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Abstract

Orthodox cognitive science claims that situated (world-embedded) activity can be

explained as the outcome of in-the-head manipulations of representations by computa-

tional information processing mechanisms. But, in the �eld of Arti�cial Life, research

into adaptive behaviour questions the primacy of the mainstream explanatory frame-

work. This paper argues that such doubts are well-founded. Classical A.I. encountered

fundamental problems in moving from toy worlds to dynamic unconstrained environ-

ments. I draw on work in behaviour-based robotics to suggest that such di�culties

are plausibly viewed as artefacts of the representational/computational architecture

assumed in the classical paradigm. And merely moving into connectionism cannot

save the received orthodoxy. If we adopt the perspective according to which neural

networks are most naturally conceptualized as dynamical systems, it becomes appro-

priate to treat such networks as computational devices only if the network-dynamics

are deliberately restricted. A di�erent explanatory framework is required once arti-

�cial neural networks are developed both to exhibit dynamical pro�les comparable

to those displayed by biological neural networks, and to play the same adaptive role

as biological networks, i.e., to function as the control systems for complete situated

agents. I close by describing an example of a dynamical systems explanation of situ-

ated activity.

1 Two Dogmas of Cognitive Science

The orthodox view in cognitive science has its roots in the representational theory of mind

| the empirical hypothesis which claims that the crucial aspects of cognition involve the

processing of semantically interpretable internal states which function to encode objective

states of an external world. This internal-representation-hypothesis is easily linked to the

complementary thought that cognition is fundamentally computational, because the ex-

istence of `in-the-head' computational information processing mechanisms would seem to

provide some hope of an explanation as to how a physical system could realize a repre-

sentational system. Stated thus, these are extremely broad commitments, since what is

meant exactly by `representation' or `computation' can di�er from theory to theory, and
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from model to model. During the course of this paper, I shall describe some alternatives.

But notice that the received explanatory framework, as I have characterized it, covers

both classical theories and (most) connectionism.

Once an interesting notion of `causally e�cacious internal state' plays some role in the

explanatory story, representational/computational accounts seem to �nd a foothold. But

whilst it may seem just obvious to many researchers that this orthodox framework provides

the appropriate explanatory tools for the scienti�c explanation of the relevant behaviour,

there is a line of research in Arti�cial Life which indicates that the priority usually accorded

to the concepts of `representation' and `computation' is far from guaranteed. Indeed

the time to ring the bell signalling the end of the existing orthodoxy may well be nigh.

Exploring just such a possibility is the purpose of this paper.

2 Arti�cial Life and Situated Agents

The amorphous nature of the set of interests and approaches brought together under the

umbrella-term `Arti�cial Life' (A-Life) | from models of RNA replication and sensory-

motor activity to collective intelligence and population dynamics | makes de�ning the

scope of the �eld tricky, to say the least. I shall concentrate on those areas of research

which have a direct bearing on the argument of this paper.

In A-Life an autonomous agent is a fully integrated, self-controlling, adaptive system

which, while in continuous long-term interaction with its environment, actively behaves

so as to achieve certain goals. So for a system to be an autonomous agent, it must

exhibit adaptive behaviour , behaviour which increases the chances that that system can

survive in a noisy, dynamic, uncertain environment. We should identify a system as an

adaptive system only in those cases where it is useful to attribute survival-based purpose

and purposes to that system. So rivers don't count as adaptive systems, but moths do.

Naturally-occurring adaptive behaviour is the result of evolutionarily determined pressures

on the survival and reproduction prospects of embodied creatures. Hence the class of

naturally-occurring autonomous agents includes humans, non-human mammals, �sh and

insects.

1

On evolutionary grounds, it seems reasonable to hypothesize that human linguistic

competence and deliberative thought are overlays on a prior (and, in terms of survival,

more fundamental) capacity for adaptive behaviour. Under the inuence of this sort of

thought, the A-Life-orientated search for an understanding of intelligence starts not with

the sort of reasoning capacities possessed by humans, but with the adaptive behaviour of

simpler, although whole, situated agents that perceive and act. The A-Life methodology

is to develop complete control systems for arti�cial autonomous agents | often called

animats [28]. Animats can be real autonomous robots with actual sensory-motor mecha-

nisms, or simulated agents in interaction with simulated environments. The aim of such

work is not simply to produce useful robots which exhibit robust behaviour in uncertain

environments. The goal is to increase our understanding of the mechanisms underlying

adaptive behaviour, through the synthesis and analysis of artefacts.

2

1

As with most (all?) de�nitions of concepts, there are potential problem cases. By the de�nitions

o�ered here, some plants might count not only as adaptive systems, but also as autonomous agents. I shall

just stipulate that, in the context of this paper, the class of autonomous agents excludes plants. To me

such a move is intuitively correct; but I accept that some may �nd it more than a a little arbitrary.

2

The fact that the behaviour of a system is simulated on a computer does not automatically mean that

that system is best explained in computational terms. We can use a computer to simulate the behaviour of

a uid, without concluding that the uid is computing what to do. Similarly we may use representational
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A-Lifers tend to adopt a standpoint according to which cognition should be seen as an

adaptive phenomenon. On this view (which I endorse) we can make sense of a cognitive

system as the control system for an autonomous agent because we can make prior sense of

that creature's environmentally embedded behaviour | its situated activity | as adaptive

behaviour. Two immediate implications of this general way of conceptualizing cognition

are that cognitive science itself should begin as the science of situated activity and that

the fundamental properties of naturally-occurring cognition (and not just its `mechanical

realization') can be investigated by the biological sciences (including neurophysiology,

ethology, behavioural ecology and evolutionary theory). This second implication is in

harmony with the fact that in A-Life, biological constraints are not (as they are in most

orthodox cognitive science | see later sections) thought of as `mere' implementational

details. On the contrary, biological factors are considered crucial to an understanding of

the adaptive phenomenon in question.

3 A Shakey Start

In the classical approach to Arti�cial Intelligence (A.I.), a `representation' is thought of

as either an atomic symbol or a complex molecular structure constructed through the

systematic recombination of simpler symbolic elements according to syntactic rules. The

meaning of a molecular representation is a function of the meanings of the constituent

symbols plus the syntactic structure of the complex formula. In other words, classical rep-

resentational systems feature a combinatorial syntax and semantics. With such a structure

to the representations, the computational principles by which those representations are

manipulated or transformed can be de�ned over the structural properties of those repre-

sentations, the `computations' being the ordered steps through which the manipulations

and transformations are achieved.

3

Classical A.I. embraces the principles of homuncular decomposition, i.e., the view that

we can compartmentalize a system into a hierarchy of specialized sub-systems that (i)

solve particular sub-tasks by manipulating and/or transforming representations through

computations and (ii) communicate the computed outputs to each other by passing repre-

sentations. It is important to stress that homuncular talk of `little people' in the head is

strictly metaphorical. The commitments are to the actual existence of internal structures

that the external observer can usefully interpret as information-bearing representational

states, and to the actual existence of internal modules that the external observer can use-

fully interpret as carrying out the manipulation, sending and receiving of representational

tokens in order to realize some overall input-output mapping.

In sharp contrast to the fundamental tenets of most work in A-Life, classical A.I. has

concentrated on abstracted sub-domains of human cognition (such as natural language

processing or formal reasoning) with no master-plan for how to integrate all the di�erent

specialist modules either with one another, or with sensing and action, to create a complete,

intelligent agent. (Even work in computer-vision has tended to concentrate on scene

analysis and to cut itself o� from questions of ongoing activity in a world.) Furthermore,

the classical assumption has been that the inevitably messy and complicated business

of achieving real-time interaction with an environment is essentially an implementation

headache to be overcome by the hardware department. Under these circumstances, it is

relatively unsurprising that robotics rarely crept into the spotlight. But my arguments in

frameworks (such as mathematics) in our modelling processes without concluding that the systems under

investigation necessarily use those representations in order to achieve the observed behaviour [4].

3

Newell and Simon [23] present a full statement of this view..
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this paper are concerned directly with the control systems required by situated autonomous

agents. So it is instructive to take note of what happened when classical A.I. actually

concerned itself with robots.

Classical robots (e.g., Shakey [24]) featured control systems designed according to the

following principles (dubbed \decomposition by function" by Brooks [7, 8]). A perception-

module constructs a symbolic (conceptual-level) description of the external world. This

world-model is then delivered to a central system made up of sub-modules for specialized

sub-problems such as reasoning and planning. These sub-modules manipulate the repre-

sentations in accordance with certain computational algorithms, and then output a further

symbolic description (this time of the desired actions) to which the action-mechanisms then

respond. Such organizational principles clearly respect the concept of homuncularity.

Lurking behind the classical methodology is a crucial premiss to the e�ect that, even

given accuracy problems resulting from noisy or drifting sensory-motor mechanisms, it

is still possible to build an adequate, stored world-model that can be manipulated in

real-time. This is required so that, for the purposes of planning action, operating in an

actual world can be ignored in favour of the internal representations. But as A-Lifers

(and others) have observed, once an autonomous agent's domain of activity is a dynami-

cally changing, uncertain environment, a commitment to maintaining an accurate internal

world-model could well be a devastating error. The problem amounts to an explosion

in the demands placed on representational and computational resources. This makes the

problem intractable on the time-scales relevant to the realization of adaptive behaviour, a

fact which would signal the untimely end of many a predator-threatened animal.

It is here that one of the most formidable hurdles to confront orthodox arti�cial in-

telligence comes to the fore | the notorious frame problem. In its strictest form, this is

the problem of characterizing the aspects of a state that are not changed by an action.

However, it has come to be used to name a family of related problems to do with update

and relevancy. The basic question can be posed like this: how, given particular sets of

circumstances, goals and actions, does an autonomous agent come to respond to those

state-changes in its world which really matter, whilst ignoring those which are irrelevant?

Having relevancy heuristics just won't do; how do the processing mechanisms access just

those relevancy heuristics which are relevant? An in�nite regress threatens.

Our model-building classical robot must meet the challenge presented by the frame

problem, because, to act e�ectively, that robot has to keep its internal world model in step

with its external environment. In toy worlds, the designer can `overpower' those aspects

of the frame problem that arise, either by taking comprehensive account of the e�ects of

every action or change, or by working on the assumption that nothing changes in a scenario

unless it is explicitly said to change by some operator-de�nition. This explains why the

frame problem was nothing more than a nuisance in the `blocks-world' simulations popular

in certain stages of the A.I.-enterprise. (Blocks-worlds were arti�cially restricted task-

domains in which programs confronted toy problems, and in which the human designer

prescribed the semantics of the environmental properties and relations of importance.)

Given this, it is a telling observation that robots instantiating the classical principles

of organization tended to be highly dependent for their performance on the fact that

their operational environments were carefully engineered to suit the robots' processing

strategies. For example, in the case of Shakey , the robot's environment consisted of

rooms sparsely populated by static blocks. These blocks were painted di�erent colours

on di�erent planar surfaces to facilitate edge detection in a visual image. Moreover,

Shakey's environment was essentially static. A `demon' was occasionally allowed to alter

the position of some of the obstacles when Shakey wasn't looking, but this hardly makes
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the environment dynamic in any ordinary sense. And notice that the human designer plays

the same role in the case of the environmental properties and relations to be recovered by

the classical robots as she does in the case of blocks-worlds. That is why the designers of

Shakey could adopt the second of the identi�ed toy-world `solutions' to the frame problem.

(One response to this sort of observation would cite the possible role of learning algorithms

in improving the adequacy of the robot's representations. But as long as the semantics

of the task-domain are carefully prescribed by the human-designer, and the robot's job is

to build an objective internal model of the properties and relations of its environment by

using the designer's pre-speci�ed semantic primitives, we are still in the blocks-world |

whether or not learning is part of the process.)

So the evidence suggests that it is possible to adopt the sort of strategies deployed in

classical robots only in those cases where the environment is specially, and arti�cially, con-

trolled. And things get worse (for the classicist). When an engineer approaches the task

of designing a system to solve a complex problem, the standard tactic is to decompose

the problem so that it can be collectively surmounted by simpler, communicating sub-

systems with well-de�ned functions and interfaces. In general, then, engineers work with

well-speci�ed problems, and engineering solutions reect the designer's functional concep-

tualization of the problem. Such a methodology is deeply entrenched in computational

engineering, in which, as we have seen, functionally speci�ed modules | homunculi |

carry out well-de�ned computations and communicate with each other via representations.

But there is reason to think that the problem of synthesizing environmentally embed-

ded adaptive behaviour is not well-de�ned enough for the traditional human-intervention

in the input-output loop generally to be pro�table. For animals, the primary adaptive

goal is to survive long enough to reproduce. In a noisy, dynamic, and possibly hostile

environment, the constraints on achieving this goal are not only inherently di�cult to

specify but, because of the existence of coevolutionary situations, where adaptations by

one species e�ectively alter the environment of another species, the problem itself is subject

to evolutionary change. If arti�cial autonomous agents are embedded in similarly dynamic

and uncertain environments, then the relevant constraints will also be di�cult to specify

and unavoidably open-ended. Moreover, natural evolution merely retains the designs of

those creatures which consistently survive long enough to reproduce. The only constraint

on the agent's internal dynamics is that they allow the system to achieve the required

adaptive behaviour. In nature there is no assumption to the e�ect that the organization

of the agent's control system must embody the sort of computational-style decomposition

traditionally favoured by human designers.

4 Breaking the Mould

For various reasons, the �eld of behaviour-based robotics (e.g., [7, 8, 14]) has become al-

lied with the A-Life movement. The behaviour-based approach advocates highly reactive

control architectures, with no central reasoning systems, no manipulable symbolic repre-

sentations, and radically decentralized processing. The idea is that individual behaviour-

producing systems, called `layers', are individually capable of | and generally responsible

for | connecting the robot's sensing and action in the context of, and in order to achieve,

some ecologically relevant behaviour. Then, starting with layers which achieve simpler

behaviours such as `avoid objects' and `explore,' layers are added, one at a time, to a

debugged, working robot, so that overall behavioural competence increases incrementally.

The layers run in parallel, a�ecting each other only by means of suppression or inhibition

mechanisms.
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Behavioural decomposition is clearly at odds with the classical picture. The principles

of homuncularity do not apply and there is no central locus of reasoning and control.

In fact, the process of attempting to build a centrally stored, `objective' world model is

rejected as constituting a positive hindrance to real-time activity in a messy environment.

In its place is a view according to which a situated agent should operate by continuously

referring to its sensors as opposed to some internal representation. A world is a source of

surprises, but it is also a source of informational continuity through its ongoing history.

4

However the aim is not to reject outright any form of representation. In fact, there may

well be some representational interpretation of certain individual layers. For example,

Franceschini et al. [15] implement a two-layered behaviour-based architecture in which

a `goal pursuit' layer runs in parallel with an obstacle avoidance layer. The goal pursuit

layer functions by constantly de�ning a robot-egocentric deictic map of obstacles in polar

coordinates, in relation to the instantaneous direction in which the robot is heading. The

map is not an objective representation which is stored, recalled and updated; rather it is

agent-centred and dynamically created as the robot moves through its environment. In

this approach, the classical separation of data-structure and computation is not present;

and a `representation' is a decentralized, non-manipulable, essentially active structure,

used in the context of a speci�c behaviour. All of this is in contrast to the all-purpose,

task-independent, object-centred world-models favoured in the classical paradigm.

How does this relate to the sorts of di�culties faced by the classical approach to

situated action? Each layer in a behaviour-based control system is closely coupled to

the robot's environment along what might be called a `channel of ecological signi�cance'

which connects sensing to action in the context of the speci�c adaptive behaviour. Thus

the paradigm seemingly by-passes the computationally intractable problem of maintaining

centrally-stored objective representations. In addition, certain cognitive theorists (such as

Churchland [9]) have argued that the frame problem itself is an artefact of the classical form

of representation. So it is conceivable that the fundamental commitments of the behaviour-

based approach (including the parsimonious deployment of deictic representations) will

allow robots to side-step (temporarily at least) the debilitating e�ects of the frame problem.

Indeed, the approach has produced robots that have performed tasks | generally with

reasonable competence | in uncertain, dynamic environments. For example, Herbert

[14], a robot featuring a fourteen-layer behaviour-based architecture, moved autonomously

around the cluttered, people-populated halls of M.I.T., stealing empty soda-pop-cans and

depositing them in a central bin.

The message of this section is that, in the battle to achieve adaptive behaviour in

artefacts, progress has been made by A-Life roboticists who recognize that many adap-

tive problems are solved primarily through the dynamics of the interaction between the

agent and its environment, and not by the construction and manipulation of objective

representations. If this is the right way to go, then the very notion of a `representation'

must undergo what, on even the most conservative estimate, amounts to a fundamental

transformation. But a more radical conclusion may be beckoning.

4

As Boden [6] reminds us, the observation that the best source of information about the world is the

world itself was made by some researchers in orthodox cognitive science. Unfortunately it was no sooner

made than forgotten by most of the �eld.
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5 Thinking about Networks

In the natural world, sophisticated situated activity arises through the incremental evolu-

tionary development of biological neural networks as the control systems for animals. So it

seems likely that an arti�cial neural network of some description will provide a pro�table

basic structure for an animat control system. But what sort of networks should be the

focus of attention? And what implications does the answer to that question have for the

explanatory roles of representations and computations? The thought here is that whilst

the received explanatory framework may well be appropriate for the sorts of models and

scenarios usually studied by connectionists, such apparent domestic harmony may mask a

rather unstable marriage of convenience. This instability becomes manifest once we face

the sorts of issues which dominate A-Life.

The overwhelming majority of connectionists conceptualize neural networks as compu-

tational devices which, by calculating outputs from inputs, e�ect transformations between

representations. The most commonly championed sense of `connectionist representation'

refers to a pattern of activation distributed over a network of units, where an individ-

ual unit may have no isolable representational interpretation. The global computations

| the transformations between input and output representations | occur as spreading

activation patterns on the basis of local computations by individual units. These local

computations are determined, in part, by the values of the connection strengths.

5

Any attempt to articulate a radically di�erent view of neural networks depends on there

being a conceptual framework for understanding network-activity which does not assume

representations and computations as theoretical primitives. Fortunately such a framework

is readily available. A number of connectionists concerned with cognitive modelling have

already suggested that dynamical systems theory is a natural explanatory language with

which to describe the behaviour of neural networks.
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In essence, a dynamical system is any system for which, potentially at least, we have a

rigorous analysis of the way it evolves over time. Formally, this is any system for which we

can provide (1) a �nite number of state variables which, given the interests of the observer,

adequately capture the state of the system at a given time, and (2) a set of state space

evolution equations describing how the values of those variables change with time. Given

(1), we can produce a geometric model of the set of all possible states of the system called

the state space of that system. A state space has as many dimensions as there are state

variables for the system, and each possible state of the system is represented by a single

point in that space. Given (2), and some initial conditions | a point in the state space

| subsequent changes in the state of the system can be plotted as a curve in the state

space. Such a curve is called a trajectory of the system, and the set of all such trajectories

is the system's phase portrait .

An attractor is a state of the system to which trajectories passing nearby tend to

converge. Now consider some attractor P. The set of states such that, if the system is

in one of those states, the system will evolve to the attractor P, is called P's basin of

attraction. The trajectories which pass through points in the basin of attraction on the

way to the attractor, but which do not lie on the attractor itself, are transients of the

system. There may well be several attractors in a single state space, and these attractors

5

The literature on connectionist representation is huge. Clark [10] provides clear coverage of the key

issues.

6

See, for example, [20, 26, 27]. Although these papers all describe neural networks as high-dimensional

dynamical systems, there is no overall agreement as to the implications of such a view for the status of

computational/representational forms of explanation.
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may be of di�erent types. For instance, point attractors are single points in the state

space which represent constant solutions to the system, whilst periodic attractors represent

oscillatory solutions. Chaotic attractors represent highly complex behaviours in which a

dynamical system exhibits what is known as sensitive dependence on initial conditions .

This means that if two di�erent initial states are chosen, which are even a tiny distance

apart, the two subsequent trajectories will diverge from each other very quickly. On

average, the divergence will be exponential. These exponentially diverging trajectories

remain bounded on the attractor without intersecting. So they fold back on themselves,

creating an in�nitely layered chaotic attractor. Such attractors are common in high-

dimensional, non-linear systems.

7

Computational systems (de�ned by reference to Turing machines) are dynamical sys-

tems. But the set of computational systems (so de�ned) �lls one tiny corner of the space of

possible dynamical systems [16, 27]. This tells us only that that the language of dynamical

systems theory provides a more general conceptual framework than that on o�er from the

orthodox computational camp. In the present context, what we need to know is whether

the dynamics of connectionist networks lie outside the space occupied by computational

systems.

So, given the characterization of a connectionist representation as a distributed pat-

tern of unit-activations, let us think about the activation-space dynamics of a standard

connectionist network during its processing stage. Typically, a human introduces input

data to the system. This places the network at some initial point in activation space |

a state space with as many dimensions as there are units in the network, and where a

point in that space is de�ned by the simultaneous activation values of each of those units.

If the network has been trained successfully, this initial state will be in the basin of at-

traction of a point attractor which (under some suitable semantic interpretation) encodes

the correct solution. The successive states of the network will trace out a transient of the

system through activation space on the way to the point attractor where, upon arrival,

the system will come to rest.

It seems quite natural to describe such network-dynamics in the language of the ortho-

dox framework. Indeed someone impressed by the explanatory power of representations

and computations should not feel unduly threatened by a picture according to which the

processing of a network is conceptualized as a trajectory through activation space from an

initial state to a �xed point attractor. The start and end points of the trajectory can be

decoded as vectors of activation values which, in a more or less standard fashion, can be

treated as input and output representations with semantic interpretations. (Sometimes

the interpretation of interest has to be decoded from hidden unit activity patterns using

statistical techniques such as cluster analysis. This does not a�ect the fundamental dy-

namical pro�le.) Notice also that there is no violation of the principles of homuncularity.

Either the network itself is carrying out some functionally well-de�ned sub-task and so

can be viewed as one homunculus among many, or (as Harvey [17] observes) individual

layers within a multi-layered network are thought of as modules which communicate with

each other by passing representations. The processing story on o�er here seems essentially

equivalent to | or interpretable as | a matter of computing outputs from inputs through

the manipulation and communication of representations. This is all well and good; but

why should the activation-space dynamics of arti�cial neural networks be restricted to

unperturbed trajectories to point attractors? It is time for an important reminder.

It has become depressingly commonplace to �nd far too much being made of the biolog-

7

For a friendly but thorough introduction to dynamical systems theory, see [1].
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ical `feel' of standard connectionist networks. Although the processing architecture of such

orthodox networks may resemble the basic abstract structure of the brain, there are sig-

ni�cant areas of divergence between standard connectionist networks and their biological

relations. For instance, certain restrictions often placed on connectivity in connectionist

networks (e.g. feed-forward activation passes or symmetrical connections) are, generally

speaking, not reected in the real nervous systems; biological networks are inherently

noisy; there is rarely any real correspondence between connectionist units and biological

neurons (the latter are far more complex); and, unlike mainstream connectionist networks,

biological networks typically feature many distinct types of neuron, a point which holds

whether we are talking about the visual system of the y [15] or the human brain [2].

The e�ect of these dissimilarities is that the intrinsic dynamics of standard connection-

ist networks are positively impoverished when compared to those exhibited by biological

networks. To appreciate the complexity of neural dynamics, consider that one of the im-

plications of Skarda and Freeman's [25] model of the neural dynamics underlying odor

recognition and discrimination in rabbits is that it is the chaotic dynamics of the olfactory

bulb which enable the system to add new odors to its repertoire of learned odors. A chaotic

background state prevents convergence to previously learned neural response-states and

allows the generation of new states. So the indication is that, without some reference to

the relevant chaotic dynamics in the neural system, any neural account of such sensory

recognition capacities would be incomplete (at best). It is surely likely that conclusions

similar to those arrived at in the Skarda and Freeman study will apply to other sensory

modalities and other sensory skills. The accompanying thought is that it must at least

be plausible that network-dynamics more complex than �xed points will play a signi�cant

role in any explanatory paradigm which takes seriously the biological basis of cognition.

It is time to introduce a class of arti�cial neural networks which can do justice to the

intuition that the sort of complex dynamics realized by biological neural networks may

well be relevant both to synthesizing adaptive behaviour and to explaining cognition. Pre-

sumably the following architectural principles are not the only ones which would result

in the style of complex dynamical behaviour I have in mind. However, these particular

principles are suggestive because, to some extent, they capture certain styles of constraint

(identi�ed above) which are respected by real neural structures. Consider arti�cial neu-

ral networks that feature the following sorts of properties: deliberately introduced noise,

continuous-time processing, real-valued time delays on the connections between the units,

units with non-uniform activation functions, and connectivity which is not only both di-

rectionally unrestricted and highly recurrent, but also not necessarily subject to symmetry

constraints. Arti�cial neural networks featuring some or all of these properties are cham-

pioned in [4, 5, 13, 18, 21, 29]. These dynamical neural networks are capable of producing

far richer intrinsic dynamics than those produced by mainstream connectionist systems.

To sum up this section: Orthodox connectionists draw on the gross abstract structure of

extant biological networks, without paying due attention to the potentially relevant details

of that structure. The standard restrictive architectural assumptions reect the granting

of minimal theoretical weight to the biological basis of naturally occurring cognition, a

move which we can recognize as being made by classicist and connectionist alike. Whilst

my intention is not to campaign on a `no abstractions allowed' ticket (which would y in

the face of scienti�c method), certain key aspects of the dynamical pro�les of biological

neural networks may well be essential to our explanations of the corresponding cognitive

capacities; i.e., the dynamics of arti�cial neural networks should reect those of biological

neural networks. What the `key aspects' of the dynamics are is a matter to be decided by

empirical research, not philosophical prejudice. \Fair enough" (perhaps I hear you say)
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\but what does all this tell us about representational/computational ways of thinking?"

We need take just one more A-Life-oriented step.

6 Situated Control Systems

Mainstream connectionists have tended to follow their classical cousins into abstracted

sub-domains of cognition. But what happens when we confront not only neurobiological

dynamics, but the dynamics of situatedness as well? A nervous system is a biological

network that constitutes the basis of the control system for a situated agent. (Remember

cybernetics.) So, in the study of arti�cial situated agents, it seems that we should investi-

gate the properties and potential of dynamical neural networks as the control systems for

animats.

Consider the A-Life paradigm of Evolutionary Robotics, where genetic algorithms (pro-

cesses inspired by Darwinian natural selection) are used to develop dynamical neural

network control systems for autonomous robots. (The work described here is by Cli�,

Husbands and Harvey. See [12, 19] for fuller details.) Loosely speaking, the evolutionary

methodology is to set up a way of encoding neural network architectures as genotypes,

and then, starting with a randomly generated population of network-controllers, and some

evaluation task, to implement a selection cycle such that more successful networks have

a proportionally higher opportunity to contribute genetic material to subsequent gener-

ations. Over successive generations, better performing controllers are discovered. One

general commitment of this work is that as few restrictions as possible are placed on the

potential structure of the network. The evolutionary roboticist decides on the robot's

immediate task, but endeavours to stay out of the business of how the robot's `nervous

system' should work in order to achieve the appropriate behaviour. For example, in the

work just mentioned, the number of internal units, the number, directionality, and recur-

rency of the connections, and certain parameters of the visual system are placed under

evolutionary control. (So the sensory-motor systems are considered to be part of the con-

trol system.) The job of arti�cial evolution is to tune the control-system-dynamics to the

environment in such a way that the robot can complete the evaluation task. This approach

has resulted in the arti�cial evolution of sensory-motor controllers which succeed in guid-

ing robots in the performance of simple homing and target-tracking tasks, and which are

adaptive in that they exhibit considerable robustness when tested on generalized versions

of the speci�c tasks for which they were actually evolved.

8

So the arti�cial control-networks are developed in such a way that there is no forced

conformity to human-friendly styles of functional/homuncular decomposition, or, indeed,

to the principles of behavioural decomposition. This is not to say that arti�cially evolved

control systems will necessarily exhibit no form of modular decomposition. But no par-

ticular form of decomposition is assumed at the outset of the evolutionary process.

9

The

`hands-o�' principle has a further e�ect. In standard connectionism, the human designer

not only makes the key architectural decisions, but also intervenes directly in the semantics

of the input-output loop. She uses a prior theory of the problem space (often informed by

theories developed within classical approaches) to stipulate the semantic categories used

by the network's input and output representations. These categories de�ne the content

8

Related approaches to the development of neural networks include, among others, [4, 5, 29]. In these

studies a genetic algorithm is used to search a prede�ned �nite space of possible network architectures.

This is in contrast to the `open-ended' approach adopted by Harvey, Cli� and Husbands.

9

Signi�cantly, there is evidence that some arti�cially evolved networks may submit to behavioural

decomposition [21].
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of the relevant input-output mappings. But in the evolutionary approach, the sensor and

motor interfaces have no semantic interpretation, and all `meaningful' interpretations of

the robots' internal dynamics have to be settled `after the event' so to speak, when the

control network has been evolved. (Hence we witness the birth of computational neu-

roethology [3, 11].) So how should we go about explaining the environmentally embedded

behaviour of situated agents who feature dynamical neural networks as control systems?

The dynamical systems approach to situated activity holds that an agent and its envi-

ronment should be conceptualized as coupled dynamical systems.

10

The ongoing behaviour

of a dynamical system is speci�ed by the current state of the system and the evolution

equations which govern how the system changes through time. (See section 5.) Certain

values in a state space evolution equation specify quantities that a�ect the behaviour of

the system without being a�ected in turn; these are called the parameters of the system.

Any particular phase portrait will be de�ned relative to a speci�c set of parameter val-

ues. The crucial relation of coupling obtains when two separable dynamical systems are

bound together in a mathematically describable way, such that, at any particular mo-

ment, the state of either system �xes the dynamics of the other system, in that some of

the parameters of each system either become, or become functions of, some of the state

variables of the other. Now consider two coupled dynamical systems, X and Y: X is said

to perturb Y when changes in the state variables of X result in changes in the parameter-

values determining the phase portrait of Y, thereby resulting in changes in that phase

portrait. At some critical parameter-values a system may become structurally unstable,

in that tiny changes in certain parameter-values may result in the immediate emergence

of a qualitatively di�erent phase portrait. These qualitative changes are called bifurcation

points.

The sense in which one system a�ects the dynamics of another system through coupling

is not to be equated with a relation according to which one system directly speci�es the

state of a second. By perturbing Y's dynamics, X is biasing the intrinsic possibilities for

change already present in Y. So if we begin by thinking of an animal nervous system (its

biological control system) as a non-coupled dynamical system, then we can conceptualize

its intrinsic dynamics as generating a space of possible perturbations which the system

can undergo as a result of coupling to an environment (cf. [22]). The relation between

nervous system and environment is one of inuence of dynamics rather than speci�cation

of state. Through sensory-motor activity, the dynamics of an animal's nervous system

are continually perturbed in accordance with the adaptive agent-environment couplings

`discovered' by evolution. And that, according to the view advocated here, is the place

to start in any study of situated cognition. So how does this dynamical perspective mesh

with the received orthodoxy in cognitive science?

7 The Dynamics of Situated Activity

Recall that on the orthodox view, the fundamental basis of cognition is the representation-

based recovery and use of objective environmental information. This `representation-based

recovery' is seemingly the speci�cation, by the environment, of an essentially static struc-

tural state of the agent's central nervous system. One intuitively plausible way to cash out

the realization of such states would be as point attractors in neural activation space, i.e.,

by mapping standard connectionist representations onto states of the nervous system, in

such a way that the activity of one connectionist unit is hypothesized to correspond to the

10

For other statements of the dynamical systems perspective, see [4, 21, 27].
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group activity of a number of real neurons. But it is implausible to postulate a general ex-

planation of situated activity on the basis of recurring correspondences between occurrent

point attractors in neural activation space and meaningful elements of the environment.

It seems likely that real neural systems do not exhibit activation space dynamics which

succeed in converging to point attractors | except at the point of death [25].

At �rst sight, this is not enough to threaten representational forms of explanation in the

study of situated activity, because surely, in principle, occurrent periodic attractors in a

neural control system could be detected and used by other processes in that control system;

and, despite the famous `sensitive dependence on initial conditions,' a chaotic attractor

is still bounded and, therefore, as detectable as its cyclic cousin. So, in theory, at least

some periodic or chaotic attractors in the activation space of a dynamical neural network

could assume representational status through (i) being causally correlated with states of

the environment and speci�c adaptive behaviours, and (ii) being used by identi�able sub-

systems in the control architecture. In theory, maybe, but it is overwhelmingly likely that

dynamical neural networks, coupled to uncertain, changing environments, will consistently

fail to reach any stable attractors in activation space, even though the networks may spend

periods on transients which are in the basins of attraction of such stable dynamical states.

For example, Yamauchi and Beer [29] show that evolved dynamical neural networks are

capable of successfully performing relatively abstract tasks involving sequential behaviour,

such as generating a �xed sequence of outputs in response to external decision triggers. One

general feature of the various successful network-dynamics is that, as long as environmental

triggers are forthcoming, the networks do not necessarily reach the attractors which arise

in activation space in response to the triggering stimuli. The networks spend most of their

time producing the desired behaviour whilst on the transients of those attractors.

Any realist about representation must expect the putative internal representational

states to play a particular kind of role in the production of behaviour | a causal role which

is interpretable according to the principles of homuncularity (as identi�ed in section 3).

Theoretically reidenti�able (but, in practice, largely non-occurring) attractors cannot play

that role. It may seem that the requirement is `merely' for some (non-magical) story about

how the behaviour of the sub-systems of the overall control system can be causally a�ected

by transient-dynamics. But even if such `practical' details were worked out, it is still the

case that causal correlations between transients and environmental states are not, on their

own, su�cient to reestablish representationalism. The salvage operation makes sense only

if we are talking about a control system for which the conceptual framework of homuncular

decomposition is appropriate or useful. The causal interactions between identi�ed sub-

modules need to occur in a such a way that it makes sense to speak of the detection and

use of information by homunculi. But if the interacting sub-modules identi�ed by our

analysis of the nervous system are themselves more properly viewed as coupled dynamical

systems, then, in general, it will not be useful to interpret the causal interactions between

those modules as representation-passing communications between hierarchically-organized

homunculi.

It is worth driving that last point home. Mainstream connectionist networks are gen-

erally understood as pattern completion devices. Indeed their famous achievements in

associative memory, learning, default reasoning and exible generalization are the results

of this more basic capacity for pattern completion. It is by virtue of imposing the sorts

of restrictions on the dynamics of arti�cial neural networks discussed in section 5 that

networks can be used as (for example) associative memory devices [4]. We have already

seen that if the restrictive architectural assumptions are relaxed, then more complex dy-

namical behaviour ensues. But now once we have entered the realm of dynamical neural
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networks coupled to one another and to changing, uncertain environments, it is surely

idealistic in the extreme to suppose that the trajectories of such networks will be so con-

strained, that the description of network-dynamics as a process of pattern completion will

remain accurate. This is relevant to the applicability of homuncular decomposition; a

pattern-completing network, with its well-de�ned and well-behaved input-output pro�le,

is a highly suitable applicant for the job of sub-personal cognitive homunculus. By con-

trast, a coupled dynamical neural network would be unlikely to get an interview! But, if

we should not expect adaptive control systems to respect the principles of homuncularity

(see section 3), then the fact that dynamical networks may be unsuitable as homunculi

does not tell against their status as control systems for situated agents.

What about computation? Well, of course, if computation is de�ned as the manipu-

lation of (or transformation between) representations, then doubts about representation

undermine the computational half of the double-act. But it is worth noting that there

are semi-independent reasons for questioning the suitability of computational explana-

tion. According to the orthodox approach, the mathematics appropriate for describing

situated agency are the mathematics of computation, as described in the theories of logic

and computability theory [20]. In this strict sense of `computation,' the processing |

the manipulation of representations | is discrete, and the processing cycles can be di-

vided into temporally distinct stages of input, computation and output. By contrast, I

have suggested that the general behaviour of a dynamical neural network control sys-

tem, interacting with other dynamical networks and a dynamic environment, will not be

interpretable as a series of discrete state transitions realizing isolable input-output compu-

tations. Thus the dynamical systems perspective rejects the mathematics of computation

in favour of the fundamentally continuous mathematics of dynamical systems theory, and

replaces the input-output transition cycle with the richly interactive dynamics of coupling.

So far, I have concentrated on `negative' arguments which question the explanatory

primacy of representations and computations, with only an occasional reference to positive

examples of dynamical systems explanations. But I shall close this section with an all-

too-brief description of work by Husbands, Harvey and Cli� in which concepts and tools

from dynamical systems theory are crucial in providing an explanation of the situated

behaviour of a simulated robot. (For full details, see [21].)

A visually-guided robot is placed in a circular arena with a black wall and a white oor

and ceiling. From any randomly chosen position in the arena, the robot's task is to reach

the centre as soon as possible and then to stay there. To this end, control systems are

developed through the arti�cial concurrent evolution of dynamical neural networks and

sensor-morphologies (as per the evolutionary robotics methodology described in section 6).

Despite the simplicity of the scenario, the results are suggestive. For example, consider

one controller-network | called `C2' | which was evolved in an environment with a

wall-height of 15. The �rst stage of the analysis was to understand the dynamics of

the evolved network. The channels of activation in the network ow in complex and

counter-intuitive ways, due to the complex nature of the connectivity and the existence of

feedback loops. By eliminating redundant units and connections (which may be left over

from earlier evolutionary stages) the signi�cant visuo-motor pathways are identi�ed, as are

the conditions under which those pathways become active. The second stage is to combine

the network analysis with a two-dimensional state space representing (to the observer) the

robot's visual world (i.e., the visual signals which would be received at di�erent positions

in the world). The result is a phase portrait predicting the way in which | according

to the dynamical systems model of the `physical' system | the robot will tend to move

through the state space. The phase portrait features a single point attractor in visuo-

13



motor space (not activation space!) corresponding to a very low radius circle about the

centre of the world, and the whole state space is, in e�ect, a basin of attraction for this

attractor. In short, the model predicts that the robot will always succeed at its task, a

prediction which was borne out by empirical demonstration.

11

The next stage was to investigate the adaptiveness of the control system by analysing

the behaviour of the robot in an arena with wall-height 5, i.e., in an environment for which

the control dynamics were not speci�cally evolved. The change in wall-height means a

change in the structure of the robot's visual state space. The same process of analysis

now yields a phase portrait featuring two point attractors in visuo-motor space, both cor-

responding to successful behaviours. Once again the model was con�rmed by empirical

demonstration. So the dynamical systems analysis correctly predicts that the control sys-

tem is general in that it will achieve its goal by exhibiting di�erent situated dynamics in

di�erent environments. The moral of this example is that in a particular instance of situ-

ated activity, certain aspects of the activation space dynamics of the controlling network

may play a crucial part in our explanation, because what we will need to understand is how

the dynamics of the control system interact with the dynamics of the agent's environment

to produce well-tuned adaptive behaviour. Internal dynamics alone | representational,

computational, or otherwise | will not be su�cient to gain a general understanding of

embedded cognition, because, in most cases, amputating the agent's environment from

the explanation will leave one with no explanation at all. Thus the dynamical systems

approach develops a key insight which was present in behaviour-based robotics: not only

is it a good idea to use the environment as a source of information, but any adequate

explanation of adaptive situated activity will have to include (in a fundamental way) the

environment of the creature under investigation.

8 Conclusions

I have argued that the explanatory frameworks adopted in classical A.I. and orthodox

connectionism should no longer be assumed in the general study of situated agency. But old

dogs can (sometimes) learn new tricks. Nothing in this paper rules out the possibility that

new uses for the terms `representation' and `computation' will be found. Indeed, the notion

of deictic representation employed in behaviour-based robotics is an example of one such

revision. Perhaps we can force `representation' and `computation' to be the key theoretical

terms in a science of situated activity, if we �ddle with their orthodox interpretations. But,

in a cantankerous frame of mind, I am compelled to ask \why bother?" One of the bene�ts

of the orthodox notions of representation and computation is the fact that they are well-

de�ned enough to permit empirical investigations of their applicability in any particular

case of adaptive behaviour. We should be loathe to discard the undeniable advantages of

this property. The explanatory territory of orthodox cognitive science may be precisely

the sort of reasoning that does not involve non-arbitrary sensory-motor coupling with

an environment. But then how much cognition will this account for in the non-human

regions of the animal kingdom? And how much human cognition is actually `disembodied'

and `non-situated' in this way? Given the `simple-systems-�rst,' incremental approach so

sensibly adopted in A-Life, I am compelled to fall back on that old chestnut of empirical

work, `only time will tell.' But, somewhere in the distance, I can hear a clanging noise |
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It is important to stress that certain details of this particular dynamical analysis are contingent upon

the nature of the speci�c scenario (e.g., the symmetries of the environment which allow the observer to

generate the state space). It is the style of analysis which is at issue.
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and it's getting louder.
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