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Abstract

The design of Arti�cial Neural Networks by Genetic Algorithm is useful in

terms of (1) automating and optimising the design and (2) �nding biologically

plausible models. This paper presents a review of the state of the art and research

prospects in the area.
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1 Introduction

Research involving some sort of combination of Genetic Algorithms (GA) and Arti�cial

Neural Networks (here forth ANNs or Networks for short) has been growing. Some

recent work in the area can be found in [47] and a review of the state of the art is

presented in [40]. This paper presents a review and research prospects for designing

ANNs by GA.

The design of Arti�cial Neural Networks (ANN) using GAs can be helpful in terms

of two main issues. First, it automates the design of the network which would otherwise

have to be done by hand using trial and error. Second, the process of the design can be

analogous to a biological process in which the ANN blueprints encoded in chromosomes

develop through an evolutionary process.

Designing networks by hand may be very complex. Even though a design is found

to be su�cient for a task by trial and error, the risk of missing more promising architec-

ture is not eliminated. Given the complex combinations of performance criteria, such

us learning speed, compactness, generalisation ability, and noise-resistance, it is very

di�cult to optimize a network design. The problem of designing an ANN for a speci�c

problem involves searching the space of architectures for one which will perform best in

meeting the requirements of the problem. The search space for such a problem may be

in�nitely large, un-di�erentiable, complex, noisy, deceptive and multi-modal [31].

The Schema Theorem developed by Holland [23] has proved useful in many applica-

tions involving large, complex and deceptive search spaces [12]. Thus, an evolutionary

process based on genetic search can help to automate and improve, if not optimize,

ANN design required to produce complex behaviors.
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Amajor issue in genetic-based design of ANNs is that the representation (i.e., encod-

ing strategy) should be able to capture all potentially useful designs for the task in hand

while excluding any 
awed or meaningless ones. In terms of using genetic search, this

means that any representation schema should allow new, meaningful and valid network

structures (i.e., a particular learning rule can be applied) to be produced by the genetic

operators used (i.e., crossover or mutation). In such cases the representation is said to

be 'closed' under the genetic operators. This is referred as the structural/functional

problem in [37]. The possible network parameters would include the number of layers,

the number of units in a layer, the number of feedback connections allowed, the degree

of connectivity from one layer to another, the learning rate and the error term utilized

by the learning rule.

GAs are applied to neural networks in two di�erent ways: they either employ a �xed

network structure (i.e., the number of nodes and the connections among them are �xed)

with connection weights under evolutionary control (see for example [35] [46] [48] [8] [4]

[6]) or they are used in designing the structure of the network itself.

This paper is concerned with the researches in the latter category. The researches in

this category concentrate on two distinctive approaches:direct encoding and generative

encoding. In the case of direct encoding strategies [48] [18] [37] [36] [10] [31] [26] the

architecture of the network is directly encoded onto the chromosome representation. In

the case of the generative encoding strategies, however, some sort of grammar which

generates network architectures is used [27] [13] [14] [15] [25] [16] [17] [5].

In the following sections we will start by describing direct encoding methods, and

next, concentrate on some recent studies which use some sort of grammar in generating

ANNs. Then, we will present some other research which uses evolutionary design of

ANNs as a tool in pursuing their primary research interest. Finally, we will conclude

with a discussion of future research directions in the area.

2 Direct Encoding Methods

Early strategies for genetic-based ANN design can be classi�ed according to degree of

developmental speci�cation: degree of speci�city employed in mapping from genotype

to phenotype. Some of the design strategies (called 'weak') use a loose representation

based on abstract genetic 'blueprints' which can be translated through 'developmen-

tal machinery' into a network phenotype [18]. These strategies are good at producing

large networks e�ciently. However, they impose a severe constraint on the network

search space. They represent the layer of the network in a single gene facilitating the

application of genetic operators for regular networks. However, they face a di�culty in

encoding detailed connections. Other design strategies (called 'strong')are good at cap-

turing patterns of connections in smaller networks more e�ciently since they represent

connections more directly in the chromosome.

2.1 The Genesis System: weak representation

In Genesis [18] a 'blueprint' representation of network structure is encoded on a bit

string. It is composed of one or more segments. Each segment, in turn, contains an area,

and its projections (i.e., connections). The �rst and the last areas in the representation

show input and output areas respectively. Within each segment, a �xed length of bits

is used to specify area parameters (APS) and one or more projection speci�cation �elds

(PSFs) which describe connections between areas. Since there are an unknown number

of areas or projections, the beginning and the end of these are marked so that strings

can be parsed into network architectures and crossover operations can easily produce

meaningful strings.
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The APS contains some �elds to describe the address and identi�cation of the area,

and the size (i.e., number of units) of it. In addition, 'dimension share' parameters

determine the spatial organisation of the units. Since the representation used in Genesis

does not assume a simple fully connected network structure, PSFs may be used to

determine where a speci�c unit can make a connection. In PSFs the identity of the target

area is coded either as an absolute (i.e., target ID itself) or relative address (i.e., position

of the target area relative to current area) mode. Again, the dimension parameters allow

connections only in that localised area. Finally, the degree of connectivity (between 30

to 100 percent) and learning rate parameter of back-propagation are also coded in PSFs.

A two point crossover is modi�ed to allow identi�cation of the points by referring

to the markers in the blueprint. The variable length representation and the modi�ed

crossover seems to allow a much broader space of network architectures to be searched.

This can result in more complex architectures.

This design strategy is used to solve two di�erent problems: digit recognition and

XOR problem. In both cases Genesis has produced reasonable networks and showed

improvements over its initial random structures. But the over all results suggests that

the representation used by Genesis is inadequate. More attention to representation

of connectivity is needed. For example, a typical chromosome contains concatenation

parameters describing the number of layers, size of the layers and how these layers

are interconnected. Due to this abstraction, larger nets can be encoded with small

chromosomes. However this is only true for some particular group of networks. This

method would fail to encode some modular architectures with well de�ned and repeated

groups of neurons.

2.2 The Innarvator System: strong representation

In the Innarvator System [31] a layered feed-forward network of N units is represented

by a connectivity constraint matrix with dimensions Nx(N + 1). Each of the values

of the matrix speci�ed by (Column, Row) indices speci�es the nature of the constraint

of connection from one unit to another. The constraints can be either none (indicated

by a zero), learnable (L), learnable but limited to positive values (L+) or learnable but

limited to negative values (L-). The rows of the matrix are successively concatenated

to form a bit string representation of a network. The following �gure shows an example

of a constraint matrix representing a 5 unit network (2 input and single output unit).

The last column (i.e. the N + 1th) in the matrix speci�es the threshold biases of the

units.

The representation used clearly de�nes the layers of the network and, thus, the

translation from genotype to phenotype can be more easily interpreted. The crossover

operator applied in this design strategy involves selecting a random row of the constraint

matrix and swapping all the entries in that row between the parents. This is the simplest

and the safest way of applying the crossover operator since any row contains a basic

building block of a single unit and crossover always produces a valid network structure.

The mutation operator involves simply moving along all the values in the matrix and

choosing a new (0 or L) constraint with a speci�ed probability.

The �tness evaluation is based on the success of learning an input/output mapping

speci�ed for the task. A possible �tness function could include some other criteria such

as ability to generalise or the size of the network for a particular task.

In order to evaluate the �tness of a particular network, the constraint matrix is

initialised with learnable and no connection values. Next, the learnable connections are

given small random weights. The network is trained for a speci�c target mapping using

the back-propagation algorithm. After the training the total sum squared error (TSSE)

is used to derive the �tness.

This design strategy is applied for di�erent tasks such as XOR and the four-quadrant
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Figure 1: Encoding for XOR problem using strong representation (taken from [31]).

problem. The results have shown that such genetic based design can discover successful

architectural solutions with faster learning of the tasks at hand. However, it is limited

to encode a �xed number of neurons. It gives a chromosome of length n

2

for a network

of n units. If the number of the units gets large the search space becomes too big.

Moreover if the weights are also encoded then the crossover operation may result in

non-functional o�-springs: the structural/functional problem pointed out by [37].

3 Generative Strategies

3.1 Kitano's Grammar Encoding method

A system developed by Kitano [27] employs a di�erent approach encoding ANN architec-

tures. It uses a graph-generation grammar which can encode regular connectivity pat-

terns with shorter chromosomes. Basically, it involves encoding a set of rules which can

generate the ANN. Kitano argues that previous design strategies encode ANN con�gu-

rations directly onto the chromosome and therefore require longer chromosome length

and larger search space. As the size of the networks grows the time it takes to converge

to a near-optimal con�guration will increase. So, they are not suitable for designing

large networks. Besides, these methods assume a rigid, one-to-one correspondence be-

tween the connectivity patterns and the generic information. This creates a substantial

di�culty in encoding a network with repeated patterns and complex internal structure.

Therefore, they are also biologically less plausible with respect to morphogenesis of the

neural system.

In his design strategy Kitano's grammar generates a family of matrices of the size

2

k

. The elements contained in these matrices are some characters of a �nite alphabet.

A larger matrix is developed using rewrite rules corresponding to these characters. This

is translated to a connectivity matrix which describes the structure of an ANN.

Kitano's grammar encoding method is di�erent from the previous methods where

the structure of the network is not directly encoded in the chromosome. Rather, this

method uses a set of re-write rules encoded in the chromosome to generate networks.

It is based on Graph L-system which is an extension of Lindenmayer's L-system [28]

[29]. Figure 2 shows the generation of a typical XOR network using Kitano's graph

generation system.

The followings are the rules used in developing the connectivity matrix for the XOR

network. Starting from the initial state "S" the graph is developed by rule-matching in
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Figure 2: Generation of XOR graph (taken from [27].

each cycle.

A B

S --> C D

c p a a a a a a

A --> a c B --> a e C --> a a D --> a d

0 0 0 0 1 0 0 1 1 1

a --> 0 0 b --> 0 1 c --> 0 0 e --> 0 1 p --> 1 1

For example, in the �rst cycle start symbol 'S' is re-written using the relevant rule.

There after, for every symbol at the right hand side of �rst rule, the relevant rule is

processed. At the end the connectivity matrix is developed which shows the existence

of a connection between two units by a "1" and the non-existence of a connection with

a "0".

A typical chromosome representing a network has two parts: a variable and a con-

stant part. The constant part does not change and contains a set of static rules that

are used to re-write symbols. The genetic algorithm is only applied to the variable part

to acquire rules through a selection process. Since the constant part is not involved in

the recombination and mutation processes, the length of the variable part constitutes

the chromosome length. Each of these parts are divided into some fragments. Each

fragment is made up of �ve bits representing a rule, in which the �rst bit represents the

left-hand-side of a rule and the rest represent the right-hand-side of a rule. For example,

the �rst rule

AB

S --> CD

(among the rules above) would be represented as follows:
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S A B C D

In order to ensure that a cell division will always take place, the beginning of the

chromosomes will always contain "S"; the initial state. The variable part contains

symbol-generating rules in the range between "A" to "p" and the constant part contains

pre-encoded re-write rules of symbols from "a" to "p".

The grammar encoding system is tested on XOR, 4-X-4 and 8-X-8 encoding problems

using the back-propagation learning rule on feed forward networks.

The results of several experiments showed that the grammar encoding method con-

verges much faster than direct encoding methods. Also it creates more regular network

connections than direct encoding methods would normally do. This means that the

grammar-encoding system shows a better scaling property and ability to generate more

complex networks. Finally, it is biologically more plausible since the connectivity infor-

mation is encoded in the chromosome in a more 
exible manner.

Although with the grammar encoding method the same abstraction of the rules can

be used repeatedly to produce the same patterns of connections in di�erent parts of the

network, Kitano's experiment did not involve developing a recurrent network.

The scalability in Kitano's work is characterized as the ability of the GA to �nd

a larger network for a parameterised problem of larger size. This is tested in an en-

coder/decoder problem. In [13] Gruau argues that this is a typical case where the

number of hidden units is larger than the number of input or output units. He suggests

that it would be more challenging to solve a problem where the number of the hidden

units is the logarithm of the number of the input neurons and suggests a theoretical

rather than an experimental property of the scalability. Finally, it is not clear whether

a grammar encoding can express every architecture.

3.2 Gruau's Cellular Encoding Method

Gruau [13] [14] [15] developed a Cellular Encoding (CE) system similar to grammar

encoding, which instead of re-writing symbols, it re-writes the cells themselves. That is,

rather than using a matrix, the development rules are applied to cells of the network.

Each cell contains a copy of the chromosome. A chromosome consists of some alphanu-

meric symbols (i.e., program symbols) which provides instructions as to what kind of

actions will take place in the process of development. The instructions contained in the

chromosome may be interpreted di�erently by di�erent cells. Depending on the infor-

mation that a cell receives, it can divide, change some internal parameters and �nally

become a neuron.

In this system, the initial graph is a single non-terminal unit which contains default

program symbols in its chromosome. When the instructions on the chromosome are

carried out, it gives birth to other cells which through their own program symbols do

the same. Eventually, each cell becomes a neuron creating the ANN structure.

There are di�erent kinds of program symbols and corresponding instructions. For

example a division program symbol is used to create two cells from one cell. This can

be done in parallel (denoted by "P") or sequentially (denoted by "S"). In a typical

sequential division the �rst child inherits the input links and connects to the second

child with a weight of 1. The second child inherits the output link. In a parallel division

both children inherit the input and output links from their parent cell. Another program

symbol (i.e., value program symbol) is used to modify the structure of the connections.

The plus (+) and minus (-) signs are used to set the value of the weights either to 1 or -1

respectively. Other symbols are used to pause the re-writing process (denoted by "W")

or to stop the process (denoted by "E"), causing the cells generated to be neurons.
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This strategy is biologicallymore plausible and e�cient than matrices. The language

used to describe network structures is more elegant and compact and suitable for the

genetic algorithms. It also allows for coding of the weights. Various properties of this

strategy have been formalised by Gruau in [14]. Some of these can be summarised as

follows:

1. Completeness: any network can be encoded using the CE strategy.

2. Compactness: the ANN representations created by CE and manipulated by the

GA are of minimal size. This ensures a reduction in the genetic search space.

3. Closure: the process of CE is closed under GA. It always produces meaningful

structures, for either acyclic or recurrent neural networks, via the reproduction

process.

4. Modularity: for larger decomposable networks, the code of the network is the

concatenation of the codes of subnetworks. This result in formation of the building

blocks which can be used in several di�erent places in a typical ANN structure.

It also implies more regular ANN structures.

5. Scalability: the complexity of the problem is not re
ected in the representation

schema. A family of ANNs can be encoded with a �xed size code.

6. Power of expression: the CE strategy can be used to encode both the architecture

and the weights.

3.3 More Generative Methods

In [5] a combination of L-systems, production rules and the GA is used to design modular

ANNs. The system uses L-systems as a basis for re-writing production rules which

constitute string representation of the network topologies. Thus, a chromosome encodes

an ANN structure in the form of production rules. The GA is used to evolve a population

of these representations. The �tness of each population member is determined by the

residual error after a certain amount of back-propagation training.

Another system, which is also inspired by the Kitano's work is presented by Voigt

et al. in [16] [17]. In this approach a stochastic L-system is used. Although the

basic algorithm involves a grammar-encoding schema similar to that of Kitano's, the

production rules used are probability-dependent. This aspect has been shown to be

useful in preventing the generation of large numbers of redundant production rules.

After the network structure is generated in the same way as it is in Kitano's system,

the sub-networks are iteratively and randomly modi�ed. Sub-networks are chosen in a

probabilistic manner. This corresponds to an individual development process. The GA

is applied to a population of individuals who have passed through this process. This

strategy also uses feed-forward network structures with the back-propagation learning

rule. The �tness criterion applied is interesting: it is determined by mixing learning-

error, classi�cation-error, number of training iterations, number of connections, and

minimal and maximal path-length in the network structure.

Finally, another generative method presented in [45, 43, 44] uses emergent modelling

to construct ANNs within an incremental, comprehensive and biologically plausible life

cycle of development, plasticity, natural selection and genetic changes. The ANNs

are represented by a set of production rules describing the local behaviors. They are

organised hierarchically. At the lowest level are cells with their connections; next comes

the individual with its behavior and, at the top level ,the environment encloses all.

Similar to Gruau's approach, starting from a single cell, the system controls the division

of the cells and the growth of the connections. The system works in a similar way to
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the knowledge based systems. This strategy can encode feed-forward networks as well

as recurrent networks. However, the use of GAs for rule-generation and recombination

is limited.

4 Other Designs

There are quite a number of works in which ANNs are created and evolved as part of

speci�c research interest. These either adapt the design strategies mentioned in this

paper or create their own. For example, in [7] and [50] an ANN was evolved to �nd

better solutions to some control problems. Also, in [9] a 
exible application was carried

out in which a variable number of neurons (units) with arbitrary links among them

could be evolved by using species adaptation genetic algorithm (SAGA)[19] [20] [21]

[24]; This is an extended form of GA which uses variable lengths of genotypes. This

approach is well suited to the generation of highly recurrent neural networks. Another

example of designing recurrent nets can be found in [41].

Some reinforcement learning methods have also employed evolutionary methods with

ANNs. For example in [49] a larger multi-layer network design is evolved and in [1]

interaction between learning - as the adaptation of individual, and evolution - as the

adaptation of population is observed. In fact, there are quite a number of researchers

concentrating on the relationship between evolution and learning [4] [30] [22] [38] [2]

[32] [3] [11] [39] [42]. In these works individual network structures (representing the

learning) are evolved to optimise the adaptive behavior (hence, the structure).

In [33] and [34] the generation of regular networks is presented by using a recursive

algorithm. However, the strategy uses simulated annealing instead of GA as a search

technique.

Finally, in [37] Muhlenbein proposes a general framework for applying genetic Algo-

rithms to neural networks. In his system, the GA is used indirectly in designing neural

networks. It is applied to some sort of structures which encode neural networks.

4.1 Further Research Issues

When designing network architectures, almost all of the studies mentioned used back-

propagation learning rule to train the network. It would be interesting to develop

a representation which could involve alternative learning models rather than back-

propagation. This is likely to increase the di�culties of determining structures and

parameters. Major research issues in designing ANNs include the following:

1. How to develop an encoding schema that can specify both the structure and the

learning rule. Such a design process would involve a combination of learning

dynamics that could adjust the architecture and the weights. This might even

lead to discovery of new connectionist algorithms and structure.

2. Adaptation of genetic operators to construct meaningful networks. The attributes

of networks are many and varied and our relative interest in them may change

from one application to another. This might require adaptation of the types and

the nature of the GA's parameter values (i.e, the rate of crossover, mutation etc.)

in designing network structures. However, in most of the systems, we would expect

that careful studies of these parameters would be computationally impractical.

3. How to vary the �tness evaluation functions. The possible functions would involve

the learning speed, accuracy and cost parameters such as size and complexity of

the network rather than how successful the network is in learning the task in hand.
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It seems that together with the above considerations the main direction of research

in network design will be focussing on designing larger networks e�ciently.

Finally, the researches which involve genetic-based design of ANNs as part of their

particular research aim can be very helpful. They can serve as an empirical test for

what is proposed by genetic-based ANN design researches. At the same time, they can

provide new and empirical ideas for future development in the genetic based design

researche.
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