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Abstract

Animals often chase each other about. These pursuit-evasion contests require the

continuous dynamical control of complex sensory-motor behavior, and give rise to

some of the most common and challenging co-evolutionary arms races in nature. This

paper argues for the importance and fruitfulness of studying pursuit-evasion scenarios

using evolutionary simulationmethods, and reviews the relevant literatures; in a com-

panion paper, our simulation methods and results will be presented. We �rst review

the biological ubiquity of pursuit-evasion contests, the protean (adaptively unpre-

dictable) behavior that often evolves in evasion strategies (e.g. when prey zig-zag to

evade predators), and the relevant neuroethology of capture by predators and escape

by prey. The di�erential game theory relevant to analyzing pursuit-evasion games

is then reviewed, including the proven optimality of mixed strategies (corresponding

to protean behavior) in many such games, and the di�culty of deriving analytical

solutions in realistically complex games. Previous work on evolving pursuit-evasion

tactics in simulation and in real robots is then reviewed, and directions for further

research are identi�ed. We conclude with some possible engineering applications and

scienti�c implications of pursuit, evasion, and their co-evolution.
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1 Introduction

Suppose that adaptive behavior research turns out to be wildly successful over the next

few years, so robots can be built to perform various useful tasks in public spaces, such as

cleaning, transport, security, and entertainment. At �rst, such robots will probably be

expensive, slow-moving, and delicate. This raises two serious problems. The biophilic baby

problem is that human infants and children show an innate and rather brutal curiosity

about things that behave like animals (see Kellert & Wilson, 1993). so the more lifelike

our robots, the more motivated children will be to chase them, hug them, poke them,

dissect them, and throw them about. The technophilic teenager problem is that young

entrepeneurs have economic motivations to steal anything that is both publicly accessible

and expensive; a converse technophilic teenager problem is that young people sometimes

show Luddite-like tendencies to damage and deface public machinery and vehicles. Unless

precautions are taken, we can expect a thriving black market in gra�ti-covered, battered,

half-functioning robots. These problems can be ameliorated by one simple principle:

autonomous agents must have at least the escape and evasion abilities of the common

house pet. If they don't, they will not last long performing their tasks in public. Although

the importance of evasion tactics has long been recognized in military applications, our

whimsical alarmism about the perils facing public robots should make clear that the

problems of pursuit and evasion are quite general.

Contests of pursuit and evasion are among the most common, challenging, and impor-

tant adaptive problems that confront mobile animals, and are some of the most important

potential applications for robots and other arti�cial autonomous agents. In a typical con-

test of this sort, a predator chases a prey animal around until the prey is eaten or the

predator gives up. More symmetrically, two members of the same species may �ght over a

territory or resource, alternating between attack and defense tactics analogous to pursuit

and evasion tactics. Pursuit and evasion behaviors, like attack and defense behaviors,

tend to co-evolve against one another, resulting in some of the most intense and sus-

tained evolutionary arms races in nature. Although pursuit-evasion contests have been

relatively neglected in research on the simulation of adaptive behavior, they have �ve

major features that render them interesting and relevant.

First, problems of pursuit and evasion are common, because conicts of interest over

approach and avoidance are common. Agents that mutually bene�t from being close

together can mutually approach, and agents that mutually bene�t from being far apart

can mutually avoid one another. But quite often, one agent (e.g. a predator or parasite)

would bene�t from an encounter and the other (e.g. a prey animal or host) would not,

so the potential bene�ciary tends to end up chasing the potential victim. Section 2.1

discusses this logic in more detail.

Second, pursuit and evasion contests are di�cult, because dynamic, stochastic, continuous-

space, continuous-time games are di�cult. Pursuit and evasion require highly robust

forms of adaptive behavior and have particularly important �tness consequences. Ani-

mals that pursue or evade must maintain complex sensory-motor coordination with re-

spect to both a physical environment and a hostile animate opponent. Pursuit-evasion

contests also require continuous, real-time, dynamical control, in the face of an opponent

that will ruthlessly exploit any delay, uncertainty, or error. Natural or arti�cial behavior-
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control systems that are slow, brittle, easily confused, or error-prone do not survive long

in pursuit-evasion scenarios. For these reasons, traditional arti�cial intelligence methods

may prove particularly poor as models of pursuit-evasion behaviors (imagine the famously

slow robot \Shakey" trying to evade a fast predator), and newer reactive, behavior-based,

bottom-up approaches (e.g. Braitenberg, 1984; Brooks, 1989; Beer, 1990; Maes, 1990;

Wilson, 1991) may prove particularly apt.

Third, pursuit and evasion are scienti�cally interesting, because they evolve against

one another in an ongoing, open-ended, frequency-dependent way, so pursuit-evasion con-

tests often give rise to co-evolution within or between species. Because pursuit-evasion

scenarios may be the simplest and most common cases of behavioral co-evolution, their

investigation may illuminate behavioral arms races in general (see Futuyama & Slatkin,

1983). Such sustained co-evolution reinforces all of the challenges discussed in the previ-

ous paragraph: temporary adaptive advantage is continually eroded under co-evolution as

new tactics arise. Co-evolution probably drives the evolution of both special perceptual

capacities to entrain, track, and predict animate motion, and special motor capacities to

generate complex, robust, unpredictable behavior (Miller & Freyd, 1993). Understanding

both perception and motor control may thus depend on appreciating the role of pursuit-

evasion contests in behavioral evolution. Moreover, pursuit-evasion co-evolution is the

simplest situation that can favor \protean" (adaptively unpredictable) behavior, as when

prey animals zig-zag unpredictably to escape predators (see e.g. Chance, 1957; Chance

& Russell, 1959; Driver & Humphries, 1988). Further, because e�ective pursuit may of-

ten require prediction and `mind-reading', while e�ective evasion may require the use of

unpredictable or deceptive tactics (Driver & Humphries, 1988), such contests raise issues

of signaling, communication, and tactical deception (Dawkins & Krebs, 1978; Harper,

1993; Krebs & Dawkins, 1984), and may provide a natural bridge from the evolution

of basic sensory-motor control to the evolution of social psychology and `Machiavellian

intelligence' (Byrne & Whiten, 1988; Miller, 1993). Some complex social, sexual, commu-

nicative, and political behavior could be viewed as pursuit-evasion contests carried out

on more abstract levels, with respect to state spaces involving social information, status,

resources, kinship, and sexual relationships.

Fourth, pursuit-evasion contests have received serious attention from at least three

scienti�c disciplines: behavioral biology, neuroethology, and game theory. Animal be-

havior studies have revealed the ubiquity and importance of pursuit-evasion tactics, anti-

predator behaviors, and �ghting skills (Driver & Humphries, 1988; Endler, 1991). The

centrality of such behaviors is revealed by the fact that pursuit-evasion games are the

most common form of animal play behavior (Fagen, 1981; Symons, 1978); such play facil-

itates learning sensory-motor coordination through \developmental arms races" between

play-mates. Neuroethology (e.g. Camhi, 1984; Hoyle, 1984) has spent much e�ort under-

standing neural systems for pursuit (\approach") and evasion (\avoidance"), including:

explorations of speci�c circuits for rapid startle and escape behaviors (e.g. Camhi, 1988;

Krasne & Wine, 1987; Eaton, 1984); the role of the (very fast) tecto-spinal pathway in

mediating the pursuit behavior of vertebrate predators such as salamanders, frogs, cats,

and owls (e.g. Alstermark, Gorska, & et al, 1987; Meredith, Wallace, & Stein, 1992;

Westby, Keay, Redgrave, Dean, & Bannister, 1990); and the speci�c attunement of sen-
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sory cells to patterns of animate motion relevant to pursuit and evasion (e.g. Arbib &

Cobas, 1991; Ewert, 1987; Nakayama, 1985; Perrett, Harries, Mistlin, & Chitty, 1990).

The possibilities for computational neuroethology (Beer, 1990; Cli�, 1991) and behavioral

modelling in this area are obvious. Game theorists have also studied pursuit-evasion con-

tests intensely for several decades, because of their importance in tactical air combat (e.g.

telling pilots how to evade guided missiles) and other military applications (see Yavin &

Pachter, 1987). \Di�erential game theory" (Isaacs, 1965) has developed a vocabulary for

analyzing the structure and complexity of pursuit-evasion games, and a number of formal

results concerning optimal strategies for particular pursuit-evasion games. We will review

the relevant animal behavior studies, neuroethology, and game theory at length in the

following sections.

Fifth, the study of pursuit-evasion behaviors has many scienti�c implications and prac-

tical applications. A better understanding of the evolutionary, behavioral, and cognitive

dynamics of pursuit-evasion contests would have wide implications for animal behavior,

neuroethology, comparative psychology, and evolutionary psychology (Miller & Freyd,

1993). Better methods for evolving pursuit-evasion behaviors would have many appli-

cations in robotics, video games, virtual environments, and any other technology where

real or simulated mobile agents come into behavioral conict with other agents.

Because pursuit-evasion contests are a major new area of investigation for simulation

of adaptive behavior, which we hope will excite much further research, this paper lays

out the biological and game-theoretic foundations in some detail: this is essentially a

review paper. A companion paper (Cli� & Miller, 1994) will appear in a forthcoming

issue of this journal, and will explore the evolution of pursuit and evasion in a variety of

games under various conditions. Briey, such work extends previous work in evolutionary

robotics (Cli�, Harvey, & Husbands, 1993) to investigate: (1) whether co-evolution be-

tween simulated robots engaged in pursuit-evasion contests can lead to the more and more

complex pursuit and evasion tactics over generations; (2) whether the use of continuous

recurrent neural networks as control systems allows the emergence of more interesting and

dynamic perceptual, predictive, pursuit and evasion abilities; (3) whether the incorpora-

tion of random-activation units in the control system allows the evolution of adaptively

unpredictable tactics; and (4) whether changes in the relative physical speed and neural

processing speed of pursuers and evaders inuences the pursuit and evasion tactics that

evolve. These two papers extend and expand a previous report on this work (Miller &

Cli�, 1994).

2 Biological foundations

2.1 The generality of pursuit-evasion problems

We use the term \�tness a�ordances" (FAs) to denote things that have particular statis-

tically expected consequences for the �tness (survival or reproduction) of organisms of a

particular age, sex, condition, and species (see Miller, 1993; Miller & Freyd, 1993; Todd

& Wilson, 1993). Positive FAs such as food, mates, shelter, or o�spring have a positive

expected e�ect on the replication of one's genes; negative FAs such as poisons, predators,

parasites, and physical dangers have a negative expected e�ect. FAs are objective features
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of the environment insofar as their potential �tness e�ects exist regardless of whether the

organism facing them knows or cares of their existence, but FAs are relational insofar

as their biological signi�cance exists only in relation to organisms with particular modes

of survival and reproduction (e.g. what is food to one species is poison to another in a

perfectly objective and yet perfectly relational way). Most FAs are spatially localized

(at some scale), and only impose their �tness e�ects on organisms immediately present.

As suggested by Marler and Hamilton (1966), animals do not usually bother perceiving

anything other than what we are calling �tness a�ordances, because, by de�nition, only

�tness a�ordances can a�ect reproductive success. Even more stringently, animals should

bother perceiving only those �tness a�ordances whose impact on reproductive success can

be modi�ed by individual behavior (e.g. although cosmic rays can a�ect reproductive suc-

cess by inducing mutations, their a�ects cannot be modi�ed through animal behavior, so

there is no point in perceiving them.) The term `�tness a�ordance' was inspired by J. J.

Gibson's (1966, 1979) term \a�ordance", but emphasizes the evolutionary consequences

of a�ordances rather than their available sensory cues.

Mobility allows animals to actively approach and exploit positive FAs, and to actively

avoid negative FAs. But very often, FAs are themselves mobile animals with their own

�tness interests, which may turn the problem of approach into a problem of pursuit,

or the problem of avoidance into one of evasion. For example, if the Roadrunner is

a positive FA (e.g. \prey") for the Coyote, whereas the Coyote is a negative FA (e.g.

\predator") for the Roadrunner, then the Roadrunner may attempt to move away from

the Coyote, while the Coyote may attempt to move towards the Roadrunner. Whenever

there are recognized conicts of interest over �tness e�ects between mobile animals, we

may predict manifest conicts of movement. If the conict of movement is sustained

across some expanse of space and time, there is a pursuit-evasion conict, such as the

Coyote chasing the Roadrunner around Arizona all day long. Thus, interactions between

two mobile agents that have conicting expected �tness e�ects on one another will create

a pursuit problem for one agent and an evasion problem for the other.

The above scenario, where the roles of pursuer and evader are pre-determined by

the FA relationships, and �xed for the duration of the interaction, could be called an

asymmetric pursuit-evasion contest. More symmetric sorts of pursuit-evasion contests

can unfold when similar animals both seek access to a positive FA, such as a territory

or resource, that is worth more if enjoyed alone. Animals of the same species often �ght

over food, nest sites, and mates. In symmetric contests, the roles of pursuer and evader

can switch back and forth rapidly as the animals take o�ensive or defensive roles (as in

the Game of Tag simulated by Reynolds (1994)). In both symmetric and asymmetric

contests, the immediate behavioral conict can result in a co-evolutionary arms race

between pursuit and evasion tactics, if the agent-types in question encounter each another

with reasonable frequency and with signi�cantly opposed �tness consequences across

generations.

2.2 Typical pursuit and evasion behaviors

Pursuit is fairly simple: animals are usually observed to move towards the remembered,

observed, or predicted location of the target. Evasion is more complex. For example,
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animal escape behavior in asymmetric pursuit-evasion contests generally breaks down

into three phases: (1) directional eeing if a predator (or other negative, mobile FA)

is threatening but still distant; (2) erratic zig-zagging if the predator begins catching

up; and (3) convulsive `death-throes' if caught. Directional eeing is about as simple as

directional chasing, but the last two tactics, zig-zagging and convulsing, are examples of

a more interesting type: protean behavior.

Animals generally evolve perceptual and cognitive capacities to entrain, track, and

predict the movements of other biologically-relevant animals such as prey, predators, and

potential mates (Camhi, 1984; Miller & Freyd, 1993). Such predictive abilities mean

that unpredictable behavior will inevitably be favored in many natural pursuit-evasion

situations. For example, if a rabbit eeing from a fox always chose the single apparently

shortest escape route, the very consistency of its behavior would make its escape route

more predictable to the fox, its body more likely to be eaten, its genes less likely to

replicate, and its �tness lower. Predictability is punished by hostile animals capable of

prediction. This is the basic logic behind the theory of protean behavior: the e�ective-

ness of almost any behavioral tactic can be enhanced by endowing it with characteristics

that cannot be predicted by an evolutionary opponent (Driver & Humphries, 1988). An

arms race between perceptual capacities for predicting animate motion, and motor capac-

ities for generating protean behavior, will generally result from evolutionarily recurring

pursuit-evasion contests (Miller & Freyd, 1993).

Along with directional eeing, protean escape behaviors are probably the most widespread

and successful of all behavioral anti-predator tactics, being used by virtually all mobile

animals on land, under water, and in the air. Driver and Humphries (Driver & Humphries,

1988) review examples from hundreds of species, including insects, �sh, birds, and mam-

mals. Human proteanism is obvious in any competitive sport: good boxers use unpre-

dictable feints and attacks, and good rugby players use unpredictable jinks. Predators

can also exploit unpredictability to confuse prey, as when weasels do \crazy dances" to

ba�e the voles that they stalk, or when Australian aborigine hunters do wild dances to

mesmerize the kangaroos that they hunt (Driver & Humphries, 1988). Of course, pro-

teanism is typically used at one level of behavioral description (e.g. the trajectory through

the environment), and is consistent with maintenance of orderly behavior at other levels

(e.g. posture, locomotor gait, obstacle avoidance, perceptual scanning).

The case of protean escape from bats by insects has been particularly well-studied

(for review see (May, 1991)). Roeder (1962) observed that \the variety of unoriented

manoevers released [in moths] by high intensity ultrasonic stimulation [e.g. from bats]

continues to defy any attempt at orderly description." These ight patterns may include

passive dives with wings folded, powered dives, erratic ight movements, looping, and

tight turns (May, 1991). Whereas bats can easily predict the aerial trajectories of passive

ballistic objects, the moth's erratic tumbling make them much more unpredictable and

harder to catch. Some species of moths (presumably evolved in bat-free areas) cannot

perform this protean behavior, and do rather poorly against bats. In an experimental

study using both types of moths, Roeder and Treat (1961) found an average 40% higher

escape rate for tumbling over non-tumbling per bat encounter; this translates into a 40%

selective advantage for unpredictable tumbling. The intensity of selection on evasive
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behaviors is also revealed in their speed. The neural systems for initiating protean escape

are astonishingly fast: a cricket can detect the sound of a predator and e�ectively alter

the rhythmic motor signals to its wings to initiate erratic escape in under 60 milliseconds

(May, 1991).

Even if erratic zig-zagging fails, another form of proteanism, convulsive behavior,

may succeed. Sudden, unpredictable, vigorous \death-throes", alternating with puzzling

passivity (\playing dead") is often e�ective at allowing prey to escape from predators

(Driver & Humphries, 1988). Indeed, the adaptive signi�cance of convulsive behavior

was �rst recognized by M. R. A. Chance (Chance, 1957; Chance & Russell, 1959), who

initiated the study of protean behavior with his analysis of \audiogenic seizures" in labo-

ratory rats. (When lab technicians accidentally jangle their keys, lab rats have a peculiar

tendency to go into convulsions, but if the rats are provided with hiding places in their

cages, they simply run and hide when keys are jangled; thus, the convulsions are facul-

tative defensive behaviors rather than pathological oddities.) Adaptive convulsions can

also occur in more abstract state-spaces, as when cuttle�sh and octopi undergo rapid

color changes to defeat the search images (perceptual expectations) of their predators.

Additional confusion e�ects may arise from group ocking and mobbing behaviors that

include unpredictable movements, complex motion dynamics, and confusing coloration

(zebra stripes or shiny scales on �sh); Werner and Dyer (1993) found such confusion

e�ects when simulating the evolution of herding behavior by prey under predation pres-

sure. Unpredictability can also be exploited by divergence between individuals, as when

animals within a species evolve \aspect diversity" (polymorphic coloration or behavior)

through \apostatic selection" (Clarke, 1962) that favors low-frequency traits (e.g. be-

cause predators' use of search images penalizes common appearances). Indeed, apostatic

selection may be a general feature of pursuit-evasion arms races: novel and unexpected

tactics may be favored at a variety of levels.

Co-evolution itself can be viewed as a pursuit-evasion contest, operating between

lineages rather than between individuals. From this perspective, sexual recombination

makes sense as a protean strategy which unpredictably mixes up genes so as to \confuse"

pathogens (Hamilton, Axelrod, & Tanese, 1990). Indeed, this proteanism argument is

one of the leading explanations for the the evolution of sex (Ridley, 1993). Despite

proteanism's importance, it has been long overlooked in biology, because complex order

rather than useful chaos was assumed to be the de�ning feature of Darwinian adaptations

(see Miller, 1993).

2.3 The neuroethology of pursuit and evasion

The study of fast pathways for escape and attack forms is one of the major successes of

neuroethology (see Beer, Ritzmann, & McKenna, 1993; Camhi, 1984; Ewert, 1980; Ewert,

Capranica, & Ingle, 1983; Guthrie, 1980; Kandel, 1976; Hoyle, 1984; Huber & Markl,

1983; Roeder, 1967). Neuroethologists like to study neural circuits for such behaviors

because the relevant neurons are so large, the axons are so thick, the circuits are so easy

to identify, and the behaviors are so fast, robust, and well-tuned (e.g. see Roeder, 1948;

Eaton, 1984). In the tube worm Myxicola infundibulum for example, most axons (nerve

�bers) are less than 5 �m in diameter, but the median giant �ber for escape can reach 1700
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�m in diameter, occupying most of the cross-section of the nerve cord (Guthrie, 1980).

Unusually in this case, methodological convenience reects adaptive importance: large,

fast neurons arranged in reliably wired circuits make not only easy work for the scientists,

but adaptive sense for the animals. Although circuits for fast attack and escape are

probably di�erent from those used for sustained pursuit and evasion, the neuroethology

of the former illustrates some relevant principles of speed, robustness, co-evolution, and

adaptive specialization.

1

2.3.1 Escape reexes

Escape circuits are among the best-studied systems in neuroethology (see Eaton, 1984).

Unexpected stimuli often provoke startle, escape, or withdrawal in animals, and these

reexes are generally mediated by specialized `fast pathways' (Guthrie, 1980). As far

back as 1836, Ehrenberg had identi�ed very large cells in the ventral nerve cords of

lobsters and cray�sh which were later shown to mediate their escape behaviors. Par-

ticularly well-understood are the quick withdrawl of the worm's head, the tail-ip es-

cape of the cray�sh, the escape turn of the cockroach, and the sudden dart of the �sh.

Aside from whole-body escape, animals with limbs usually have specialized circuits for

limb-withdrawl from painful or threatening things. Fast pathways generally use a few

large neurons with polarized inputs, long, thick, heavily insulated, low-resistance axons,

widely distributed outputs, and electrical rather than chemical synapses. Such neural

adaptations permit conduction velocities a couple orders of magnitude faster than nor-

mal. Escape reexes also recruit attention, increase activation, and release hormones, in

preparation for sustained evasion if necessary.

Even in colenterates such as sea anemones and jelly�sh, there appear to be separate

fast pathways for withdrawl reexes (Guthrie, 1980; MacFarlane, 1969). Similar circuits

for gill-withdrawl in sea slugs (Aplysia) have been studied by Kandel (1976). The escape-

reex nerve �bers (`third-order giant �bers') of the squid Loligo are so thick (700 �m) that

they have been widely used in studies of the ionic mechanisms of nerve-�ber conduction.

The common earthworm Lumbricus has an escape reex mediated by medial, lateral,

and segmental giant �bers and by giant motor neurons, which contact longitudinal body

muscles to withdraw the head from danger. The medial giant �bers can attain conduction

velocities of up to 45 meters per second, as fast as the myelinated escape-reex �bers of

frogs and �sh (Guthrie, 1980). Darwin noted that the worm's escape reex rapidly

habituates to light or touch, and shows a higher threshold for activation during active

locomotion.

The American cockroach Periplaneta americana escapes from toad predators (such as

Bufo marinus) by sensing toad-induced air accelerations with their anal cerci (rear-facing

sense organs), turning from the predator, and running away (see chapter 4 of (Camhi,

1984), (see also Camhi, 1980). The sedentary toads generally wait for insects to walk by

before striking with their tongues, so a single brief escape su�ces; there is rarely sustained

pursuit. The cockroach's seven pairs of giant interneurons (GI) mediate the escape behav-

1

For further relevant readings in neuroethology, see the journals: Aggressive Behavior; Animal Be-

havior; Behavioral Neuroscience; Biological Cybernetics; Brain, Behavior, and Evolution; J. Comparative

Physiology A: Sensory, Neural and Behavioral Physiology; J. Experimental Biology, and J. Neuroscience.
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ior, which averages an extremely fast 41 milliseconds (ms) latency (Plummer & Camhi,

1981), but which can occur in an astonishing 11 ms in response to a stronger-than-normal

air stimulus (Camhi & Nolen, 1981). The hundreds of wind-receptive hairs on the cerci

are directionally tuned and several of the giant interneurons code for predator direction

to guide the escape turning behavior (Dowd & Comer, 1988; Liebenthal, Uhlmann, &

Camhi, 1994; Westin, Langberg, & Camhi, 1977). This direction information triggers

consistent changes in interleg coordination and turning, which have been analyzed with

high-speed video, (Camhi & Levy, 1988; Nye & Ritzmann, 1992). Under certain condi-

tions, the same giant interneurons that trigger escape running can trigger escape ying

instead (Ritzmann, Tobias, & Fourtner, 1980). The entire system is essentially innate,

hard-wired, and fully functional in hatchlings, though there is some plasticity to compen-

sate for injury to various components of the system (see chapter 4 of Camhi, 1984). The

cockroach's escape system works much like a Braitenberg (1984) vehicle to implement

a very rapid predator-avoidance, and could provide a model for further simulation and

robotics work.

The escape circuits of the American cray�sh Procambarus clarkii have also been well-

studied (Krasne & Wine, 1987; Edwards, 1991; Olson & Krasne, 1981; Wiersma, 1947)

(see also chapter 8 of Camhi, 1984). This animal lives in streams, eats detritus, and is

attacked by various large �sh. Touches to the cray�sh's rear will trigger an abdominal

exion mediated by lateral giant interneurons that somersaults the animal upward and

forward; touches to the front will trigger a di�erent kind of abdominal exion or `tailip'

mediated by medial giant interneurons that shoots the animal backwards (Wine & Krasne,

1972). In each case, the giant interneurons have rectifying electrical synapses onto large

(F1) motor neurons, which, in conjunction with `segmental giant' cells, activate `fast exor

muscles'. The escape is an all-or-nothing, highly stereotyped response, which cancels

out all other ongoing locomotor activity, requires the coordination of muscles in several

abdominal segments, and begins within 20 ms of stimulation. The circuitry underlying

this escape behavior has been studied in great detail (Krasne & Wine, 1987; Olson &

Krasne, 1981); Stork, Jackson, and Walker (1992) have simulated its evolution from

swimming locomotion circuits.

In most teleosts (body �shes), Mauthner cells of the reticulospinal network (Diamond,

1971) mediate a two-stage escape called a `C-start': turn rapidly, then accelerate axially

(Eaton & Emberley, 1991). Within 100 ms, a C-starting �sh will have moved around

one body length away from the threatening stimulus, and will be pointed in roughly the

right direction for further evasion. Rapid escape is especially important for �sh attacked

by plunge-diving birds such as gannets and king�shers (Guthrie, 1980), whose appear-

ance is unpredictable, rapid, and lethal. The Mauthner cells as studied in the gold�sh

Carassius auratus guide the basic decision to turn left or right during escape; the exact

escape heading is modulated by parallel circuits to produce variations from 15 to 135

degrees change in orientation (Eaton, Didomenico, & Nizzanov, 1988a, 1988b; Foreman

& Eaton, 1993). The C-start is fast (initiated within 10 ms), highly ballistic, and is not

corrected for threat location once initiated; however, �sh seem to avoid facing towards

static obstacles during C-starts, so C-starts may be modulated by some environmental

information (Eaton & Emberley, 1991). Although Mauthner cells (M-cells) are impor-
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tant in triggering C-starts, (Nissanov, Eaton, & Didomenico, 1990) found that M-cell

stimulation alone produces a much weaker and less variable C-start. The M-cells seem to

determine an initial left-or-right direction of response and a rough stage-1 escape angle;

a second group of neurons �res later and modulates the onset time and direction of the

stage-2 swimming behavior. Interestingly, Mauthners have also been implicated in pur-

suit and prey capture (Can�eld & Rose, 1993): in predatory �sh, M-cells �re and the �sh

do C-start-like exions during the terminal stage of prey capture. Thus, Mauthners are

important for both capture of prey and escape from predators; (Can�eld & Rose, 1993)

suggest that \Group competition between predators and their prey may have facilitated

a `neural arms race' for M-cell morphology and physiology" (p. 611).

Rats sometimes attempt to wrest food away from other rats that are feeding; the

feeding rats protect the food by rapid contralateral dodges (Whishaw & Gorny, 1994).

The details of the evasive dodge are sensitive to the expected time required to �nish

eating the contested food item: rats estimated time required to complete eating and

adjusted the size and direction of their evasive maneuvers to gain this time. Such evasion

behaviors may be mediated by the nucleus gigantocellularis (NGC), which is known to

be important in nociceptive, escape, and avoidance behavior (Roberts, 1992). In other

mammals, various other fast pathways function in escape and startle behavior (Gogan,

1970; Shapovalov, 1972).

The only known `command neurons' (neurons capable of triggering an entire behavior

by themselves) (Kupferman & Weiss, 1978) have been found in escape circuits: these

include the medial and lateral giant interneurons of the cray�sh, and the Mauthner cells

of �sh and larval amphibians. However, most vertebrate behaviors are released by com-

mand systems rather than single command neurons, so it is much easier to study the

neuroethology of invertebrate escape, evasion, and pursuit behaviors.

Of course, escape reexes are only one possible response to predation threats. Some

animals such as Aplysia and squid have special circuits for releasing ink or other obscu-

rants during their escape behavior (Carew & Kandel, 1977; Kandel, 1976). Other animals

use startle displays such as eye spots to counter-threaten predators; some play dead to

avoid releasing the cues of evasive movement that tend to attract predators' attention.

2.3.2 Attack circuits

Ewert (1980, 1984, 1987) and colleagues examined visually guided capture of prey by

toads. Toads generally sit motionless until something moves into their �eld of view;

if it's small and moving in the direction of its long axis, they attack; if it's big, they

run away (Ewert, 1980; Lettvin, Maturana, McCulloch, & Pitts, 1959). In toads, the

TP3 cells of the thalamic pretectal area and the T5(1) and especially the T5(2) cells

of the optic tectum are responsive to worm-like moving stimuli; the T5(2) cells appear

necessary and su�cient for visual recognition of prey (Ewert & Burghagen, 1979; Ewert,

1980, 1984; Ingle, 1991). If the target shows apparent escape behavior, especially strong

pursuit behavior is released (Guthrie, 1980). If the target is too large to be prey, the

TP region inhibits the tectal prey-catching system. The toad's tectum is organized in a

spatially organized retinotopic map of prey positions, to guide striking behavior. Arbib

and colleagues (Arbib & Cobas, 1991; Liaw & Arbib, 1993) have simulated this system
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in considerable detail, with a neural network that detects the location and heading of

looming predators and determines an escape direction. Speci�c attunement of visual

cells to patterns of animate motion relevant to pursuit and evasion have been found in

primates as well (Nakayama, 1985; Perrett et al., 1990). For an interesting contrast to

vertebrate prey-catching systems, see Ewert's (1980) discussion of prey-catching by the

arthropod backswimmer Notonecta glauca, which hangs on the underside of pond water

surfaces and has tactile senses tuned to the circular waves produced by prey that have

fallen in.

Similar principles and circuits underlie audition-guided attack behaviors. In the barn

owl (Tyto alba), much work has been done on the auditory homolog of the visual tectum:

the mesencephalicus lateralis dorsalis (MLD), which lies just below the optic tectum and

appears to mediate prey capture by sound (Knudsen, 1981, 1982). In echolocating bats,

cortical maps seem to code for target parameters such as reectivity, range, velocity, and

angular position (Altes, 1989).

Retinotopic tectal maps are evolutionarily conservative systems found in many verte-

brates, and are generally tuned to detecting and locating small, moving, prey-like stimuli

(Ewert, 1980; Ingle, 1991; Wurtz & Albano, 1980). Even in mammals where the stri-

ate cortex is used for target identi�cation, the superior colliculus is still used for target

localization to guide oriented behavior: a cortical identi�cation system co-exists with a

subcortical localization system (Ewert, 1980). The visual or auditory representation of

prey location in the tectum guides prey-directed movement via the very fast tecto-spinal

pathway in vertebrates (e.g. Alstermark et al., 1987; Meredith et al., 1992; Westby et al.,

1990).

Pursuit behavior in insects has also been studied in the context of mating and

courtship (e.g. Land, 1993). Male ies often `shadow' females at a short distance (e.g.

Collett & Land, 1975), and chase other ies more aggressively (e.g. Land & Collett,

1974). In many species of y, it is only the males that engage in high-speed aerobatic

chases, and in several such species, the males have gender-speci�c optical anatomy which

facilitate such behaviors (e.g. Land, 1981, pp.553{555) (Gilbert & Strausfeld, 1991).

2.3.3 From attack and escape to pursuit and evasion

There appears to have been an arms race with respect to speed between the �nal strikes

by predators to capture prey and the escape responses of prey. We have already seen how

the cockroach can initiate escape turns in as little as 11 ms. Although cuttle�sh orient

themselves slowly and carefully to their prey, the �nal capture strike by their two long

tentacles takes about 30 ms (Messenger, 1968). Most such behaviors are too fast to be

subject to feedback or correction during their execution. This makes generalization from

the neuroethology of open-loop (ballistic) attack and escape to closed-loop (feedback-

driven) pursuit and evasion problematic. Some work has been done on the transition

from open-loop escape to closed-loop evasion behavior in cray�sh (Wine & Krasne, 1982)

and cockroaches (Camhi & Nolen, 1981), but the neuroethology of sustained pursuit

and evasion requires more research. Such neuroethology will require analysis of less

stereotyped, more protean behaviors mediated by larger numbers of smaller cells.

The only sustained research program in neuroethology focused on pursuit and evasion
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(rather than simple attack and escape) has been the work by Kenneth D. Roeder, Asher

E. Treat, and their colleagues and followers on interactions between bats and moths (see

e.g. Dunning & Roeder, 1965; Roeder, 1962, 1967; Roeder & Treat, 1961) (for reviews see

Guthrie, 1980; Huber & Markl, 1983; May, 1991). Insectivorous bats use pulse-modulated

ultrasound in the 20 to 120 KHz range for echolocating the ying insects that they eat.

Such bats hunt prey in three phases: a searching phase with 10 or so chirps per second, an

approach phase after detecting prey with more frequent chirps and with the head aimed

at the prey, and a terminal phase with around 200 chirps per second, ending if successful

with the prey captured in the wing or tail membranes. The latter two stages usually last

less than one second (Gri�n, Webster, & Michael, 1960).

Noctuid moths (Roeder, 1962; Roeder & Treat, 1961), green lacewings (L. A. Miller,

1983), and other bat prey have paired auditory organs specially attuned to detecting bat

ultrasound, and initiating evasion maneuvers. Noctuid moths can register most bat cries

from 35 meters away, whereas bats can only detect echoes from moths around 6 meters

away, giving the moths a considerable safety factor (L. A. Miller, 1983), despite the bats'

ying approximately twice as fast (Guthrie, 1980). Moth evasion behavior is of three basic

types: negative phonotaxis (ying away) when bat cries are soft, slow, and distant; passive

nose dives that deny bats information about wingbeat rate, heading, and species type (as

favored by lacewings (see L. A. Miller, 1983)); and active evasion maneuvers (as favored

by noctuid moths). Moths that can hear ultrasound and take evasive maneuvers show

about a 40% selective advantage over experimentally deafened moths (Roeder, 1962);

normal green lacewings likewise have a 47% selective advantage over deafened lacewings

(L. A. Miller, 1983). The proteanism of prey responses to echolocation has been noted

by (Roeder, 1975) (who termed evasion ability `evitability') and (L. A. Miller & Olesen,

1979). Moths can also emit ultrasonic `jamming signals' that confuse bats during the

terminal phase of capture (Fullard, Fenton, & Simmons, 1979). Pursuit and evasion

behavior per se only occur when a bat in the approach or terminal phase of predation

interacts with a prey insect using active evasive maneuvers. Even against actively evading

insects, bats are often successful (Simmons & Kick, 1983).

Still, little is known about the neural circuitry that underlies the pursuit and evasion

behaviors, as opposed to the reexive attack and escape behaviors, or the echolocation.

Moise� and colleagues (1978) found that a pair of specialized cells (interneuron-1) in

the cricket Teleogryllus oceanicus responds to bat ultrasound signals from ears on the

cricket's forelegs and contracts dorsal longitudinal muscles on the side away from the

sound, thereby steering the cricket away from the sound source. Roeder (1970) specu-

lated that the moth's protean evasion behavior was mediated by the A2 �bers carrying

ultrasound information from the ears to the brain, and by the brain's output of inhibi-

tion to the thoracic ganglia, tending to shut down the ganglias' steering control over the

wings. The result would be a loss of synchrony and rhythmicity in wing-beats, leading to

erratic ight; however, this account remains untested. Nor is much know about how bats

perform their stunningly fast and agile mid-air pursuit maneuvers. The auditory cortex

of bats may have neurons that code for target range (O'Neill & Suga, 1979) and perhaps

for reectivity, velocity, and angular position as well (Altes, 1989), but the rest of the

circuit for controlling pursuit ight remains obscure. The reasons for this ignorance are
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largely methodological: it is very di�cult to do intracellular recording while animals are

making wild evasive moves or violent attacks.

Psychologists have also studied manual tracking tasks and smooth pursuit eye move-

ments in humans and other primates. Tracking and visual pursuit are often important

components in behavioral pursuit of evasive animals, but very little of this work has used

ecologically valid stimuli or evolutionary theory for guidance. There is a huge gap between

the study of reexive attack and evasion in invertebrates, and the study of conscious, ar-

ti�cial pursuit and tracking tasks by human subjects. In general then, neuroethology has

investigated attack and escape circuits in a wide range of animals, but much remains to

be discovered about the more exible and dynamic behaviors or pursuit and evasion. We

hope that simulation and robotics research will inspire renewed neuroethological e�orts

in this area.

3 Game-theoretic foundations

3.1 Di�erential pursuit-evasion game theory

Game theory (von Neumann & Morgenstern, 1944) is concerned with the formal anal-

ysis of situations called \games" where: (1) players can choose di�erent strategies that

determine their actions under particular conditions; (2) conditions and outcomes unfold

through the interactions of the players' strategies; and (3) players have preferences among

outcomes, i.e. payo�s exist (see (Rapoport, 1966) for a non-technical introduction; see

(Fudenberg & Tirole, 1991) for a recent textbook). In brief, players are agents that can

make choices, implement strategies, and receive payo�s.

Traditional game theory focused on games with discrete moves (e.g. chess), but in the

1950s, Isaacs (1951, 1965) wondered whether game theory could be used to model pursuit-

evasion situations such as aerial combat, where moves unfold continuously over time, and

control systems can vary continuously in the strategies they implement. Isaacs had two

basic insights. First, pursuit-evasion contests do require game theory rather than simple

optimality theory, because the optimal pursuit strategy for one player (e.g. a guided

missile) depends on the evasion strategy adopted by the other player (e.g. an aircraft),

and vice-versa. This chicken-and-egg problem is precisely what game theory is good at

analyzing. Second, the continuous nature of pursuit-evasion contests can be modeled

using di�erential equations that specify how state conditions (such as player positions

and velocities) change incrementally as a function of players' strategies and previous state

conditions: pursuit and evasion moves become continuous trajectories through a state-

space. Isaacs (1951, 1965) developed the \Tenet of Transition" which speci�es that players

must optimize (�nd the minimax solution for) the transitions between states leading

towards a goal-state, which can be represented as optimizing the temporal derivatives

of the relevant state variables. For example, pursuers try to minimize the time until

capture and evaders try to maximize it. Applying the tenet of transition, pursuers at

each moment in time should try to maximize the rate of their instantaneous approach

towards the capture-state, and evaders should try to minimize it. If a solvable set of

di�erential equations can be written that specify the continuous e�ect of strategies on
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state-conditions, then the optimal pursuit and evasion strategies can be found by applying

the tenet of transition.

Isaacs' ideas have proven enormously fruitful (see Basar & Olsder, 1982; Grote, 1975;

Isaacs, 1965; Yavin & Pachter, 1987), and initiated a sort of Cold War arms race between

American and Russian game theorists concerned with applications to aerial combat tac-

tics. The Journal of Guidance, Control, and Dynamics is a major venue for di�erential

pursuit-evasion game theory; Rodin's (1989) recent bibliography of the pursuit-evasion

di�erential game theory literature contains about 1200 entries. Aside from di�erential

game theory, there are also large and relevant literatures on control theory (see Brogan,

1991), missile guidance, aircraft control, aerial tactics, and sports tactics.

Di�erential pursuit-evasion games are de�ned by a set of controls (what each player

can do), a set of dynamics (that maps from the control variables onto the state variables

of the game, and from state variables at one moment in time to the next moment), and a

set of termination conditions (state conditions that determine when successful capture or

evasion happens). For example, in a classic case analyzed by Berkovitz (1975), a pursuer

and an evader move with equal and constant speed in a plane, and control the direction

of their velocity vector (which thus becomes their control variable). These two velocity

vectors give rise to a system of �rst-order di�erential state equations that determine how

the players move over time. The pursuer wants to minimize time to capture the evader

and the evader wants to maximize time until capture, with capture de�ned as proximity

within some small distance. Both players know the present state of the game (e.g. both

of their positions and velocity vectors) but at each time-point they make separate and

simultaneous decisions about what to do next. The available strategies are therefore

functions that map from current states of the game (i.e. the positions and velocity vectors

of both players) onto velocity-vector decisions about what direction to move next. In

all di�erential games, strategies determine trajectories through the relevant state-space;

in pursuit-evasion games, strategies determine trajectories through physical space. From

each player's perspective, the game becomes a problem of optimal spatio-temporal control

with respect to the opponent and the environment. Indeed, control theory can be viewed

largely as the solution of one-player di�erential games (Isaacs, 1975); di�erential game

theory addresses the more complex multi-player cases.

In classic \asymmetric" games (e.g. missile vs. aircraft), the roles of pursuer and

evader are pre-determined and �xed. But in \symmetric" games (e.g. aircraft vs. aircraft),

both players can collect payo�s for successful pursuit and successful evasion. Symmetric

pursuit-evasion contests have been analyzed as \two-target games" (Getz & Pachter, 1981;

Merz, 1985). The symmetric contests in some of our initial experiments (Cli� & Miller,

1994) resemble various two-target games such as a coplanar tail-chase aerial combat game

(Merz & Hague, 1977), a deterministic planar dog�ght game (Getz & Pachter, 1981), a

stochastic dog�ght game (Yavin, 1986, 1987), and a 3-D dog�ght game (Greenwood,

1992); see (Grimm & Well, 1991) for review. The classic \game of two cars" is also

symmetric: two players with �xed speeds and limited turning radii move in the same

plane and attempt to capture each other somehow (Isaacs, 1965; Merz, 1976, 1985; Merz

& Hague, 1977; Meyer & Trigeiro, 1991).
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3.2 The optimality of mixed strategies

The key to formal analysis in game theory is for games to be reduced from descriptive

form (e.g. rules and heuristics) or \extensive form" (i.e. decision-tree form) to \normal

form" (i.e. a joint payo� matrix that lists game outcomes given all possible strategies

for all players). Some games in normal form have \minimax solutions" (a.k.a. \saddle

points") that minimize each player's expected loss regardless of what the opponent does

to maximize their expected gain; minimax solutions, if they exist, are jointly optimal for

rational players. In games of perfect information, players are precisely and continuously

aware of all moves made by other players, so that deception, confusion, and uncertainty

are impossible. All games of perfect information have one or more saddle points corre-

sponding to \pure" deterministic optimal strategies (though �nding them may often be

di�cult, as in chess).

However, games of imperfect information (e.g. games where deception is possible)

may have multiple saddle points or no saddle points. In such cases, \mixed strategies"

(probability distributions across pure strategies) may be optimal. Perhaps the most

important and interesting result from von Neumann and Morgenstern (1944) was that

every two-player, zero-sum game of incomplete information with multiple saddle points

has an optimal strategy that is mixed rather than pure:

\One important consideration for a player in such a game is to protect himself

against having his intentions found out by his opponent. Playing several

di�erent strategies at random, so that only their probabilities are determined,

is an e�ective way to achieve a degree of such protection. By this device

the opponent cannot possibly �nd out what the player's strategy is going

to be, since the player does not know it himself. Ignorance is obviously a

good safeguard against disclosing information directly or indirectly." (von

Neumann & Morgenstern, 1944, p.146)

The logic of mixed strategies is simple (see Rapoport, 1966). If a player's choice

sometimes remains unknown to others after the move is made, the game is one of imperfect

information. This can result from the move being hidden, or the other players' sensors

being insu�cient to register all moves with complete accuracy. Typically, games lose their

saddle points when they are no longer games of perfect information, such that the �rst

player's minimax solution does not correspond to the second player's minimax solution.

For example, the popular children's game Rock, Paper, Scissors involves a circular pattern

of dominance among the pure strategies (Rock beats Scissors, Scissors cut Paper, Paper

smothers Rock), so there is no saddle point, and one's optimal (minimax) strategy against

a rational opponent is to choose each move with one-third probability. In general, mixed

strategies randomize moves to confuse opponents and keep them guessing. (But the task

of determining the optimal mixed strategy is usually very di�cult for games with many

pure strategies and complex interactions.)

Because many pursuit-evasion games are ones of incomplete information with multiple

saddle points, mixed strategies have often proven useful in such games. Mixed strate-

gies are optimal for a pursuit-evasion game with rectilinear movement on a planar grid

(Ermolov, Kryakovskii, & Maslov, 1986). In some more complex continuous cases, the
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optimal strategies for both pursuer and evader are also mixed. Forte and Shinar (e.g.

Forte & Shinar, 1988, 1989; Shinar, Forte, & Kantor, 1992) have shown that in aerial

combat scenarios, mixed strategies yield much better performance than any previously

known guidance law, and did so for both pursuers and evaders. Moreover, Bernhard

and Colomb (1988) showed that the use of mixed strategies by both players can be op-

timal even when only one player has incomplete information. Other results by Bugnon

and Mohler (1988), Imado (1993), and Linder (1991) also illustrate the utility of mixed

strategies in pursuit-evasion games. Indeed, some aircraft use systems for \electronic

jinking" (Forte & Shinar, 1988) to generate unpredictable ight paths, by analogy to

gazelles jinking erratically to evade a predator. Such game-theoretic results support the

protean behavior hypothesis of Driver and Humphries (1988) that erratic zig-zagging by

animals is truly stochastic behavior that derives its utility from its unpredictability. We

might expect then that in any pursuit-evasion game with incomplete information and

complex dynamics, unpredictable pursuit and evasion strategies will evolve.

Evolutionary game theory (Maynard Smith, 1982) has also recognized the optimality

of mixed strategies in many contests between animals. Animals can be considered players

in the game-theoretic sense because they make choices, implement behavioral strategies,

and receive �tness payo�s contingent on their interactions with other animals' strategies.

Mixed strategies can be implemented as behavioral polymorphisms across individuals

in a population or as protean behavior within each individual. However, evolutionary

game theory has focused mostly on single-step games (such as sex-ratio determination

or the Hawk-Dove game: see (Maynard Smith, 1982)) and discrete-step games (such as

the iterated prisoner's dilemma (Axelrod, 1984)). The literature on di�erential pursuit-

evasion games has been strangely overlooked despite its obvious relevance to predator-

prey interactions and territorial �ghts, so the importance of protean evasion behavior

has been neglected. Dynamic programming methods (e.g. Houston & McNamara, 1987,

1988) may prove more useful in analyzing pursuit-evasion contests, since they can optimize

stochastic dynamic strategies, even in two-player games (e.g. Clark & Ydenberg, 1990).

However, such methods require the speci�cation of a fairly well-de�ned strategy set, and

Miller and Todd (1991) have argued that genetic algorithms can evolve strategies in a

more open-ended fashion than dynamic programming. Evolutionary game theory and

dynamic programming should prove useful adjuncts to di�erential game theory as ways

of analyzing simple pursuit-evasion conicts, but the next section suggests that simulated

evolution may be required to deal with complex cases.

3.3 Reasons to simulate pursuit-evasion games

Games are characterized by various dimensions of complexity: (1) the number of players,

ranging from one-player cases (covered by control theory) to classic two-player cases to

more di�cult multi-player cases; (2) the number of moves, ranging from \static" games

of one discrete move per player (e.g. Rock, Paper, Scissors) to games with multiple dis-

crete moves per player (e.g. chess), to di�erential games with continuous moves (e.g.

air combat); (3) the continuity of the strategy space, with discrete spaces (e.g. in two-

alternative forced-choice games) simpler than continuous spaces (e.g. in spatio-temporal

control problems); (4) the payo� structure, with zero-sum games usually simpler than
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non-zero-sum games; (5) the information structure, with games of complete information

much simpler than games of incomplete information. Moreover, in di�erential games with

continuous dynamics, the complexity and noisiness of the dynamics has a major inuence

on the tractability of the game. Anything that complicates the di�erential state equa-

tions complicates the game analysis. Finally, formal application of game theory requires

the complete speci�cation of a strategy space. Such a complete speci�cation may not

be possible if the strategies are emergent properties of human heuristics, animal brains,

or evolved robot control systems, and if the emergent strategies can vary continuously

along a number of dimensions, thereby making the game di�cult to represent in exten-

sive (decision-tree) form or normal (payo� matrix) form. These problems suggest that

di�erential pursuit-evasion games are di�cult to analyze even under the best circum-

stances, and that the introduction of realistic complexity renders most of them formally

intractable.

To avoid these complexities, di�erential game theory usually assumes that the pursuit-

evasion game is one of perfect information between two players with �xed and pre-

determined roles (one \pursuer" and one \evader"), deterministic dynamics and constant

speeds, and a zero-sum payo� structure. Mathematically adept researchers can relax one

or two of these assumptions at a time to derive results for special and simpli�ed cases, but

relaxing all the assumptions at once makes the game hopelessly complex. For example,

the classic two-cars game emphasizes positional advantage and neglects vehicle dynamics;

on the other hand, symmetric di�erential-turning games (e.g. Kelley, 1975) emphasize

relative heading, energy management, and turning while neglecting positional advantage.

Some recent work attempts to analyze more di�cult asymmetric and symmetric games

with noise-corrupted environments (Yavin, 1987), uncertain environments (Corliss, Leit-

mann, & Skowronski, 1987), or uncertain dynamics (Galperin & Skowronski, 1987). Yet

even with bounded uncertainties in dynamics, the classical game-theoretic concepts of

optimality, value, and saddle point may be irrelevant (Galperin & Skowronski, 1987).

Pursuit-evasion games that cannot be reduced to di�erential state-space equations can-

not be analyzed using the traditional methods of di�erential game theory. For example,

without a linear and deterministic mapping from control to state variables (e.g. from a

player's sensors to its e�ectors), it is impossible to construct tractable di�erential equa-

tions that relate player strategies directly to changes in the game's state-space. A recent

complexity-theoretic analysis of di�erential pursuit-evasion games by (Reif & Tate, 1993)

illustrates the di�culties of developing control systems for robots and autonomous vehi-

cles playing such games.

Another important assumption, rarely mentioned in game theory, is that strategies

can be implemented instantaneously, without time-lags, computational costs, or speed-

accuracy trade-o�s. That is, decision dynamics are assumed to be much faster than

behavioral dynamics. For real animals and robots, this assumption is unrealistic. Indeed,

the basic assumption in game theory that unpredictability is only useful given incomplete

information assumes that decision-making happens so much faster than action, that the

dynamics of information-processing are irrelevant to the dynamics of action. But if we

view both cognition and action as dynamical processes operating on similar time scales

(Miller & Freyd, 1993), then the utility of unpredictability becomes more apparent. The
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terms \perfect" and \imperfect" information conate the objective information structure

of the game (e.g. the state-information available in the world) with the sensory and

information-processing capacities of the players. If the latter are limited, then confusion,

uncertainty, deception, and protean behavior may prove relevant even if the objective

information structure of the game is \perfect". The great size and speed of escape circuits

and muscles in many animals, as reviewed in the previous section on neuroethology,

suggests that the speed of both neural processing and motor movement has been under

intense selection in pursuit-evasion contests.

In recognition of these problems, some game theorists have recently shifted to numer-

ical and simulation methods to derive near-optimal strategies for more complex pursuit-

evasion games (e.g. Jarmark, 1987; Moritz, Polis, & Well, 1987; Rodin, Lirov, Mittnik,

McElhaney, & Wilbur, 1987; Tolwinski, 1989). For example, Rodin et al. (1987) used

arti�cial intelligence (AI) methods to simulate players in an air combat maneuvering

scenario. Each player derives tactical maneuvers using a world-model based on sensor

inputs, an inference engine linked to a database (containing player parameters and ca-

pabilities and an environment model), and a knowledge base (containing a basic set of

pursuit-evasion algorithms). The inference engine updates tactical plans every time an

opponent's actual trajectory deviates from its expected trajectory. Clearly, unexpected

behavior increases problem complexity and processing time. Rodin et al. (1987) em-

phasized the \transparency" of the system; i.e. the ability to explain its decisions and

solutions in plain English. But such AI methods for controlling autonomous agents tend

to become hopelessly slow as the dynamics of agents and environments become more com-

plex and noisy, and the transparency requirement places unnecessary constraints on the

types of control systems that can be used. We need simulation methods that yield reac-

tive, robust, dynamic pursuit-evasion strategies, rather than slow, brittle, hand-designed

AI systems.

Di�erential game theory provides a framework for describing the important features

of pursuit-evasion contests, and a set of normative results concerning optimal strategies

in simple cases. However, it cannot generally provide optimal strategies for realistically

complex pursuit-evasion problems, nor can it show how strategies can be implemented

in a real control system subject to limited sensory capacities, sensory and motor noise,

component failure, and constraints on processing speed and accuracy. Evolutionary sim-

ulation methods can ful�ll these goals and can complement game-theoretic approaches,

because adaptive pursuit-evasion strategies can be evolved in contest scenarios that defy

formal analysis. Others have recognized this, and so we next review previous simulation

work related to pursuit-evasion issues.

4 Review of Previous Simulation and Robotics Work

4.1 Simple Evolution of Pursuit or Evasion

Themes of pursuit and evasion are implicit in much of the recent work in arti�cial life

and simulation of adaptive behavior. Classic problems of obstacle avoidance and of

foraging and navigation can be viewed as degenerate special cases of evasion and pursuit,

respectively, with the \opponents" consisting of inanimate, non-moving obstacles, food
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items, or other goal objects. Much of the work on simulation of collective behavior

involves dynamical interactions with other agents that may be similar to the those arising

in pursuit-evasion contests. For example, the cooperative behaviors of following, ocking,

and aggregation are similar to pursuit behaviors; others such as disperson and collision-

avoidance are more similar to evasion behaviors (e.g. Mataric, 1993). (But note that

selection for cooperation rarely favors deception or protean behavior.)

Previous simulation work has usually examined the origins and e�ects of pursuit-

evasion tactics with neither player evolving or with one player evolving; these will be

reviewed in order. Given very simple, �xed rules for individual movement, Schmieder

(1993) examined the di�erent pursuit-evasion dynamics that result when a number of sim-

ulated males and females are attracted or repulsed by one another with varying strengths,

and with varying degrees of mutual knowledge about one another's movements. Other

arti�cial life simulations have successfully used pre-programmed predators that impose

selection for simple evasion behaviors (e.g. Ackley & Littman, 1992; Werner & Dyer,

1993), or have simply modelled pursuit and evasion behaviors in simulated animals with

hand-designed systems (e.g. Edwards, 1991; Liaw & Arbib, 1993; Terzopoulos, Tu, &

Grzeszczuk, 1994).

Stork et al. (1992) modelled the evolution of the cray�sh escape reex, a very fast and

e�cient method of evasion that has been well-studied by neuroethologists (e.g. Krasne &

Wine, 1987). Arti�cial neural networks that were �rst selected for swimming behavior,

and then for escape behavior, performed more poorly and had less optimal designs than

networks selected directly for escape behavior. Similar `non-optimality' (in the form of

redundant neuronal connections) is also present in the real networks generating escape

behavior in cray�sh. Stork et al.'s results add weight to the claim that the non-optimality

is the result of evolutionary pre-adaptation; this work highlights the evolutionary conti-

nuity between locomotion, evasion, and escape behaviors, and the risks of getting caught

in local optima when evolving the latter from the former.

Grefenstette's (1992, 1990) Samuel system, resembling a classi�er system, evolved

robust rule-based strategies for simulated agents with noisy, coarse-grained sensors and

e�ectors, including both e�ective evasion rules given one or two pre-programmed pursuers

(in the `predator-prey' problem), and e�ective pursuit rules given a randomly moving

evader (in the `cat-and-mouse' problem). However, Samuel uses high-level sensory input

(e.g. direct heading, bearing, speed, and range information), symbolic condition-action

rules operating in discrete time-slices (e.g. 2 to 20 decisions per contest), and fairly

domain-speci�c genetic operators (such as Lamarckian rule deletion, generalization, and

specialization).

Koza's (1991, 1992) genetic programming work includes a number of pursuit-evasion

simulations. His Pac-Man scenario (Koza, 1992) required both evasion (of pre-programmed

\monsters") and pursuit (of sluggishly moving \fruit"); control systems evolved through

genetic programming that were capable of prioritizing these activities appropriately. Some

Pac-Man controllers that evolved were skillful enough to eat the monsters after eating a

special \pill" that made the monsters vulnerable, so to some extent the roles or pursuer

and evader could be switched in this scenario. Koza (1992) also investigated the evo-

lution of pursuit-evasion strategies in Isaacs' (1965) \squad car game", where a police
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squad car pursues a slower pedestrian evader on a discrete grid. Most relevantly, Koza

(1991) used genetic programming to evolve Lisp S-expression controllers for both players

in a di�erential pursuit-evasion game. His game had pre-determined and �xed roles for

pursuer and evader, constant speeds for both agents, and perfect information. Agents

were randomly placed in a planar world, controlled their directions (velocity vectors)

based on simple inputs concerning the current heading of the opponent, and received

�tness payo�s for e�ective pursuit or evasion. This game has a single optimal pursuit

strategy (move directly towards the evader) and a single optimal evasion strategy (move

directly away from the pursuer). Given an optimal evader as the \environment", genetic

programming was successful in evolving a near-optimal pursuer within a few generations

(e.g. 51 generations of 500 individuals each); likewise, near-optimal evaders evolved given

�xed optimal pursuers as the environment. However, Koza's pursuit-evasion game was

very simple: it required mapping a single input (current angle of opponent) onto a single

output (direction to move in), given perfect information and trivial movement dynamics,

and it had a known optimal solution from di�erential game theory. Co-evolution between

pursuer and evader did not occur. Nevertheless, Koza's work represents an important

fore-runner and inspiration for our research.

4.2 Co-Evolution of Pursuit and Evasion

The only previous simulation work explicitly aimed at investigating the co-evolution of

pursuit and evasion tactics was Craig Reynolds' (Reynolds, 1994) study of the Game of

Tag. One player is designated \It" and pursues the other player(s) until one of them is

tagged and thereupon becomes \It". Pursuit and evasion roles can shift back and forth

uidly, as in animal play behavior (Fagen, 1981; Symons, 1978). Reynolds used genetic

programming to evolve vehicle steering systems for playing this game; the less time spent

being \It" during a series of 4 games against each of 6 competitors from the same pop-

ulation, the higher an individual's �tness. During 7 long runs with populations around

1000, a variety of di�erent pursuit and evasion controllers evolved, often exploiting the

particular weaknesses of their competitors, and sometimes approaching the performance

of a known optimal controller. The Game of Tag was an ingenious choice of task because

it allows co-evolution within a single population, but clearly distinguishes between pur-

suit and evasion roles; this overcame some of the problems we encountered in trying to

use symmetric pursuit-evasion games within populations (see Cli� & Miller, 1994)). But,

as Reynolds acknowledges, his methods greatly simpli�ed the game and the evolutionary

process. The vehicles had constant speed, zero momentum, zero turning radius, perfect

information about opponent position, and operated in a featureless planar environment;

more realistic physics and obstacles would probably make the pursuit-evasion behaviors

more di�cult and interesting. Also, the tree-like control programs were usually required

to have as their �rst branch point a very convenient conditional \If It, then A (pur-

sue) otherwise B (evade)"; when this requirement was relaxed (as in Reynolds' run G),

evolution did not work very well. One of our aims in these papers was to explore the

co-evolution of pursuit and evasion under harder conditions.

Sims (1994a) investigated the co-evolution of behavioral tactics using a sophisticated

open-ended method for evolving 3D body forms, neural circuits, sensors, and e�ectors.

20



Individuals from two species played a competitive game where each player attempts to

capture a cube and keep it from the opponent. The simulations used realistic physics

with gravity, collisions, friction, and momentum. A fascinating variety of tactics evolved

for falling, crawling, rolling, and reaching towards the cube, for blocking or pushing away

opponents, and for covering or wrapping securely around the cube. This work shows

the feasibility of co-evolving complex and diverse behavioral tactics in simulations with

realistic physics and open-ended body and brain development methods. Sims' system

could be easily extended to studying pursuit-evasion games, since it has already been

used to evolve walking, jumping, and swimming capacities (Sims, 1994b).

Other simulation work has evolved forms of pursuit and evasion, or approach and

avoidance, without explicitly selecting for them. Yeager's (1994) \PolyWorld" system

managed to evolve some simple pursuit-evasion tactics in simulated creatures controlled

by neural networks, including running away or �ghting back when attacked, and following

other creatures in order to attack them. Although not very sophisticated, these behav-

iors did evolve simply through the ecological interactions such as predation that were

permitted in PolyWorld, without any explicit selection for pursuit or evasion abilities.

Yeager's work demonstrates not only that pursuit-evasion contests emerge spontaneously

given mobile creatures with conicts of interest, but also that genetically encoded neural

networks can evolve to generate adaptive pursuit and evasion behaviors in such contests.

4.3 Pursuit and Evasion by Robots

There is a huge literature on mobile robot control, largely focused on problems of nav-

igation and path-following in unrealistically friendly environments free of anything that

requires sustained pursuit or protean evasion (e.g. Brooks, 1989; Cli� et al., 1993; Har-

vey, Husbands, & Cli�, 1994). Even work on avoiding moving obstacles (e.g. the asteroid

avoidance problem (Latombe, 1991) assumes that the obstacles are following predictable

courses, which allows long-term path-planning (Canny, 1987; Tychonievich, Zaret, Man-

tegna, Evans, Muhle, & Martin, 1987). However, many potential robot tasks are essen-

tially pursuit-evasion problems. The same �tness a�ordance theory that con�rms the

generality of pursuit-evasion problems for animals also applies to robots, where �tness

can be interpreted in economic rather than reproductive terms (see McFarland, 1991).

Pursuit and evasion by robots may require control systems more predictive than reactive

control (e.g. Brooks, 1986; Arkin, 1989) allows, but much faster and more robust than

traditional symbolic planning (e.g. Latombe, 1991) allows.

Yamauchi and Beer (1994) evolved dynamical neural networks for obstacle avoidance

in simulation and found that these networks, when downloaded into real robots, func-

tioned fairly well as evasion circuits for avoiding mobile human pursuers. Sharma and

Aloimonos (1992) discussed the advantages of developing active vision in mobile robots

for pursuing moving targets. The system called `Mousebuster' developed by (Buttazzo,

Allotta, & Fanizza, 1993) uses vision and prediction methods to track and catch fast

unpredictable objects such as mice; this real-time system could catch objects moving on

a plane at velocities of up to 0.7 meters per second.

Various \Robot Sumo" contests have been run (e.g. at the Beam Robot Olympics

(Tilden, 1992)), in which two robots subject to restrictions on size, weight, and degree of
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agression

2

try to push one another outside the boundaries of a circular pad, under either

radio control or autonomous control. Robot Sumo is a symmetric pursuit-evasion game

in which each agent strives for a more central position and for a better application of a

centrifugal force vector to the other.

Arkin, Carter, and MacKenzie (1993) reviewed previous work on how robots can

avoid moving obstacles, and developed motor schemas for dodging and escape in their

reactive mobile robot. Dodging avoids ballistic projectiles by side-stepping; escaping

avoids pursuers by moving directly away from the projected point of collision. Both forms

of reactive active avoidance use a simple vector extrapolation method to detect expected

collisions with moving obstacles. This sort of predictive perception turns the robot from

a purely reactive system into a slightly anticipatory system. Avoidance of active and

passive obstacles, movement towards goals, and wandering behavior are integrated by

summing and normalizing the di�erent velocity vectors speci�ed by the motor schemas

for each behavior. Simulation indicated thast these dodging and evading behaviors were

su�cient to deal with multiple moving obstacles under noisy conditions. Implementation

on Denning MRV-2 and MRV-3 mobile robots, which used 24 ultrasonic sensors for threat

detection, also proved successful. This work by Arkin and colleagues shows that bottom-

up, reactive control systems can be extending to do predictive evasion without sacri�cing

speed or robustness.

In addition to the robotics literature proper, there is also an enormous amount of

technical military research on pursuit and evasion control systems for guided missiles,

aircraft, and autonomous vehicles (i.e. tanks).

3

4.4 General Simulations of Co-evolution and Mixed Strategies

Other simulated evolution work has demonstrated the adaptiveness of mixed strategies

and protean behavior. Koza (1992) used genetic programming to evolve random-number

generation programs under \entropy-driven evolution"; this direct selection for random-

ness is analogous to the indirect selection for unpredictable evasion that occurs in pursuit-

evasion contests. Nowak (1993) showed that generous tit-for-tat (GTFT), a stochastic

strategy, could evolve and thrive in evolutionary simulations of the prisoner's dilemma;

GTFT cooperates even after a defection at some non-zero random rate (e.g. one-third of

the time), and its unpredictability is the key to its success.

Benhamou and Bovet (1989, 1991) (Bovet & Benhamou, 1988) have used mathemati-

cal models to explore the spatio-temporal dynamics of animal movement, with particular

attention to the utility of random-walk patterns in foraging. They developed a �rst-order

correlated random walk model (rather than zero-order, to account for animals' head-tail

di�erence and tendency to go forwards), and modelled search paths as a series of steps

of particular length, with changes of direction after each step randomly drawn from nor-

2

In Beam Class A Sumo, competitor robots may not attack the opponent's hardware. In Beam Class

B, damaging aggressive attack is encouraged, subject to certain constraints which limit the potential

danger to nearby humans.

3

The following journals contain relevant robotics work: Advanced Robotics; IEEE Int. Conf. on

Robotics and Automation; IEEE Transactions on Automatic Control; Int. J. Robotics and Automation;

Proceedings of the SPIE; Robotica; and Robotics and Autonomous Systems.
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mal distribution wrapped around a circle, with a null mean corresponding to forwards

movement. Varying the step-length and the variance of the direction-change distribution

results in changes of a formal measure of movement \sinuosity" S , which can in turn

be used to calculate an expected di�usion path length for foraging. Optimal sinuosity

values can evolve for optimal foraging in environments with di�erent food distributions.

Although Benhamou and Bovet (1989) did not discuss the utility of this sort of move-

ment unpredictability in pursuit and evasion, their sinuosity measure, or other similar

measures, could be useful in analyzing the movement dynamics of pursuing and evading

animals. Killeen (1992) has also developed a framework for the dynamical analysis of

animate motion based on �elds of approach and avoidance vectors.

Other simulation work has shown the utility of co-evolution in evolving strategies for

game-like interactions. Work by Hillis (1990) on the co-evolution of sorting strategies and

test sets can be viewed as an abstract version of a one-play pursuit-evasion contest, in

which the sorting strategies `pursue' optimal sorts while the test sets `evade' the strengths

of particular sorting algorithms. Co-evolution of strategies for the simple and iterated

prisoner's dilemma has been particularly well-studied, e.g. by Axelrod (1989), J. H. Miller

(1989), and Nowak and colleagues (1992, 1992). Co-evolution has also been simulated

successfully in Holland's (1992) Echo system, Koza's (1991, 1992) genetic programming

research, Ray's (1992) Tierra system, Werner and Dyer's (1993) Bioland system, and

Yeager's (1994) Polyworld. Angeline and Pollack (1993) demonstrated the utility of co-

evolution in genetic algorithms for solving complex problems. Chapter 6 of Kau�man

(1993) explores the dynamics of co-evolution in great detail using simulation on N-K

�tness landscapes.

4.5 Directions for Further Research

This work on co-evolution, along with Koza's demonstration of entropy-driven evolution

through selection for randomness, and previous research on evolution of pursuit and

evasion strategies, gave us hope that a co-evolutionary pursuit-evasion scenario could lead

to the evolution of protean behaviors. In the companion paper (Cli� & Miller, 1994), we

review our simulation methods and results, in which a genetic algorithm evolves pursuit

and evasion strategies implemented as dynamical neural networks in simulated robots.

Simple demonstrations that e�ective pursuit and evasion abilities can evolve in sim-

ulation will not prove of much scienti�c interest (although they may have important en-

gineering applications.) We already know from neuroethology and animal behavior that

pursuit-evasion contests result in exquisitely adapted sensors, e�ectors, neural circuits,

and behaviors. To go beyond this, we must address develop and test speci�c hypothe-

ses about the co-evolutionary dynamics of pursuit-evasion contests, the typical neural

mechanisms underlying pursuit-evasion behaviors, the trade-o�s between pursuit-evasion

capacities and other behavioral capacities, and so forth. For example, researchers could

develop hypotheses about variables that might inuence the evolution of pursuit-evasion

behaviors, manipulate these variables in simulation, and observe the results using rele-

vant measurement tools. In our work, we are currently manipulating the relative physical

speed and the relative neural processing speed of pursuers versus evaders, to explore

where in this 2D space of parameters various sorts of behaviors (such as dodging, feint-
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ing, and proteanism) will prove adaptive. Other variables to manipulate could include the

structure of the physical environment (including obstacles) and the number of pursuers

and evaders interacting at a time.

More generally, pursuit-evasion co-evolution could be used as a test bed for developing

better genetic algorithms, better neural development schemes, better body designs, better

sensors, etc. The basic requirements of e�ective pursuit and evasion { continuous robust

dynamical control with respect to a hostile opponent { seem relevant to a variety of other

adaptive behaviors. Pursuit-evasion contests could also prove more useful than spatial

navigation tasks for testing the speed and robustness of various sorts of learning algo-

rithms. Whatever control or learning methods have been shown e�ective for inanimate

environments should now be tested against environments containing animate opponents.

Finally, pursuit-evasion contests typically result in both morphological and behav-

ioral adaptations. Endler (1991) reviews a variety of such antipredator adaptations that

include both bodily and behavioral components, including hiding, use of inconspicuous

resting places, polymorphism (varied appearance across individuals), polyethism (var-

ied behavior across individuals), camouage, cryptic immobility, release of ink, blood,

or other smoke screens, dropping o� of distractors (e.g. wriggling tails), resemblance to

inedible or distasteful objects, confusion e�ects arising from the interaction of body color

patterns and movement patterns, modes of locomotion di�erent from predators, star-

tle, blu�, and threat displays, re-direction of attack towards less vulnerable body parts,

physical toughness, slimy-ness, or spiny-ness, or safe passage through the predator's gut.

A similar list could be compiled of predator adaptations; for example, many predators

solve the pursuit problems not just by evolving more sophisticated neural circuits, but

by enlarging their `catch area' with larger mouths, webs, traps, or cooperative hunting

methods (see Driver & Humphries, 1988). Behavioral challenges do not always require

purely neurological solutions. Extensions of Sims' (1994a, 1994b) methods for morpho-

genesis and neurogenesis could prove useful for investigating the evolution of these sorts

of integrated bodily, sensory, and behavioral systems for pursuit and evasion.

Exploring the co-evolution of predictive pursuit and creative evasive also opens the

way for understanding more abstract psychological arms races. Miller (1993) has pos-

tulated that the evolution of the human brain was driven primarily by runaway sexual

selection (see Cronin, 1991; Ridley, 1993), elaborating mental capacities for creative lan-

guage, art, music, dance, and conceptual play. Under this hypothesis, cognitive mecha-

nisms for mate choice can be viewed as pursuit systems that tend to track, predict, and

habituate to various courtship behaviors, while the courtship behaviors themselves can

be viewed as evasion systems that try to avoid being predictable and boring through

generating creative, witty, humorous, and interesting novelty. Thus, creativity may be

more of a neophilic, centrifugal, exploratory, evasive capacity, than a goal-directed, cen-

tripetal, convergent, pursuit capacity. The human brains' recent technological and scien-

ti�c achievements can be viewed as spin-o�s from mental adaptations for generating pro-

tean courtship displays to keep potential mates interested in pursuing our unpredictable

trajectories of thought and feeling. Thus, even our most cherished cognitive abilities can

be understood as the outcome of an unusual sexual-selective form of a pursuit-evasion

contest.
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5 Applications and Implications

By pursuing rather than evading the complexities of pursuit-evasion contests, we may

reap signi�cant engineering and scienti�c bene�ts. These are reviewed in turn.

5.1 Applications in Robotics

Many traditional robot control tasks are degenerate special cases of pursuit-evasion prob-

lems: collision-avoidance is evasion of non-moving obstacles, goal-directed navigation and

homing behavior are pursuit of a non-moving target region, and grasping can be pursuit

of a non-moving target object. Clearly, the avoidance, pursuit, or manipulation of active

mobile agents radically increases the di�culty of such tasks, and their robust solution

may require co-evolutionary design methods, where robot control systems evolve against

pursuer or evader agents. Even where a robot's operating environment is expected to

contain only static or passively moving objects, co-evolution of grasping and movement

tactics against animate opponents might increase the robustness, speed, smoothness, and

generality of control systems, because the opponents would evolve to exploit any insta-

bilities or weaknesses in the control system. For example, a legged robot that is harried

by a hostile predator that keeps trying to trip it up will probably evolve more robust

walking abilities than one that merely clambers over passive obstacles. The co-evolution

of evasion tactics through interaction with simulated animal, human or vehicle pursuers

may help to solve the potentially catastrophic biophilic baby and technophilic teenager

problems. Pursuit and evasion capacities have other obvious applications in computer

animation, video games, and virtual environments, aside from less savory military uses.

5.2 Applications in Scienti�c Methodology

Some engineering applications shade over into scienti�c applications because they raise

the possibility of developing new research methods. Arti�cial animals capable of realistic

pursuit and evasion could be used as reliable experimental stimuli in further neuroetholog-

ical studies of perception and behavior in a variety of animal species. Further, perceptual

systems evolved for pursuit could be useful in automated recording of animal movements

in laboratory or natural situations. One could imagine developing small autonomous

robots whose goal is to videotape rather than eat a target species; such automata would

make much easier the study of elusive animals in hard-to-reach natural habitats such as

mountains, deep ocean, or rainforest canopies. Once the elusive subject is discovered,

such robots could alert a scientist by radio and be switched over to remote control via a

teleoperation system, for more detailed interactive study of the target species.

5.3 Implications for Scienti�c Research

The scienti�c bene�ts of a better understanding of pursuit and evasion would extend

to game theory, animal biology, evolutionary psychology, and neuroethology. There are

many open questions in the biology of pursuit and evasion that bear on general issues in

animal behavior.

25



For example, the debate in adaptive behavior research over representational versus

dynamical approaches to animal cognition might be illuminated by closer study of pursuit

and evasion circuits. Many biologists have cited predator-prey interactions to argue for

the special attunement of perceptual systems and internal representations to biologically

relevant stimuli and situations; others have cited such interactions to argue for the im-

portance of robust dynamical control. Miller and Freyd (1993) saw no necessary conict

between these positions, and have suggested that pursuit-evasion contests demand `dy-

namic mental representations' (Freyd, 1987) that have both a dynamical structure and a

representational function.

Another major issue is how unpredictable protean behavior could be generated. Op-

tions include stochastic neurons, emergent chaotic e�ects in recurrent neural networks,

sensitivity to sensory input noise, output noise that emerges from unpredictable inter-

actions between motor output and environment (as postulated by Roeder, 1970)), or

noise that emerges when translating information between sensory and motor cognitive

maps that use di�erent coding schemes (as observed by (Liaw & Arbib, 1993)). It is

easy to generate noisy behavior, but hard to know how animals actually do so. Simula-

tions that compare di�erent noise-generation methods might identify di�erent trajectory

characteristics that could be used to understand how animals produce proteanism.

The co-evolution of pursuit and evasion also raise challenges for motion perception,

motor control, action selection, and learning. For example, a motion perception system

su�cient for detecting inanimate motion may not su�ce for detecting the unpredictable

motion of a camouaged animal. A motor control system su�cient for clambering over

passive obstacles may not resist being tripped by a clever predator. An action selection

system robust enough under normal conditions may be confused by startle displays,

playing dead, jinking, feinting, or counter-attacks. Learning e�ective pursuit and evasion

may be especially di�cult because of the complexity of temporal credit assignment, and

the continuity of decisions and behaviors. It will be di�cult to construct models of

adaptive behavior that are good enough to perform e�ective pursuit and evasion, but not

so good that they could never be fooled by counter-measures, as animals often are.

Pursuit-evasion contests naturally lead to some important varieties of social behavior

and communication such as herd defense, pack-hunting, and alarm calls. The coordina-

tion of one's own behavior with respect to a single hostile opponent and an inanimate

environment is challenging enough; the additional di�culties of robust coordination with

respect to co-evaders or co-pursuers boggle the mind. The cooperative behavior of thou-

sands of ants may be easier to model than conicts between a dozen partially-cooperating

predators and a dozen partially-cooperating prey. By analogy, the statistical mechanics

of billions of gas molecules is easier than the three-body problem in celestial mechanics.

Biologists need to do more descriptive studies of pursuit and evasion trajectories in a

wider array of species, with new techniques such as high-speed �lm, computer movement

analysis, and statistical analysis (e.g. time series methods). Perhaps only when simulation

research over-reaches what is known about the dynamics of animal behavior will biologists

feel forced to make their data catch up with our simulations. More optimistically, perhaps

this paper will inspire more collaboration between behavioral biologists and simulation

researchers.
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Implications also arise for our understanding of the general relationship between

agents and environments. For those seeking a general theory of environmental complex-

ity (e.g. Wilson, 1991; Todd & Wilson, 1993), the addition of animate agents capable of

unpredictable pursuit and evasion in the environment represents a signi�cant conceptual

challenge. For example, an environment that contains creatures with continuous-time

dynamical noisy recurrent networks as their control systems would be di�cult to model

as an environmental �nite state machine, as proposed in (Wilson, 1991). As in sexual

selection (Miller, 1993; Miller & Todd, 1993) and other forms of \psychological selection"

(Miller, 1993; Miller & Freyd, 1993), pursuit-evasion contests break down the distinction

between environment complexity and agent complexity, because agents become the most

important selective forces in each other's environments.

6 Conclusions

Pursuit and evasion behaviors are common because conicts of interest over approach and

avoidance are common, and they are di�cult because dynamic, stochastic, continuous-

space, continuous-time games are di�cult. This paper has argued that the exploration

of pursuit-evasion contests is the next logical step in the simulated evolution of adaptive

behavior, after the development of basic capacities for avoiding inanimate obstacles and

approaching inanimate goals. Pursuit-evasion contests are ideal arenas for investigating

adaptive behavior at many levels over many time-scales, from the robust dynamical con-

trol of movement to the long-term co-evolution of behavioral strategies in social groups

of cooperating agents.

Like the blind men studying the elephant, behavioral biology, neuroethology, and

game theory have focused on quite di�erent aspects of pursuit-evasion contests. Much is

known about the how animals look when they're chasing each other, how simple neural

circuits in animals do reexive escape and attack behaviors, and how optimal strategies

work in overly simpli�ed di�erential games. But we do not yet have a realistic, integrated

theory about how the co-evolution of pursuit and evasion happens in nature, or how it

could happen in engineering applications. We believe the best way forward is to use

evolutionary simulation methods that can track the emergence of complex sensory, neural,

and motor systems using detailed measurement techniques and experimental comparisons

across relevant variables (see Cli� & Miller, 1994). If such work is done with a thorough

understanding of ideas and results already contributed by biology, game theory, and

previous simulation and robotics work, if will be more likely to promote the fruitful

interdisciplinary study of pursuit, evasion, and their co-evolution.
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