']

[input components resources]

[output allocations]

[m-type non-terminal]

[ck-type procedural]

[backtracks false]

[structure assemble-plan assign-resources]

abstract structures:

[applicability-criteria

components-value exist and

resources-value exist ]

[appropriateness-criteria

a-plan exist and

is-a-separable-problem exist ]

[code debug("m", 'Executing decomposition');

getdomain( "components", "value") -> Components;

getdomain( "resources", "value") -> Resources;

for Res in Resources do

putdomain("store", "allocations", Res, []);

endfor;

...]

activities:

[applicable eval-boolean]

[apply-method call-method]

control strategy:

% [decomposition-strategy apply-method with code]

].

Figure 6: Decomposition method in the Sisyphus problem

[define single-method

properties:

[goal 'call an object-level method']

[type method]

[ck-type procedural]

[m-type meta-method]

[structure collect-methods applicable

apply-method satisfaction]

abstract structures:

[code take-method with associated-methods

if applicable then

apply-method

satisfaction with satisfaction-criteria

endif]

activities:

[apply-meta-method call-method]

control strategy:

].

Figure 7: Single-method meta-method in the Sisyphus problem
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conceptual, operational, dynamic and other. The conceptual properties describe the knowledge the method

use. The operational ones describe how the method carries out a goal. It includes basically the methods'

decomposition into subtasks or sub-methods. The dynamic properties describe the status of a method at

run-time. They are mainly modi�ed by the interpreter of the system. For example, the number of times that

it has been activated. Finally, other properties describe di�erent aspects (meta-knowledge) of the method

to be used in activities. For example, the number of solution that the method provides.

4.5 Abstract structures

They are structures that categorize and represent the knowledge about the relations and constraints between

the objects (at both levels) in the system. The di�erent categories in this knowledge helps in its acquisition.

Several abstract structures have been identi�ed. They might be included as primitives in a modelling

language. For example:

� Satisfaction Criterion. This is a criterion based on domain data used to recognize whether the task

has been carried out successfully.

� Failure Criterion. This is a criterion based on domain data used to recognize whether the task has not

been satis�ed.

� Associated methods. This is a list with the name of the methods that can carry out the task.

� Preferences. This is a partial ordering of the associated methods.

� Code. This is the explicit description of the sequencing knowledge for controlling its subtasks or

sub-methods.

� Categorical criterion - This criterion avoids excessive deliberation.

� Applicability criteria - This criterion veri�es if a method can be activated.

� Appropriateness criterion - This criterion identi�es the appropriateness of a method to a given situation.

� Tie-breaker criterion - This criterion chooses just one method in case of draws.

4.6 Meta-level Activities

These activities are processes that run at a meta-level. They are the components that interpret and manip-

ulate abstract structures. For example, activate a task, select a method, evaluate the results of a method,

select a domain model. In other words, they are the semantics attached to abstract structures. Activities

in MML might be speci�ed as basic inferences, meta-methods or tasks, some of which might be primitive.

For example, the activities might be simple as basic inference that evaluates a structure to true or false (e.g.

satisfaction in �gure 5), or so complex that a method (as in TIPS) or a task (as in LISA) is required (e.g.

apply-method in �gure 6). The decision of how to specify activities represents a departure from the current

languages since MML has great exibility in this respect. So, depending on the complexity of the activity,

its representation varies.

A number method related control activities have been identi�ed in the dynamic selection of methods

(e.g., collection, ordering, selection, and evaluation of methods) and might be included as primitive activities

in a modelling language (e.g. appropriateness in �gure 5).

4.7 Control strategies

They are a collection of (control) statements that prescribe the order in which meta-level activities are

applied. They not only incorporates the control knowledge associated with the activities but also the control

knowledge speci�ed by the methods to which those activities are related to.

For controlling meta-level activities MML uses high level control statements and built-in functions (i.e.

conditional, loops). This represent another di�erence with current environments. The control in some of

them is full of symbol-level constructs. In MML the need for using symbol-level constructs is minimized

since some constructs and built-in functions are prede�ned and a library of them is included in the language.
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5 Conclusions

This paper has proposed a framework for analyzing modelling languages, with particular emphasis on use

of multiple methods. This framework identi�es the following as important components of second generation

expert systems: an object- and a meta-level, meta-level objects, abstract structures, and meta-level activities.

We reviewed the languages: MODEL-K [Karbach, Vo� 92], TroTelC [Vanwekenhuysen, Rademakers 90],

TIPS [Punch, Chandrasekaran 93], and LISA [Delouis 93]. The following features were noted:

� Current modelling languages provide a range of components' instances that goes from a few (MODEL-

K) to many (LISA).

� Although according to their authors, more robust, more exible, or less brittle systems might be

developed, those languages are not exible enough. Their components are �xed, namely: a �xed set of

properties and abstract structures; a �xed set of meta-level activities; or, a single control strategy for

handling those activities.

� Some of those languages have concentrated almost exclusively on the dynamic selection of methods

ignoring meta-level activities such as diagnosis and repair, and competence assessment, which are very

important related activities.

� They have concentrated on the use of general methods. They do not provide any support for repre-

senting the relations and constraints between methods associated with di�erent tasks.

� Last but not least, all the languages described assume that the necessary features that allow choosing

one method instead another are always provided as part of the problem at hand. In other words, their

control strategies do not contemplate user points of view or problem types.

Having identi�ed these shortcomings, we proposed a new modelling language, MML, which addresses

them. The language incorporates the following features:

� MML is an open ended reective language.

� MML describes objects in terms of both their properties and how those properties are used.

� The language facilitates dynamic selection of multiple methods along with other method-related activ-

ities such as diagnosis and repair.

� Control strategies are represented at each node in the control structure.

� The language distinguishes between control knowledge for decomposition of methods and control knowl-

edge for method-related activities.

MML has been designed to capture some of the more desirable features required for solving problems

with multiple methods. Initial experiments with the Sisyphus problem indicates that MML is not only a

more exible system but also it has led to an improvement in the syntax and semantics of the language and

the speci�cation of the knowledge about methods.

Further work will involve extending the range of methods de�ned in MML and evaluating its modelling

capabilities on a variety of selected problems.
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