
Bayesian Regularisation and Pruning using a Laplace Prior

Peter M Williams

Cognitive Science Research Paper CSRP-312

School of Cognitive and Computing Sciences

University of Sussex

Falmer, Brighton BN1 9QH

email: peterw@cogs.susx.ac.uk

February 1, 1994

Abstract

Standard techniques for improved generalisation from neural networks include

weight decay and pruning. Weight decay has a Bayesian interpretation with the de-

cay function corresponding to a prior over weights. The method of transformation

groups and maximum entropy indicates a Laplace rather than a Gaussian prior. Af-

ter training, the weights then arrange themselves into two classes: (1) those with a

common sensitivity to the data error (2) those failing to achieve this sensitivity and

which therefore vanish. Since the critical value is determined adaptively during train-

ing, pruning|in the sense of setting weights to exact zeros|becomes a consequence

of regularisation alone. The count of free parameters is also reduced automatically as

weights are pruned. A comparison is made with results of MacKay using the evidence

framework and a Gaussian regulariser.

1 Introduction

Neural networks designed for regression or classi�cation need to be trained using some

form of stabilisation or regularisation if they are to generalise well beyond the origi-

nal training set. This means �nding a balance between complexity of the network and

information content of the data.

Denker et al [3] distinguish formal and structural stabilisation. Formal stabilisation

involves adding an extra term to the cost function that penalises more complex models.

In the neural network literature this often takes the form of weight decay [18] using

the penalty function

P

j

w

2

j

where summation is over components of the weight vector.

Structural stabilisation is exempli�ed in polynomial curve �tting by explicitly limiting

the degree of the polynomial. Examples relating to neural networks are found in the

pruning algorithms of le Cun et al [8] and Hassibi & Stork [6]. These use second-order

information to determine which weight can be eliminated next at the cost of minimum

increase in data mis�t. They do not by themselves, however, give a criterion for when to

stop pruning.

This paper advocates a type of formal regularisation in which the penalty term is

proportional to the logarithm of the L

1

norm of the weight vector

P

j

jw

j

j. This simulta-

neously provides both forms of stabilisation without the need for additional assumptions.

1

2 Probabilistic interpretation

Choice of regulariser corresponds to a preference for a particular type of model. From a

Bayesian point of view the regulariser corresponds to a prior probability distribution over

free parameters w of the model. Using the notation of MacKay [9, 10] the regularised

cost function can be written as

M(w) = �E

D

(w) + �E

W

(w) (1)

where E

D

measures the data mis�t, E

W

is the penalty term and �; � > 0 are regularising

parameters determining a balance between the two. (1) corresponds, by taking negative

logarithms and ignoring constant terms, to the probabilistic relation

P (wjD) / P (Djw)P (w)

where P (wjD) is the posterior density in weight space, P (Djw) is the likelihood of the

data D and P (w) is the prior density over weights.

1

According to this correspondence

P (Djw) = Z

�1

D

exp��E

D

and P (w) = Z

�1

W

exp��E

W

(2)

where Z

D

= Z

D

(�) and Z

W

= Z

W

(�) are normalising constants. It follows that the

process of minimising

M(w) = � logP (wjD) + constant

is equivalent to �nding a maximum of the posterior density.

2.1 The likelihood function for regression networks

Suppose a training set of pairs (x

p

; t

p

), p = 1; : : : ; N , is to be �tted by a neural network

model with adjustable weights w. The x

p

are input vectors and the t

p

are target outputs.

The network is assumed for simplicity to have a single output unit. Let y

p

= f(x

p

;w),

p = 1; : : : ; N , be the corresponding network outputs when f is the network mapping, and

assume that the measured values t

p

di�er from the predicted values y

p

by an additive

noise process

t

p

= y

p

+ �

p

p = 1; : : : ; N:

If the �

p

have independent normal distributions, each with zero mean and the same known

standard deviation �, the likelihood of the data is

N

Y

p=1

1

p

2��

exp�

1

2

�

y

p

� t

p

�

�

2

which implies that

E

D

=

1

2

N

X

p=1

(y

p

� t

p

)

2

(3)

1

The notation is somewhat schematic. See [2, 9, 15] for more explicit notations.

2

according to (2) with � = 1=�

2

and Z

D

= (2�=�)

N=2

. As � ! 0 we have the improper

uniform prior over w so that P (wjD) / P (Djw) and M is proportional to E

D

. This

means that least squares �tting, which minimises E

D

alone, is equivalent to simple max-

imum likelihood estimation of parameters assuming Gaussian noise [19, x14.1]. Other

models of the noise process are possible but the Gaussian model is assumed throughout.

2

2.2 Weight prior

A common choice of weight prior assumes that weights have identical independent normal

distributions with zero mean. If fw

j

j j = 1; : : : ;Wg are components of the weight vector,

then according to (2)

E

W

=

1

2

W

X

j=1

w

2

j

(Gauss) (4)

where 1=� is the variance. Alternatively if the absolute values of the weights have expo-

nential distributions then

E

W

=

W

X

j=1

jw

j

j (Laplace) (5)

where 1=� is the mean absolute value. Another possibility is the Cauchy distribution

E

W

= (1=�)

W

X

j=1

log

�

1 + �

2

w

2

j

�

(Cauchy) (6)

where 1=� is the median absolute value.

3

Jaynes [7] o�ers two principles|transformation groups and maximum entropy|for

setting up probability distributions in the absence of frequency data. These can be applied

as follows. For any feed-forward network in which there are no direct connections between

input and output units, there is a functionally equivalent network in which the weight on

a given connection has the same size but opposite sign. This is also true if there are direct

connections, except for the direct connections. This is evident if the transfer function

� is odd, such as the hyperbolic tangent. It is true, more generally, provided there are

constants b; c such that �(x� b) + �(b� x) � c. For example b = 0, c = 1 for the logistic

function. Consistency then demands that the prior for a given weight w

j

should be a

function of jw

j

j alone and the maximum entropy distribution for a non-negative quantity

constrained to have a given mean is the exponential distribution [22, Ch.5]. It follows

that the signed weight w

j

has the two-sided exponential or Laplace density

1

2

�e

��jw

j

j

where 1=� is the mean absolute value. Under the assumption of independence for the

joint distribution this leads to the Laplace expression (5) for the regularising term with

Z

W

= (2=�)

W

as normalising constant.

The Gaussian prior would be obtained if constraints were placed on the �rst two

moments of the distribution of the signed weights. The crux of the present argument is

2

This paper concerns regression networks in which the target values are real numbers, but the same

ideas can be applied to classi�cation networks where the targets are exclusive class labels.

3

A penalty function w

2

=(1 +w

2

) similar to log (1 +w

2

) is the basis of [23].

3

that constraining the mean of the signed weights to be zero is not an adequate expression

of the intrinsic symmetry in the signs of the weights. A zero mean distribution need not

be symmetric and a symmetric distribution need not have a mean. Note that the present

argument uses a speci�c property of neural network models that does not apply to linear

regression models generally.

4

3 Comparison of sensitivities

It is revealing to compare the conditions for a minimum of the overall cost function in

the cases of Gauss and Laplace weight priors. Recalling that M = �E

D

+�E

W

it follows

that, at a minimum of M where @M=@w

j

= 0,

�

�

�

�

@E

D

@w

j

�

�

�

�

=

�

�

jw

j

j (7)

assuming E

W

is given by the Gaussian regulariser (4). Sensitivity of the data mis�t

to a given weight is therefore proportional to its size and will be unequal for di�erent

weights. Furthermore if w

j

is to vanish at a minimum of M then @E

D

=@w

j

= 0. This

is the same condition as for an unregularised network so that Gaussian weight decay

contributes nothing towards network pruning in the strict sense.

Condition (7) should be contrasted with Laplacian weight decay (5) where su�cient

conditions for a stationary point are, as we shall see, that

�

�

�

�

@E

D

@w

j

�

�

�

�

=

�

�

if jw

j

j > 0 (8)

�

�

�

�

@E

D

@w

j

�

�

�

�

<

�

�

if jw

j

j = 0: (9)

(8) means that, at a minimum, the non-zero weights must arrange themselves so that

the sensitivity of the data mis�t to each is the same. (9) means that there is a de�nite

cut-o� point for the contribution which each weight must make. Unless the data mis�t

is su�ciently sensitive to the weight on a given connection, that weight is set to zero and

the connection can be pruned. At a minimum the weights therefore divide themselves

into two classes (i) those with common sensitivity �=� and (ii) those that fail to achieve

this sensitivity and which therefore vanish. The critical ratio �=� can be determined

adaptively during training. Pruning is therefore automatic and performed entirely by the

regulariser.

4 Elimination of � and �

The regularising parameters � and � are not generally known in advance. MacKay [9, 10]

proposes the `evidence framework' for determining these parameters. This paper uses the

method of integrating over hyperparameters [2]. A comparison is made in the Appendix.

4

A possible alternative would be to assume each jw

j

j has a log-normal distribution or a mixture of a

log-normal and an exponential distribution, compare [16]. For an approach to formal stabilisation, more

in the style of [21], see Bishop [1].

4

The weight prior in (2) depends on � and can be written

P (wj�) = Z

W

(�)

�1

exp��E

W

(10)

where � is now considered as a nuisance parameter. If a prior P (�) is assumed, � can be

integrated out by means of

P (w) =

Z

P (wj�)P (�) d�: (11)

Since � is a scale parameter, it is reasonable to use the improper 1=� ignorance prior.

5

Using (5) and (10) with P (�) = 1=� it is straightforward to show that

� logP (w) = W logE

W

to within an additive constant.

If the noise level � = 1=�

2

is known, or assumed known, the objective function to be

minimised in place of M is now

L = �E

D

+W logE

W

: (12)

In practice � is generally not known in advance and similar treatment can be given to �

as was given to �. This leads to

� logP (Djw) =

1

2

N logE

D

assuming the Gaussian noise model.

6

The negative log posterior � logP (wjD) is now

given by

L =

1

2

N logE

D

+W logE

W

(13)

and this replaces (1) as the loss function to be minimised.

It is worth noting that if � and � are assumed known, di�erentiation of (1) yields

rM = �rE

D

+ �rE

W

with 1=� as the variance of the noise process and 1=� as the

mean absolute value of the weights. Di�erentiation of (13) yields rL =

e

�rE

D

+

e

�rE

W

where

1=

e

� =

1

N

N

X

p=1

(y

p

� t

p

)

2

(14)

is the sample variance of the noise and

1=

e

� =

1

W

W

X

j=1

jw

j

j (15)

is the sample mean of the size of the weights. This means that minimising L is e�ectively

equivalent to minimising M assuming � and � are continuously adapted to the current

sample values

e

� and

e

�.

5

This means assuming that log � is uniformly distributed or equivalently that log ��

�

is uniformly

distributed for any � > 0 and j�j > 0. The same results can be obtained as the limit of a Gamma

prior [14, 26].

6

The

1

2

comes from the fact that E

D

is measured in squared units. Assuming Laplacian noise this

term becomes N logE

D

with E

D

=

P

p

jy

p

� t

p

j.

5

5 Priors, regularisation classes and initialisation

For simplicity Section 2.2 assumed a single weight prior for all parameters. In fact dif-

ferent priors are suitable for the three types of parameter found in feedforward networks,

distinguished by their di�erent transformational properties.

Internal weights. These are weights on connections that either input from a hidden

unit or output to a hidden unit. The argument of Section 2.2 indicates a Laplace prior.

MacKay [10] points out, however, that there are advantages in dividing such weights into

separate classes with each class c having its own adaptively determined scale. This leads

by the arguments of Section 4 to the more general cost function

L =

1

2

N logE

D

+

X

c

W

c

logE

c

W

(16)

where summation is over regularisation classes, W

c

is the number of weights in class c

and E

c

W

=

P

j2c

jw

j

j is the sum of absolute values of weights in that class. A simple

classi�cation uses two classes consisting of (1) weights on connections with output units

as destinations and (2) weights on connections with hidden units as destinations. More

re�ned classi�cations might be preferred for speci�c applications.

Biases. Regularisation classes must be exclusive but need not be exhaustive. Parame-

ters belonging to no regularisation class are unregularised. This corresponds to a uniform

prior. This is appropriate for biases which transform as location parameters [26]. The

prior suitable for a location parameter is one with constant density. Biases are therefore

excluded from regularisation.

Direct connections. If direct connections are allowed between input and output units,

the argument of Section 2.2 does not apply. There is no intrinsic symmetry in the signs

of these weights. It is then reasonable to use a Gaussian prior contributing an extra term

1

2

W

d

logE

d

W

to the righthand side of (16) where d is the class of direct connections, W

d

is the number of direct connections and E

d

W

=

1

2

P

j2d

w

2

j

is half the sum of their squares.

Initialisation

It is natural to initialise the weights in the network in accordance with the assumed

prior. For internal weights with the Laplace prior, this is done by setting each weight

to � a log r where r is uniformly random in (0; 1), the sign is chosen independently at

random and a > 0 determines the scale. a is then the average initial size of the weights.

Satisfactory results are obtained with a = 1=

p

2m for input weights and a = 1:6=

p

2m for

remaining weights where m is the fan-in of the destination unit. The network function

corresponding to the initial guess then has roughly unit variance outputs for unit variance

inputs, assuming the natural hyperbolic tangent as transfer function. All biases are

initially set to zero.

6

6 Multiple outputs and noise levels

Suppose the regression network has n output units. In general the noise levels will be

di�erent for each output. The data mis�t term then becomes

P

i

�

i

E

i

D

where summation

is over output units and, assuming independent Gaussian noise, E

i

D

=

1

2

P

p

(y

pi

� t

pi

)

2

is

the error on the ith output, summed over training patterns.

7

If each �

i

= 1=�

2

i

is known,

the objective function becomes

L =

X

i

�

i

E

i

D

+W logE

W

(17)

in place of (12), assuming a single regularisation class. Otherwise integrating over each

�

i

with the 1=�

i

prior gives

L =

1

2

N

X

i

logE

i

D

+

X

c

W

c

logE

c

W

in place of (16), assuming multiple regularisation classes.

Multiple noise levels. Even in the case of a single output regression network there

may be reason to suspect that the noise level di�ers between di�erent parts of the training

set.

8

In that case the training set can be partitioned into two or more subsets and the

term

1

2

N logE

D

in (16) is replaced by

1

2

P

s

N

s

logE

s

D

where N

s

is the number of patterns

in subset s, with

P

N

s

= N , and E

s

D

=

1

2

P

p2s

(y

p

�t

p

)

2

is the data error over that subset.

7 Non-smooth optimisation and pruning

The practical problem from here on is assumed to be unconstrained minimisation of (16).

The objective function L is non-di�erentiable, however, on account of the discontinuous

derivative of jw

j

j at each w

j

= 0. This is a case of non-smooth optimisation [4, Ch. 14].

On the other hand, since L only has discontinuities in its �rst derivative and these are

easily located, techniques applicable to smooth problems can still be e�ective [5, x4.2].

Most optimisation procedures applied to L as objective function are therefore likely

to converge despite the discontinuities, though with a signi�cant proportion of weights

assuming negligibly small terminal values, at least for real noisy data. These are weights

that an exact line search would have set to exact zeros. They are in fact no longer free

parameters of the model and should not be included in the counts W

c

of weights in the

various regularisation classes. For consistency, these numbers should be reduced during

7

In many applications it will be unwise to assume that the noise is independent across outputs. This is

often a reason for not using multiple output regression models in practice, unless one is willing to include

cross terms (y

pi

�t

pi

)(y

pj

�t

pj

) in the data error and reestimate the inverse of the noise covariance matrix

during training.

8

Typically this arises when training items relate to domains with an intrinsic topology. For example,

predictability of some quantity of interest may vary over di�erent regions of space (mineral exploration)

or periods of time (�nancial forecasting).

7

the course of training, otherwise the trained network will be over-regularised. The rest

of the paper is devoted to this issue.

9

The approach is as follows. It is assumed that the training process consists of iterating

through a sequence of weight vectors w

0

;w

1

; : : : to a minimum of L. If these are consid-

ered to be joined by straight lines, the current weight vector traces out a path in weight

space. Occasionally this path crosses one of the hyperplanes w

j

= 0 where w

j

is one of

the components of the weight vector. This means that w

j

is changing sign. The question

is whether w

j

is on its way from being sizeably positive to being sizeably negative, or

vice versa, or whether jw

j

j is executing a Brownian motion about w

j

= 0. The proposal

is to pause when the path crosses, or is about to cross, a hyperplane and decide which

case applies. This is done by examining @L=@w

j

. If @L=@w

j

has the same sign on both

sides of w

j

= 0, w

j

is on its way elsewhere. If it has di�erent signs|more speci�cally

the same sign as w

j

on either side|this is where w

j

wishes to remain since L increases

in either direction. In the second case the proposal is to freeze w

j

permanently at zero

and exclude it from the count of free parameters. From then on the search continues in

a lower dimensional subspace.

With this in mind there are three problems to solve. The �rst concerns the behaviour

of L at w

j

= 0 and a convenient de�nition of @L=@w

j

in such a case. The second concerns

the method of setting weights to exact zeros and the third concerns the implementation

of pruning and the recount of free parameters.

7.1 De�ning the derivative

For convenience we write the objective function (16) as L = L

D

+ L

W

where

L

D

=

1

2

N logE

D

L

W

=

P

c

W

c

log

P

j2c

jw

j

j:

The problem in de�ning @L=@w

j

lies with the second term since jw

j

j is not di�erentiable

at w

j

= 0.

Suppose that w

j

belongs to regularisation class c and consider variation of w

j

about

w

j

= 0 keeping all other weights �xed. This gives the cusp-shaped graph for L

W

shown

in Figure 1 which has a discontinuous derivative at w

j

= 0. Its one-sided values are �

e

�

c

depending on the sign of w

j

, where

1=

e

�

c

=

1

W

c

X

j2c

jw

j

j

is the mean absolute value of weights in class c. The two corresponding tangents to the

curve are shown as dashed lines.

Consider small perturbations in w

j

around w

j

= 0 keeping other weights �xed. So

far as the regularising term L

W

alone is concerned, w

j

will be restored to zero, since a

9

Typical features of Laplace regularisation can be sampled by applying some preferred optimisation

algorithm directly to the objective functions given by (13) or (16). This corresponds to the `quick and

dirty' method of [10, x6.1].

8

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`̀

e�

c

�e�

c

L

W

@L

D

@w

j

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�

Figure 1: Space-like data gradient at w

j

= 0.

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

e�

c

�e�

c

L

W

@L

D

@w

j

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�
�

�

�
�

�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�
�

�

�
�

�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�

Figure 2: Time-like data gradient at w

j

= 0.

change in either direction increases L

W

. The full objective function, however, is L =

L

D

+ L

W

so that behaviour under small perturbations is governed by the sum of the

two terms @L

D

=@w

j

and @L

W

=@w

j

. Figure 1 shows one possibility for the relationship

between them. Here @L

D

=@w

j

is `space-like' with respect to �

e

�

c

. This is stable since

@L=@w

j

, which is the sum of the two, has the same sign as w

j

in either direction. Small

perturbations in w

j

will be restored to zero.

Contrast this with Figure 2 where @L

D

=@w

j

is now `time-like' with respect to �

e

�

c

.

Increasing w

j

will escape the origin since @L

D

=@w

j

is more negative than @L

W

=@w

j

=

e

�

c

is positive. In short @L=@w

j

is negative for small positive w

j

. It follows that the criterion

for stability at w

j

= 0 is that

�

�

�

�

@L

D

@w

j

�

�

�

�

<

e

�

c

: (18)

If L is given by (16) so that L

D

=

1

2

N logE

D

, then @L

D

=@w

j

=

e

� @E

D

=@w

j

with

e

� given

9

by (14). The criterion for stability can then be written in terms of E

D

as

�

�

�

�

@E

D

@w

j

�

�

�

�

<

e

�

c

=

e

�

and a similar argument establishes (9) in the case of a single regularisation class when �

and � are assumed known.

It is convenient to de�ne the objective function partial derivative @L=@w

j

at w

j

= 0 as

follows. If w

j

is bound to zero, i.e. the partial derivative @L

D

=@w

j

is space-like, @L=@w

j

is

de�ned to be zero. If it is time-like, it is de�ned to be the value of the downhill derivative.

Explicitly using the abbreviations

b =

@L

D

@w

j

and a =

e

�

c

then

@L

@w

j

=

8

>

>

>

>

>

<

>

>

>

>

>

:

b+ a if w

j

> 0

b� a if w

j

< 0

b+ a if b+ a < 0

b� a if b� a > 0

0 otherwise

(19)

where the conditions are to be evaluated in order so that the last three apply in the case

w

j

= 0. The last of all applies in the case of (18) when jbj < a. Note that if w

j

belongs

to no regularisation class, e.g. w

j

is a bias, then @L=@w

j

= b.

If a weight w

j

has been set to zero, the value of @L=@w

j

indicates whether or not this

is stable for w

j

. If so, the partial derivative is zero, showing that no reduction can be

made in L by changing w

j

in either direction. If not, L can be reduced by increasing or

decreasing w

j

and @L=@w

j

as de�ned above now measures the immediate rate at which

the reduction would be made.

7.2 Finding zeros

The next task is to ensure that the training algorithm has the possibility of �nding

exact zeros for weights. A common approach to the unconstrained minimisation problem

assumes that at any given stage there is a current weight vector w and a search direction

s. No assumptions need be made about the precise way in which successive directions are

determined. Once the search direction is established, we have to solve a one-dimensional

minimisation problem. If the scalar function f(�) is de�ned by

f(�) = L(w + �s) (20)

the problem is to choose � = �* > 0 to minimise f . Assuming that f is locally quadratic

with f

0

(0) < 0 and f

00

(0) > 0, this can be solved by taking �* = �f

0

(0)=f

00

(0):Numerator

and denominator can be calculated by f

0

(0) = s � rL and f

00

(0) = s � rrL s where rrL

is the Hessian of L.

10

The new weight vector is then w+�*s. It is not required, however,

10

The matrix-vector product rrL s can be calculated using [17] or [12]. Alternatively f

00

(0) can be

calculated by di�erencing �rst derivatives. Levenberg-Marquardt methods can be used in case f

00

(0) is

sometimes negative or if the quadratic assumption is poor [4, 24, 13].

10

that �* is determined in this way. All that is required is an iterative procedure that

moves at each step some distance along a search direction s from w to w + �s, together

with some preferred way of determining � = �*.

11

Unless it was specially designed for

that purpose, however, it can be assumed that the preferred algorithm never accidentally

alights on an exact zero for any weight.

To allow for this possibility, note that the line w+�s intersects the hyperplane w

j

= 0

at � = �

j

where

�

j

= �

w

j

s

j

(21)

provided js

j

j > 0, i.e. provided the line is not parallel to the hyperplane. Let �

k

be

the nearest to �* of the f�

j

g de�ned by (21). In other words w + �

k

s is that point of

intersection of the search direction with one of the hyperplanes fw

j

= 0g which is nearest

to w + �*s. If w + �

k

s is su�ciently close to where the predicted minimum occurs at

w+ �*s, or equivalently if �

k

is su�ciently close to �*, replace �* by �

k

. In that case the

next weight vector in the optimisation process is given by w + �

k

s rather than w + �*s.

More explicitly the criterion for �

k

being su�ciently close to �* is that

�

�

�

�

1�

�

k

�*

�

�

�

�

< �

for suitable � > 0. Since �

k

is the closest to �* of the f�

j

g we need only evaluate

�

j

=

�

�

�

�

1 +

w

j

s

j

�*

�

�

�

�

for each index j for which jw

j

j > 0 and js

j

j > 0, and choose k to be the index that

minimises �

j

. Provided �

k

< �, replace �* by �

k

. If not, or if there are no j with jw

j

j > 0

and js

j

j > 0, leave the initial value �* unchanged. Note that if � < 1, it is not necessary

to make a separate check that �

k

> 0 since it is assumed that �* > 0.

The choice of � is not critical. If f(�) were quadratic with minimum at � = �* then

�

�

�

�

f(�)� f(�*)

f(0)� f(�*)

�

�

�

�

< �

2

whenever j1� �=�*j < �. Taking � = 0:1 the reduction in L in moving from w to w+ �

k

s

would then be at least 99% of the reduction in moving to where the predicted minimum

occurs at w + �*s. But any value of � in the range (0; 1) gives a reduction in L on the

quadratic assumption. For quadratic descent methods � = 1 has been found satisfactory

and is proposed as the default.

Two numerical issues are important. (1) If a nearby zero has been found at � = �

k

,

the kth component of w + �s will be w

k

+ �

k

s

k

= w

k

� (w

k

=s

k

) s

k

= 0. But for later

pruning purposes, the new w

k

needs to be set to 0 explicitly. It would be unwise to rely

on oating point arithmetic.

12

(2) Line search descent methods usually demand a strict

11

It is not even required that this is uniformly a descent method. Nor does the optimisation algorithm

need to make explicit use of a search direction. If it jumps directly from w to w

0

, de�ne s = w

0

�w, take

�* = 1 and proceed as in the text.

12

E�ectively the oating point zero is being used as a natural and convenient boolean ag.

11

decrease in the value of the objective function on each iteration, or even more [4, x2.5].

But this is inappropriate when we choose a new w

k

= 0 by using � = �

k

. The reason is

that k�

k

sk may be very small, so that the hyperplane is crossed almost immediately on

setting out from w and roundo� errors in computing L become dominant. In that case

it is su�cient to require that

f(�

k

)� f(0) < � jf(�

k

) + f(0)j

where � = 10

�5

say for single precision.

In summary it is left to the reader to supply the algorithms for determining successive

search directions and the initially preferred value of �*. In this section it has been shown

how �* can be modi�ed to �nd a nearby zero of one of the weights. The previous section

dealt with the problem of de�ning rL when that occurs.

8 Pruning

The remaining question is whether a weight that has been set to zero should be allowed to

recover or whether it should be permanently bound to zero and pruned from the network.

A weight w

j

is said to be bound if it satis�es the condition

w

j

= 0 and

@L

@w

j

= 0: (22)

It is proposed to prune a weight from the network as soon as it becomes bound. Thereafter

it will be frozen at zero and no longer included in the count of free parameters. The

connection to which it corresponds has e�ectively been removed from the network. In

this way the current value for the number W

c

of free parameters in a given regularisation

class c can only decrease.

13

In more detail the process is as follows. At every stage of the training process each

component of the weight vector is classi�ed as being either frozen or not frozen. Initially

no weights are frozen. Only zero weights are ever frozen in the course of training and,

once frozen, are never unfrozen. Frozen weights correspond to redundant directions in

weight space which are never thereafter explored.

14

After each change, the weight vector is examined for new zeros. According to the

proposal of Section 7.2 at most one new component is set to zero on each iteration.

This component, w

j

say, is examined to see if it meets the second part of the condition

(22). The value W

c

to be used in (19) when computing @L=@w

j

via

e

�

c

is the number of

currently free weights in the class c to which w

j

belongs. If (22) is satis�ed, w

j

is frozen

at zero and W

c

is reduced. If not, w

j

remains at zero but unfrozen, and W

c

is unchanged.

The process then continues.

13

In the case of stochastic gradient descent it should be remembered that the de�nition of being bound

for a zero weight depends on the value of the full partial derivative @L

D

=@w

j

summed over training

patterns.

14

Alternatively an implementation may choose to actually remove the corresponding connections from

the network data structure.

12

6

��

��

J

J

J

J

J

J

J

J

w

1i

w

ji

w

mi

�

i

0 0 0

7�!

��

��

J

J

J

J

J

J

J

J

0 0 0

0

000

Figure 3: Replacing the input weights of output-dead hidden units by zeros by means of

a backward pass.

8.1 Tidying up dead units

An important addition needs to be made to the process just described. It concerns dead

units. These are hidden units all of whose inputs weights are frozen or all of whose output

weights are frozen. In either case the unit is redundant and neither its input weights nor

its output weights should count as free parameters of the model.

Output-dead units. Suppose that all output weights of a given hidden unit have been

frozen at zero. These connections are e�ectively disconnected. The input to any other

unit from this unit is constantly zero. Its input weights are therefore also redundant

parameters and should not be counted as free parameters of the model. This situation is

shown in the lefthand diagram of Figure 3 in which the direction of forward propagation

is from bottom to top.

15

A functionally equivalent network is obtained by replacing all the input weights and

bias by zero, as shown in the righthand part of Figure 3. Since the data gradient of each

of these weights is zero, condition (22) is satis�ed, so that these weights should also be

frozen and no longer included in the count of free parameters. The process indicated

in Figure 3 should be performed using a backward pass through the network, since the

newly frozen input weights of the unit indicated may be output weights for some other

hidden unit.

Input-dead units. Figure 4 shows the dual situation in which all the input weights of

a hidden unit have been frozen at zero. In this case the unit is not altogether redundant

since it generally computes a non-zero constant function y

i

= �

i

(�

i

) where �

i

is the

transfer function for the ith unit and �

i

is its bias. Suppose that unit i outputs to unit

j amongst others. Then the input contribution to unit j from unit i is the constant

w

ij

�

i

(�

i

). There is a degeneracy as things stand since the e�ective bias on unit j depends

only on the sum �

j

+w

ij

�

i

(�

i

). The network will compute the same function if w

ij

is set

15

It is assumed, as the de�nition of a feedforward network, that the underlying directed graph is acyclic,

so that the units can be linearly ordered as u

1

; : : : ; u

n

with i < j whenever u

i

outputs to u

j

. The terms

forward and backward are to be understood in the sense of some such ordering.

13

6

��

��

J

J

J

J

J

J

J

J

0 0 0

�

i

w

i1

w

ij

w

in

7�!

��

��

J

J

J

J

J

J

J

J

0 0 0

0

000

�

j

= �

j

+ w

ij

�

i

(�

i

)

Figure 4: Replacing the output weights of input-dead hidden units by zeros by means of

a forward pass, with compensating adjustments in the biases of destination units.

to zero and the bias �

j

on unit j is increased by w

ij

�

i

(�

i

). The result of doing so is shown

in the righthand part of Figure 4. This process should be performed using a forward pass

through the network since the newly frozen output weights of the unit indicated may be

input weights for some other hidden unit.

Let us call a network tidy if each hidden unit satis�es the condition that its bias

and all input and output weights are zero whenever either all its input weights are zero

or all its output weights are zero. It can be shown that every feedforward network is

functionally equivalent to a tidy network and that a functionally equivalent tidy network

can be obtained by a single forward and backward pass of the transformations indicated

in Figures 3 and 4 performed in either order.

In fact we are concerned here only to tidy networks in which all input weights or all

output weights are not merely zero but are frozen at zero. But the process is the same.

Furthermore it is clear that if all the input and output weights of a hidden unit are zero,

necessarily @L

D

=@w

j

= 0 for each of these weights and consequently @L=@w

j

= 0 in virtue

of (19). It follows that condition (22) is satis�ed so that these weights are automatically

frozen and no longer included in the count of free parameters.

8.2 The algorithm

The algorithm can be stated as follows. Consider all weights and biases in the network to

form an array w. Suppose there is also a parallel Boolean array frozen, of the same length

as w, initialised to FALSE for each component. Let g stand for the array corresponding

to rL. Suppose in addition that there is a variable W[c] for each regularisation class

counting the number of currently non-frozen weights in that class.

It is assumed that a sequence of weight vectors w arises from successive iterations of

the optimisation algorithm and that the weight vector occasionally includes a new zero

component w[j] using the procedure of Section 7.2. After each iteration on which the

new weight vector contains a new zero, w and frozen must be processed as follows.

1. freeze zeros in accordance with (22)

frozen[j] := (frozen[j] OR (w[j] = 0 AND g[j] = 0))

14

for each component of the weight vector;

2. extend freezing, maybe, using the tidying algorithm of Section 8.1 and set

frozen[j] := TRUE

for each newly zeroed weight;

3. recount the number W[c] of non-frozen weights in each class.

Because of the OR in step 1, freezing is irreversible and after a weight is frozen at zero its

value should never change. If s is the array corresponding to the search vector, this is

best enforced whenever the search direction is changed by requiring that

IF frozen[j] THEN s[j] := 0

for each component of s. It is also wise to append to the de�nition of the gradient array

g the stipulation

IF frozen[j] THEN g[j] := 0

for each component of g.

Each time a weight is frozen the objective function L de�ned by (16) changes because

of a change in the relevant W

c

. But since E

D

is unchanged, this is a simple. It will

also be necessary to recalculate the gradient vector rL. But this is equally simple since

rL

D

only changes if it was necessary to do some tidying in step 2 and this will only be

for newly frozen weights which automatically have zero gradients, without the need for

calculation.

Whenever one or more weights are frozen, the optimisation process restarts in a

lower dimensional space with the projection of the current weight vector serving as the

new initial guess. This means that the compound process enjoys whatever convergence

and stability properties are enjoyed by the simple process in the absence of freezing.

Assuming the simple process always converges, each period in which the objective function

is unchanged either terminates with convergence or with a strict reduction in

P

c

W

c

.

Since each W

c

is �nite the compound process must terminate.

9 Examples

Examples of Laplace regularisation applied to problems in geophysics can be found in

[25] and [26]. This section compares results obtained using the Laplace regulariser with

those of MacKay [10] using the Gaussian regulariser and the evidence framework. The

problem concerns a simple two joint robot arm. The mapping (x

1

; x

2

) 7! (y

1

; y

2

) to be

interpolated is de�ned by

y

1

= r

1

cos(x

1

) + r

2

cos(x

1

+ x

2

)

y

2

= r

1

sin(x

1

) + r

2

sin(x

1

+ x

2

)

15

300

350

400

450

500

550

600

650

700

750

6 8 10 12 14 16 18 20

data error

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

400�W

Figure 5: Plot showing the data error of 148 trained networks. 10 networks were trained

for each of 16 network architectures with hidden units ranging from 5 to 20. 12 outliers

relating to small numbers of hidden units have been excluded. The dotted line is 400�W

whereW is the empirically determined number of free parameters remaining after Laplace

regularised training, averaged over each group of 10 trials.

where r

1

= 2:0 and r

2

= 1:3. As training set, 200 random samples were drawn from a

restricted range of (x

1

; x

2

) and Gaussian noise of standard deviation 0:05 was added to

the calculated values of (y

1

; y

2

) as target values.

16

Simple three layer networks were used

with 2 input, 2 output and from 5 to 20 hidden units. Results are shown in Figure 5.

For comparability with MacKay's results a single regularisation class was used and it

was assumed that the noise level � = 0:05 was known in advance. The objective function

to be minimised is therefore (17) with �

1

= �

2

= 1=�

2

. The ordinate in Figure 5 is twice

the �nal value of the �rst term on the righthand side of (17). This is a dimensionless

�

2

quantity whose expectation is 400 � 20 relative to the actual noise process used in

constructing the training set. Results on a test set also of size 200 and drawn from

the same distribution as the training set are shown in Figure 6 using the same error

units. Comparison with results on a further test set, of the same size and drawn from

the same distribution, is shown in Figure 7. This con�rms MacKay's observation that

generalisation error on a test set is a noisy quantity, so that many data would have to be

devoted to a test set for test error to be a reliable way of setting regularisation parameters.

Performance on both training and test sets settles down after around 13 hidden units.

Little change is observed when further hidden units are added since the extra connections

are pruned by the regulariser as shown by the dotted line in Figure 5. This contrasts

16

Training and test sets used here are the same as those in [10] by courtesy of David MacKay.

16

450

500

550

600

650

6 8 10 12 14 16 18 20

test error

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

Figure 6: Test error versus number of hidden units.

450

500

550

600

650

400 450 500 550 600 650

5{12 hidden units

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

13{20 hidden units

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

y = x

Figure 7: Errors on two test sets.

17

100

150

200

250

300

0 0.05 0.1 0.15 0.2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

��

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 8: Data error versus noise level for an initial 50 hidden units.

with MacKay's results using the sum of squares regulariser for which the training error

continues to decrease as more hidden units are added and where the training error for

approaching 20 hidden units di�ers very little from the best possible unregularised �t.

MacKay's approach is to evaluate the `evidence' for each solution and to choose a number

of hidden units that maximises this quantity, which in this case is approximately 11 or 12.

The present heuristic is to supply the network with ample hidden units and to allow the

regulariser to prune these to a suitable number. Provided the initial number of hidden

units is su�cient, the results are largely independent of the number of units initially

supplied.

9.1 Varying the noise

For a further demonstration of Laplace pruning, the problem is changed to one in which

the network has a single output. Multiple output regression networks are unusual in

practice, especially ones satisfying a relation such as y

1

(x

1

; x

2

) � y

2

(x

1

+�=2; x

2

). There

is also the possibility that the hidden units divide themselves into two groups, each serving

one of the two outputs exclusively, which can make it di�cult to interpret results. We

therefore consider interpolation of just one of the outputs considered above, speci�cally

the cosine expression y

1

. The same 200 input pairs (x

1

; x

2

) were used as for MacKay's

training set, but varying amounts of Gaussian noise were added to the target outputs.

Results using a network with 50 hidden units and with noise varying from 0.01 to

0.19 in increments of 0.01 are shown in Figure 8. In this case the noise was resampled on

each trial so that each of the 190 di�erent networks was trained on a di�erent training

set. Two regularisation classes were used and it was no longer assumed that the noise

level was known in advance. The objective function is therefore given by equation (16)

with input and output weights forming the two classes. The data error in Figure 8 is

again shown in �

2

units whose expected value is now 200 relative to the actual noise

process since there is only one output unit. Speci�cally the ordinate in Figure 8 measures

P

p

[(y

p

� t

p

)=�]

2

where � is the abscissa and p ranges over the 200 training items. The

actual data error increases proportionately with the noise so that the normalised quantity

is e�ectively constant.

18

0

5

10

15

20

25

30

35

40

45

50

0 0.05 0.1 0.15 0.2

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

� �

�

�

Figure 9: Live hidden units versus noise level for an initial 50 hidden units.

Figure 9 shows mean numbers of live hidden units, with one standard deviation error

bars, in networks corresponding to each of the 19 noise levels. This is the number of

hidden units remaining in the trained network after the pruning implicit in Laplace

regularisation. Note that the number of initially free parameters in a 50 hidden unit

network with 2 inputs and 1 output is 201 so that with 200 data points the initial ratio

of data points to free parameters is approximately 1. This should be contrasted with the

statement in [10] that the numerical approximation needed by the evidence framework,

when used with Gaussian regularisation, seems to break down signi�cantly when this

ratio is less than 3� 1.

Figure 9 indicates that there ought to be little purpose in using networks with more

than 20 hidden units for noise levels higher than 0.05, if it is to be correct to claim

that results are e�ectively independent of the number of hidden units used, provided

there are enough of them. To verify this a further 190 networks were trained using an

initial architecture of 20 hidden units. Results for the �nal numbers of hidden units

are shown in Figure 10. Comparison with Figure 9 shows that if more than 20 hidden

units are available for noise levels below 0.05 the network will use them. But for higher

noise levels, there is no signi�cant di�erence in the number of hidden units �nally used,

whether 20 or 50 are initially supplied. The algorithm also works for higher noise levels.

Figure 11 shows corresponding results for noise levels from 0.05 to 0.95 in increments of

0.05. Note that in all these demonstrations with varying noise, the level is automatically

detected by the regulariser and the number of hidden units, or more generally the number

of parameters, is accommodated to suit the level of noise detected.

19

0

5

10

15

20

0 0.05 0.1 0.15 0.2

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

Figure 10: Live hidden units versus noise level for an initial 20 hidden units.

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

Data error

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

Live units

�

�

�
�

�

� �

�

�

�

�
�

�

�

�

�

�

�

�

Figure 11: Data error and live hidden units versus larger noise levels for 20 hidden units.

20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.5 1 1.5

Input weights

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4

Output weights

Figure 12: Empirical posterior distributions of the size of non-zero input and output

weights for 500 trained networks each using 20 hidden units. Mean values are 0.55 for

input weights and 1.31 for output weights. The natural hyperbolic tangent was used as

transfer function for hidden units.

9.2 Posterior weight distribution

It was noted in Section 3 that the weights arrange themselves at a minimum so that the

sensitivity of the data error to each of the non-zero weights in a given regularisation class

is the same, assuming Laplace regularisation is used. For the weights themselves, the

posterior conditional distributions in a given class are roughly uniform over an interval.

Figure 12 shows the empirical distributions for a sample of 500 trained networks. These

plots answer the question \what is the probability that the size of a randomly chosen

input (output) weight of a trained network lies between x and x+ �x conditional on its

being non-zero?" The unconditional distributions have discrete components at the origin.

The probability of an output weight being zero was 0.38 and the probability of an input

weight being zero was 0.47. These networks were trained on the cosine output of the

robot arm problem using MacKay's sampling of the noise at the 0.05 level.

10 Summary and conclusions

This paper has argued that the

P

jwj regulariser is more appropriate for the hidden

connections of feed-forward networks than the

P

w

2

regulariser. It has shown how to

deal with discontinuities in the gradient of jwj and how to recount the free parameters

of the network as they are pruned by the regulariser. No numerical approximations need

be made and the method can be applied exactly to small noisy data sets where the ratio

of free parameters to data points may approach unity.

21

Appendix

The evidence framework [9, 10, 20] proposes to set the regularising parameters � and �

by maximising

P (D) =

Z

P (Djw)P (w) dw (23)

considered as a function of � and �. This quantity is interpreted as the evidence for the

overall model including both the underlying architecture and the regularising parameters.

From equations (1) and (2) it follows that

P (D) = (Z

W

Z

D

)

�1

Z

e

�M

dw:

To evaluate the integral analytically, M is usually approximated by a quadratic in the

neighbourhood of a maximum of the posterior density at w = w

MP

where rM vanishes.

The approximation is then

M(w) = M(w

MP

) +

1

2

(w�w

MP

)

T

A (w�w

MP

) (24)

where A = rrM is the Hessian of M evaluated at w

MP

. It follows that

� log P (D) = �E

W

+ �E

D

+

1

2

log detA+ logZ

W

+ logZ

D

+ constant

where the constant, which also takes account of the order of the network symmetry group,

does not depend explicitly on � or �.

Now the Laplace regulariser E

W

is locally a hyperplane. This means that rrE

W

vanishes identically so that A = �H where H = rrE

D

is the Hessian of the data

error alone. Assuming the Laplace regulariser and Gaussian noise, Z

W

= (2=�)

W

and

Z

D

= (2�=�)

N=2

so that

� logP (D) = �E

W

+ �E

D

+

k

2

log � �W log��

N

2

log � + constant

where k is the full dimension of the weight vector. Setting partial derivatives with respect

to � and � to zero yields � = W=E

W

and � = (N � k)=2E

D

so that

1=� =

1

N � k

N

X

p=1

(y

p

� t

p

)

2

(25)

and

1=� =

1

W

W

X

j=1

jw

j

j: (26)

These should be compared with (14) and (15). If (25) and (26) are used as reestimation

formulae during training, the di�erence between the evidence framework and the method

of integrating over hyperparameters, in the case of Laplace regularisation, reduces to the

22

di�erence between the factors N �k and N when reestimating �.

17

In many applications

the di�erences in results, when using these two factors with Laplace regularisation, are

not su�ciently clear to decide the matter empirically and it needs to be settled on grounds

of principle [11, 27]. In the present context, this paper prefers the method of integrating

over hyperparameters for reasons of simplicity. Its main purpose, however, is to advocate

the Laplace over the Gaussian regulariser, in which case the di�erence between these two

methods of setting regularising parameters appears less signi�cant.

Acknowledgements

I am grateful to Dr Perry Eaton, Dr Colin Barnett and other members of the Geophysical

Department of Newmont Exploration Limited for stimulating discussions on the subject

of this paper and related topics over the last few years.

References

[1] C. M. Bishop. Curvature-driven smoothing in backpropagation neural networks. In

Proceedings International Neural Network Conference, Vol.2, pages 749{752, Paris,

1990.

[2] Wray L. Buntine and Andreas S. Weigend. Bayesian back-propagation. Complex

Systems, 5:603{643, 1991.

[3] John Denker, Daniel Schwartz, Ben Wittner, Sara Solla, Richard Howard, Lawrence

Jackel, and John Hop�eld. Large automatic learning, rule extraction, and general-

ization. Complex Systems, 1:877{922, 1987.

[4] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, second edition,

1987.

[5] Philip E. Gill, Walter Murray, and Margaret H. Wright. Practical Optimization.

Academic Press, 1981.

[6] Babak Hassibi and David G. Stork. Second order derivatives for network pruning:

Optimal brain surgeon. In Stephen Jos�e Hanson, Jack D. Cowan, and C. Lee Giles,

editors, Advances in Neural Information Processing Systems 5, pages 164{171. Mor-

gan Kaufmann, 1993.

[7] E. T. Jaynes. Prior probabilities. IEEE Transactions on Systems Science and Cy-

bernetics, SSC-4(3):227{241, 1968.

17

If � is assumed known in advance the methods are apparently equivalent. For multiple regularisation

classes the same argument leads, on either approach, to the reestimation formula �

c

= W

c

=E

c

W

for each

regularisation class c. For the multiple noise levels envisaged in Section 6, however, results will generally

di�er unless the levels are known in advance. Note that, in saying that the Laplace regulariser is locally

a hyperplane, it is assumed that none of the regularised weights vanishes, otherwise the Hessian A is

not de�ned and the quadratic assumption (24) is no longer meaningful. It is therefore assumed that zero

weights are also pruned for the Laplace regulariser when using the evidence framework [20].

23

[8] Yann le Cun, John S. Denker, and Sara A. Solla. Optimal brain damage. In David S.

Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 598{

605. Morgan Kaufmann, 1990.

[9] David J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415{447,

1992.

[10] David J. C. MacKay. A practical Bayesian framework for backprop networks. Neural

Computation, 4(3):448{472, 1992.

[11] David J. C. MacKay. Hyperparameters: Optimise, or integrate out? In G. Hei-

dbreder, editor, Maximum Entropy and Bayesian Methods, Santa Barbara 1993,

Dordrecht, 1994. Kluwer.

[12] Martin F. M�ller. Exact calculation of the product of the Hessian matrix of feed-

forward network error functions and a vector in O(n) time. Report DAIMI PB-432,

Computer Science Department, Aarhus University, Denmark, 1993.

[13] Martin F. M�ller. A scaled conjugate gradient algorithm for fast supervised learning.

Neural Networks, 6(4):525{533, 1993.

[14] Radford M. Neal. Bayesian training of backpropagation networks by the hybrid

Monte Carlo method. Technical Report CRG-TR-92-1, Department of Computer

Science, University of Toronto, April 1992.

[15] Radford M. Neal. Bayesian learning via stochastic dynamics. In Stephen Jos�e Han-

son, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neural Information

Processing Systems 5, pages 475{482. Morgan Kaufmann, 1993.

[16] Steven J. Nowlan and Geo�rey E. Hinton. Adaptive soft weight tying using gaus-

sian mixtures. In John E. Moody, Steve J. Hanson, and Richard P. Lippmann, edi-

tors, Advances in Neural Information Processing Systems 4, pages 993{1000. Morgan

Kaufmann, 1992.

[17] Barak A Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation,

6(1), 1994.

[18] D. C. Plaut, S. J. Nowlan, and G. E. Hinton. Experiments on learning by back-

propagation. Technical Report CMU-CS-86-126, Carnegie-Mellon University, Pitts-

burgh PA 15213, 1986.

[19] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.

Numerical Recipes in C. Cambridge University Press, 1988.

[20] Hans Henrik Thodberg. Ace of Bayes: Application of neural networks with pruning.

Manuscript 1132E, The Danish Meat Research Institute, May 1993.

[21] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-Posed Problems. John Wiley &

Sons, 1977.

24

[22] Myron Tribus. Rational Descriptions, Decisions and Designs. Pergamon Press, 1969.

[23] Andreas S. Weigend, David E. Rumelhart, and Bernado A. Huberman. Generaliza-

tion by weight-elimination with application to forecasting. In Richard P. Lippmann,

John E. Moody, and David S. Touretzky, editors, Advances in Neural Information

Processing Systems 3, pages 875{882. Morgan Kaufmann, 1991.

[24] P. M.Williams. AMarquardt algorithm for choosing the step-size in backpropagation

learning with conjugate gradients. Cognitive Science Research Paper CSRP 229,

University of Sussex, February 1991.

[25] P. M. Williams. Aeromagnetic compensation using neural networks. Neural Com-

puting & Applications, 1:207{214, 1993.

[26] P. M.Williams. Improved generalization and network pruning using adaptive Laplace

regularization. In Proceedings of 3rd IEE International Conference on Arti�cial

Neural Networks, pages 76{80, Institution of Electrical Engineers, London, 1993.

[27] David H. Wolpert. On the use of evidence in neural networks. In Stephen Jos�e

Hanson, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neural Information

Processing Systems 5, pages 539{546. Morgan Kaufmann, 1993.

25

