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Abstract

This paper describes results from a specialised

piece of visuo-robotic equipment which allows the

arti�cial evolution of control systems for visu-

ally guided autonomous agents acting in the real

world. Preliminary experiments with the equip-

ment are described in which dynamical recurrent

networks and visual sampling morphologies are

concurrently evolved to allow agents to robustly

perform simple visually guided tasks. Some of

these control systems are shown to exhibit a sur-

prising degree of adaptiveness when tested against

generalised versions of the task for which they

were evolved.

1 Introduction

In previous papers (see e.g. [1]) we have discussed our

reasons for adopting an evolutionary methodology for the

design of control systems for mobile robots using low-

bandwidth vision for simple navigational tasks. We also

discussed what class of control systems are appropriate

for evolutionary development, proposing dynamic recur-

rent real-time (arti�cial) neural networks as one strong

contender.

The evolutionary process, based on a genetic algo-

rithm [3], involves evaluating, over many generations,

whole populations of control systems speci�ed by arti-

�cial genotypes. These are interbred using a Darwinian

scheme in which the �ttest individuals are most likely to

produce o�spring. Fitness is measured in terms of how

good an agent's behaviour is according to some evalua-

tion criterion. The work reported here forms part of a

long-term study to explore the viability of such an ap-

proach in developing interesting adaptive behaviours in

visually guided autonomous robots, and, through analy-

sis, in better understanding general mechanisms under-

lying the generation of such behaviours.

In this paper we present results from experiments in

which visually guided behaviours are arti�cially evolved

in the real world. As far as we know, this is the �rst time

this has been achieved.

2 From Simulation to Reality

The experiments described in earlier papers [1] used sim-

ulations of a round two-wheeled mobile robot with touch

sensors and just two visual inputs | simulated photore-

ceptors, with (genetically speci�ed) angles of acceptance,

and of eccentricity relative to the frontal direction of the

robot. The environment was a simulated circular arena,

with black walls and white oor and ceiling; ray-tracing

techniques allowed the calculation of visual inputs. Suc-

cess was reported in evolving control systems (and visual

morphologies) which allowed the robot to reach the cen-

tre of the arena.

These early experiments were intended to test the

plausibility of our approach. However, the simulated vi-

sual environment was very simple and it was noted that

computational costs would increase dramatically as the

visual environment became more complex. Indeed, even

ignoring computational costs, the plausible modelling of

visual inputs in such circumstances is highly problematic.

Hence plans were made to perform the whole evolution-

ary process with a real robot, moving in the real world,

and without recourse to simulated vision.

Arti�cial evolution in the real world requires equip-

ment which allows the automatic evaluation of very large

numbers of robot control systems. With navigation

tasks, it is useful to have the position and orientation of

a robot continually available to an overseeing program

responsible for scoring candidate control systems. Of

course, this information should not be available in any

way to the individual robot control systems. Automatic

re-positioning of the robot at �xed or random positions

for the start of each trial is also desirable. Rather than

imposing a �xed visual sampling morphology, we believe

a more powerful approach is to allow the visual morphol-

ogy to evolve along with the rest of the control system.

This establishes a further desired property of the exper-

imental setup.

One solution might involve the parallel evaluation of

populations of control systems using a large number of

mobile robots, radio links, recharging stations, and the

like. In this paper we describe a much cheaper, shorter

term, solution we have developed using a specialised

piece of visuo-robotic equipment | the gantry-robot.



Figure 1: The Gantry viewed from above. The horizontal girder moves along the side rails, and the robot is suspended from a

platform which moves along this girder.

3 The Gantry-Robot

3.1 Introduction

The gantry-robot can be thought of as occupying a po-

sition partway between a physical mobile robot with

two wheels and low-bandwidth vision, and the simula-

tion thereof. The robot is physically built, cylindrical,

some 150mm in diameter, and moves in a real environ-

ment | the term `robot' is here used to refer to that

part which moves around and has the sensors mounted

on it. Instead of two wheels, however, the robot is sus-

pended from the gantry-frame with stepper motors that

allow translational movement in the X and Y directions,

relative to a co-ordinate frame �xed to the gantry (see

Figure 1). The maximum X (and Y) speed is about

200mm/s. Such movements, together with appropriate

rotation of the sensory apparatus, can be thought of as

corresponding to those which would be produced by left

and right wheels. The visual sensory apparatus consists

of a ccd camera pointing down at a mirror inclined at

45

o

to the vertical (see Figure 2). The mirror can be ro-

tated about a vertical axis so that its orientation always

corresponds to the direction the `robot' is facing. The vi-

sual inputs undergo some transformations en route to the

control system, described in detail below. The hardware

is designed so that these transformations are done com-

pletely externally to the processing of the control system.

If all the transformationsmade on the sensory inputs and

the motor outputs accurately reected the physics of a

real mobile robot, then, in principle, a control system

successfully evolved on the gantry could be transplanted

to a mobile robot with two genuine wheels, and with pho-

toreceptors instead of the vision system described below.

Such a transplantation has not been attempted, and is

not a prime concern of our present work with this ap-

paratus. Indeed, there are current limitations, discussed

later, which would probably hinder it. Despite this, the

experiments discussed here can be considered as hav-

ing conditions comparable in complexity and di�culty

to those met by a free-running mobile robot; our aim is

a fairly general investigation of the arti�cial evolution of

sensorimotor control systems. Of course, the optic array

available to the robot is now the real thing.

The control system for the robot is a recurrent dy-

namic neural net, genetically speci�ed, and in practice

simulated on a fast personal computer, the `Brain PC'.

During each robot trial this PC is dedicated solely to run-

ning the neural net simulation. It receives any changes

in visual input by interrupts from a second dedicated

`Vision PC'. A third (single-board) computer, the SBC,

sends interrupts to the Brain PC signalling tactile inputs

resulting from the robot bumping into walls or physical

obstacles. The only outputs of the control system are

motor signals speci�ed by values on particular nodes of

the neural network; these values are sent, via interrupts,

to the SBC, which generates the appropriate stepper mo-

tor movements on the gantry.

Thus all interactions between the three computers

used (Brain PC, Vision PC and SBC) are mediated by

interrupts (see Figure 3); and the overall system is delib-

erately designed so that these interrupts, although inher-

ently asynchronous and unpredictable, are nevertheless

su�ciently infrequent for them not to clash with the in-

trinsic timescales of the neural network, vision and step-

per motor processing.

This setup, with o�-board computing and avoidance of

tangled umbilicals, means that the apparatus can be run

continuously for long periods of time { making arti�cial

evolution feasible. A top-level program automatically



Figure 2: The gantry-robot. The camera inside the top box

points down at the inclined mirror, which can be turned by the

stepper-motor beneath. The lower plastic disk is suspended

from a joystick, to detect collisions with obstacles.

evaluates, in turn, each member of a population of con-

trol systems. A new population is produced by selective

interbreeding and the cycle repeats.

3.2 The Vision System

Continuous visual data is derived from the output of

a small monochrome ccd camera. With a wide-angle

(about 40

o

) �xed-focus lens about 6mm in diameter, this

is housed in a box facing vertically downwards onto the

angled mirror of the robot. The ccd produces composite

video output of some 1 volt peak to peak, with a video

bandwidth of 4MHz. A purpose-built Frame-Grabber

transfers a 64 � 64 image at 50Hz into a high-speed

2K cmos dual-port ram, completely independently and

asynchronously relative to any processing of the image

by the Vision PC.

We advocate an incremental evolutionary approach,

progressing from the simple to the complex. In keeping

with this philosophy, current experiments use very low

bandwidth vision. This implies sub-sampling the image

produced by the camera. Rather than imposing a �xed

way of sampling the image, we allow this to evolve along

with the neural networks. This is achieved by genetically

specifying the size and position of visual receptive �elds.

These are circular patches within the visual �eld of the

camera (see Figure 4). Up to 256 such receptive �elds

can be speci�ed with, to 8-bit accuracy: the diameter

of the �eld; and the polar coordinates of the centre of

the �eld relative to the centre of the camera's �eld of

view. The angle of acceptance of the ccd camera (via the

mirror) is about 60

o

; the maximum angle of acceptance

of a receptive �eld is about 16

o

, and its maximum angle

of eccentricity o� the cameras visual axis is about 22

o

.
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Figure 3: The di�erent rôles of the Vision computer, the

Brain computer and the SBC.

To calculate the signal from such a �eld, the average is

taken of 25 pixels in the camera image scattered across

the appropriate area. In this way a value (4 bits) can

be calculated for each receptive �eld at least as fast as

the camera image is updated. The only visual inputs

available to the genetically designed robot control system

are such scalar values.

The Vision PC is dedicated solely to processing the

camera output to calculate the visual signals from the

receptive �elds. At the beginning of a set of trials for

a particular robot, the genetic speci�cation for the vi-

sual morphology (positions and sizes of receptive �elds)

is passed to this PC. During each trial, whenever the

orientation of the robot changes (the full circle is dis-

cretized into 96 orientations) a single byte is sent to the

Vision PC from the SBC specifying the new orientation.

Whenever the visual input to any of the receptive �elds

changes in value (scaled in the range 0 to 15) then the

details of such a change are sent as single-byte interrupts

to the Brain PC.

3.3 The Brain PC

This is a 66MHz 486 PC which has two separate groups

of tasks to do at di�erent times. Firstly, the Genetic

Algorithm (GA) code is run on this machine. Repro-

duction, crossover and mutation are performed here in

between generations, and at the start of a set of trials

for each robot architecture the speci�cation of the visual

morphology is transmitted to the Vision PC. As with

most GAs, however, the amount of time spent running

the genetic machinery is trivial compared with the time

spent running the evaluations, and this latter constitutes

the second group of tasks.

During an individual evaluation, the Brain PC is ded-
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icated to running a genetically speci�ed neural network

for a �xed period. At intervals during an evaluation, a

signal is sent from the Brain PC to the SBC requesting

the current position and orientation of the robot. These

are used in keeping score according to the current �tness

function. At the end of a run, a byte sent from the Brain

PC to the SBC requests the return of the robot to the

`origin' of the gantry. The Brain PC receives signals, to

be fed into the neural net, representing sensory inputs

from the Vision PC and the SBC. The only signals that

the Brain PC sends out indicate changes in values of the

left and right virtual motors of the robot. These values,

which are restricted to integers from -2 to 2, are passed

on as single-byte interrupts to the SBC (see Figure 5).

3.4 The SBC

The SBC is a minimal 16 bit 68000 system with 256K

of RAM and 128K of ROM, running at 10MHz. It has

memory mapped ports that connect it to the Vision PC,

the Brain PC and the various switches and motors at-

tached to the gantry. The SBC does all the transforma-

tions between hardware-relative and robot-relative sig-

nals, plus some housekeeping.

Occasional interrupts from the Brain PC will notify

new values of the desired speeds of the virtual left and

right wheels. These are translated into desired speeds

in the gantry X and Y directions, and desired angular

velocity of the mirror. The SBC also keeps track of the

current position and orientation of the robot. Instanta-

neous changes in desired speed cannot be translated di-

rectly into instantaneous changes in stepper motor pulse

frequency, due to the momentum of the masses these

motors must move. Hence speeds are ramped up rela-

tively slowly towards the desired speed | from zero to

full speed in about 2 seconds | decelerations are ramped

down rather more swiftly. As the mirror is so light, such

ramping was not deemed necessary for rotation | with

unexpected side-e�ects described below.

Signals from end-stops for maximummovement along

the gantry-frame, and signals from the touch-sensors on

the robot, are also processed by the SBC. A plastic disc in

the horizontal plane is suspended on a joystick vertically

below the robot(see Figure 2). This detects contacts,

on each of 4 sides of the robot (in gantry-relative co-

ordinates). The SBC converts these into robot-relative

directions.

4 The robot dynamics

Some issues relating to the physical dynamics have al-

ready been mentioned; the ramping up and down of

stepper motor movements broadly (and perhaps inac-

curately) relates to the momentum of a freely mobile

wheeled robot.

With the present setup, on collision with a wall, all

further movement into the wall is prevented, as is any

translational movement along the wall. Hence, of any

desired robot motion, only that component perpendicu-

larly away from the wall is allowed, until contact with

the wall is lost. Angular velocity that attempts to turn

the robot further in towards the wall is ine�ective.

One puzzling phenomenon often observed, particularly

in initial randomly generated populations, was that of a

robot turning on the spot in a noisy fashion. On re-

ection, this turned out to be an artefact of the way

translational momentum had been implemented in the

SBC code, but without angular momentum. This clearly

showed how the virtual physics as currently implemented

does not accurately reect the real physics of a free mo-

bile robot.



5 Visual Limitations

The visual inputs are currently subject to various limi-

tations which are worth noting. Firstly, the lower part

of the robot body is supported from the upper half with

two thin vertical bolts, which come into the �eld of view

when the mirror is facing towards them. These appear as

dark bars 2 to 3 pixels wide on the ccd image, and a�ect

the values of any receptive �elds sampling from this area.

In principle this could directly provide visual information

for two �xed directions for the robot to `face'. In addi-

tion, these bars tend to occlude any distant target used

in navigation trials. For our early crude experiments this

may not be too signi�cant, but it certainly will matter

when �ner resolution is needed, and these bars produce

greater e�ects than background noise levels. In future

work we intend to �t a new head on the gantry which

overcomes this problem.

Secondly, the fact that the mirror turns in discrete

jumps, of 3.75

o

at the moment, means that either the

angles of acceptance of the receptive �elds, or alterna-

tively the horizontal angle subtended by any signi�cant

visual features, should be somewhat greater than 3.75

o

.

This could be overcome with a �ner resolution motor.

Thirdly, the visual inputs are naturally noisy (see sec-

tion 6.2). The natural variation in daylight, as day pro-

gresses into night, causes particular problems. When

the gantry was exposed to such variation, it was dis-

covered that evolved systems that worked well in the

daytime did not work well under arti�cial light alone at

night-time, and vice versa. Our individual robot systems

were evaluated over a period of perhaps 3 minutes only,

and hence it is no surprise that robustness against such

longterm variations was not achieved. Since the recogni-

tion of this problem the gantry has been largely shielded

against daylight variations. We intend soon to deliber-

ately vary lighting conditions within each robot trial, to

try to achieve robustness against such variations.

6 Preliminary Experiments

The following sections describe some initial simple ex-

periments we have carried out, mainly to ascertain how

well our methods cope with the move from simulations

to the real world. We have begun by exploring primitive

visually guided behaviours in static environments, con-

centrating on target approaching. However, as we shall

see, some of the evolved control systems showed surpris-

ing degrees of adaptiveness when tested on more general

versions of the task they were evolved for.

6.1 Networks and Genotypes

In all of the experiments reported here we used the same

networks and genetic encoding schemes as in our earlier

simulation work (for full details see [1]). This was mainly

because we have a detailed understanding of their prop-

erties and wanted to see how well they transferred to

real world tasks. However, they are the simplest, and

we believe least powerful, of the classes of networks and

genetic encodings we advocate, and we are currently ex-

ploring more sophisticated methods. Briey, the evo-

lutionary algorithms search concurrently for a network

architecture and visual morphology capable of generat-

ing behaviours resulting in a high score on an evaluation

function that implicitly describes a visually guided task.

This is achieved by using a genetic algorithm acting on

pairs of `chromosomes' encoding the network and visual

morphology of a robot control system. One of the chro-

mosomes is a �xed length bit string encoding the posi-

tion and size of three visual receptive �elds as described

above. The other is a variable length character string en-

coding the architecture of the control network. Each net

has a �xed number of input nodes and output nodes, one

input for each visual receptive �eld and one for each of

the four tactile sensors described earlier. There are four

output nodes, two for each `virtual motor'. The output

signals of these pairs are subtracted to give motor signals

in the range [-1,1]. The genotypes encode for a variable

number of hidden units and for a variable number of un-

restricted excitatory and inhibitory connections between

the nodes.

The model neurons use separate channels for excita-

tion and inhibition. Real values in the range [0,1] prop-

agate along excitatory links subject to delays associated

with the links. The inhibitory (or veto) channel mech-

anism works as follows. If the sum of excitatory inputs

exceeds a threshold, T

v

, the value 1.0 is propagated along

any inhibitory output links the unit may have, otherwise

a value of 0.0 is propagated. Veto links also have associ-

ated delays. Any unit that receives a non zero inhibitory

input has its excitatory output reduced to zero (i.e. is

vetoed). In the absence of inhibitory input, excitatory

outputs are produced by summing all excitatory inputs,

adding a quantity of noise, and passing the resulting sum

through a simple linear threshold function, F (x), given

below. Noise was added to provide further potentially in-

teresting and useful dynamics. The noise was uniformly

distributed in the real range [-N,+N].

F (x) =

8

<

:

0; if x � T

1

x�T

1

T

2

�T

1

; if T

1

< x < T

2

1; if x � T

2

:

(1)

The networks' continuous nature was modelled by us-

ing very �ne time slice techniques. In the experiments

described in this paper the following neuron parameter

setting were used: N=0.1, T

v

=0.75, T

1

=0.0 and T

2

=2.0.

The networks are hardwired in the sense that they do

not undergo any architectural changes during their life-

time, they all had unit weights and time delays on their

connections.



6.2 Experimental Details

In each of the experiments a population size of 30 was

used with a genetic algorithm employing a linear rank-

based selection method, ensuring the best individual in

a population was twice as likely to breed as the median

individual. Each generation took about 1.5 hours to eval-

uate. The most �t individual was always carried over to

the next generation unchanged. A specialised crossover

allowing small changes in length between o�spring and

parents was used [1]. Mutation rates were set at 1.0 bit

per vision chromosome and 1.8 bits per network chromo-

some.

With the walls and oor of the gantry environment

predominantly dark, initial tasks were navigating to-

wards white paper targets. In keeping with the incre-

mental evolutionary methodology, deliberately simple vi-

sual environments are used initially, as a basis to moving

on to more complex ones. Illumination was provided by

uorescent lights in the ceiling above, with the gantry

screened from signi�cant daylight variations. However,

the dark surfaces did not in practice provide uniform

light intensities, neither over space nor over time. Even

when the robot was stationary, individual pixel values

would uctuate by up to 2 units, on a scale of 0 to 15.

Varying illuminance of di�erent parts of the walls pro-

vided potential visual information, other than the targets

speci�cally displayed.

6.2.1 Big Target

In the �rst experiment, one long gantry wall was covered

with white paper, to a width of 150cm and a height of

22cm; the mirror on the robot, which e�ectively deter-

mines the position of the visual inputs, came about 2=3

of the way up on this white wall. The evaluation function

E

1

, to be maximised, implicitly de�nes a target locating

task, which we hoped would be achieved by visuomotor

coordination:

E

1

=

i=20

X

i=1

Y

i

(2)

where Y

i

are the perpendicular distances of the robot

from the wall opposite that to which the target is at-

tached, sampled at 20 �xed time intervals throughout a

robot trial which lasted a total of about 25 seconds. The

closer to the target the higher the score. For each robot

architecture 4 trials were run, each starting in the same

distant corner, but facing in 4 di�erent directions; these

directions were approximately in 4 di�erent quadrants,

to give a range of starts facing into obstacle walls as well

as towards the target. As the �nal �tness of a robot con-

trol architecture was based on the worst of the 4 trials (to

encourage robustness), and since in this case scores accu-

mulated monotonically through a trial, this allowed later

trials among the 4 to be prematurely terminated when

Figure 6: From those evolved for the �rst task, this is the

behaviour of the one best at the 2nd evaluation function. The

dots, and trailing lines, show the front of the robot, and its

orientation. Coarsely sampled positions from each of 4 runs

are shown, starting in di�erent orientations from the top right

corner.

they bettered previous trials. In addition, any control

systems that had not produced any movement by 1/3 of

the way into a trial was aborted and given zero score.

Two runs starting from a random initial populations

made little progress after 15 generations. For reasons

described in Section 9, we then tried starting from a

converged population made entirely of clones of a single

randomly generated individual picked out by us as dis-

playing vaguely interesting behaviour (but by no means

able to do anything remotely like locate and approach

the target). In two runs using this method very �t in-

dividuals appeared in less than 10 generations. From a

start close to a corner, they would turn, avoiding contact

with the walls by vision alone

1

. The best would rotate on

the spot until the target was in their visual �eld and then

move straight towards it, stopping when they reached it.

6.2.2 Small Target

The experiment continued from the stage already

reached, but now using a much narrower target (22cm)

placed about 2/3 of the way along the same wall the large

target had been on, and away from the robot's starting

corner (see Figure 6), with evaluation E

2

:

E

2

=

i=20

X

i=1

(�d

i

) (3)

where d

i

is the distance of the robot from the centre of

the target at one of the sampled instances during an eval-

uation run. Again, the �tness of an individual was set to

the worst evaluation score from four runs with starting

1

They were forced into this by a software error, only discovered

later, which meant that all the tactile sensors were turned o�. This

made this initial task far harder than we had intended.



Figure 7: Behaviour of the best of a later generation evolved

under 2nd evaluation function. Format as in previous Figure.

conditions as in the �rst experiment. The initial popula-

tion used was the 12th generation from a run of the �rst

experiment (i.e. we incrementally evolved on top of the

existing behaviours). The behaviour of the best of this

initial population is shown in Figure 6. Interestingly, this

was not the best at the previous task { that individual

did very poorly on the new task.

Within six generations a network architecture and vi-

sual morphology had evolved displaying the behaviour

shown in Figure 7. This control system was tested from

widely varying random starting positions and orienta-

tions, with the target in di�erent places, and with smaller

and di�erent shaped targets. Its behaviour was general

enough to cope with all these conditions for which it had

not explicitly been evolved.

For comparison a second evolutionary run using E

2

throughout was undertaken; this time E

1

, and the big

target, were not used as a stepping stone. The run

started from the same initial converged population as

was used for the �rst task. High scoring individuals

emerged after 15 generations. When tested on more gen-

eral versions of the task they performed much worse than

the best of the incremental run. This result is sugges-

tive, but we do not have enough data to be able to report

anything statistically signi�cant about the advantages of

doing incremental evolution at this low-level of task.

6.2.3 Moving Target

Following a moving target can be thought of as a gen-

eralised version of static target approaching. Hence we

tested a number of the evolved small target locators with

a white cylinder (of similar width) substituted for the

target; this was pushed around the gantry area in a se-

ries of smooth movements. The tracking behaviour of

the control system that generated the behaviour shown

in Figure 7 is illustrated in Figures 8 and 9. To under-

stand how this was achieved, we analysed it.

Figure 8: Tracking behaviour of the control system that gen-

erated the behaviour shown in previous Figure. The un�lled

circles show the position of the target at a number of points

on its path (starting position indicated). The arrows roughly

indicate the path of the target.

Figure 9: Further tracking behaviour of the control system

that generated the behaviour shown in previous Figure.

7 Control System Analysis

In [4] it is shown in detail how evolved control systems of

the type developed here can be analysed in terms of net-

work dynamics and the way in which the visual morphol-

ogy couples the control system with the environment. It

was shown how the active part of the network can be

characterised in terms of major feedback loops and visual

pathways. The active part of the network that generated

the behaviours shown in Figures 7, 8 and 9 is shown in

Figure 10, and its coupled (evolved) visual morphology is

shown in Figure 12. On analysis it was seen that in this

control system only receptive �elds 1 and 2 are involved

in generating visually guided behaviours.

Only a brief description can be given here of the work-

ings of the network. Due to the same software error

mentioned earlier in relation to the tactile sensors, unit

5 (one of the tactile input units) acts as a source of noise

over the range [0,0.25]. This unintended property of the

unit has been exploited by evolution to produce a tightly

self-regulating system. Unit 5 feeds into the two coupled
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Figure 10: Active network of the best tracker. V1 and V2

are visual inputs from receptive �elds 1 and 2.

feedback loops shown in Figure 11. It can be shown that

the resulting subnetwork is responsible for generating a

noisy turn on the spot behaviour when visual inputs to

receptive �elds 1 and 2 (v1 and v2) are both low (the

robot is facing a dark object). When v1 is low and v2

is very high, unit 1 self-inhibits and the same rotational

behaviour follows. When v1 is low and v2 is medium

high the robot rotates in a medium radius circle. When

v1 is high a straight line motion follows. Due to inhi-

bition between motor signals this straight line motion is

maintained as long as v1 remains high, irrespective of

v2. The basic behaviour generated then, is to rotate un-

til the white target is within receptive �eld 1, and then

to move in a straight line as long as the target remains

within the �eld. If the target is lost, the robot rotates

until the target is again within the �eld of receptor 1 and

straight line motion is resumed.

Further, it can be shown that in the task it was evolved

to perform (small target location) this system's partic-

ular visual morphology (especially the position of �eld

2) was able to exploit various other visual features in

the environment to ensure a rapid �xation on the tar-

get. The behaviour generated when v2 was medium high

and v1 was low was particularly important in provid-

ing the system with surprisingly smooth tracking abili-

ties with the moving target. Other systems tested had

evolved to be too fragilely adapted to the particular task

they were evaluated for; they made a lot of use of visual

features other than the intended target. Consequently,

when started from di�erent positions, or with the mov-

ing target, they tended to chase reected light spots on

the walls! Clearly, great care must be taken in setting

up the tasks and environments in order to get behaviour

of the required robustness and generality. At the same

time, it was encouraging to �nd a number of instances of

evolved control systems that were far more general and

robust than might have been expected from the evalua-

tion function used.
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Figure 11: Subnetwork responsible for rotations in absence

of visual input.
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Figure 12: The large dotted circle indicates the extent of

the entire visual �eld available via camera and mirror. The

smaller circles indicate the relative positions and sizes of the

genetically speci�ed visual receptive �elds (no. 3 is not used).

8 Rectangles and Triangles

A further experiment will be very briey described here.

Two white paper targets were �xed to one of the gantry

walls; one was a rectangle 21cm wide and 29.5cm high,

the other was an isosceles triangle 21cm wide at the base

and 29.5cm high to the apex. The robot was started

at four positions and orientations near the opposite wall

such that it was not biased towards either of the two

targets. The evaluation function E

3

, to be maximised,

was:

E

3

=

i=20

X

i=1

[�(D

1

i

� d

1

i

) � �(D

2

i

; d

2

i

)] (4)

where D

1

is the distance of target-1 (in this case the

triangle) from the gantry origin; d

1

is the distance of the

robot from target-1; andD

2

and d

2

are the corresponding

distances for target-2 (in this case the rectangle). These

are sampled at regular intervals, as before. The value of

� is (D

1

� d

1

) unless d

1

is less than some threshold, in

which case it is 3� (D

1

� d

1

). The value of � (a penalty

function) is zero unless d

2

is less than the same threshold,

in which case it is I � (D

2

� d

2

), where I is the distance

between the targets; I is more than double the threshold

distance. High �tnesses are achieved for approaching

the triangle but ignoring the rectangle. It was hoped

that this experiment might demonstrate the e�cacy of

concurrently evolving the visual sampling morphology

along with the control networks.

After about 15 generations of a run using as an initial

population the last generation of the incremental small

target experiment, �t individuals emerged capable of ap-

proaching the triangle, but not the rectangle, from each

of the four widely spaced starting positions and orien-

tations. The behaviour generated by the �ttest of these

control systems is shown in Figure 13. When started



Figure 13: Behaviour of a �t individual in the two target en-

vironment. The rectangle and triangle indicate the positions

of the targets. The semi circles mark the `penalty' (near rect-

angle) and `bonus score' (near triangle) zones associated with

the �tness function. In these 4 runs the robot was started di-

rectly facing each of the two target, and twice from a position

midway between the two targets; once facing into the wall and

once facing out.

0

12

13

14

4

5 6

3 11

1

1

2

VISUAL MORPHOLOGY

V1

V2

LEFT MOTOR

+ve

-ve

+ve

Key same as in earlier network diagrams.

RIGHT MOTOR

Figure 14: Active part of the control system that generated

�t behaviour for the rectangle and triangle experiment. Visual

morphology shown inset.

from many di�erent positions and orientations near the

far wall, this controller repeatedly exhibited very similar

behaviours to those shown.

The active part of the evolved network that generated

this behaviour is shown in Figure 14. The evolved visual

morphology for this control system is shown inset. Only

receptive �elds 1 and 2 were used by the controller.

Whereas the �t control systems for the previous ex-

periments only made use of one visual receptive �eld at

a time, this one used two simultaneously. The visual

morphology/networks evolved such that robots rotated

on the spot when both visual inputs were low (this is

e�ected by the subnetwork made from nodes 3, 5, 6 and

11). When the signal from receptive �eld 1 (v

1

) is high

but that from receptive �eld 2 (v

2

) is low, the connection

from unit 0 to unit 14 generates a rotational movement.

When v

1

and v

2

are both medium high, the inputs from

unit 1 to units 12 and 13 tend to cancel each other out

whereas unit 14 is strongly activated, again resulting in

a rotational movement. When v

1

and v

2

are both high,

the inhibitory links from unit 0 to unit 4, and from unit

13 to itself, come into play. This just leaves unit 14 ac-

tive and rotation follows. If v

1

is high but v

2

low, similar

behaviour ensues. However, if v

2

is high and v

1

is low,

units 12 and 14 (via 4) are active and unit 13 is inhibited.

Hence straight linemotion is produced. The active recep-

tive �elds were so arranged to result in the robot tending

to accurately �xate on the the triangle and moving in a

straight line towards it. It would often �xate on the edge

of the rectangle but as it moved towards it both visual

signals would go high, resulting in a rotation towards

the triangle. As the robot moved towards the triangle

with only v

2

high, the looming target would cause v

1

to

go high. However, the (evolved) layout of the receptive

�elds relative to the geometry of the triangle meant that

the ensuing rotational movement very rapidly sent v

1

low

while v

2

remained high, and the robot carried on moving

towards the triangle usually only slightly deected from

its original path. When it reached the target, depend-

ing on its orientation, the robot either stopped or slowly

rotated away from the triangle and then looped back to-

wards it. These results illustrate that tasks such as these

can be achieved with extremely minimal vision systems

and very small networks.

9 An Initially Converged Population

Whereas Genetic Algorithms (GAs) are normally used

to search high-dimensional spaces, the modi�ed form

of GAs, `SAGA' [2], employed here uses a genetically

largely converged population, and in e�ect searches a rel-

atively local space of adaptations to the current popula-

tion; arti�cial evolution is treated as exploration, driven

largely by mutation, rather than search. The population

is maintained at some fairly high degree of convergence

by the balance between mutation and selection. For a

continuing sequence of experiments, with tasks of added

complexity, the starting point in each case is the popula-

tion that succeeded before, but there are di�erent choices

for the very �rst population.

One could start with a randomly generated population

(i.e. their genotypes are randomly generated from valid

symbols), which would be the normal GA technique.

But often in a normal GA problem, di�erent parts of

the genotype contribute semi-independently to the eval-

uation function, and through the Schema Theorem [3]

progress of some sort can be made from such a random

start. In our case, however, the genotypes describe con-

trol systems which in turn generate behaviour, with no

simple correlation between the genotypes and the be-

haviour; which means that, at least with encodings like

the one used here, two di�erent genotypes which both



produce promising behaviour will, on recombination, al-

most always produce a genotype with near-average per-

formance | i.e. useless performance. It is only once the

population has largely converged | as advocated with

SAGA [2] | that recombination is likely to be useful.

For this reason, from a start with a randomly gener-

ated population, the early stages will do no more than

allow some early promising candidate to dominate the

population. In which case we can speed up the pro-

cess, and help give some desired initial direction, by our-

selves observing the �rst random population, choosing

by eye the most promising, and seeding the next gener-

ation with clones of this one. Thereafter the population

settles down to its asymptotic degree of genetic conver-

gence from above, rather than from below. For the ex-

periments reported here, an initial randomly generated

population of size 30 was judged by eye on the intuitive

criterion of `interesting' behaviour. Two members dis-

played forward-moving behaviour, which altered in char-

acter when the white target was within view of the visual

system, and one of these two was selected. The infor-

mal criterion of `interestingness' allowed a clear choice,

whereas the `o�cial' evaluation function used thereafter

did not give clear preferences on this initial random pop-

ulation, as the scores it gave there were dominated by

noise. This use of di�erent evaluations over time is

completely consonant with the underlying philosophy of

this approach, that of human-directed evolution of the

robots.

As has already been mentioned, the successes we have

had with initially converged populations are from too

small a sample of experiments to have any statistical

signi�cance. It should also be noted that the genetic

encoding scheme plays an important role in determining

how e�ective crossover is in early generations.

10 Future Work

Encouraged by the initial results with the gantry appa-

ratus we intend to start using it in more complex exper-

iments. In these we intend to use networks with much

richer intrinsic dynamics, and more sophisticated geno-

type to phenotype developmental processes allowing a

less restricted open-ended evolutionary process. We will

explore behaviours in cluttered and dynamic environ-

ments and under changing lighting conditions.

Evaluations with the gantry using a real optic array

take less than one order of magnitude longer than the

early simulations we did using ray-tracing in a very sim-

ple environment. But whereas ray-tracing simulations

rapidly scale up in computational requirements as the en-

vironment is made more complex, with the gantry there

is no such constraint.

11 Conclusions

This paper has described a specialised piece of visuo-

robotic equipment allowing us to evolve visually guided

agents in the real world. It has reported on work that

has demonstrated that our methods developed using sim-

ulation experiments have transferred to the real world.

We have been able to evolve robust visually guided be-

haviours with very small populations in very few gener-

ations, even though the visual signals in the real world

are far more noisy than in our simulations; this is in con-

trast to the di�culties experienced by others using evo-

lutionary techniques, but with di�erent control system

building blocks [5]. A number of our evolved control sys-

tems showed interesting levels of adaptation when tested

on generalised versions of the task they were evolved

for, even though they use only one or two visual recep-

tive �elds and a very small network. We have demon-

strated the e�cacy of concurrently evolving the visual

morphology along with the control networks. We �nd it

promising that we have obtained interesting results with

a simple type of network and an unsophisticated genetic

encoding. Particularly since we regard both of these as

being among the least powerful of the classes of networks

and genetic encodings we advocate.
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