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Abstract

Various sources of systematic error exist for both Magnetic Resonance Imag-

ing and Spectroscopy. In particular, MRI and MRS are sensitive to any type

of microscopic and macroscopic motion. In this paper

1

we study the use of

the Lomb-Scargle periodogram in the analysis of k-space data from motion

artefacted MR images and spectra, while we provide a detailed review on the

theoretical foundations of this method. We investigate the usefulness of this

technique for detecting suspected periodic and quasi-periodic perturbations in

MR signals, introduced by respiratory motion. Our work strongly suggests that

the Lomb-Scargle periodogram can o�er interesting qualitative information, re-

lating to the e�ect of motion artefacts in MRI/MRS. The paper discusses the

issues relating to the future use of this method for the identi�cation and analysis

of systematic errors in clinical MRI/MRS.

1 Introduction

Time series analysis is commonly used in many scienti�c �elds, as a means of

understanding and describing complex phenomena and processes. The engineer-

ing and physical sciences have long gained bene�ts from the various applications

of time series analysis, especially in areas relating to the interpretation of ex-

perimental data. The need for this type of mathematical analysis has been

further enhanced by the current technological advances in the automation of

data acquisition in numerous scienti�c instruments [1, 19, 35, 48, 53]. In the

�eld of biomedical magnetic resonance, time series analysis has been evaluated

only recently by independent researchers, as being a useful and important tool

1

Much of this paper was adapted from the �rst author's 1994 DPhil thesis [4] and some

recent published work from both authors [5, 9].
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for the understanding of the basic MR physical processes and the analysis of

interesting research problems [31, 58].

In general, we can identify two main groups of time series analysis techniques:

(a) The time domain and (b) the frequency domain analysis techniques. The

time domain techniques have been investigated extensively by several researchers

and characterized as favourable towards the analysis of random processes [16, 26,

45, 46, 47]. On the other hand, frequency domain techniques have been found

mostly suitable for the investigation of the opposite to the random processes,

the so-called deterministic processes. Additionally, frequency domain analysis

has always proven to have advantages for periodic phenomena [12, 15, 36].

In this paper, we examine the issues relating to the problem of respiratory

motion artefacts in biomedical magnetic resonance imaging and spectroscopy,

through the use of time series analysis on MR artefacted data. In particular,

we introduce the use of the Lomb-Scargle periodogram for the analysis of

k-space data, and investigate its appearance and properties when applied to

MR images and spectra that have been \contaminated" by motion artefacts. In

the �rst part of this paper, we provide the reader with the appropriate theo-

retical background and discuss our motivation for using this frequency domain

technique as a tool for detecting suspected periodic and quasi-periodic pertur-

bations in MR signals. In the subsequent parts, we provide some representative

examples from both simulated and experimental image data, with the intention

to draw conclusions on the advantages and disadvantages of the method. Fur-

thermore, we investigate the potential use of this unconventional power spectral

estimation technique for the case of MR spectroscopy.

2 Theory of Periodogram Analysis

Before we describe the Lomb-Scargle method and explain its statistical proper-

ties, we review the theoretical basis of power spectral estimation by periodogram

analysis. We relate our discussion to signal detection theory (section 2.1). The

solution to the problem of periodic signal detection in the presence of noise, as

conveniently described by this theory, is the main motivation for the de�nition

of the Lomb-Scargle periodogram. Furthermore, the modelling of signal and

noise in the signal detection theory is found to be the most suitable for the

description of the ghosting and blurring e�ects introduced to MR images by

motion.

In section 2.2, we provide the classical de�nition of the periodogram and

then present the theoretical derivation of the Lomb-Scargle periodogram (see

section 2.3). Immediately after follows a discussion on the statistical properties

of the Lomb-Scargle method (see sections 2.4 and 2.5). We use this knowledge

to observe and explain the data in the experimental part of the paper. Finally,

we elaborate on the application of the Lomb-Scargle periodogram for the case

of MR data and assess its advantages and disadvantages in comparison with the

classical approach.

2.1 Power Spectrum Estimation and Signal Detection

One of the most popular themes in time-series analysis is the estimation of the

power spectrum of a measured signal. Power spectrum analysis has been used
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in many scienti�c �elds, mainly towards the solution of the signal detection

problem [27, 29, 32, 45, 55].

The signal detection problem, as described in various signal and image pro-

cessing textbooks [24, 45, 51, 55], can be formulated as follows. Suppose that a

physical variable H is measured at a set of times t

i

2

. This measurement results

in a time-series data, here denoted as fH(t

i

); i = 1; 2; 3; :::; Ng, which is called

the observed digitized signal. This data set is assumed to be the sum of a pure

signal and random observational errors. Consequently, the times series data can

be represented by the following expression [24]:

H

i

= H(t

i

) = S(t

i

) +N (t

i

) (1)

where S(t

i

) is the pure signal and N (t

i

) represents the observational errors

during the measurement of the signal. Because of the additive relationship

between the pure (or original) signal and the parameter N (t

i

) in equation (1),

the latter is often called the noise. For many applications of the signal detection

theory, the noise is assumed to be random [24, 38, 40, 56], which means that the

observational errors at distinct times are statistically independent. Furthermore,

in a signi�cant number of cases, the noise is usually assumed to have a normal

distribution with zero mean and constant variance �

2

o

, hence the term \Gaussian

noise" [24, 40].

In many scienti�c measurement applications, noise can badly corrupt the

observed signal. The main motivation behind the signal detection theory is the

solution to this problem, that is to establish the existence of a signal in the

presence of noise. In addition to this, researchers used the framework provided

by the theory to investigate other important problems. For example, one might

want to identify the presence of a periodicity in a \noisy" signal or estimate

the harmonic content of a periodic signal (either by the detecting the principal

signal harmonic or its multiple). Other interesting problems are the frequency

or period calculation of a particular signal harmonic and the removal of random

noise from the observed signal. In the context of the Lomb-Scargle formulation,

we will use the framework of signal detection theory for the identi�cation of any

periodic content in a \noisy" signal that has been unevenly sampled.

The problem of respiratory motion artefacts can be reformulated under the

philosophy of signal detection theory. We can characterize the ghost-like respira-

tory motion artefacts as being a type of systematic noise. The systematic error

introduced by motion is a replicated and unrealistic MR signal intensity added

to the pure MR signal. For example, the idea of the ghost mask, introduced by

Xiang and Henkelman [60], shows this additive relationship.

Based on the above argument, we formulate the signal detection problem for

this study. Thus, if we set G(t

i

) to represent the systematic error introduced by

the breathing artefact, then according to equation (1), the observed digitized

MR signal (here denoted as S

0

i

) can be described as a time series data set by

the following expression

3

:

2

The set of observation times ft

i

g is called the sampling. For the purposes of our descrip-

tion, we use the term even sampling when �t

i

= t

i+1

� t

i

= c, where c is constant. When

this condition is not true for the di�erent values of observation times we use the term uneven

sampling.

3

For simplicity, equation (2) assumes that only the presence of motion artefacts and random

noise contaminates the pure MR signal. Any other sources of systematic error are considered

to be insigni�cant for the purposes of this study, and are therefore ignored.
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S

0

i

= S(t

i

)

0

= S(t

i

) + G(t

i

) +N (t

i

) (2)

Therefore, in the context of signal detection theory, equation (2) constitutes

the basis for the following study. MR images and spectra are described as time

series data sets and we aim to detect any harmonic content in the MR signal

that corresponds to the e�ects of motion. Thus, the aim of this study is to

investigate the inuence of G(t

i

) signal { which corresponds to the e�ect of

motion artefacts { on the periodogram of S(t

i

) (i.e. the observed MR signal).

As mentioned before, power spectrum estimation is frequently used for the

solution of the signal detection problem. Several interesting and successful ap-

proaches have been developed for the estimation of the power spectrum [20],

mainly by using the Fast Fourier Transform (FFT) [13, 23, 43, 52]. One of the

most popular power spectrum estimation techniques is accomplished by means

of the periodogram. In the literature, one can �nd considerable research that has

been undertaken on the so-called periodogram analysis [21, 25, 28, 30, 39, 41, 42].

This approach makes a good use of the periodic nature of the signal and aims

to give a complete description and understanding of the periodicity. In the

following section we will describe the classical formulation for the periodogram.

2.2 The Classical Periodogram

We can de�ne the discrete Fourier transform of an evenly sampled data set,

fg(t

i

); i = 1; 2; 3; :::; Ng, as follows [14]:

=fg(t

i

)g = G(f) =

N�1

X

i=0

g(t

i

)e

�j2�ft

i

=N

(3)

or by substituting the frequency f by the angular frequency !, where ! = 2�f ,

then equation (3) becomes:

=fg(t

i

)g = G(!) =

N�1

X

i=0

g(t

i

)e

�j!t

i

=N

(4)

Conventionally the classical periodogram is de�ned [13, 21, 23, 43, 52] as:

P (!) =

1

N

jG(!)j

2

=

1

N

�

�

�

�

�

N�1

X

i=0

g(t

i

)e

�j!t

i

=N

�

�

�

�

�

2

=

1

N

8

<

:

"

N�1

X

i=0

g(t

i

) cos !t

i

=N

#

2

+

"

N�1

X

i=0

g(t

i

) sin!t

i

=N

#

2

9

=

;

(5)

The classic periodogram equation (5) can be evaluated for any value of angu-

lar frequency and the presence of a periodic signal is indicated by a large value

of P at one particular value of !. This usually appears as a distinct narrow peak

in the periodogram's power spectrum estimate. Although the above expression
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can be evaluated at any frequency, it is traditionally evaluated only at a spe-

cial set of N

0

= N=2 evenly spaced frequencies [21, 23, 43, 52]. However, this

particular de�nition of the classical periodogram has two important problems:

1. The classical periodogram presents several statistical di�culties. This, in

simple words, means that the function P (!) of the periodogram is very

noisy [52, 57] and several techniques for further processing and optimiza-

tion are required.

2. There exists the major problem of spectral leakage [20, 44, 51]. This

means that for any periodic signal at a speci�c frequency, the power in

the periodogram does not appear only at that frequency, but also \leaks"

into other frequencies (a typical example of spectral leakage is the well-

known phenomenon of aliasing [14, 17, 18]). In the literature there exists a

signi�cant amount of work describing the problem of spectral leakage and

the related techniques used to overcome the \leakage" e�ects. [10, 33, 59].

Furthermore, this de�nition does not cope with data sets that are not evenly

sampled. For this reason, Scargle [54] derived a new de�nition of the peri-

odogram, which will be described in the following section. Because of some

interesting similarities to a power spectrum estimation technique that Lomb for-

mulated on 1976, we will call this periodogram the Lomb-Scargle periodogram.

2.3 The Lomb-Scargle Periodogram

As already mentioned in the previous section, the classical periodogram and

its statistical distribution have been successfully investigated for the case of

evenly sampled data sets. Usually, the distribution of the power spectrum has

an exponential shape. This has been shown for the case in which the evenly

sampled data set g(t

i

) is pure Gaussian noise [30]. A similar result has been

derived for the more general case of data sets with uneven sampling. Thus, a

modi�ed version of the classical periodogram has been de�ned by Je�rey Scargle

{ an eminent researcher at the NASA Ames Research Center { to cope with the

case of unevenly sampled data sets [54]. The power spectrum estimate provided

by the modi�ed periodogram has the same exponential distribution as in the

even-sampling case [11, 34, 49, 50, 54]:

P (!) =

1

2

8

>

<

>

:

h

P

N�1

i=0

g(t

i

) cos !(t

i

� � )

i

2

P

N�1

i=0

cos

2

!(t

i

� � )

+

h

P

N�1

i=0

g(t

i

) sin!(t

i

� � )

i

2

P

N�1

i=0

sin

2

!(t

i

� � )

9

>

=

>

;

(6)

where i = 0; 1; 2; :::;N�1 is the index of the unevenly spaced observation times.

The term � can be de�ned by the following expression:

tan 2!� =

�

P

N�1

i=0

sin!t

i

�

�

P

N�1

i=0

cos!t

i

�

(7)

This new form of the periodogram, even though signi�cantly altered from

the classical periodogram de�nition of equation (5), gives values very similar to

the classical formulation, as already demonstrated by Scargle [11, 54].
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Scargle argues [54] that the modi�ed form of the periodogram can replace

the classical de�nition, for the following reasons:

1. The rede�ned periodogram has a simple statistical behaviour, even better

than that of the classical periodogram de�nition for the even-sampling

case [54].

2. The use of the time constant � gives to the periodogram a time-translation

invariance. In other words, the constant � makes P completely indepen-

dent of any time shift of time t

i

[50, 54].

3. Finally, this o�set of time makes the present method of the periodogram

estimation equivalent to the reduction of the sum of squares in least

squares �tting of sine waves of the data, a method mainly investigated

by Lomb [39]. Hence the equation (6) of the periodogram is almost iden-

tical to the equation of the estimation of the harmonic content of a data

set, at a given frequency !, by linear least-squares �tting to the model:

g(t) = A cos!t +B sin!t (8)

From the above, it is obvious why this method can be more successful than

the other FFT power estimation methods, especially for the case of uneven

sampling, since it weights the data on a \per point" basis instead of on a \per

time interval" basis [50].

By observing equations (6) and (7), the computation of the Lomb-Scargle

periodogram seems complex. However, a concrete and clear algorithm has been

constructed for this calculation. We use a very fast and powerful algorithm

for our periodogram analysis, which is based on the work of Press and Rybicki

[49, 50].

2.4 The Statistical Behaviour of the Lomb-Scargle Peri-

odogram

The usefulness of periodogram analysis can be seen in the e�ectiveness of the

method to evaluate and quantify the appearance of the power spectrum pro-

duced. Often, power spectra have a complicated appearance. In particular,

when the data sets under analysis are noisy, then the power spectra have a sim-

ilar noisy appearance. For this reason, it is important to �nd a quantitative way

to identify whether any large spectral peak occurring in the periodogram repre-

sents pure signal, random noise or spurious signal corresponding to systematic

error.

A way towards the evaluation of the signi�cance of spectral peaks in the

Lomb-Scargle periodogram is by examining the probability of an observed fea-

ture to have arisen from a random (noisy) uctuation.

Scargle presented a simple and robust statistical approach to evaluate the

signi�cance of spectral peaks in the periodogram [54]. He took a null hypothesis

in which the data values are assumed to be independent randomGaussian values

(i.e. pure Gaussian noise), and then tested its viability.

In order to test the viability of the null hypothesis, Scargle used the following

methodology. First, he proved that by normalizing the modi�ed periodogram

by a factor of �

2

, at any particular angular frequency ! and in the case of his

6



null hypothesis, the power spectrum P (!) (and in e�ect the power at a given

frequency) has an exponential distribution with zero mean and noise variance

equal to unity [11, 54].

This can be seen in the following formulation. If we let Z = P (!) then the

probability distribution (here denoted as p

Z

) is given by:

p

Z

(z)dz = Pr(z < Z < z + dz) = exp(�z)dz (9)

where Pr denotes the probability.

Also, the cumulative distribution F

z

can be calculated easily:

F

Z

(z) = PrfZ < zg =

Z

z

0

p

Z

(z

0

)dz

0

= 1� exp(�z): (10)

Before examining further the statistical behaviour of the periodogram, we

should mention that the normalization factor �

2

is the total variance of the

data. Horne and Baliunas have shown [34] that only if the total variance of

the data is used as the normalization factor for the Lomb-Scargle periodogram,

then the periodogram will have the expected exponential probability distribu-

tion mentioned above. With this normalization factor, the equation (6) that

describes the Lomb-Scargle periodogram becomes:

P (!) =

1

2�

2

8

>

<

>

:

h

P

N�1

i=0

g(t

i

) cos!(t

i

� � )

i

2

P

N�1

i=0

cos

2

!(t

i

� � )

+

h

P

N�1

i=0

g(t

i

) sin!(t

i

� � )

i

2

P

N�1

i=0

sin

2

!(t

i

� � )

9

>

=

>

;

(11)

Now, one can see from equations (9) and (10) that one useful quantity is

the PrfZ > zg = exp(�z), which gives the statistical signi�cance of any large

observed spectral power peak at the corresponding preselected frequency. Thus,

as the power level becomes larger, there is less chance of an observed power level

corresponding to random uctuations (noise).

Scargle showed that if we consider the largest value Z = max

M

P (!

M

) in the

spectrum over a set of independent M frequencies [11, 54], then the probability

of this value being the largest signi�cant is given by:

PrfZ > zg = 1� F

Z

(z) = 1� [1� exp(�z)]

M

(12)

This measure can be signi�cant even if a pure noisy data set is investigated.

It has been claimed that, if many independent frequencies are inspected for a

spectral peak, then one expects to �nd a large power peak even if no signal is

present.

The number of independent frequencies M to be observed can be calculated

in relation to the total number of time points N . This number has been derived

by Horn and Baliunas [34] and is given by the following empirical formula:

M = �6:362 + 1:193N + 0:00098N

2

(13)

We can now test the viability of the null hypothesis in terms of the false

alarm probability.
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2.5 The False Alarm Probability

It is desired to �nd a power level, z

o

, such that if the power exceeds this level,

the error in declaring a detected peak as being signi�cant will be very small.

The probability of this fault, p

o

, is called the false alarm probability of the

null hypothesis and it can be �xed to be a small number, so that the detected

peaks have high signi�cance. The above mentioned threshold power level can

be derived by the distribution in equation (12) and is given by the following

expression:

z

o

= � ln[1� (1 � p

o

)

1=M

] (14)

where M are the independent observed frequencies used in the calculation of

the normalized Lomb-Scargle periodogram.

For small p

o

, equation (14) becomes

z

o

� ln(M=p

o

) (15)

For example, if we take p

o

= 0:01, which means we have a 99% signi�cance

level, then z

o

is given by the following expression:

z

o

� 4:6 + ln(M ) (16)

We will use expressions (15) and (16) to identify the signi�cance levels of

the experimental results presented in the second part of this chapter.

3 Time-Series Analysis and Respiratory Motion

Artefacts in MR: The Reasoning Behind the

Use of the Lomb-Scargle Periodogram

As we have argued in a previously published study [6], the e�ect of motion in

spectroscopic Chemical Shift Imaging (CSI) is manifested in the appearance of

spectra as signal re-distribution and as an overall increase in the background

noise level. Our initial experience in both cardiac and hepatic

31

P MRS studies

on volunteers showed small (5{10%) but consistent improvements in the overall

signal-to-noise ratio (SNR) of the spectra when the Respiratory Ordered Phase

Encoding (ROPE) method was used. On the spectra, these changes appeared

to be visually more signi�cant in the level and the character of the noise, rather

than in the signal level itself. These visual observations have suggested the

importance of further understanding the source and appearance of motion arte-

facts in spectroscopic CSI investigations. Thus, we used the autocorrelation

function, a typical Fourier transform time-series analysis approach, to identify

the character of random and systematic noise (motion artefacts) upon both

2D-FT imaging and 1D CSI spectroscopic data. The selection of this tech-

nique was based on the opinion that the autocorrelation function of time series

data completely speci�es the �rst- and second-order noise statistics of Gaussian

processes [24]. We applied both the one-dimensional and the two-dimensional

versions of the autocorrelation function in data from phantom MRI and MRS

studies. The result of this time series analysis investigation showed high order

correlations arising from motion artefact e�ects. Furthermore, when comparing

8



the three cases of image acquisitions of a moving phantom, a static phantom

and a moving ROPE'd phantom, we identi�ed signi�cant di�erences in their

MR data autocorrelation functions.

Although these results were found promising at the time, all observations

were purely qualitative. There was still a need to quantify these results, so that

we could have precise information about the correlation of motion with any time

series analysis of the MR data. In order to satisfy this need we investigated time

series analysis techniques even further. The technique we adopted was the power

spectrum estimation of the MR data by means of periodogram analysis.

In the past, Weissko� et al. had applied the classical Fourier periodogram

analysis on functionally-weighted MR data [58], where they produced 128 point

periodograms. These periodograms were produced by using power spectrum

images of the MR data and by applying on them the traditional \overlap-add"

method, that is often used for several Fourier frequency-domain techniques (e.g.

convolution, correlation, etc.) [50]. In their case, the problem of spectral leakage

was dealt with by the application of a 4-term Kaiser-Bessel window function.

These periodograms assumed that the data was evenly spaced. For the work

of Weissko� et al., this assumption was appropriate due to the fact that the

MR data was very rapidly acquired by single-shot Echo-Planar Imaging (EPI).

However, the use of this traditional type of periodogram analysis for investigat-

ing motion artefacts in 2D-FT imaging and 1D CSI spectroscopy, is not very

e�ective. This is explained by the fact that in these cases, the collected MR

data set is composed of several complex FID signals, where there exists a time

delay TR between the subsequent acquisitions of these signals. Thus, if we treat

the MR data set as a single time series, we can assume that this time series data

set is unevenly sampled. It is therefore essential that we introduce the use of

the Lomb-Scargle periodogram for the study of respiratory motion artefacted

MR data.

4 Methodology

In this section, we present the implementation of the normalized Lomb-Scargle

periodogram for the analysis of both simulated and experimental MR data. The

algorithm used for the calculation of the periodogram was based on a computa-

tional approach, which Press and Rybicki had presented in 1989 [49]. We discuss

particular aspects of this approach and the way the Press and Rybicki algorithm

is implemented for our study. In addition, we elaborate on the methodology used

for the treatment and analysis of simulated image data, experimental image data

and experimental spectroscopic data.

4.1 The Lomb-Scargle Periodogram Algorithm

The implementation of the Lomb-Scargle method is computationally straight-

forward. One can input a set of data points and their respective observation

times in equation (11) and output the power spectral estimation of this data

for a set of angular frequencies. However, the Lomb-Scargle method, which

has been frequently used in the analysis of astrometric data, has always been

viewed as a \slow" computational method for large data sets. As it can be seen

from equation (11), multiple calls of trigonometric functions should be com-

9



bined for each data point. As suggested by Press and Rybicki [49, 50], these

computational calls might require operations of order O(N

2

) to analyze N data

points against their observation times. In order to cope with this, Press and

Rybicki suggest a fast algorithm for the Lomb-Scargle method, which reduces

the computation to an order of O(N ).

This algorithm uses Fast Fourier Transforms (FFTs) [17, 18, 43, 14] to ac-

celerate the computation of the trigonometric functions in equation (11). This

is accomplished by a technique called extirpolation, which is equivalent to in-

verse interpolation

4

. This fast algorithm makes feasible the application of the

Lomb-Scargle periodogram to time series data sets with size up to 10

6

points.

At this stage we should clarify a few practical points concerning the im-

plementation of this algorithm in our study. Horn and Baliunas proposed an

empirical formula (see equation 13) in order to calculate the minimum num-

ber of independent frequencies over which the periodogram should be optimally

evaluated. In the fast Lomb-Scargle periodogram algorithm, the number of

independent frequencies M is proportional to the number of data points and

to two input factors: an oversampling factor and a highest frequency indica-

tor factor [50]. The oversampling factor, here denoted as ofac, represents how

�nely one wishes to oversample the independent frequencies, so that more sig-

ni�cant power spectral peaks can be observed. The highest frequency indicator

factor, here denoted as hifac, is the ratio of the highest frequency over which

we observe the periodogram and the periodogram's \experimental Nyquist fre-

quency"

5

. The formula that provides the number of independent frequencies M

is

M =

ofac � hifac

2

N (17)

During our study we have set ofac = 4 and hifac = 1, always observing

the periodogram over a number of frequencies, twice as many as the input data

points. It is important to clarify that the output of the implemented program

returns an increasing sequence of frequencies corresponding to the di�erent val-

ues of the power spectrum. These frequencies are not angular frequencies, as

one would expect by the de�nition of the Lomb-Scargle periodogram in equation

(11).

We used the C programming language [37] to implement the Press and Ry-

bicki algorithm.

4.2 Simulated and Experimental Data

We acquired both simulated and experimental data to be processed by the

normalized Lomb-Scargle periodogram.

In order to understand the output of the periodogram under well-controlled

conditions, we used a series of simulated data sets provided by our 2D-FT MR

imaging simulator [2, 8, 3]. A point-like object { a homogeneous disk (5 pixels in

4

In the original paper by Press and Rybicki [49] the term \extirpolation" is thoroughly

explained, together with the details of their implementation. Such a discussion at this point

would be out of the scope of this paper.

5

We use the term \experimental Nyquist frequency" to describe the frequency value which

one would obtain if the data points were evenly spaced over the same time span. In our case,

it is obvious that this value is di�erent from the MR signal's Nyquist frequency of sampling.
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diameter) { was used for the creation of k-space data. We created image data

corresponding to image acquisitions for both stationary and moving objects.

Furthermore, we also acquired simulated data corresponding to images corrected

by the ROPE method. All k-space matrices that we constructed were of size

64 � 64. We reduced the 2D matrices to single 1D arrays of 4096 data points,

thus treating the FID signals in the data as a single time series signal, unevenly

sampled. These data points together with the corresponding observation times

6

constituted the input data for the normalized Lomb-Scargle periodogram. In

this case we evaluated the periodogram at 8,192 independent frequencies. No

prior processing of the data was performed, and the periodogram was evaluated

for the magnitude of the FID signals.

As well as using simulated data, we performed periodogram analysis on

actual experimental MRI and MRS data sets. All experimental work was carried

out on a Picker prototype MRI/MRS system, operating at a �eld of 1.5 Tesla,

at the Robert Steiner MRI Unit, Hammersmith Hospital, London.

The subject of the study was a simple phantom [7, 22], constructed with non-

magnetic materials (Perspex and plastic). This phantom consisted of a cylinder

(height 10 cm, diameter 5 cm), �lled with a CuSO

4

solution. A mechanical

device was designed to provide a variable vertical displacement of the cylinder.

The phantom was mechanically coupled by the use of a long shaft to a DC

step electric motor positioned 6 meters away from the centre of the bore of the

main magnet. The electric motor provided the driving mechanism that applied

periodic displacement on the phantom. The amplitude and the period of the

displacement could be varied in order to model the e�ects of human respiratory

motion. Figures 1 and 2 show the pro�le and semi-lateral photographic views

of the phantom.

We acquired data by using both 2D-FT imaging and 1D spectroscopic CSI

methods. Images and spectra were obtained for the cases of static and pe-

riodically moving phantoms. Furthermore, ROPE acquisitions of the moving

phantom were implemented in both 2D-FT imaging and 1D CSI spectroscopy.

Again, the resulting k-space MR data was treated as a single time series. In

the case of image data, the size of the k-space matrices was 256 � 128, thus

the Lomb-Scargle periodogram was evaluated at 65,536 independent frequen-

cies. In the case of spectroscopic data, k-space matrices were of size 128 � 64,

and thus the Lomb-Scargle periodogram was evaluated at 16,384 independent

frequencies. For all experimental data, we performed processing prior to the pe-

riodogram analysis. As the data originated from VAX workstations and analysis

was performed on Sun SPARC workstations, data had to be byte-swapped and

oating point formats modi�ed where appropriate. Following this operation, we

obtained the values of any DC o�sets from both the real and imaginary parts of

the data. To achieve more accurate results, we have calculated the DC o�sets

for each line, although one can obtain a less accurate global DC value from the

MR system. The DC o�set was calculated by averaging the 10 last data values

(either real or imaginary values) on each line. The Lomb-Scargle periodogram

was evaluated for both real and imaginary parts of the k-space imaging and

spectroscopic data.

6

The observation times were given in the form of an one-dimensional array of data and

were not equally spaced, as between consecutive FID's there exists a signi�cant time gap, due

to the repetition time (TR).
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Figure 1: Pro�le view of the experimental phantom

In the following section we observe representative results from our simulated

and experimental work.

5 Results

5.1 Periodogram Analysis on Simulated Image Data

We collected a set of representative periodogram results of 2D-FT imaging data,

originating from a simulated point-like object. In this set of experiments, the

object was moving with a motion amplitude set at 15 pixels. For each row

of the data matrices, data points were sampled every 0.04 msec of simulated

time at 500 msec TR intervals. These imaging parameters were kept constant

for all experiments. The only factor that was altered was the period of the

movement of the object. For four di�erent frequencies of motion, we compared

the appearance of the periodogram using data from the moving object and data

that was controlled by our implementation of the Respiratory Ordered Phase

Encoding (ROPE) method. These periodograms were further compared to the

appearance of the Lomb-Scargle periodogram of image data of a static object.

As mentioned in the previous section, the periodogram was evaluated at

8,192 independent frequencies, ranging from 0 kHz to the periodogram's exper-

imental Nyquist frequency, which for this case was 64 kHz

7

. For convenience,

we compared all results by studying the periodogram in a window around the

maximum observed peak.

7

The total simulated time of the imaging experiment was 32 sec. One can calculate the

periodogram's experimental Nyquist frequency by dividing the total number of points in the

data set by twice the total imaging time.

12



Figure 2: Semi-lateral view of the experimental phantom

The signi�cance of the power spectrum levels has been evaluated by using

the false alarm probability condition, as given by equation (14). For these ex-

periments, we have set a signi�cance level of 80%, which determines a detection

threshold z

o

= 10:62cycles=mm

2

. So, below this threshold any observed peak

is assumed to be noise. Table 1 summarizes the observations made from the

di�erent data sets.

The above table gives the value of the maximum peak power and its corre-

sponding observed frequency, while it identi�es the range of frequencies [around

P (f

max

)], over which the observed power spectrum values are signi�cant. At �rst

glance, one can see that for the moving object, at various frequencies of motion,

the maximum power level changes dramatically if compared to the maximum

power level of a static object. Also, one can identify a shift in the frequency

at which P (f

max

) is observed. As the frequency of motion increases, this shift

tens to become larger. The ROPE'd data shows that this motion artefact sup-

pression method tries to establish both the original static power spectrum levels

and their corresponding observed frequencies.

Looking at the appearance of the power spectral estimation plots for the

above data sets, in �gures 3, 4, 5 and 6, we can identify the qualitative di�erences

between the static and the moving objects, while it is very di�cult to make any

quantitative comparisons. At this stage, we can simply observe minor visual

di�erences between the static and moving power spectra. Only in the case of

�gure 3.C, one can identify additional signi�cant harmonics on the side of the

maximum peak. However, the appearance of the ROPE'd data is dramatically

di�erent. We can see that although ROPE tries to re-instate power spectrum

levels close to those of the static object, in some instances it creates additional

harmonics to the periodogram. This is obvious in �gures 4.B and 5.B, where

signi�cant levels of periodic power peaks can be identi�ed. Again, here we meet

13



Status P (f

max

) Observed Freq. Freq. Range

(cycles=mm

2

) (kHz) (kHz)

static 206.03 26.04 25.82 { 26.18

moving (no ROPE) { 0.10 Hz 211.07 28.04 27.87 { 28.05

moving (ROPE) { 0.10 Hz 169.40 23.83 23.75 { 24.01

moving (no ROPE) { 0.25 Hz 260.75 30.04 29.87 { 30.13

moving (ROPE) { 0.25 Hz 149.94 25.91 25.75 { 25.98

moving (no ROPE) { 0.35 Hz 188.13 34.04 33.76 { 34.25

moving (ROPE) { 0.35 Hz 168.50 11.98 11.62 { 12.10

moving (no ROPE) { 0.45 Hz 296.75 40.04 39.87 { 40.13

moving (ROPE) { 0.45 Hz 236.06 11.90 11.81 { 12.06

Table 1: Maximum observed power spectrum level for simulated data. For

this data a point-like object has been used (5 pixels in diameter), moving with

a motion amplitude set to 15 pixels. Four di�erent experiments were set up,

where the object had four di�erent motion periods, corresponding to frequencies

of 0.10 Hz, 0.25 Hz, 0.35 Hz and 0.45 Hz.

the quantitative observations made in table 1.

The symmetry seen in the periodogram corresponds to the spin-echo char-

acter of the simulated MR signal.

We will discuss these results further in section 6.1.

5.2 Periodogram Analysis on Experimental Image Data

This section presents examples of our Lomb-Scargle periodogram analysis ex-

periments on the k-space data of a 2D-FT imaging phantom study, called mot1.

We have chosen this study for demonstration, as it is an example of a typical

spin-echo imaging acquisition. For themot1 data set, signals have been acquired

by using a 15cm diameter surface

31

P/

1

H coil.

The size of the k-space 2D matrices examined was 256 � 128. To apply the

Lomb-Scargle periodogram on the acquired MR data, we formulated a single

time series from the k-space data matrix points. As explained above, this single

time series is assumed to be unevenly sampled. As a consequence, the input

time series data set for our periodogram analysis consisted of 32,768 k-space data

points. For each point we assigned a corresponding observation time variable.

The sampling of the MR signal was performed every 0.04 msec, while the TR

was 1000 msec. The total experiment time was 128 seconds.

The Lomb-Scargle periodogram has been evaluated at 65,536 independent

frequencies, ranging from 0 kHz to the periodogram's experimental Nyquist

frequency, which for this case was 128 kHz. The Lomb-Scargle periodogram

of the di�erent k-space data sets was investigated separately for the real and

imaginary parts of the data.

The signi�cance of the power spectrum levels has been evaluated by using

the false alarm probability condition that Scargle introduced (see equations 14,

15, and 16). For these experiments, we have set a signi�cance level of 95%,

which determines a detection threshold z

o

= 14:08cycles=mm

2

. So, below this

threshold any observed peak is assumed to be pure noise.
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Figure 3: Periodogram analysis on simulated MR image data: (A) Power spec-

trum estimation of a static object. (B) Periodogram of a point-like moving

object (frequency of motion 0.10 Hz). (C) As in (B) where ROPE is applied.

All the examples discussed below are the Lomb-Scargle periodogram win-

dows around the highest observed power spectral density P (f

max

). These plots

contain 256 periodogram points.
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Figure 4: Periodogram analysis on simulated MR image data: (A) The Lomb-

Scargle periodogram of a point-likemoving object (frequency of motion 0.25 Hz).

(B) As in (A) where ROPE is applied.

Figure 7 shows the comparison between the power spectra of the real (7.A)

and imaginary (7.B) k-space data of a moving phantom's image. We clearly

identify multiple periodic signal harmonics, away from the main peak of the

power spectrum. In the case of the real data set, we can identify peaks at fre-

quencies 1.75 Hz and 2.25 Hz. Their frequency shift from the next signi�cant

peaks (1.90 Hz and 2.10 Hz respectively) is a 0.15 Hz frequency di�erence. A

similar and consistent observation can be made for the imaginary part of this

data set. One can identify signi�cant spectral peaks that have frequency di�er-

ences of 0.15 Hz. For example, we can identify the following pairs: 4.75 Hz {

4.90 Hz, 4.82 Hz { 4.97 Hz, 5.03 Hz { 5.18 Hz and 5.10 Hz { 5.25 Hz. These fre-

quency shifts strongly suggest the existence of the e�ect of the spurious motion

artefact on the MR signals.

Figure 8 repeats the periodogram experiment for the case of the moving

phantom image, corrected by the ROPE method. Here, the small peaks seen

outside the central area of power spectral densities do not comply with the

detection condition, and so they do not represent signi�cant periodic signals.

However, one can make some qualitative observations. The level of noise in the

power spectrum has been reduced and the maximum observed power has been

increased. The appearance of the periodograms indicate that ROPE tries to
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Figure 5: Periodogram analysis on simulated MR image data: (A) The Lomb-

Scargle periodogram of a point-likemoving object (frequency of motion 0.35 Hz).

(B) As in (A) where ROPE is applied.

\put back" the artefact into the original signal. However, as seen in both real

(8.A) and imaginary (8.B) parts of the data set, such lower harmonics exist

within the area of the main signal, although a successful ROPE correction has

been accomplished.

We have investigated the normalised Lomb-Scargle periodogram of data that

has been acquired without the presence of the phase encoding gradient (see

�gure 9). It is clear that the e�ects seen in the two previous examples clearly

disappear, a fact that indicates that the motion artefact appears mainly in the

phase encoding direction of MR images.

Figures 10.A, 10.B and 10.C are the power spectral estimations for the real

data sets of images with di�erent resolutions. We have acquired images of the

moving phantom for 16 � 32, 32 � 64 and 64 � 128 matrices. It is clearly

seen that as the matrix size increases, the e�ect of the motion artefact becomes

prominent. A similar e�ect can be observed on the imaginary part of the above

data sets (see �gure 11).

Finally, we investigated the appearance of the periodogram on an averaged

image data set. Figure 12 shows the real and imaginary parts of k-space (plates

A and B, respectively) of the moving phantom image. Here, each phase encoding

step has been repeated four times and an averaged signal was acquired. On can
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Figure 6: Periodogram analysis on simulated MR image data: (A) The Lomb-

Scargle periodogram of a point-likemoving object (frequency of motion 0.45 Hz).

(B) As in (A) where ROPE is applied.

observe the lack of spurious harmonics outside the main are of the signal.

These results will be further discussed in section 6.2.

5.3 Periodogram Analysis on Experimental Spectroscopy

Data

The most interesting application of the Lomb-Scargle periodogram has been

found on the analysis of spectroscopic data. In a set of experiments, under

the name mot2 we have investigated the behaviour and appearance of the pe-

riodogram for the case of 1D CSI spectroscopic data. The size of the k-space

matrices examined was 128 � 64. As in the case of 2D-FT imaging data, we

formulated a single time series from the k-space data matrix points. The input

time series data set consisted of 8,192 points. Again, for each point we assigned

a corresponding observation time variable. The sampling of the MR signal was

performed every 0.8 msec, while the TR was 1000 msec. The total experiment

time per spectrum was 64 seconds.

The Lomb-Scargle periodogram has been evaluated at 16,384 independent

frequencies, ranging from 0 kHz to the periodogram's experimental Nyquist fre-

quency, which for this case was 64 kHz. The signi�cance of the power spectrum
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Figure 7: The normalized Lomb-Scargle periodogram of a moving phantom.

Power spectral estimation on the real (A) and imaginary (B) parts of the k-

space data.

levels has been again evaluated by using the false alarm probability condition

that Scargle introduced (see equations 14, 15, and 16). For these experiments,

we have again set a signi�cance level of 95%, which determines a detection

threshold z

o

= 12:7cycles=mm

2

. So, below this threshold, any observed peak is

classi�ed as pure noise.

Figure 13 compares the periodograms of stationary (A), moving (B) and

ROPE'd (C) phantom spectroscopic data. The periodogram is evaluated only

for the real part of the signal. It is clear that �gure 13.B shows additional har-

monics, contaminating the pure signal. This suggests strongly that the e�ect of

motion in MR spectra can be diagnosed by the Lomb-Scargle Periodogram. As

we discussed in [6], motion e�ects are not easily detectable in spectra. Usually,

one detects an increased noise level and consequently a loss in the expected

signal to noise ratio. Frequently, due to this manifestation of the breathing

artefact, spectroscopists do not suspect the existence of any systematic errors.

These results suggest very strongly that this technique can become a valuable

tool for MRS.

The visual observation of both the artefacted and ROPE'd spectroscopic

data justi�es our �ndings for the application of ROPE in spectroscopic CSI.

Actually, the motion artefact is characterized in our experiments by three factors
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Figure 8: The normalized Lomb-Scargle periodogram of a moving phantom,

treated with ROPE. Power spectral estimation on the real (A) and imaginary

(B) parts of the k-space data.

in the periodogram:

� The existence of signi�cant harmonics, additional to the main peak corre-

sponding to the power of the signal.

� The reduced total power, observed on the maximum peak P (f

max

).

� The increased level of noise.

Unfortunately, it has proven very di�cult to extract any quantitative data

from these experimental results. This di�culty can be explained by the fact that

MR data, unlike astronomical data for which the Lomb-Scargle Periodogramwas

originally intended, might present a more complex spectral composition, because

of the way in which MR signals are acquired. The encoding processes in both

MRI and MRS create rapid changes and variation on the spectral content of the

observed signal. These variations might not allow the identi�cation of consistent

quantitative changes (related to the breathing artefact) in the periodogram.
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Figure 9: Example of an artefacted image data, acquired without the presence

of the phase encoding gradient.

6 Discussion

6.1 The Application of the Lomb-Scargle Periodogram to

Simulated MR data

The idea behind the use of simulated data to evaluate the output of the normal-

ized Lomb-Scargle periodogram was to try to create time series data sets where

we would have prior knowledge of the amplitude, period and pattern of the mo-

tion. We have attempted to identify both quantitative and qualitative factors

for the characterization of motion artefacted data. We have concluded that the

total spectral power from signals belonging to data sets contaminated by the

e�ects of motion is usually observed to be reduced, if compared with \clean"

images. It seems that the shape of the power spectral peaks is altered due to the

e�ect of motion. Moving objects produce periodograms, which have a \rough"

appearance if compared to the more \settled" appearance of static objects, as

can be seen in �gures 3.B, 4.A, 5.A and 6.A, where these periodograms have

an increased level of noise, which in one of the cases (�gure 5.A) appears as

spurious harmonics, shifted from the pure signal.

One interesting aspect of these results was that the frequency at which the

P (f

max

) is observed in a data set of a static object, is dramatically shifted as the

frequency of motion increases. The application of the ROPE algorithm shows

that this shift is re-instated in the appearance of the periodogram. However,

one can easily identify the increased spurious e�ects that ROPE'd data produce

on the normalized Lomb-Scargle periodogram. This can be explained by the

fact that ROPE fails to reduce high-order ghosts and in some cases cannot

eliminate the e�ects of blurring. In particular, this is shown on the power
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Figure 10: The Lomb-Scargle periodogram for image data (real part) with dif-

ferent matrix sizes: (A) 16 � 32, (B) 32 � 64 and (C) 64 � 128.

spectral estimation of a ROPE'd data set in �gure 4.B.

All this knowledge we acquired from the simulated periodogram experiments

is essential for the understanding of the appearance of the normalized Lomb-

Scargle periodogram on experimental data. We discuss these results in the next

section.
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Figure 11: The Lomb-Scargle periodogram for image data (imaginary part) with

di�erent matrix sizes: (A) 16 � 32, (B) 32 � 64 and (C) 64 � 128.

6.2 Can the Lomb-Scargle Periodogram be a Valuable

Tool for Analysis of Experimental MR data?

In this section of our discussion, we elaborate on the observations made on the

application of the Lomb-Scargle periodogram on experimental MRI and MRS

data.

In section 5.2 we examined the appearance of the periodogram on 2D-FT

MRI data. As can be seen from all examples, the periodograms have a more
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Figure 12: Signal averaging and the Lomb-Scargle periodogram.

complex structure. In �gure 7 we showed a comparison between the power spec-

tra of the real (7.A) and imaginary (7.B) k-space data of a moving phantom's

image. We have clearly identi�ed multiple periodic signal harmonics occur-

ring at various distances from the main peak of the power spectrum. It was

very interesting to discover, for both real and imaginary data, a consistent fre-

quency shift between these harmonics and the main power spectral peaks. As we

showed, this di�erence was equal to a 0.15 Hz

8

frequency di�erence. Although

it is unclear how this quantity is related to the artefactual character of motion,

it might be an indication to identify the frequency modulation that motion in-

troduces to the MR signal. However, as the method of extirpolation of the fast

periodogram algorithm arte�cially creates an \even-like" sampling of the MR

time series data, it might as well a�ect this sampling frequency value. Further-

more, spatial encoding (i.e. phase and frequency encoding) of the MR signal

might a�ect the spectral content of the periodogram. Unfortunately, we cannot

yet claim that the Lomb-Scargle periodogram gives us quantitative information

for the study of MR data.

In �gure 8 we repeated the periodogram experiment for the case of the

moving phantom image, corrected by the ROPE method. Here, one can make

qualitative observations. As in the case of the simulated data, the level of noise

8

It is interesting to note that the motion frequency was also 0.15 Hz.
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Figure 13: Lomb-Scargle periodogram analysis of spectroscopic data. (A) The

power spectrum estimation for spectra measure on a stationary phantom and

(B) on a moving phantom. (C) Periodogram of motion artefacted spectroscopic

data that has been treated by the ROPE method.

in the power spectrum has been reduced and the maximum observed power has

been increased. The appearance of the periodograms indicate that ROPE tries
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to \put back" the artefact on the original signal. However, as seen in both real

(8.A) and imaginary (8.B) parts of the data set, lower harmonics exist within

the area of the main signal, although a successful ROPE correction has been

accomplished. This again may correspond to the inability of ROPE to correct

high-order ghosts and to deal with the e�ects of blurring.

The other observations made on the examples of data with di�erent matrix

size and averaged artefacted data are purely qualitative and prove once again

some known factors that increase or reduce the intensity of the motion artefact.

This result enhances our position that the Lomb-Scargle periodogram cannot

be used as a quantitative tool for assessing k-space MR data. Moreover, this

fact forbids the technique from being used as an indicator for the control of

the motion artefact. However, the results found in the case of MR spectroscopic

data are more promising. The visual observation of the periodogram of both the

artefacted and ROPE'd spectroscopic data proves that the observed noise levels

on spectra might originate from systematic errors as well. Our study showed

that the motion artefact in MRS may be characterized by three factors in the

Lomb-Scargle periodogram:

� The existence of signi�cant harmonics, additional to the power of the

signal.

� The reduced total power, observed on the maximum peak P (f

max

)

� The increased level of random noise.

The above indicators, although at this stage qualitative, suggest that the

Lomb-Scargle method could be more generally used as a diagnostic tool for

identifying other systematic errors in human in vivo spectroscopic experiments.

7 Conclusion

Our study strongly suggests that the Lomb-Scargle periodogram can o�er inter-

esting qualitative information, relating to the e�ect of motion artefacts in both

clinical MRS and MRI. Our observations, in particular for the case of MRS,

lead us to the conclusion that the Lomb-Scargle periodogram could be more

generally used as a diagnostic tool for identifying technical errors in human in

vivo spectroscopic experiments. At present, the fast algorithm calculates the

periodogram within a time span of four minutes, even for large data sets consist-

ing of 65,536 points. Appropriate code optimization can improve the calculation

time of the periodogram. Then, this technique can be used in real-time as a

quick diagnostic method of the state of spectroscopic systems. If necessary, the

MRS system can then be re-calibrated or an appropriate action to eliminate

systematic errors can be taken.

We believe that through this paper we o�er a new point of view in the

study of the respiratory motion artefacts in MRI and MRS. Moreover, we have

identi�ed a new technical diagnostic tool that can be further developed and used

to detect systematic errors in MR systems.
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