
Supervised Learning of Conditional Approach: A

Case Study

Chris Thornton

Cognitive and Computing Sciences

University of Sussex

Brighton BN1 9QN

Email: Chris.Thornton@cogs.susx.ac.uk

November 25, 1993

Abstract

Reinforcement learning regimes have been shown to be capable of

learning animat behaviours such as `obstacle avoidance' and `wall fol-

lowing'. Such behaviours can usually be learned more quickly using or-

dinary supervised methods, since in this case the learner receives more

direct feedback. However, `conditional approach' behaviour (move in on

small objects but stand clear of large ones) seems to be hard to learn

even by neural network learning methods such as backpropagation. The

paper presents the results of a study which investigated this behaviour

and shows how the `hardness' of the behaviour can be accounted for in

statistical terms.

1 Introduction

Recently there has been increasing interest in the use of learning for the auto-

matic acquisition of animat behaviors (e.g., [1,2]). Attention usually focusses

on reinforcement methods. However, ordinary supervised methods can be used

provided there is some method available for generating suitable training sets.

These can be expected to produce better performance in general since (1) they

receive more informative feedback and (2) they are not required to solve a

credit-assignment problem in addition to the learning problem.

The present paper looks at the learning of a behavior dubbed `conditional-

approach' by supervised methods. This behaviour is modeled in an animat with

1

a simple sensory system and a motor system enabling forward and rotational

moves. The behavior itself, which involves moving in on any small object in the

sensory �eld but `standing clear' of any large object, seems rather straightfor-

ward. However, it turns out to be poorly learned by supervised methods. We

explain this `failure-to-learn' using a statistical analysis based on a qualitative

distinction between two classes of generalization e�ect.

The paper is divided into six main sections. This, the �rst section, is an intro-

duction. In the second section we describe the comparative study, the simulation

setup used, the training-data derivation method and the results obtained. In

the third section we review basic methods for analyzing statistical properties of

training sets and make a distinction between two types of generalization e�ect.

In the fourth section we analyze statistical properties of training sets for the

conditional-approach behavior and explain why it is hard to learn. In the �fth

section we speculate on the form of general solutions to the conditional-approach

learning problem. In the sixth and �nal section we o�er a summary and some

concluding comments.

2 The comparative study

The empirical basis of the paper is a comparative survey that investigated a

behavior called `conditional-approach'.

1

The production of this behavior in an

animat requires a proximity sensing system of some sort and motor abilities

enabling forward and rotational movements. The behavior involves moving in

on any relatively small object in the sensory �eld but standing clear of (i.e., not

moving in on) any large object.

The behavior was investigated using computer simulations.

2

The simulations

used a 2-dimensional, rectangular world and a single animat. This had two

free-wheeling castors situated fore and aft and two drive wheels situated along

the central, latitudinal axis (see Figure 1). The animat was equipped with

a range-�nding system. This sensed the proximity of the nearest object |

subject to 10% noise | along seven rays, evenly spaced within a 100 degree,

forwards facing arc. A ray intersecting an object at point-blank range yielded

the maximal input value (1) while a ray intersecting no object at all yielded the

minimal input value (0).

The plan view shown in Figure 2 illustrates the basic simulation setup. The

animat, situated in the lower part of the space, is represented as a small box

1

A colour video showing the simulations performed and results obtained is available from

the author.

2

The simulations were run under the Poplog environment [3] running on a Sun SPARC-

station 1+.

2

Motors

Wheel

Visual sensor

Castor

Wheel

Castor

Figure 1: The simulated animat.

with an arrow pointing in its direction of motion. The seven dashed lines are its

probe rays. The boundaries of the space | here shown as unbroken lines | are

actually transparent to the animat. Thus, in the situation shown, the animat

`sees' only the circular blob directly ahead of it. That is to say, within its seven

proximity inputs, the two associated with the rays intersecting the blob will be

relatively high but the other �ve will be at their lowest values, indicating `no

object sensed'.

2.1 Control procedure

Within the training-set derivation process, the animat was driven using a set

of four rules. These implicitly assumed that the environment would contain no

more than one object at any one time. The animat controller had no internal

state. Thus, the animat behavior in each time cycle was a�ected solely by the

3

Figure 2: The simulation setup.

current inputs. The rules were as follows.

(1) If all proximity inputs are at their minimal values (indicating no object

sensed) then swivel ten degrees to the right. (The swivel was e�ected by

driving the left wheel at 1/3 its maximum speed and keeping the right

wheel stationary.)

(2) Otherwise, calculate the ratio between the apparent width (i.e. number of

rays intersected) and the apparent proximity (i.e. maximum ray value) of

the object in the sensory �eld.

(3) If this ratio exceeds a given threshold then stay still.

(4) Otherwise, move towards center of the object, by an amount equal to the

length of the animat.

Figure 3 illustrates a short sequence within a typical simulation. Initially, the

animat is situated in the lower part of the space. Its position corresponds to

4

the lowermost rectangle in the �gure. To begin with only the larger of the two

round objects exists. The animat reacts to the presence of this object by moving

forwards. (The series of rectangles show the sequence of positions occupied.)

Once it has moved a little closer to the object, the width/closeness ratio exceeds

the relevant threshold (see rule 2 above) and the animat halts. After a while

the large object is removed and replaced with a smaller object slightly to the

right. The animat responds by moving in on the small object.

Figure 3: Conditional-approach behaviour.

2.2 Training the animat

The aim of the empirical investigation was to see how well supervised learning

algorithms performed when used to train an animat to perform conditional-

approach. Reinforcement learning methods are often used for purposes of an-

imat training. However, we felt that such methods were not suitable for this

study since they use restricted feedback (no explicit outputs are presented) and

in most cases involve a credit-assignment problem in addition to the learning

problem. The use of supervised algorithms requires the provision of a training

5

set of examples. To obtain these, we repeatedly sampled the animat's reactions

during simulation runs. This involved interrupting our simulation program in

the middle of each time cycle and recording the sensory input received by the

animat at that point, and the amount of drive being sent to the two wheels.

The input/output pairs thus produced gave us the required training set.

The conditional-approach behavior entails producing three, basic behavioral

responses to four scenarios. With no object appearing in the sensory �eld the

animat must swivel rightwards by 10 degrees. With an object appearing at

long-range, or a small object appearing at close-range the animat must execute

a forwards move towards that object. (This might or might not involve a change

in direction.) With a large object appearing at close-range the animat should

remain stationary.

To ensure that each of these responses had an equal representation within the

training data we used the following initialization regime. Each time the animat

arrived at a small object or remained stationary for more than 20 cycles, we

reinitialized the environment, changing the size of the single object, and ran-

domly choosing a new position for it. Thus, in each successive phase of the

simulation, the animat would be confronted by an object of a di�erent size and

di�erent relative position. The sampled stimulus-responses pairs thus contained

roughly equal numbers of the four responses.

Our general strategy for testing the e�ciency of training (with a particular

learning algorithm) was as follows. Following derivation and presentation of

the relevant training set (see above) we would re-run the simulation program

interrupting it in the middle of each cycle. The animat's current proximity

inputs would then be presented as a `test case' to the relevant learning algorithm.

The output returned would be used to drive the wheels of the animat. At the end

of the simulation run, we would evaluate the overall behavior as a reproduction

of the desired behavior.

2.3 Format of training examples

The inputs from the sensory system were represented (for purposes of training)

in the form of real numbers in the range 0.0-1.0. The inputs formed a nor-

malized measure of proximity and embodied 10% noise. The amount of drive

applied to the two wheels in each simulation step was represented in the form

of two real numbers, also in the range 0.0-1.0. Thus, a full right turn with no

forwards motion would appear in the training set as the pair <1.0,0.0> (given

the assumption that the �rst number sets the drive on the left wheel and the

second number the drive on the right wheel).

A sample of training pairs derived for the conditional-approach task is shown

6

in Table 1. Note that the �rst seven numbers in each row (training pair) are

the noisy proximity inputs. These are labeled v1, v2, v3 etc. The �nal two

numbers in each row specify the required amount of drive to be applied to the

two drive wheels. These are labeled d1 (amount of drive to the left wheel) and

d2 (amount of drive to the right wheel). The �rst row shows a case of `standing

o�' from a large object: the amount of drive for both wheels is 0.00. The second

row illustrates the default behavioral response (swivel ten degrees to the right)

produced whenever all the proximity inputs are zeros (indicating no object has

been sensed). The swivel e�ect is achieved by setting the amount of drive for

the right wheel to be 0.3.

v1 v2 v3 v4 v5 v6 v7 d1 d2

0.00 0.00 0.00 0.27 0.38 0.33 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.3 0.00

0.00 0.00 0.81 0.81 0.81 0.79 0.78 0.00 0.00

0.00 0.87 0.88 0.89 0.89 0.89 0.00 1.00 1.00

0.00 0.00 0.00 0.27 0.38 0.33 0.00 0.00 0.00

0.73 0.74 0.00 0.00 0.00 0.00 0.00 0.4 1.00

0.81 0.81 0.81 0.79 0.78 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.85 0.84 0.82 0.00 1.00 0.80

0.00 0.00 0.00 0.78 0.78 0.00 0.00 1.00 1.00

0.00 0.00 0.00 0.00 0.76 0.77 0.76 1.00 0.80

Table 1:

2.4 Algorithms and parameter settings

The use of standard-format training sets enabled us to test the performance

of any supervised learning algorithm on the conditional-approach problem. In

practice we tested the performance of a wide range of algorithms including ID3

[4] and C4.5 [5], feed-forward network learning algorithms of the backpropaga-

tion family including `vanilla' backpropagation [6], a second-order method based

on conjugate-gradient descent [7] and a second-order method based on Newton's

method called `quickprop' [8]. We also tested a constructive network learning

method called `cascade-correlation' [8] and a classi�er/genetic-algorithm com-

bination based on Goldberg's `simple classi�er system' [9].

The standard ID3 algorithm has no user-de�nable parameters. Thus there is

only one way to apply it to a particular training problem. It produces as output

a standard-format decision tree in which the leaf nodes are labeled with speci�c

output cases and each internal node tests the value of a particular input variable.

7

C4.5 is a more e�cient version of ID3 that enables various parameters to be

set to control tree-pruning actions. However, in all cases reported we used the

program in unrestricted mode, i.e., with parameters set so that it would perform

no pruning whatsoever.

All the network algorithms tested operate by modifying the connection weights

in a �xed, non-recurrent network of arti�cial neurons (using the standard logistic

activation function). The e�ciency of network learning is determined by feeding

in novel inputs to the network and seeing what outputs are generated after the

activation has propagated across all the relevant connections. When applying

network learning algorithms the user must decide the internal architecture of the

network

3

and, in some cases, the learning and momentum rate. When testing

the various network learning algorithms we experimented with a range of two-

layered, feed-forward architectures (with complete inter-layer connectivity) but

found that the best performance was obtained using nine hidden units; i.e. we

settled on a 7-9-2 feed-forward architecture. All the results reported relate to

this case.

When testing standard backpropagation we found that a learning rate of 0.5

and a momentum of 0.9 gave best results and these were the settings used in all

the cases reported. When testing iterative learning algorithms (i.e., the network

learning algorithms) we ran the algorithms for a minimum of 100,000 epochs of

training (i.e., 100,000 complete sweeps through the entire training set).

In testing the classi�er-system/genetic algorithm combination we used an imple-

mentation based closely on Goldberg's `simple classi�er system'. The classi�er

population was con�gured to include a 50/50 mixture of intermediate and �nal

classi�ers. That is to say, the actions for half the classi�ers in any population

were output patterns and the actions for the other half were input patterns.

The standard bucket-brigade algorithm was used with standard defaults (e.g.,

as used in [9]). The codons in the input and output messages of the classi�ers

were single bytes encoding a real number in the range 0-1, with two decimal

places of accuracy. The genetic algorithm used employed the crossover operator

with random bit-mutation applying with a probability of 0.1. A �xed popu-

lation size of 250 was used with 20% of the population being replaced by the

genetic algorithm after every 5000 epochs (i.e., 5000 applications of the classi�er

system to the entire training set).

2.5 Results

The results can be roughly summarized by saying that C4.5 and nearest-neighbors

performed better on the learning task than the connectionist algorithms or the

3

The con�guration of input and output units is �xed by the learning problem.

8

classi�er system, but that none of the algorithms provided satisfactory perfor-

mance on this problem. In general, following training the animat would tend

to either approach all objects (large or small) or no objects. It would only very

occasionally produce the desired discrimination between large and small objects.

We measured the success of the training in several ways. First of all we measured

conventional error rates (i.e. proportion of incorrect responses on unseens).

However, these �gures give a misleading impression of success. The majority of

responses in the conditional-approach behavior do not entail making the crucial

discrimination between large and small objects. They merely involve continuing

rotatory behavior or moving further towards a small and/or distant object. A

better performance measure is provided by sampling the frequencies with which

the animat actually arrives at large and small objects. The former frequency

we call the `nip frequency', the latter the `meal frequency'. These frequencies

tend to show the extent to which the animat's behavior embodies the necessary

size discrimination.

Our main results are summarized in Table 2. The �gures in the `hand-sim' row

show the performance of the animat running under the control of the four rules

shown above. The �gures in the `random' row show the performance obtained

using a random move generator. The �gures in the `quickprop' row show per-

formance after training with the `quickprop' version [8] of the backpropagation

algorithm [6]; the �gures in the row labeled `c4' show the performance after

training with the C4.5 version of ID3 [5]; the �gures in the row labeled `NN'

show performance after training with the nearest-neighbours algorithm [10]; �-

nally, the �gures in the row labeled CS show performance after training with the

simple classi�er system/genetic algorithm. All the �gures are averaged over 10

di�erent runs. The results reported were gathered using training sets containing

80 training examples since trial and error showed that this size of training set

was su�cient to achieve negligably low error on the training examples from all

of the algorithms tested.

Error rate Meal freq. Nip freq.

hand-sim 0.864 0.090

random 0.014 0.043

quickprop 0.221 0.201 0.321

c4 0.233 0.479 0.371

NN 0.161 0.117 0.191

CS 0.344 0.251 0.275

Table 2:

The lowest error rate on the testing cases was 0.161 (16.1%) and this was pro-

9

duced by the nearest-neighbours algorithm (NN). This �gure seems low but

actually reveals relatively poor performance (for reasons explained above). The

same goes for the other error rates shown. The columns headed `Meal freq.'

and `Nip freq.' show the `meal' and `nip' frequencies respectively for the various

simulated animats. Note that the hand-coded animat achieves a high meal-to-

nip ratio while the trained animats do quite poorly, with the quickprop, NN

and CS animats achieving nip-frequencies in excess of the meal-frequencies. As

is to be expected, the randomly driven animat also achieves a nip-frequency in

excess of its meal-frequency since the probability of randomly bumping into a

large object is larger than the probability of randomly bumping into a small

object.

2.6 Comparison with other behaviors (obstacle-avoidance

and pursuit)

In view of the possibility that the poor performance obtained from the learning

algorithms was due to some
aw in the overall methodology, we carried out

some additional experiments. These aimed to discover if we could use the same

algorithms and the same methodology to learn more familiar animat behaviors.

In particular, we tested the learning algorithms on `obstacle-avoidance' and

`pursuit'.

For these experiments we used the parameter settings for the learning algorithms

described above except in the case of network learning algorithms applied to the

obstacle-avoidance task, where we used feed-forward architectures containing

just two hidden units (with complete connectivity between layers). We also used

the same simulation setup but with a modi�ed animat in the case of the obstacle-

avoidance training. This animat had the usual two-wheel drive system but it

used a simpli�ed sensory system embodying just two proximity probes arranged

in a 10 degree, front-facing arc (i.e., it had one probe ray o�set �ve degrees

on each side of the forwards direction). The environment for the obstacle-

avoidance training was also modi�ed so as to contain three, oval or rectangular

objects. The environment was also con�gured so that the boundaries of the

space appeared opaque to the animat. Thus, the simulated animat was able to

`see' both the edges of the objects and the edges of the world.

The control procedure for the obstacle-avoidance simulations was as follows.

(1) Find the higher of the two proximity inputs.

(2) If this value exceeds 0.8 then swivel ten degrees to the right.

(3) Otherwise move forwards by an amount proportional to the length of the

animat.

10

In Figure 4 we see a short trace of a simulated animat producing obstacle-

avoidance behavior. The animat's position in each simulation step is shown as

a small, arrow-topped box as before. Thus the sequence of boxes shows the

animat's trajectory around the environment. Note how the trajectory steers

clear of all the obstacles and the boundaries of the space.

Figure 4:

2.6.1 Pursuit

The second behavior examined was `pursuit'. For this behavior we used ex-

actly the same experimental setup as for conditional-approach; i.e., we used

a simulated animat with seven probe rays arranged in a 100-degree arc. The

environment contained no objects and its boundaries were transparent.

Within the training simulation, the animat tracked a second simulated animat.

The shape of this second animat was rectangular and its size was arranged such

that it would just intersect two of the seven probe rays at 75% of the maxi-

mum animat-to-animat distance. The second animat (henceforth the `leading

animat') moved around the environment according to the following probabilis-

tic regime. In each cycle, there was a probability of 0.3 of the leading animat

moving forwards, a probability of 0.35 of it making a forwards+left move and

a probability of 0.35 of it making a forwards+right turn. The step size for

11

the leading animat (i.e., the total amount of drive that could be applied to the

wheels) was arranged to be 125% that of the pursuing animat. Thus the leading

animat had a small speed advantage over the pursuing animat. In Figure 5 we

see a trace of a simulated animat producing the pursuit behavior. The pursuing

animat is shown here using dashed lines. The leading animat is shown using

unbroken lines.

Figure 5:

2.7 Results for obstacle-avoidance and pursuit

The results for this second phase of experiments can be summarized by saying

that all the learning algorithms looked at were able to learn the two behaviors

rather easily. The main performance �gures are shown in Table 3. The col-

umn headed `avoidance-CF' shows the crash frequencies for the various animats

performing obstacle-avoidance while the column headed `pursuit-AD' shows the

`average distance to target' for the animats executing the pursuit behavior.

(The distances are proportional to the size of the space.) The row labels are

the names of the relevant learning algorithms as before. Note that the crash

frequencies and the average distances for all the trained animats are low when

compared with the randomly moving animat.

12

avoidance-CF pursuit-AD

hand-sim 0.000 0.048

random 0.780 0.246

conjgrad 0.006 0.076

ID3 0.006 0.041

NN 0.002 0.081

CS 0.009 0.088

Table 3:

2.8 Why is conditional-approach hard?

Our results with respect to obstacle-avoidance and pursuit are as per expecta-

tion. Behaviors of this type are known to be learnable by a variety of methods

[11; 1; 12]. But the fact that we were able to obtain successful training using our

simulation-based methodology shows that the failure of the algorithms to deal

satisfactorily with conditional-approach is not necessarily due to a
aw in the

basic methodology. The failure of the network learners on conditional-approach

thus begins to seem increasingly paradoxical, especially in view of the fact that

as a behavior it seems to be little more than an amalgam of obstacle-avoidance

and pursuit.

To explain our results we will develop an analysis of the three behaviors. This

will involve looking at the statistical properties of the training sets generated

from the simulations. It will show that the conditional-approach behavior di�ers

from obstacle-avoidance and pursuit in that its underlying rule is not strongly

represented within the statistical regularities of a typical, simulation-derived,

training set. As we will show, this tends to have the e�ect of making conditional-

approach hard to learn by methods that rely primarily on exploiting statistical

regularities.

3 Statistical properties of training sets

Let us �rst make some general observations about the statistical properties of

training sets. Consider the example training set shown below. This is based

on two input variables (x1 and x2) and one output variable (x3). There are six

training pairs in all. The pairs are laid out with one pair per line. An arrow

separates the `input vector' of the pair from the `output vector'. The values of

the two input variables appear on the left of the arrow. The value of the output

variable appears on the right.

13

x1 x2 x3

1 2 --> 1

2 2 --> 0

3 2 --> 1

3 1 --> 0

2 1 --> 1

1 1 --> 0

In this dataset we can observe a number of instantiation n-tuples, henceforth

called cases. First-order cases are instantiation 1-tuples. Examples include

<x1=3>, <x3=0> and <x2=2>. Second-order cases are instantiation 2-tuples.

An example is <x1=3, x2=1>. This case is observed in the fourth line of the

training set. A second-order case from the second line of the training set is

<x3=0, x1=2>. Since there are only three variables in all there is exactly one

third-order case for each line (i.e., instantiation vector) of the training set.

Given a particular case, we can compute the frequency with which it appears

in the training set. The frequencies for all �rst and second-order cases in the

training data above are shown in Table 4. Note that the frequencies for the

third-order cases (i.e., the cases that specify values for all three variables) are

degenerate. Assuming there is no duplication in the training data, each third-

order case occurs exactly once. Thus its frequency is necessarily 1/n where n is

the size of the training set.

3.1 Conditional frequencies

The frequencies shown in Table 4 are unconditional frequencies. We can also

derive the conditional frequencies.

4

These are frequencies that exist with respect

to a particular constraint over variable instantiations. In Table 5 we see the

frequencies for particular instantiations of the output variable (x3) given possible

constraints on other variables. (As before, the column headed `Freq' shows the

absolute frequency for the main case.)

By the argument used previously, the 2nd-order conditional frequencies here are

of no interest since there is necessarily exactly one occurrence of each 2nd-order

case of the constrained variables.

4

These can be construed as Bayesian probabilities [10].

14

Case Freq.

1

x2=2 0.5

x2=1 0.5

x3=1 0.5

x3=0 0.5

x1=3 0.33

x1=2 0.33

x1=1 0.33

x2=2 + x3=1 0.33

x2=1 + x3=0 0.33

x1=3 + x2=2 0.17

x1=2 + x2=2 0.17

x1=1 + x2=2 0.17

x1=3 + x2=1 0.17

x1=3 + x3=1 0.17

x1=2 + x2=1 0.17

x1=2 + x3=1 0.17

x2=1 + x3=1 0.17

x1=3 + x3=0 0.17

x1=1 + x3=1 0.17

Table 4:

3.2 Type-1 versus type-2 frequencies

A clear distinction must be made between cases (such as those considered above)

that can be observed directly in the training data, and cases that can only be

observed indirectly. For our purposes, a case can be observed indirectly if it

can be observed directly in some systematic recoding of the original data. What

this means is that an instantiation n-tuple that occurs in some reformulation

of the original data, is considered to be a case that is `observed indirectly' in

the original data. We will call frequencies for directly observed cases type-1

or empirical frequencies.

5

We will call frequencies for indirectly observed cases

type-2 or mediated frequencies.

The di�erence between the two types of frequency can be illustrated by recoding

our original training set. Imagine that we reformulate the inputs (from above) by

substituting | in each training pair | the original input variables with a single

5

We call them `empirical' to try to emphasize the fact that they are, in some sense, `in'

the data.

15

Constraint Freq. Fr. x3=0 Fr. x3=1

1 0.5 0.5

x2=2 0.5 0.33 0.67

x2=1 0.5 0.67 0.33

x1=3 0.33 0.5 0.5

x1=2 0.33 0.5 0.5

x1=1 0.33 0.5 0.5

Table 5:

variable whose value is just the di�erence between the original variables. This

gives us a set of derived pairs as shown in Figure 6 (the value of x4 here is the

di�erence between the values of x1 and x2). The frequencies we directly observe

Original pairs Derived pairs (x4 = |x1-x2|)

x1 x2 x3 x4 x3

1 2 --> 1 1 --> 1

2 2 --> 0 0 --> 0

3 2 --> 1 1 --> 1

3 1 --> 0 2 --> 0

2 1 --> 1 1 --> 1

1 1 --> 0 0 --> 0

Figure 6: Recoding of training set.

in this derived training set are type-2 (mediated) frequencies with respect to the

original training data. However, they are still frequencies. Thus we can derive

tables of conditional and unconditional frequency statistics in the usual way.

The unconditional frequencies for the derived training set are shown in Table 6.

The conditional frequencies for instantiations of x3 given instantiations of x4

are shown in Table 7.

16

Constraint Freq.

1

x3=0 0.5

x3=1 0.5

x4=1 0.5

x4=0 0.33

x4=2 0.17

x4=1 + x3=1 0.5

x4=0 + x3=0 0.33

x4=2 + x3=0 0.17

Table 6:

Constraint Freq. Fr. x3=0 Fr. x3=1

1 0.5 0.5

x4=0 0.33 1.0 0.0

x4=2 0.17 1.0 0.0

x4=1 0.5 0.0 1.0

Table 7:

3.3 Classes of regularity

For the purposes of empirical learning the statistical regularities in the training

data are of central importance. But our perception of these is determined by

our assumptions with respect to chance. The `chance-level' for a frequency is

simply the frequency (or in general range of frequencies) that we expect to

see given purely random e�ects. Where we observe a frequency that diverges

markedly from what we assume to be its chance level(s) we necessarily believe

that non-random processes are at work. For present purposes we will assume

that the chance-level for an instantiation of a random variable capable of taking

n values is precisely 1/n, no more and no less. This is a `least-conservative'

approach since we are assuming that any frequency that diverges from 1/n, no

matter by how small an amount, is to count as a non-chance-level frequency.

(Since we aim to make a purely theoretical point this lack of conservatism is of

no consequence.)

A non-chance-level frequency is caused (by assumption) by a non-random e�ect

and thus forms a statistical regularity. Since we have distinguished two types

of frequency e�ect, we can distinguish two types of regularity.

17

� Type-1 regularity: divergence from chance-levels in type-1 frequencies.

� Type-2 regularity: divergence from chance-levels in type-2 frequencies.

To place this in a concrete setting, consider the example training sets shown

above. The output variable x3 is a binary variable. Thus the frequency for

either of its two possible instantiations is exactly 0.5. When we look at the type-

1 conditional frequencies for the training data we see that most of the values are

at or close to their chance-level of 0.5. However, when we derive relevant the

type-2 conditional frequencies (after recoding in the suggested way) we obtain

a frequency table in which every value diverges maximally from its chance level.

Intuitively, then, the training set can be classi�ed as exhibiting more type-2

regularity than type-1.

6

The frequency e�ects brought to light by the recoding translate naturally into

a completely general input/output rule. The table of type-2 conditional fre-

quencies makes it obvious that x3=1 if and only if x4=1. From this we trivially

obtain the input/output rule `x3=1 if x4=1; otherwise x3=0.' Thus we see how

the recoding e�ectively brings the regularity underlying the training set to the

surface. Once this has happened it is a straightforward matter for a learning al-

gorithm to exploit it. Recognizing the strong, mutual interdependence between

learning and regularity leads us to distinguish three classes of learning problem.

� Pure type-1 learning problems: problems that involve exploiting type-

1 regularities only,

� Pure type-2 learning problems: problems that involve exploiting type-

2 regularities only, and

� Hybrid problems: problems that involve exploiting some mixture of

both types.

3.4 Parity problems are pure type-2

The distinction between type-1 and type-2 problems is nicely illustrated by the

so-called `parity' problems (cf. [13]). Complete parity mappings show no type-1

regularity at all. Their empirical frequencies are always exactly at their chance

levels. The input/output rule for a parity mapping is simply that the output

should be 1 (or true) just in case the input vector contains an odd number of 1s

(or, in general, an odd number of odd values). The complete mapping for the

third-order, binary-valued parity problem (i.e., 3-bit parity) is as follows.

6

The question of how type-1 regularity should be measured formally is addressed below.

18

x1 x2 x3 x4

1 1 1 --> 1

1 1 0 --> 0

1 0 1 --> 0

1 0 0 --> 1

0 1 1 --> 0

0 1 0 --> 1

0 0 1 --> 1

0 0 0 --> 0

Every single �rst and second-order conditional frequency for this mapping (for

values of the output variable x4) is at its chance level of 0.5. And, in fact, the

frequency statistics for parity mappings are always like this. If we are dealing

with n-bit parity then the highest order, non-degenerate frequencies are the

(n-1)th-order frequencies. Given binary variables we will necessarily �nd ex-

actly two occurrences of each (n-1)th-order case in the training set, and these

two cases will necessarily show a di�erent value for the `other' variable. Thus

the conditional frequencies for the case in question will be evenly distributed

between the di�erent output cases and the conditional frequencies for instanti-

ations of the output variable will always be identical. If they are identical, they

must be at their chance level. Thus, parity problems are always pure type-2.

7

3.5 Complexity implications

Distinguishing between type-1 and type-2 problems helps to shed light on the

complexity implications of di�erent learning scenarios. Type-2 regularities are

non-chance frequencies for cases observed in some reformulation of the original

data. Thus, points in the space of type-2 regularities correspond to possible data

reformulations, i.e., possible computational devices (Turing machines) capable

of processing those original data. The space of possible type-1 regularities,

on the other hand, is made up of the set of all frequencies (conditional and

unconditional) for the problem. Su�ce it to say that the former space is, in

general, many orders of magnitude larger than the latter. Thus, other things

being equal, type-1 problems are easier to solve than type-2 problems.

The practical consequences of this are hard to determine. It seems to be the

case that so-called `real world' machine learning problems are almost never pure

type-2. Thus, they can usually be solved by techniques that do not resort to

exploring possible data reformulations (e.g. the ones tested in our study). Even

learning problems that are intrinsically type-2 (i.e., which are constructed on

7

Arguably, all problems that are pure type-2 are quasi-parity problems.

19

the basis of an input/output rule that implicitly invokes a reformulation step)

may well exhibit `spurious' type-1 regularity.

The example training set used above illustrates this. The problem is `intrinsi-

cally type-2' since the input/output rule used to construct the pairs assumes the

reformulation step of converting the original input variables to their di�erence.

And yet the type-1 frequencies show some marked, non-chance values (see the

frequencies for the cases <x2=1> and <x2=2>). These would be straightfor-

wardly exploited by an algorithm such as Perceptron [14] or ID3 [4].

Even where intrinsically type-2 problems show very little spurious type-1 reg-

ularity they may still be solved by sophisticated learning algorithms such as

backpropagation [6], cascade-correlation [8] or copycat [15].

8

It is, of course,

well known that backpropagation can solve problems based on parity, symme-

try or `shift' relationships and all these typically involve the algorithm deriving

what can be thought of as an internal recoding scheme.

However, we should not over-estimate the generality of such methods. All of

them introduce restrictive assumptions about the nature of the type-2 regularity

to be discovered. Backpropagation for example e�ectively assumes that the

required reformulation can be expressed in terms of the user-de�ned architecture

of semi-linear transfer functions, and that it can be discovered by the gradient

descent method embodied in the learning algorithm. If the assumption is invalid,

the learning necessarily fails.

This may help to explain why backpropagation usually fails to solve low-order

parity problems when they are presented as generalization problems (i.e., when

some cases are held back for testing purposes). The graph shown in Figure 7 was

produced from an empirical survey that involved running backpropagation on

4-bit parity generalization problems (with four, randomly selected cases used as

unseens) using a wide range of internal architectures, including the theoretical

minimal architecture. All the curves in the upper half of the graph are error

pro�les

9

for the testing set of four cases. All the curves in the lower half of

the graph are error pro�les for the training set. There are 32 pairs of curves in

all although many of them are bunched together in two clumps at the far left

of the graph. Rather obviously, generalization over the testing cases was never

observed to improve much beyond the chance level in any of the runs recorded.

But the point to note is that the training-set error pro�les typically go to zero

rather rapidly. This tells us that the generalization failure occurs in the context

of perfectly successful learning, i.e., perfect acquisition of the training cases.

This is a particularly concrete sort of generalization failure since it cannot be

8

This latter is not usually presented as a learning algorithm. However it can certainly be

construed as such.

9

The error measure is the average di�erence between actual and target activations. For

these experiments we used standard learning parameters; i.e., a learning rate of 0.5 and a

momentum of 0.9.

20

240 480 720 960 1200 1440 1680 1920 2160 2400

epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error

Mean error

on testing set

on training set

Mean error

Figure 7: Generalization performance on 4-bit parity.

overcome by increasing the amount of training or by changing parameters. Once

a supervised algorithm has learned the training cases perfectly, generalization

grinds to a halt. As far as the algorithm `knows', it is already producing perfect

performance.

4 Measuring the degree of type-1 regularity

Given the overwhelming search complexity associated with the discovery of type-

2 regularity, we can plausibly hypothesize that learning algorithms (at least

those that rely on regularity exploitation) will be geared towards the exploita-

tion of type-1 rather than type-2 regularity. Such algorithms can be expected

to perform badly on problems that are primarily type-2. It is natural to won-

der whether this might explain the results reported above. If it were the case

that all the algorithms considered were in the class of `type-1-oriented' learning

algorithms, then the reason why they tend to perform badly on conditional-

approach might simply be that this problem (as opposed to obstacle-avoidance

21

and pursuit) is actually based on a type-2 rather than a type-1 regularity. But

do we have any good reason to believe this is the case?

4.1 Type-2 problems are based on relativistic rules

As it turns out, there is a way of measuring the degree of type-1 regularity in a

given training set and we can apply this measure to show that simulation-derived

training sets for conditional-approach do embody low levels of type-1 regularity

when compared against training sets for the other two behaviors. However,

before describing the measure let us �rst make some informal comments about

the nature of the two regularity classes.

A (supervised) learning problem is always de�ned in terms of a target in-

put/output mapping. In all reasonable problems, the mapping is based on

an input/output `rule' of some sort and it is the task of the learning to discover

this rule and represent it in such a way as to enable unseen inputs to be mapped

onto their correct outputs. In the simplest case, the rule refers (perhaps im-

plicitly) to particular input-variable values. If it does so, we will expect to see

correlations between particular input values and particular output values. In

other words, the rule will tend to have a `representation' in the form of strong,

type-1, conditional-frequency e�ects.

But of course the rule may not refer | even implicitly | to particular input

values. It may refer to relationships between input values. The parity rule is an

obvious example. The parity rule does not `care' about explicit input values. It

only cares whether there is a particular relationship among them. And in this

case, where the rule only takes account of input-value relationships, it will not

have the e�ect of producing type-1 correlations in the training set. The rule has

nothing to do with explicit values, so how could it?

On purely a priori grounds, then, we will expect to see training sets based on

`relativistic' input/output rules exhibiting low-levels of type-1 regularity. The

obvious rider to this is that we will necessarily expect to see such training sets

exhibiting high levels of type-2 regularity. If the input/output rule is based on a

relativistic e�ect, then any recoding which e�ectively expresses the value of the

relationship as a single variable value (as our di�erencing encoding did above)

will automatically produce a strong type-1 e�ect, and thus a strong type-2 e�ect

with respect to the original data.

This argument tends to favour the idea that the apparent hardness of the

conditional-approach problem has something to do with it being based on a

type-2 e�ect. Clearly, the input/output rule for conditional-approach is a rela-

tivistic one: it is based on the calculation of a ratio between two values, namely

22

the apparent width and the apparent closeness of the object.

10

The rules for

obstacle-avoidance and pursuit, on the other hand, are both based on estab-

lishing a direct correspondence between the apparent closeness of an object in

the sensory �eld and a particular behavioral response. In the case of pursuit,

the correspondence is a simple matter of sensory stimulation being transformed

into drive-wheel activity: objects appearing in particular parts of the sensory

�eld cause particular amounts of drive to be applied to the wheels to ensure an

appropriate move/turn. In the case of obstacle-avoidance the correspondence is

a matter of sensory stimulation indicative of very near objects inhibiting drive-

wheel altogether. Thus in both cases we are dealing with a non-relativistic rule;

i.e., a rule that takes account of explicit values rather than relationships between

them.

4.2 Measuring type-1 regularity

We �nd ourselves, then, increasingly in favour of the idea that the relative

hardness of `conditional-approach' is due to the fact that this problem is based

on a type-2 rather than a type-1 e�ect. However, to be more certain of this

conclusion we should attempt to measure the amount of type-1 regularity in the

various training sets and show that conditional-approach does indeed di�er in

this respect. (Measuring type-2 regularity is out of the question since it would

involve implicitly searching the whole of Turing-machine space.)

A measure of type-1 regularity must satisfy certain constraints. Obviously, it

must be sensitive to the degree to which type-1 frequencies diverge from chance

levels (since this is the essence of the e�ect in question) but it must not be

insensitive to dependencies between these e�ects. In almost all cases, we will

have many frequency e�ects associated with the same aspect of the regularity.

Thus if we simply work out the overall divergence from chance-frequencies (e.g.,

as an average or total) we will compute a value which overstates the case.

To get over this problem we must measure divergence within a subset of inde-

pendent frequency e�ects. One way to obtain such a set involves using Bayesian

inference as an output-generation process. The procedure is as follows. First

of all we compute all empirical frequencies. Then, we �nd the smallest subset

of frequencies that | when treated as conditional probabilities | successfully

generate (via Bayesian inference) correct outputs for all inputs. This opera-

tion necessitates a small shift in perspective. When we treat a frequency as a

conditional probability we e�ectively make the transition from observing that

case X is associated with case Y with frequency f, to stating that case Y exists

when case X exists with a probability of f. Once we have made this shift we

can use Bayesian inference straightforwardly to compute desired outputs from

10

In fact, width is, itself, a relativistic property of the inputs.

23

given inputs.

11

We select a given input, we work out which cases it exhibits,

and we then integrate the relevant conditional probabilities to derive probability

distributions for the output values.

Finding the smallest subset of frequencies (probabilities) that completely `cap-

tures' the training set (i.e., enables correct outputs to be generated for all inputs)

is guaranteed to give us the set we want. Since the set is of a minimal size, we

know that it must minimize (even if it does not abolish) the overall dependence

between the e�ects. (If it did not, it would be possible to shu�e some cases

in and some cases out to achieve a smaller set.) Since it captures the entire

training set, we know that it cannot exclude any e�ect that re
ects an aspect

of the input/output rule.

Having derived a minimal subset of maximally independent frequency e�ects we

still have the problem of measuring the overall divergence from chance-levels. It

is not clear what tradeo� should apply between e�ects which diverge strongly

from chance levels, and e�ects which diverge weakly but are nevertheless more

general (i.e., useful) with respect to the capture of the training set. We can,

however, �nesse this problem entirely by observing that the relative size of the

subset, relative to the original training set, will itself provide a satisfactory

measure of the level of type-1 regularity. To compute the relative size we �nd

the ratio between the number of variable instantiations used in the training

set, and the number used in the frequency subset. With high levels of type-1

regularity we expect to see stronger and the more independent frequency e�ects.

When such e�ects exist we will need fewer of them for a complete capture of

the training set. Thus the relative size of the smallest subset that completely

captures the training set measures the overall level of type-1 regularity.

A natural way to summarize this measure of type-1 regularity is as a compression

ratio [16]. The compression ratio we de�ne as the ratio between the number of

variable instantiations used in specifying the frequency e�ects and the number

used in the original training set. We then de�ne the empirical redundancy of

a particular training set to be the compression ratio that is achieved when we

�nd the minimal subset of empirical frequency e�ects that completely captures

the training set.

We can show how the measure works by applying it to the toy learning problem

described above. This problem involves producing a 1 if the di�erence between

the two input variables is 1. Our initial formulation of the problem contained

just six cases and if we apply the measure to that training set we obtain a value

that is strongly biased by the overhead costs of frequency-subset speci�cation.

However, we can derive a more realistic (i.e., larger) training set for the problem

by allowing the input values to vary between 0 and 4. This gives us the training

pairs shown on the left below.

11

Of course, doing so entails assuming the statistical independence of variables.

24

Original pairs Derived pairs

0 0 --> 0 0 0 0 --> 0

0 1 --> 1 0 1 1 --> 1

0 2 --> 0 0 2 2 --> 0

0 3 --> 0 0 3 3 --> 0

0 4 --> 0 0 4 4 --> 0

1 0 --> 1 1 0 1 --> 1

1 1 --> 0 1 1 0 --> 0

1 2 --> 1 1 2 1 --> 1

1 3 --> 0 1 3 2 --> 0

1 4 --> 0 1 4 3 --> 0

2 0 --> 0 2 0 2 --> 0

2 1 --> 1 2 1 1 --> 1

2 2 --> 0 2 2 0 --> 0

2 3 --> 1 2 3 1 --> 1

2 4 --> 0 2 4 2 --> 0

3 0 --> 0 3 0 3 --> 0

3 1 --> 0 3 1 2 --> 0

3 2 --> 1 3 2 1 --> 1

3 3 --> 0 3 3 0 --> 0

3 4 --> 1 3 4 1 --> 1

4 0 --> 0 4 0 4 --> 0

4 1 --> 0 4 1 3 --> 0

4 2 --> 0 4 2 2 --> 0

4 3 --> 1 4 3 1 --> 1

4 4 --> 0 4 4 0 --> 0

The empirical redundancy of this training set turns out to be 14.6%. Recon�g-

uring the training pairs, adding in an extra input variable whose value is just

the di�erence between the �rst two input variables, gives us a training set whose

empirical redundancy is 89%, i.e., a great deal higher. The di�erence between

these values clearly re
ects what we already know to be the case: that the de-

rived pairs e�ectively reify (in type-1 form) the type-2 regularity in the original

pairs.

12

When we apply our measure of type-1 regularity to simulation-derived training

sets for the three learning problems we �nd | as we expected | that the value

for conditional-approach stands out as a special case.

13

When we tested training

12

The discrepancy between the two redundancies is particularly extreme due to the fact

that in this case we added the extra variable rather than substituted it for the original two

input variables.

13

In computing these measures we adopted a probabilistic approach to case identity. In

the conventional scenario, case identity is a clear-cut issue: any two cases either are or are

25

sets for pursuit, obstacle-avoidance and conditional-approach we found that the

empirical redundancy of the latter was markedly lower, see Table 8. It is not

quite as low a value as we see in the case of the toy example above. However,

this is only to be expected since with a much larger training set and many more

input variables we expect to see many more spurious type-1 regularities. The

hypothesis regarding the type-2 nature of conditional-approach, then, seems to

be borne out by this particular statistical analysis.

Behavior Empirical redundancy

Obstacle-avoidance 86.6

Pursuit 93.1

Conditional-approach 63.3

Table 8:

5 How could conditional-approach be learned?

Given the fact that none of the learning algorithms tested seemed able to deal

with conditional-approach, it is natural to ask what sort of algorithm is actually

required for this problem. A trivial and not particularly informative answer

states that what is needed is an algorithm that can explicitly or implicitly recode

the original training data so as to `convert' the relativistic e�ect underlying the

training inputs into a non-relativistic e�ect. Trivially, this might mean recoding

the original, seven-valued inputs so as to add an extra variable whose value is

the ratio between the apparent closeness and apparent width of the object in

the sensory �eld. To implement conditional-approach in this context the animat

must freeze when the value of the extra input is above a certain threshold; i.e. it

must behave with respect to this extra input exactly as the obstacle-avoidance

animat behaved with respect to its main proximity inputs.

Since all the learning algorithms tested solved the obstacle-avoidance problem

we have every reason to think that all would succeed on this recoded version

not identical. With the probabilistic approach, any two cases are identical with a given

probability. This means that to derive the frequency value for a novel case (or the conditional

frequency for two novel cases) we have to average over the products of speci�ed frequencies

and speci�ed identity probabilities. This approach is computationally more expensive but

it has the advantage of enabling training sets containing continuous values to be dealt with

gracefully. By assuming that any data point identi�es the peak of a Guassian probability

distribution for the point's true location, we can derive the identity probability for any two

cases by measuring the distance between them. This ensures that similar cases have similar

frequency analyzes.

26

of the conditional-approach problem. Thus any one of our learning algorithms,

provided with an appropriate recoding ability, should be able to solve the prob-

lem. In the case of classical (i.e. program-based) learning algorithms it is easy

to imagine how the recoding might be achieved: it would simply involve an

implementation of the steps for the relevant control procedure. In the case of

a network-based learning the question of the implementation of the recoding

is less obvious. The results with respect to the various network learning algo-

rithms suggest that a single-net implementation of the behavior may be di�cult

to obtain. However, it turns out to be fairly straightforward to `hand-code' a

multi-network implementation of the behavior.

As we have noted, at the most basic level, conditional-approach is all about

performing a size-discrimination given only range and location information. The

size of an object in the sensory �eld is a relativistic property of the apparent

closeness and the apparent width of the object. As objects get closer they appear

to get wider. Thus the actual width of an object is a function of the ratio between

the apparent width and the apparent closeness. An obvious decomposition of

the size-discrimination task, then, involves computing the actual size of the

object by �nding the ratio between the apparent closeness and the apparent

width.

We can build a subnet for that implements this decomposition as follows. The

task of calculating the ratio can be roughly approximated by feeding activation

values representing apparent closeness and apparent width into a unit with a

bipolar activation function (e.g., tanh). If one connection is positively weighted

and one negatively weighted the activation of the sigmoid unit will be `
at' (i.e.,

zero) just in case the ratio between the two values is close to 1. By arranging for

any activation, positive or negative at this unit to inhibit some other unit, which

is biased on, we can e�ectively obtain a subnet that provides a feature detector

for the case in which the ratio between the two values is at some particular level

| the level being �xed by the ratio between the two original weights.

To make this subnet work as a `largeness-detector' we need subnets that will

compute the closeness and width values. In fact subnets for both of these

subtasks can be obtained using conventional backpropagation training. Hand-

coding is also a possibility. For example, given the assumption that objects in

the sensory �eld have no holes, the apparent width of an object in the sensory

�eld can be derived simply by counting up the number of non-zero closeness

values.

Consider a subnet in which the activation of each input unit is just a proximity

input (i.e., a ray-closeness value). Each of these input units sends activation

to a single, unique hidden unit. The hidden unit biases are set so that they

function as threshold units, turning o� only if there is no input arriving from

the input unit. Now, to obtain a subnet that computes apparent width we

27

need only establish positive connections from all these hidden units to a single,

linear output unit. The activation of the output unit will e�ectively measure

the number of activated hidden units and therefore of the size of the object in

the sensory �eld.

This decomposition solves the problem of building a largeness detector. How-

ever, for a complete solution we need a network that integrates this detector into

a more general structure that also serves to implement the various behavioral

responses. A plausible approach might involve building an `approach net' that

could potentially serve the dual purpose of (1) implementing the basic approach

operation and (2) carrying out the computation of apparent width. A possible

architecture for this subnet is shown in Figure 8. The network has seven input

units via which the seven proximity stimuli are received. Each of these inputs

feeds directly on into a single hidden unit whose bias and threshold is set so as to

achieve the zero-thresholding e�ect described above. Activation from these hid-

den units then
ows on into the two, main output units. Each of these controls

the drive applied to one of the wheels, with the amount of drive corresponding

linearly to the amount of activation.

Input units

Motor-control units

Hidden units

Figure 8:

The weights between the hidden units to the two main output units are arranged

so that the further to the right (left) is the source of the input feeding a particular

28

input unit, the more it sends activation to the left-hand (right-hand) motor-

control unit. The overall e�ect is that whenever an object appears in the sensory

�eld the motors are activated in such a way as to make the animat turn towards

the object. The further to the left (right) the object is, the more activation tends

to activate the left-hand (right-hand) motor. (Weight con�gurations derived by

learning may not necessarily follow this general schema, since there are other,

less transparent ways of achieving the desired behavior.)

We can now add a set of identical positive connections to the approach net that

carry activation from the seven hidden units to an additional output unit. The

activation of this unit will measure the width of the object in the sensory �eld

(as per the argument given above). We thus obtain the hybrid approach net

envisaged; see Figure 9.

Input units

Motor-control units

Hidden units

Width unit

Figure 9:

To complete the implementationwe can now add another three-layer subnet that

computes overall closeness and establish connections from its (single) output

unit and the width detector to a unit running a bipolar activation function

(e.g. tanh). By feeding the output from that unit into a bipolar, zero-threshold

unit (i.e. a unit that turns on only if it receives no input) we achieve a top-

level unit that behaves as a detector for objects in the sensory �eld that exceed

a certain size (as per our original decomposition). Obtaining the complete

29

implementation is now straightforward. We simply arrange for the size unit to

(1) respond speci�cally to the largeness (as opposed to smallness) of objects

and (2) to send inhibitory output to the motor control units. This provides us

with a network that should implement the conditional-approach behavior quite

successfully. The overall architecture is sketched out in Figure 10.

Closeness detector

In put units

Visual sensor

Motors

Wheel

Largeness detector

Width

connections

Inhibitory

Motor

control

units

Wheel

detector

Robot

Castor

Figure 10:

Of course, speculating on ways in which learning algorithms might implement

the required recoding for conditional-approach does not even address the fun-

damental issue, which is the question of how such recodings might be derived

within the main learning process. At present, it seems to us that this task nec-

essarily involves searching out some portion of the space of possible recodings

(i.e., the space of possible Turing machines). But the complexity of this search

is such as to suggest that any such algorithm would be doomed to failure. The

fundamental question, then, remains very much open.

30

6 Summary and concluding comments

The paper sought to investigate the extent to which learning and evolutionary

methods can be used to obtain simple, adaptive behaviors. It presented the

results of a comparative study that looked at the conditional-approach behavior.

The results of the study showed that several, powerful learning methods are

unable to successfully learn the conditional-approach behavior even though they

are perfectly capable of learning other, closely related behaviors such as obstacle-

avoidance and pursuit.

The failure on conditional-approach training was explained using a statistical

analysis. This showed that learning problems may involve discovering some

blend of two types of regularity and that problems that primarily involve dis-

covering the more accessible (type-1) form of regularity are likely to be more

easily solved in general. Formal and informal arguments were put forward to

establish that the conditional-approach learning problem involves exploiting the

less accessible, type-2 form of regularity. The implication was then drawn out

that the learning algorithms tested were all primarily oriented towards the more

accessible type-1 form.

References

[1] Cli�, D., Husbands, P. and Harvey, I. (1993). Evolving visually guided

robots. In J. Meyer, H. Roitblat and S. Wilson (Eds.), From Animals to

Animats: Proceedings of the Second International Conference on Simula-

tion of Adaptive Behaviour (SAB92). MIT/Bradford Books.

[2] Harvey, I., Husbands, P. and Cli�, D. (1993). Issues in evolutionary

robotics. In J. Meyer, H. Roitblat and S. Wilson (Eds.), From Animals

to Animats: Proceedings of the Second International Conference on Simu-

lation of Adaptive Behaviour (SAB92). MIT/Bradford Books.

[3] Gibson, J. (1986). Arti�cial intelligence programming environments and

the poplog system. In M. Yazdani (Ed.), Arti�cial Intelligence: Principles

and Applications (pp. 35-47). London: Chapman Hall.

[4] Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1 (pp.

81-106).

[5] Quinlan, J. (1993). C4.5: Programs for Machine Learning. San Mateo,

California: Morgan Kaufmann.

[6] Rumelhart, D., Hinton, G. and Williams, R. (1986). Learning representa-

tions by back-propagating errors. Nature, 323 (pp. 533-6).

31

[7] Becker, S. and Cun, Y. (1988). Improving the convergence of back-

propagation learning with second-order methods. CRG-TR-88-5, Univer-

sity of Toronto Connectionist Research Group.

[8] Fahlman, S. and Lebiere, C. (1990). The Cascade-Correlation Learning Ar-

chitecture. CMU-CS-90-100, School of Computer Science, Carnegie-Mellon

University, Pittsburgh, PA 15213.

[9] Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Ma-

chine Learning. Addison-Wesley.

[10] Duda, R. and Hart, P. (1973). Pattern Classi�cation and Scene Analysis.

New York: Wiley.

[11] Nehmzow, U., Smithers, T. and Hallam, J. (1989). Really useful robots.

In T. Kanade, F. Green and L. Hertzberger (Eds.), Proceedings of IAS2,

Intelligent Autonomous Systems (pp. 284-292). Amsterdam.

[12] Millan, J. (forthcoming). On autonomous mobile robots and reinforcement

connectionist learning. Neural Networks and a New AI. Chapman and Hall.

[13] Rumelhart, D., Hinton, G. and Williams, R. (1986). Learning internal rep-

resentations by error propagation. In D. Rumelhart, J. McClelland and

the PDP Research Group (Eds.), Parallel Distributed Processing: Explo-

rations in the Microstructures of Cognition. Vols I and II (pp. 318-362).

Cambridge, Mass.: MIT Press.

[14] Minsky, M. and Papert, S. (1988). Perceptrons: An Introduction to Com-

putational Geometry (expanded edn). Cambridge, Mass.: MIT Press.

[15] Hofstadter, D. (1984). The copycat project. A.I. Memo 755, Masachusetts

Institute of Technology.

[16] Held, G. (1987). Data Compression: Techniques and Applications, Hard-

ware and Software Considerations (2nd edition). Chichester: Wiley.

32

