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Abstract

The increasing level of attention being given to incremental learning

is, we argue, fully justi�ed. Although some view the process as something

akin to an `e�ciency hack', we argue that it is, in fact, a key cognitive

process. The argument is based on a statistical observation. Learning,

for most purposes, is all about acquiring the ability to generate appro-

priate outputs from given inputs, i.e., it is all about acquiring the ability

to predict | or, in general, give a probability to | speci�c bindings of

output variables. Such predictions can be justi�ed in two quite di�erent

ways by available training data (i.e., input/output examples). They can

be justi�ed directly, in virtue of being in 1-to-1 correspondence with prob-

abilities (i.e., frequencies) directly observed in the training data. Or they

can be justi�ed indirectly, in virtue of being in 1-to-1 correspondence with

probabilities observed in some re-coding of the data. Thus, where learning

is driven by supplied training data, it must exploit some combination of

these two types of justi�cation.

Since the space of indirectly observed probabilities is grounded in the

space of possible re-codings (i.e., applicable Turing machines), searching

through it is intractable. But we should not infer from this that learning

does not (and cannot) make use of indirectly observed probabilities. As

we show, learning problems whose solution necessarily entails exploiting

such probabilities (or type-2 problems, as we call them) seem to be the

norm in many realistic learning scenarios. We are thus left in need of an

y

The order of names is arbitrary.
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explanation as to how such problems can be solved. Incremental learning,

it seems to us, provides the answer.

We argue that what is accomplished in incremental learning is the

systematic breaking-down of type-2 learning problems into problems that

can be solved by exploiting directly observed probabilities (i.e., frequen-

cies), or type-1 problems as we call them. With each decomposition, a

new, originally implicit, property of the input data is `exposed' and a new

virtual input variable thus created. Gradually the computational cost of

the original (type-2) problem is traded-o� against representational struc-

ture. The �nal solution is a representational structure which circumvents

the intractably long computation entailed in a non-incremental approach.

The body of the paper provides the �ne detail of this account. It also

shows how the process of incremental learning provides a means of glean-

ing maximal bene�t from any (perhaps initially fortuitously achieved)

re-coding of the input data. A variety of techniques currently being stud-

ied as aids to connectionist learning (Elman (1991), Jacobs, Jordan and

Barto (1991), Jacobs, Jordan, Nowlan and Hinton (1991)) are shown to

ful�l just such a role. Our central claim is that incremental learning is

not just one more item in the cognizer's toolkit: instead, it is the a priori

essential mainstay of any learning device which needs to solve realistic

learning problems in realistic time scales. The trick is always the same;

to maximize the role of any achieved re-coding (representation) so as to

minimize the space of subsequent search. The most distinctive features of

human cognition | language and culture | may themselves be viewed
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as adaptations enabling this representation/computation trade-o� to be

pursued on an even grander scale.

Keywords

Learning, connectionism, statistics

Introduction: The Limits of Learning

The potency of connectionist learning techniques for extracting statistical reg-

ularities from bodies of training data is widely appreciated. Less widely appre-

ciated, however, is the fact that such statistical regularities come in two quite

di�erent forms, only one of which is `transparent' to unbiased algorithmic pro-

cesses. Statistical regularities may be described in di�erent ways. However, we

can always construe a regularity in terms of probability e�ects, i.e., in terms of

some set of signi�cant probabilities

1

applying to, and perhaps conditional on,

aspects of the training data. But such probabilities can be derived from (i.e.,

justi�ed in terms of) training data in two di�erent ways. They can be justi�ed

directly, in virtue of being in 1-to-1 correspondence with probabilities directly

observed in the training data. Or they can be justi�ed indirectly, in virtue of

being in 1-to-1 correspondence with probabilities observed in some re-coding of

1

We use this phrase to denote probabilities not attributable to chance e�ects.
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the data. Thus any process for regularity-extraction must attend to two di�er-

ent sources. The search space for regularities of the directly-observed variety is

large but not, in general, intractably large. The search space for regularities of

the indirectly-observed variety, on the other hand, is in�nitely large, since it is

grounded in the space of possible re-codings of the input data, i.e. the space of

applicable Turing machines. Thus, on complexity grounds, we classify one form

of regularity as being relatively `transparent' and the other as `opaque'.

When confronted with problems that involve extracting regularities of the opaque

variety, connectionist learning algorithms such as standard backpropagation are

unreliable. Parity generalization problems provide the obvious example. If one

presents standard backpropagation (Rumelhart, Hinton and Williams, 1986b)

with a complete parity mapping | allowing the algorithm to make use of a

su�ciently rich internal architecture | then the learning will almost certainly

succeed in achieving perfect performance. However, if one presents only a plau-

sible training set (i.e., some large proportion of the complete mapping) then

success is not assured. For example, if one presents 12 of the possible 16 cases

from the 3-bit parity mapping, backpropagation typically learns those 12 cases

rather rapidly and rather well (see Section 1.4 below). But it usually learns

them in such a way that the four unseen cases are not handled correctly; i.e.

it fails to generalize to the full mapping. The reason for this is fairly straight-

forward. With parity mappings, the signi�cant probability e�ects are tied not

to input values but to relations between them. (The conditional probabilities
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for all combinations of explicit values are necessarily at chance levels.) This

means (for reasons that are explained in detail below) that solving the learning

problem involves deriving an appropriate re-coding; i.e., it means extracting

regularity of the opaque variety. The problem cannot be solved by extracting

the transparent form of regularity | for the simple reason that it is not present.

The fact that connectionist learning algorithms (such as backpropagation) may

fail on parity generalization problems shows that their capacities for extracting

regularities of the less accessible form are limited to some degree. (Note that the

problem here is all to do with the ability of such systems to learn generalizable

solutions: the fact that a non-generalizable solution can be learned, or that

a generalizable solution can be represented is not what's at issue.) Possible

responses to the problem are (1) to blame connectionist learning algorithms

and hope to �nd something better or (2) to deny that most of the problems

solved by the human brain require the sort of re-coding that opaque regularity-

extraction may require (i.e., to claim that parity-generalization is a pathological

case). We reject (1) on the grounds that the problem is not, as far as we can tell,

a mere artifact of connectionist learning; instead it is a problem which will arise

for any learning algorithm which operates without speci�c inbuilt knowledge

about a target domain. And we reject (2) because the problem of re-coding

seems to arise even in relation to apparently simple `robotics-style' tasks (i.e.

in manifestly non-pathological cases | see Section 1.6 below).
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The correct response to the problem, we argue, is to reconsider the di�culties in

the light of an accumulating body of work, e.g., (Elman, 1991) which highlights

the role of representational trajectories in connectionist learning. A represen-

tational trajectory is just a connected path through a temporally or spatially

extended sequence of di�erent learning tasks. By following such a trajectory

a single intractable problem can be reduced to an incremental sequence of dif-

ferent and individually tractable problems. The solution to each sub-problem

yields, in e�ect, a re-coded representational base. Such re-codings progressively

reduce the complexity of the task of learning the target mapping until it be-

comes tractable. Otherwise put, each re-coding allows us to avoid a quantity of

computational search by providing a more suggestive set of `virtual inputs'. We

thus trade computation o� against representation.

While this strategy is not unfamiliar (it is just a kind of `temporal homuncular-

ism' and has been the subject of a well-known investigation by Elman, 1991),

we believe that it must constitute not just a clever solution to one or two spe-

ci�c problems but a fundamental feature of the cognitive process. Without

such a strategy, even apparently simple learning problems may be e�ectively

unsolvable.

Having emphasized the foundational role which the understanding of represen-

tational trajectories must play in cognitive science, we go on to argue that a

wide variety of super�cially distinct ploys and mechanisms can be fruitfully un-
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derstood in these terms. Such ploys and mechanisms range from simple evolved

�lters and feature-detectors all the way to complex cases of analogical reasoning.

The goal, in every case, is to systematically re-con�gure a body of input data so

that computationally primitive learning routines can �nd some target mapping,

i.e. to trade representation against computation. A topical moral is that it is

virtually impossible, in such cases, to avoid talk of internal representations as

the products of each stage of re-con�guring. Pace the more radical apologists

of Arti�cial Life, even quite simple robotics tasks seem to demand analysis in

terms of achieved internal representations.

The paper ends with a look at two major worries which the stress on repre-

sentational trajectories raises. First, how e�ciently can such trajectories be

discovered and maintained? And second, does the intractability of learning in

cases where no such viable trajectory exists imply some major limitation on the

class of knowable truths about the universe? Once we allow that the answer to

the latter question is `Yes', the former reveals itself as perhaps less problematic

than it at �rst appears.

The blow-by-blow strategy is as follows. We begin (section 1) by distinguishing

the two kinds of statistical regularity. The simplest kind, which we call `ob-

served' regularities, consist in pronounced frequency e�ects (i.e., probabilities)

in the original data, i.e., features of a full frequency matrix (see below) that

are not attributable to chance. The more complex kind, which we call `derived'
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regularities, consist in frequency e�ects found via some re-coding of the original

data. We argue that learning problems which are based on this more complex

kind of regularity are precisely those on which empirical learning algorithms

typically produce poor performance.

We go on (section 2) to show how a sample problem (that manifestly does

involve the extraction of the inaccessible form of regularity) can be solved in an

incremental manner, i.e., be continually breaking the learning task `down'. This

idea (already familiar from Elman's (1991) discussion) can now be understood in

terms of a fully general distinction (between `observed' and `derived' regularities)

�rmly grounded in the basic statistical nature of a target mapping.

Such a statistical lens quickly reveals the unexpected ubiquity of the problem:

the learning tasks faced by even simple organisms are riddled with mappings

involving derived regularities. If (as it appears) such mappings force us to

exploit incremental learning strategies, such learning must pervade biological

cognition. In section 3 we go on to show how analogy and a surprisingly large

range of other ploys and mechanisms can be understood as implementations of

the incremental re-coding strategy. Even so, it may still be questioned whether

there must, in addition, operate some as-yet-undiscovered learning algorithm

exquisitely tailored to the discovery of useful learning trajectories. Section 5

discusses this question and notes one possible source of misleading intuitions.

Section 6 is a brief conclusion.
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1 Statistical properties of training sets

Let us begin by making some general observations about the statistical proper-

ties of training sets (i.e. sets of training examples). Consider the training set

shown below. This is based on two input variables (x1 and x2) and one output

variable (x3). There are six training pairs in all. The pairs are laid out with

one pair per line. An arrow separates the `input vector' of the pair from the

`output vector'. The values of the two input variables appear on the left of the

arrow. The value of the output variable appears on the right.

x1 x2 x3

1 2 --> 1

2 2 --> 0

3 2 --> 1

3 1 --> 0

2 1 --> 1

1 1 --> 0

In this training set we can observe a number of instantiation n-tuples, henceforth

called cases. First-order cases are instantiation 1-tuples. An example is <x1=3>,

i.e., the binding of the variable x1 to the value 3, as exhibited in the third

pair. Other examples include <x3=0> and <x2=2>. Second-order cases are
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instantiation 2-tuples. An example is <x1=3, x2=1>. This case is observed in

the fourth line of the training set. A second-order case from the second line

of the training set is <x3=0, x1=2>. Since there are only three variables in all

there is exactly one third-order case for each member of the training set.

Given a particular case, we can compute the frequency (i.e., probability) with

which it appears in the training set. The frequencies for all �rst and second-

order cases in the training data above are shown in Table 1. Note that the

frequencies for the third-order cases (i.e., the cases that specify values for all

three variables) are degenerate. Assuming there is no duplication in the training

data, each third-order case occurs exactly once. Thus its frequency is necessarily

1/n where n is the size of the training set.

1.1 Conditional frequencies

The frequencies shown in Table 1 are unconditional frequencies. We can also

derive conditional frequencies.

2

These are frequencies that exist with respect

to a particular constraint over variable instantiations. In Table 2 we see the

frequencies for particular instantiations of the output variable (x3) given possi-

ble constraints on other variables. The column headed `Fr' shows the absolute

frequencies for the constraints. The column headed `Fr: x3=0' shows the con-

ditional frequency with which x3=0 when the relevant constraint applies. The

2

These can be construed as Bayesian probabilities (Duda and Hart, 1973).
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Case Fr

1

x2=2 0.5

x2=1 0.5

x3=1 0.5

x3=0 0.5

x1=3 0.33

x1=2 0.33

x1=1 0.33

x2=2, x3=1 0.33

x2=1, x3=0 0.33

x1=3, x2=2 0.17

x1=2, x2=2 0.17

x1=1, x2=2 0.17

x1=3, x2=1 0.17

x1=3, x3=1 0.17

x1=2, x2=1 0.17

x1=2, x3=1 0.17

x2=1, x3=1 0.17

x1=3, x3=0 0.17

x1=1, x3=1 0.17

Table 1:
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column headed `Fr: x3=1' does the same thing for the case x3=1.

By the argument used previously, the 2nd-order conditional frequencies here are

of no interest since there is necessarily exactly one occurrence of each 2nd-order

case of the constrained variables.

1.2 Type-1 versus type-2 frequencies

A clear distinction must be made between cases (such as those considered above)

that can be observed directly in the training data, and cases that can only be

observed indirectly. For our purposes, a case can be observed indirectly if it can

be observed directly in some systematic re-coding of the original data. What

this means is that an instantiation n-tuple that occurs in some re-coding of

the original data, is considered to be a case that is `observed indirectly' in

the original data. We will call frequencies for directly observed cases type-

1 frequencies. We will call frequencies for indirectly observed cases type-2 or

derived frequencies.

The di�erence between the two types of frequency can be illustrated by re-coding

our original training set. Imagine that we re-code the inputs (from above) by

substituting | in each training pair | the original input variables with a single

variable whose value is just the di�erence between the original variables. This

gives us a set of derived pairs as shown in Figure 1 (the value of x4 here is the

di�erence between the values of x1 and x2). The frequencies we directly observe
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Constraint Fr Fr: x3=0 Fr: x3=1

1 0.5 0.5

x2=2 0.5 0.33 0.67

x2=1 0.5 0.67 0.33

x1=3 0.33 0.5 0.5

x1=2 0.33 0.5 0.5

x1=1 0.33 0.5 0.5

Table 2:

Original pairs Derived pairs (x4 = |x1-x2|)

x1 x2 x3 x4 x3

1 2 --> 1 1 --> 1

2 2 --> 0 0 --> 0

3 2 --> 1 1 --> 1

3 1 --> 0 2 --> 0

2 1 --> 1 1 --> 1

1 1 --> 0 0 --> 0

Figure 1: Recoding of training set.
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in this derived training set are type-2 (derived) frequencies with respect to the

original training data. However, they are still frequencies. Thus we can derive

tables of conditional and unconditional frequency statistics in the usual way.

The unconditional frequencies for the derived training set are shown in Table 3.

The conditional frequencies for instantiations of x3 given instantiations of x4

are shown in Table 4.

1.3 Classes of regularity

For the purposes of learning the statistical regularities in the training data are of

central importance. But our perception of these is grounded in our assumptions

concerning chance. The `chance-level' for a frequency is simply the frequency

(or in general range of frequencies) that we expect to see given purely random

e�ects. Where we observe a frequency that diverges markedly from what we

assume to be its chance level(s) we necessarily believe that non-random processes

are at work. For present purposes we will assume that the chance-level for an

instantiation of a random variable capable of taking n values is precisely 1/n, no

more and no less. This is a `least-conservative' approach since we are assuming

that any frequency that diverges from 1/n, no matter by how small an amount,

is to count as a non-chance-level frequency. (Since we aim to make a purely

theoretical point this lack of conservatism is of no consequence.)
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Constraint Fr

1

x3=0 0.5

x3=1 0.5

x4=1 0.5

x4=0 0.33

x4=2 0.17

x4=1 + x3=1 0.5

x4=0 + x3=0 0.33

x4=2 + x3=0 0.17

Table 3:

Constraint Fr Fr: x3=0 Fr: x3=1

1 0.5 0.5

x4=0 0.33 1.0 0.0

x4=2 0.17 1.0 0.0

x4=1 0.5 0.0 1.0

Table 4:
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A non-chance-level frequency is caused (by de�nition) by a non-random e�ect

and thus forms a statistical regularity. Since we have distinguished two types

of frequency e�ect, we can distinguish two types of regularity.

� Type-1 regularity: divergence from chance-levels in type-1 frequencies.

� Type-2 regularity: divergence from chance-levels in type-2 frequencies.

To place this in a concrete setting, consider the example training sets shown

above. The output variable x3 is a binary variable. Thus the frequency for

either of its two possible instantiations is exactly 0.5. When we look at the

type-1 conditional frequencies for the training data we see that most of the

values are at or close to their chance-level of 0.5. However, when we derive the

relevant type-2 conditional frequencies (after re-coding in the suggested way)

we obtain a frequency table in which every value diverges maximally from its

chance level. Intuitively, then, the training set can be classi�ed as exhibiting

more type-2 regularity than type-1.

3

The frequency e�ects brought to light by the re-coding translate naturally into

a completely general input/output rule. The table of type-2 conditional fre-

quencies makes it obvious that x3=1 if and only if x4=1. From this we trivially

obtain the input/output rule `x3=1 if x4=1; otherwise x3=0.' Thus we see how

the re-coding e�ectively brings the regularity underlying the training set to the

3

The question of how type-1 regularity should be measured formally is addressed below.
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surface. Once this has happened it is a straightforward matter for a learning al-

gorithm to exploit it. Recognizing the strong, mutual interdependence between

learning and regularity leads us to distinguish three classes of learning problem.

� Pure type-1 learning problems: problems that involve exploiting type-

1 regularities only,

� Pure type-2 learning problems: problems that involve exploiting type-

2 regularities only,

4

and

� Hybrid problems: problems that involve exploiting some mixture of

both types.

1.4 Parity problems are pure type-2

The distinction between type-1 and type-2 problems is nicely illustrated by the

parity problems (cf. Rumelhart, Hinton and Williams, 1986a). Complete parity

mappings show no type-1 regularity at all. Their observed frequencies are always

exactly at their chance levels. (Hinton and Sejnowski, 1986) The input/output

rule for a parity mapping is simply that the output should be 1 (or true) just

4

A special case of the type-2 problem occurs when the relevant re-coding can be performed

by deriving simple probability e�ects from subsets of the training data. The complexity of

this variant exceeds that of the type-1 problem due to the additional cost of exploring possible

partitions of the training data. However, it is not as great as that for the unrestricted type-2

case since there is no necessity to explore any part of Turing-machine space.
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in case the input vector contains an odd number of 1s (or, in general, an odd

number of odd values). The complete mapping for the third-order, binary-valued

parity problem (i.e., 3-bit parity) is as follows.

x1 x2 x3 x4

1 1 1 --> 1

1 1 0 --> 0

1 0 1 --> 0

1 0 0 --> 1

0 1 1 --> 0

0 1 0 --> 1

0 0 1 --> 1

0 0 0 --> 0

Every single �rst and second-order conditional frequency for this mapping (for

values of the output variable x4) is at its chance level of 0.5. And, in fact,

the frequency statistics for parity mappings are always like this. If we are

dealing with n-bit parity then the highest order, non-degenerate frequencies

are the (n-1)th-order frequencies. Given binary variables we will necessarily

�nd exactly two occurrences of each (n-1)th-order case in the training set, and

these two cases will necessarily show a di�erent value for the variable excluded

from the case. Thus the conditional frequencies for the case in question will be
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evenly distributed between the two output cases and the conditional frequencies

for instantiations of the output variable will always be identical. If they are

identical, they must be precisely at their chance level. Thus, parity problems

are always pure type-2.

5

1.5 Complexity implications

Distinguishing between type-1 and type-2 problems helps to shed light on the

complexity implications of di�erent learning scenarios. Type-2 regularities are

non-chance frequencies for cases observed in some re-coding of the original data.

Thus, points in the space of type-2 regularities correspond to possible data re-

codings, i.e., possible computational devices capable of processing those original

data. The space of possible type-1 regularities, on the other hand, is made up of

the set of all frequencies (conditional and unconditional) for the problem. Su�ce

it to say that the former space is, in general, in�nitely large, while the latter

is small, relatively speaking. Thus, other things being equal, type-1 problems

should be easier to solve than type-2 problems.

The practical consequences of this are hard to determine. It seems to be the case

that so-called `real world' machine learning problems are almost never pure type-

2. Thus, they can usually be solved by techniques that do not resort to exploring

possible data re-codings. Even learning problems that are intrinsically type-2

5

Arguably, all problems that are pure type-2 are quasi-parity problems.
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(i.e., which are constructed on the basis of an input/output rule that implicitly

invokes a re-coding step) may well exhibit `spurious' type-1 regularity.

The example training set used above illustrates this. The problem is `intrinsi-

cally type-2' since the input/output rule used to construct the pairs assumes the

re-coding step of converting the original input variables to their di�erence. And

yet the type-1 frequencies show some marked, non-chance values (see the fre-

quencies for the cases <x2=1> and <x2=2>). These would be straightforwardly

exploited by processes that perform no re-coding whatsoever, e.g., learning al-

gorithms such as the perceptron learning algorithm (Minsky and Papert, 1988)

or Quinlan's ID3 (1986).

Even where intrinsically type-2 problems show very little spurious type-1 reg-

ularity they may still be solved by sophisticated learning algorithms such as

backpropagation (Rumelhart, Hinton and Williams, 1986b), cascade-correlation

(Fahlman and Lebiere, 1990) or copycat (Hofstadter, 1984).

6

It is, after all, well

known that backpropagation can solve problems based on parity, symmetry or

`shift' relationships and that all these typically involve the algorithm deriving

what can be thought of as an internal re-coding scheme.

However, we should not overestimate the generality of such methods. All of them

introduce restrictive assumptions about the nature of the type-2 regularity to be

6

This latter is not usually presented as a learning algorithm. However it can certainly be

construed as such.
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discovered. Backpropagation for example e�ectively assumes that the required

re-coding can be expressed in terms of the user-�xed architecture of semi-linear

transfer functions, and that it can be discovered by the gradient descent method

embodied in the learning algorithm. If the assumption is invalid, the learning

necessarily fails.

This may help to explain why backpropagation often fails to solve low-order

parity problems when they are presented as generalization problems (i.e., when

some cases are held back for testing purposes). The graph shown in Figure 2 was

produced from an empirical survey that involved running standard backpropa-

gation (Rumelhart, Hinton and Williams, 1986b) on 4-bit parity generalization

problems (with four, randomly selected cases used as unseens) using a wide

range of internal architectures. All the curves in the upper half of the graph are

error pro�les

7

for the testing set of four cases. All the curves in the lower half

of the graph are error pro�les for the training set. There are 32 pairs of curves

in all although many of them are bunched together in two clumps at the far left

of the graph. Rather obviously, generalization over the testing cases was never

observed to improve much beyond the chance level in any of the runs recorded.

But the point to note is that the training-set error pro�les typically go to zero

rather rapidly (usually within 1000 epochs). This tells us that the generalization

7

The error measure is the average di�erence between actual and target activations. For

these experiments we used standard learning parameters; i.e., a learning rate of 0.5 and a

momentum of 0.9.
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Figure 2: Generalization performance on 4-bit parity.
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failure occurs in the context of perfectly `successful' learning, i.e., perfect acqui-

sition of the training cases. This is a particularly concrete sort of generalization

failure since it cannot be overcome by increasing the amount of training or by

changing parameters. Once a supervised algorithm has learned the training

cases perfectly, generalization grinds to a halt. As far as the algorithm `knows',

it is already producing perfect performance.

1.6 Is parity a pathological case?

The parity problem is often thought of as a kind of pathological, unrealistic case.

But it would be a mistake to conclude that all type-2 problems are therefore

pathological and unrealistic. It is fairly easy to show that, in principle, any

problem that is based on a relational input/output rule (i.e. a rule that implic-

itly takes account of relative rather than absolute input values) may create no

type-1 e�ects whatsoever.

A (supervised) learning problem is always de�ned in terms of a target in-

put/output mapping. In all reasonable problems, the mapping is based on an

input/output `rule' of some sort: it is the task of the learning to discover this

rule and represent it in such a way as to enable unseen inputs to be mapped onto

their correct outputs. In the simplest case, the rule refers (perhaps implicitly) to

particular input-variable values. If it does so, we will expect to see correlations

between particular input values and particular output values. In other words,
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the rule will tend to have a `representation' in the form of pronounced, type-1,

frequency e�ects.

But of course the rule may not refer | even implicitly | to particular input

values. It may refer to relationships between input values. The parity rule is an

obvious example. The parity rule does not `care' about explicit input values. It

only cares whether there is a particular relationship among them. And in this

case, where the rule only takes account of input-value relationships, it will not

have the e�ect of producing type-1 correlations in the training set. The rule has

nothing to do with explicit values, so how could it?

On purely a priori grounds, then, we will expect to see training sets based on

`relational' input/output rules exhibiting low-levels of type-1 regularity. The

obvious rider to this is that we will necessarily expect to see such training sets

exhibiting high levels of type-2 regularity. If the input/output rule is based on a

relational e�ect, then any re-coding which e�ectively captures the value of the

relationship in a single variable value (as our di�erencing encoding did above)

will automatically produce a strong type-1 e�ect, and thus a strong type-2 e�ect

with respect to the original data.

Now, we may be able to dismiss parity problems as a rare and pathological

cases. But we certainly cannot thus dismiss all problems based on relational in-

put/output rules. In practice such problems seem to arise with considerable fre-

quency. `Visual' learning problems, for example, involving pattern-recognition
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in a visual �eld are necessarily of this type | unless of course the patterns in

question are `normalized' as to remove all rotational, translational and scale

variation.

8

Even very primitive robotics-style learning problems may turn out to involve

learning relational rules. A case in point is the `conditional-approach' behaviour

investigated by (Thornton, forthcoming). In this behaviour an animat having

a radially-arranged set of range-�nding sensors must approach any small object

appearing in its sensor �eld but stand clear of any large object. It turns out that

the only way the animat can achieve this behaviour is by learning to calculate

the ratio between the apparent width and apparent closeness of the object in

the sensor �eld. Thus, the underlying input/output rule for the behaviour is

grounded in a relational e�ect. The result (as per expectation) is that conven-

tional learning algorithms produce rather poor generalization performance when

used as training methods for this behaviour. But the fact that the behaviour

examined is so manifestly primitive leads us to believe that the acquisition of

relational input/output rules is something that will concern even very primitive

cognitive mechanisms at the earliest stages of development.

8

When attempting to recognize a pattern it is not the point coordinates that matter but

the relations between them.
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2 Incremental solutions

Given the likely ubiquity of learning problems involving relational (type-2) reg-

ularities how should we react to the ease with which natural systems appear to

deal with them? One possibility is that there exists a more powerful, as-yet-

undiscovered class of learning algorithms capable of performing type-2 search in

an individual lifetime. Alternatively, we might conclude that nature's achieve-

ment is somehow to exploit forms of learning which involve only type-1 search

in ways which somehow cumulatively lead to the solution of type-2 problems.

Given our discussion of the statistical roots of the di�culty of type-2 search, we

suspect that no conceivable individual learning algorithmwill be able reliably to

negotiate such spaces in biologically realistic time-spans. We will therefore in-

vestigate a version of the second response in which type-2 problems are reduced

to incremental complexes of type-1 problems.

We can illustrate the basic idea using an example in which we imagine a type-2

learning problem being solved by a learner with rather limited computational

abilities. The example is based on the training set shown below. This uses 21

variables and these are shown in the usual fashion starting with the �rst variable

(called x1) on the far left and �nishing with last (called x21) on the far right.

(Only the integer parts of names for variables between x2 and x21 are shown).

At the very end of each line there is a comment in square brackets.

x1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
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1 2 1 1 1 4 10 3 11 4 3 4 4 4 5 4 6 4 7 4 0 [three_of_a_kind beaten_by flush]

2 2 3 3 4 3 5 3 6 2 10 1 4 2 9 4 12 3 4 1 1 [straight beats pair]

12 2 12 1 7 2 11 2 2 3 4 3 4 3 4 1 4 4 10 2 0 [pair beaten_by four_of_a_kind]

3 4 3 2 3 1 12 3 8 4 11 1 11 4 10 2 10 3 1 2 1 [three_of_a_kind beats two_pairs]

7 2 6 2 4 3 3 3 10 3 10 4 10 4 10 3 4 2 3 1 0 [nothing beaten_by three_of_a_kind]

6 4 7 4 8 4 9 4 10 4 4 4 4 4 11 3 8 3 3 3 1 [flush beats pair]

3 4 3 2 3 1 6 2 9 3 6 3 6 1 10 2 10 2 10 3 0 [three_of_a_kind beaten_by full_house]

3 3 3 1 3 4 12 3 5 2 12 1 7 1 8 4 8 4 10 3 1 [three_of_a_kind beats pair]

5 4 5 2 5 1 10 1 11 4 3 4 4 1 5 2 6 4 7 3 0 [three_of_a_kind beaten_by straight]

4 3 5 4 6 1 7 3 8 1 10 1 10 1 12 1 12 2 12 2 1 [straight beats full_house]

2 4 2 1 2 4 11 4 11 2 6 4 6 3 6 1 6 2 8 2 0 [full_house beaten_by four_of_a_kind]

1 4 2 1 3 4 4 2 5 1 8 3 8 1 6 2 9 2 11 2 1 [straight beats pair]

8 3 8 3 8 1 8 2 11 2 5 3 6 3 7 3 8 3 9 3 0 [four_of_a_kind beaten_by flush]

3 3 4 3 5 3 6 3 7 3 11 4 11 1 9 3 9 3 6 2 1 [flush beats two_pairs]

4 3 4 4 4 3 4 1 4 2 5 2 5 2 5 3 3 1 3 4 0 [nothing beaten_by full_house]

3 1 3 1 1 1 1 3 1 1 3 3 3 1 11 3 2 3 4 4 1 [full_house beats pair]

5 4 8 3 2 2 3 4 4 2 12 4 12 1 9 3 9 1 9 4 0 [nothing beaten_by full_house]

11 3 11 1 11 2 11 4 5 4 8 3 8 3 11 2 11 3 11 1 1 [four_of_a_kind beats full_house]

10 4 10 1 5 2 5 3 5 1 10 4 10 3 10 4 10 3 9 1 0 [full_house beaten_by four_of_a_kind]

4 2 5 1 6 1 7 1 8 4 1 3 1 4 6 2 6 2 3 4 1 [straight beats two_pairs]

2 2 2 4 12 3 12 2 4 1 4 4 4 4 6 1 6 4 6 2 0 [two_pairs beaten_by full_house]

The input variables (x1-x20) decompose into two groups of ten, each of which

represents a `hand' in a poker game. Variables from x1 to x10 represent `hand

A' and variables from x11 to x20 represent `hand B'. x1 represents the number

value of the �rst card in hand A; variable x2 represents the suit value of the
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�rst card in hand A. Variables x3 and x4 represent the number and suit values

of the second card in hand A, and so on. Cards in hand B are represented in a

similar fashion by the variables beginning with x11.

Adopting the convention that 1 stands for Diamonds, 2 for Hearts, 3 for Spades

and 4 for Clubs, the �rst half of the �rst input vector represents (working left

to right) the ace of Hearts, the ace of Diamonds, the ace of Clubs, the Jack of

Spades and the Queen of Clubs. Now, in all cases where x21 = 1, the rank value

of hand A is higher than that of hand B.

9

The value of x21 thus shows whether

hand A beats hand B.

The input/output rule here is hand-oriented and thus primarily grounded in

relational e�ects. This suggests that we will �nd little type-1 regularity within

the training set. Certainly, there will be a certain amount of spurious, type-1

regularity. We might, for instance, see a slightly raised probability of seeing

x21=1 for lower values of the lower number-value variables, since lower values

are more easily accommodated within high-rank hands (such as straights) whose

higher values must occupy variables with higher subscripts. However, the e�ect

of this should be small. In general, we would expect the observed frequencies

to be close to their chance values.

To uncover the regularity in this training set we need to re-code the input

9

Each input vector actually shows a sorted hand. A straight is thus always shown with its

lowest card instantiating the �rst pair of variables in the hand.
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vectors. In the simplest case, this involves applying `hand-evaluation' functions

to the relevant sub-ranges of input values and `evaluation-comparison' functions

to the values thus produced. But what happens if the re-coding is to be carried

out by an agent (e.g. a learner) that is limited in its computational properties?

What if we assume that it is unable to carry out such sophisticated operations

as `hand-comparison' and `evaluation-comparison'?

It is tempting to say that the regularity in question then becomes inaccessible

to the learner. But this is certainly an exaggeration. The learner might have

access to functions that could be combined together somehow so as to bring the

regularity in question to light. In this case, the regularity would be accessible

but discoverable via a di�erent route (i.e. trajectory).

Imagine, for the sake of argument, that the learner has access to a function that

computes the equality of an arbitrary number of inputs and a function that

computes the di�erence of two values. Let us also imagine that the learner is

able to feed arbitrary constant values into these functions as they are applied.

Given these computational properties, is there a re-coding of the Poker training

set that brings out the underlying regularity?

Figure 3 illustrates one possibility. It shows a re-coding that involves several ap-

plications of both the accessible functions. Applications of the `equals' function

correspond to nodes marked with an `eq'. Applications of the `di�erence' func-

tion correspond to nodes marked with `di�'. Inputs for these applications arrive
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via the relevant branches. They may be the outputs of function applications

or, at the lowermost level, values of original dataset variables. The numbers

labeling the leaf nodes of the tree are training-set variable numbers. Thus the

leftmost application of the di�erence function takes values of the �rst and third

variables (x1 and x3) and feeds an output into the leftmost application of the

equals function.

This re-coding does indeed bring to light one aspect of the underlying regularity,

i.e., it does produce a �nal value that exhibits strong frequency e�ects. Within

the structure we see a series of applications of the `di�' function to successive

values of the hand A variables. If hand A is a straight, the values produced by

all these applications will be 1. The values ow on up to become | together

with a constant value 1 | the inputs for an application of the `equals' function.

If hand A is a straight the output of this application will be 1; otherwise it will

be 0. Thus at this level we e�ectively have a feature detector for `straights'.

On the other side of the tree we see a pair of applications of the `equals' function

to four of the number values of hand B. Both applications e�ectively test to see

whether two speci�c cards have identical number values. If both tests succeed

and produce a 1 output, then the `equals' function into which they both feed

will also produce a 1. Thus the right-hand side of the tree e�ectively tests for

the presence of `two-pairs' in hand B.

Putting it all together, the topmost `equals' produces a 1 only if hand A is a
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straight and hand B is two-pairs. According to the rules of Poker, a straight

beats two-pairs. So we would expect values of this �nal output to be correlated

strongly with values of the output variable x21. Thus we �nd that the re-coding

brings out one aspect of the underlying regularity.

This example shows that a particular, type-2 regularity can be rei�ed via dif-

ferent routes, i.e., via di�erent re-codings. This does not prove that type-2

regularities are themselves subjective; but it does prove that the interpretation

that rei�es the regularity is. This is an intriguing result.

A learner subject to the rather profound computational limitations applied in

the example must resort to constructing a particular re-coding. As suggested

above, this re-coding might plausibly be based on the implementation of what

are, in e�ect, feature detectors for abstract objects, e.g. a feature detector for

`straights', a feature detector for `two-pairs' and | exploiting these | a further

detector for situations in which a straight beats two pairs. Once the learner

has constructed these detectors, the relevant objects e�ectively move inside the

learner's sensory universe. The functionality involved in their detection then

becomes hidden within a new source of (virtual) input data.

The picture that is beginning to emerge, then, is one in which learners using

relatively primitive computational resources are driven to construct relatively

rich representational structures. In doing so, they are exploiting a kind of divide-

and-conquer approach. Each time a new feature detector is constructed from
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the limited function base, some of the computation that underpins the relevant

regularity is `picked o�'. Eventually, a level of representation is reached at which

the computation can be performed using one of the basic functions.

It is important that the sense of `representation' in play here is not as rich

as, say, that of Fodor and Pylyshyn (1988). Fodor and Pylyshyn seek to show

that connectionist knowledge-encoding is compromised by the (putative) lack

of a systematic symbol system with quasi-linguistic syntax. By contrast, the

representations which �gure in our representation/computation trade-o� need

amount only (but signi�cantly) to acquired abilities of feature-detection. In

arguing (section 3 below) that it will be essential to ensure the wider availabil-

ity of such acquired feature-detection skills outside the original problem-solving

context, we are in e�ect seeking to outline a kind of connectionist analogue

to explicit representation, classically conceived. But it is an analogue shorn

of the unnecessary baggage of the Language of Thought hypothesis, and de-

�ned speci�cally with learning in mind. Explicit representation, in this usage,

consists in re-coding strategies becoming globally available, i.e., available as a

means of searching for type-2 regularities in any new domain we encounter.

We therefore claim that the tradeo� between computation and representation

is one which a�ects learning mechanisms at the most basic and primitive level.

Given modest limits on computational functionality, even apparently simple

regularity-exploitation tasks are likely to necessitate the construction of rich

re-coding structures.
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The moral of the story so far is that type-2 learning problems can indeed be

cracked using familiar statistically-based search methods, but only by reducing

the type-2 problem speci�cation to an incremental sequence of type-1 problems.

The repeated re-formulations achieved by type-1 learning produce feature de-

tectors which transform a body of gross input data into a form relative to which

the target regularity is of the statistically tractable (type-1) kind. The impor-

tance of this general kind of manoeuvre (using incremental learning to reduce

the search space for complex mappings) has been highlighted in a wide variety

of recent work in connectionist learning (e.g. Elman, 1991; Jacobs, Jordan and

Barto, 1991).

What our discussion adds to this emerging consensus is, �rst, a principled ac-

count of the range of cases in which such a strategy is, as far as we can see,

compulsory, viz. all cases in which a given mapping is type-2 relative to a body

of gross training data. And second, a sense of the surprising ubiquity of such

cases; the problem bites not just in relation to e.g. learning the complex hierar-

chical structures of a grammar (Elman, 1991) but also in much more primitive

contexts. In fact; as we have seen, the problem is likely to raise its head when-

ever learning involves attending to relations between input variables. Given this

quite unexpected ubiquity, it seems that the ability to learn incrementally is a

fundamental key to cognitive success.
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3 From Feature Detection to Analogical Reason

Incremental learning has loomed large in several recent discussions of connec-

tionist learning. Two especially revealing cases are Elman (1991) and Jacobs,

Jordan and Barto (1991). Elman studied a grammar acquisition problem in

which a simple recurrent net was required to learn a grammar involving fea-

tures such as verb-subject number agreement and long distance (cross-clausal)

dependencies . He discovered that ordinary backpropagation learning was un-

able to prompt a net to acquire knowledge of the grammar. But success could

be achieved in either of two ways. First, it was possible successfully to train a

net if the training data was divided into graded batches beginning with simple

sentences and progressing to more complex (multi-clausal) ones. Second, suc-

cess could be achieved by providing the network with a limited initial window of

recurrency (re-setting the context units to 0.5 after every 3rd/4th word) which

was allowed to increase as training progressed. In the latter case there was no

need to batch the training data as the restricted initial memory span in e�ect

�ltered out the mappings involving cross-clausal dependencies and allowed in

only the simpler constructions: the data was thus `automatically sorted'. It is

clear that the two techniques are functionally equivalent and that the reason

that they are needed is, as Elman comments, that

If the domain is of su�cient complexity, and if there are abundant

`false solutions', then the opportunities for failure are great. What
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is required is some way to arti�cially constrain the solution space

to just that region which contains the true solution. (Elman, 1991,

p.8)

By `false solutions' Elman means the extraction of the wrong regularities, i.e.

�nding spurious type-1 regularities which will fail to determine successful per-

formance on unseen cases. Both of Elman's solution techniques force the net to

learn certain basic mappings �rst (e.g. verb/subject number agreement). Once

this knowledge is in place, the more complex mapping-tasks (e.g. agreement

across an embedded clause) alter in statistical character. Instead of searching

the explosive space of possible relations between input variables, the net has

been alerted (by the simpler cases) to a speci�c relation (agreement) which

characterizes the domain. A type-2 learning problem is thus reduced to an

incremental sequence of type-1's.

The type of incremental learning which can be supported by an Elman-style

regime is, however,somewhat limited. It is limited insofar as the proposed

strategies will succeed only when a problem (a target, generalizable, input-

output mapping) has what we may term a conservative decomposition. A body

of training data presents a conservatively decomposable problem if the early

knowledge needed to reduce the search space for subsequent learning is discov-

erable by �rst focussing on some subset of that same overall body of training

data. In our terms this amounts to solving the overall problem by �rst pur-
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suing the type 1 statistics of a fragment or fragments of the overall training

data and then using the feature detection skills thus acquired to reduce sub-

sequent search; i.e., the overall problem is solved by the devious (temporally

structured) exploitation of type-1 learning focussed initially on subsets of the

overall training data.

This assumes, however, that the speci�c feature detectors needed to reduce

subsequent search are discoverable just by looking at fragments of the training

data appropriate to the �nal task. But not all learning problems (not even all

those prone to a kind of incremental solution) will fall into this class. Instead,

some target mappings may be learnable only if the search space is controlled by

the exploitation of feature detectors which could not be acquired by focussing

on subsets of the training data specifying the target mapping.

As an example, consider once again the conditional approach problem briey

described at the end of section 1. Successful learning here depends on the

presence of two feature detectors: one for closeness and one for apparent width.

The crucial feature which the net must later identify to learn the target mapping

is actual width | a ratio between these two lower level features. But no amount

of exposure to the data which embodies the conditional approach mapping will

prompt the net to develop these two lower level feature detectors. Instead, they

must be developed as a result of the early attempts of the system to learn to

perform other kinds of task. In such cases the target problem has only what
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we can call an extended incremental solution. The type 2 task (conditional

approach) can be learned from the given data as long as the two prior feature

detectors are present. But these feature detectors will not themselves arise

merely as a result of exposure to that data, nor as a result of exposure to any

subset of it. In these extended cases the right learning trajectory over time will

indeed ensure the acquisition of the target skill. But the trajectory involves the

importation of other feature detection skills acquired as a result of attempts to

solve di�erent problems.

Conservative incremental learning is thus self-su�cient in a way which extended

incremental learning is not. Elman's grammar acquisition case is conservatively

incremental and hence is well suited to a treatment involving a single network

and a single (but usefully fragmented) body of training data. Extended in-

cremental learning, by contrast, seems to call for a more complex, modular

processing economy. Such a broader notion of incrementality is readily illus-

trated. Jacobs, Jordan and Barto (1991) describe a system which comprises a

variety of architecturally distinct sub-nets. These sub-nets compete to be al-

lowed to learn to represent a given input pattern. Whichever net, early on in the

training, gives the output closest to the target, is allowed to learn that pattern.

In the trained-up system. a gating network selects which sub-net should come

into play to yield the output for a given input.

38



Such modular systems of sub-networks a�ord yet another means of reducing

a type-2 mapping task to a set of type-1's. Thus in a task such as multiple-

speaker vowel recognition (Jacobs, Jordan, Nowlan and Hinton, 1991) a modular

system can avoid the intractable task of �nding a single position in weight space

capable of solving the problem for all the voices and instead tackle a set of more

tractable ones, viz. one sub-net learns to identify vowels in children's voices,

another in men's and another in women's. (See also Churchland and Sejnowski,

1992, p.130.)

Spatial modularization is also the key to the exible re-use of the valuable

products of early learning. Given the vital role we have assigned to incremental

learning, it is clear that it would be bene�cial if an organism were able to re-

deploy individual parts of a problem-solving trajectory. One way to allow this is

to ensure that each step along the way to a solution is individually available for

use in relation to other (subsequently encountered) problems. Otherwise put,

it is bene�cial to ensure that a detector for some property P is not inextricably

embedded into the solution to a more complex problem, since P may be just

the property or sensitivity which would render some other subsequently encoun-

tered, problem tractable. Assigning speci�c tasks to speci�c modules allows for

the future re-use of a trained-up module in relation to some other overall task

(see Jacobs, Jordan and Barto, 1991). This kind of approach is thus capa-

ble of dealing with cases in which an incremental solution is non-conservative

with respect to overall input-output mappings (as it allows us to invoke speci�c
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feature-detecting modules in wholly new overall problem solving contexts.)

Other ways of exploiting spatially extended cascades of processing devices are

close to hand. Thus imagine a device which, in place of the developing short

term memory component in Elman's simulation, had a pre-processor whose task

(or e�ect) was to �lter the input data, e�ectively allowing only simple sentences

(short ones) to proceed downstream. The device could be gated so that once the

error signal in a down-stream network was low, the �lter was by-passed. Here a

simple gated cascade of processing devices promotes the kind of early learning

needed to reduce the statistical complexity of the latter task to a manageable

level. More generally still, any cascade of processors in which the upstream

devices sort, �lter or re-code incoming data holds out the promise of promoting

successful learning in just the way imagined.

An illustrative example of an upstream �ltering e�ect is provided by Johnson

and Morton's (1991) speculations about face recognition. The idea (pursued

in Karmilo�-Smith, 1992) is that evolution may have provided us not with an

innate face-recognition module as such, but rather with an upstream �lter (pre-

processor) which allows through only inputs whose visual pro�le is roughly that

of three high contrast blobs in the positions of eyes and mouth. Such a �ltering

device (a feature detector) will ensure that a downstreammodule `sees' only data

involving a very high statistical preponderance of human faces. Specialization

for human face-recognition (Karmilo�-Smith, 1992) will rapidly follow. Thus
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even if the statistical presence of human faces in the gross visual inputs to the

system is low (relative to e.g. walls and buildings) the e�ective statistics (further

down the processing cascade) may be quite di�erent.

It is also worth distinguishing the provision of (mere) �ltering devices from the

provision, or development, of more complex early re-codings. As Kim Plunkett

(personal communication) has pointed out, some pre-processing devices may

do much more than �lter an input corpus. They may instead respond to an

input corpus by creating a wholly new corpus of data for further processing.

For example, an input sentence may be re-coded as [verb/subject]. In this way

the similarity space de�ned by the bare inputs is itself altered. Two items

which are very alike considered as bare inputs may be re-coded so as to be

very di�erent, and vice versa (see e.g. Plunkett and Marchman, 1991). In both

cases (re-coding and mere �ltering) the upshot is a change in the statistical

pro�le presented downstream. But in the re-coding case the change is both

more radical and in a sense more intelligent.

The sheer variety of ploys and mechanisms available to reduce type-2 complexity

to manageable levels is now becoming visible. The common thread uniting a

variety of recent developments in connectionist learning is that they all add,

in some way, a kind of transformation factor which recon�gures the statistical

task involved in learning a given mapping. Evolved pre-processors, acquired

re-codings, the careful management of training, the provision of an initially
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limited short term memory and techniques of modular decomposition all play

the same basic role; a role forced on them by the bedrock intractability of type-2

problems to brute statistically-based search. The most advanced and intelligent

incarnation of the transformation strategy has yet to be mentioned, however.

That incarnation is analogical reasoning itself.

Analogical reasoning, we suggest, is fruitfully viewed as a device which enables a

learner to solve problems which are statistically intractable (type-2) and which

themselves lack a natural decomposition into type-1 fragments. The trick of

analogical reasoning is to use the natural decomposition of one problem as part

of a representational trajectory whose terminus is a solution to the problem in

hand. This is closely akin to the re-use of existing modularized knowledge. To

clarify this idea, it is useful to draw on a recent discussion by Paul Churchland

(Churchland, forthcoming) in which he develops a problem concerning connec-

tionist learning and unobservables. In the light of our previous discussion, it will

become apparent that Churchland may have misconceived the precise nature of

the problem, while nonetheless spotting a powerful solution!

The problem is presented like this: connectionist learning is known to involve

a kind of curve-�tting procedure in which the parameters of a polynomial are

gradually adjusted so as to `pull' the de�ned curve over the known data points.

Churchland depicts this curve-�tting as the search for a set of categories which

enable the net to accommodate the data in a powerful and generalizable way.
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Such categories, he goes on to argue, must, however, be in some sense given

(either explicitly or implicitly) in the body of input data. A category counts as

explicitly given if the input coding isolates those very items (e.g. the category

`verb' is explicitly given if the input involves a variable which stands for verbs).

And a category is implicitly given if the training data allows the net to induce

such a category, although no individual variable coded for it in the input (e.g.

NETtalk's induction of a partition corresponding to the noun/verb distinction

on the basis of a corpus of unmarked sentences, see (Sejnowski and Rosenberg,

1987)).

Churchland's worry is that in some cases the category needed to make systematic

sense of a body of data may not be present in that body of data | not even

implicitly. Suppose that what is present (implicitly or explicitly), is conceived of

as, in a broad sense, being observationally available. The question then becomes

how a net can learn a category which would (a) make sense of a body of data

but (b) is not observationally available in the data. The problematic case is

thus described as one in which:

... a functionally essential category is simply not present in the in-

put vectors at all, not even implicitly. Here the network must fail to

learn if there is no functional relation that binds the observationally

available categories in the absence of the hidden category. A net can-

not learn a function that does not exist. (Churchland, forthcoming,
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p.19)

The problem is pressing insofar as the course of human knowledge has involved

the repeated positing of categories which (according to Churchland) are not

given (implicitly or explicitly) in the data. Instead, we `reach behind the ap-

pearances' to posit atoms, electrons, electromagnetic waves etc. etc.. How is

this possible if learning consists (as the connectionist suggests) in a curve-�tting

procedure de�ned over observables?

Churchland's answer is fascinating and suggestive. But before we consider it, it

is worth pausing to question the way the problem has just been set up.

On the one hand, Churchland wants to recognize the ability of connectionist

learning to induce new variables and representations. This is what happens

when a net �xes on a regularity which was not explicitly marked in the input

data. On the other hand, he sees that very often connectionist learning will

be unable to discover a given regularity precisely because a speci�c variable is

missing. To balance these two observations, he appeals to the notion of what in-

formation is actually present (implicitly or explicitly) in the input data. But on

what grounds do we decide what information is or is not thus present? Church-

land's underlying criteria looks to be this: if a curve-�tting procedure applied

to that set of data points can unearth the regularity, it is counted as present

(observable) in the data, and otherwise not. But this is hardly explanatory.

What we want to know is why, given that the mapping is learnable if the data
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is viewed through the lens of a speci�c category, is a network sometimes able to

induce knowledge of the essential category and sometimes not? The distinction

between type-1 and type-2 regularities provides the answer.

When the statistical regularity captured by a given category is type-1 relative

to a training set, the kind of search undertaken by standard learning algorithms

can be relied on to discover it. When the regularity is type-2, that kind of

search will fail. What is needed in the latter case is some means of reducing the

problem presented by the input data to that of extracting a type-1 regularity.

The problem is not well understood by asking what is in some elusive sense in

the training data. Rather, the issue concerns what can plausibly be got out

of the training data given a certain manner of searching the space of potential

relations between input items.

Thus (re)construed, Churchland's general problem concerns not just those rare

cases where essential data is genuinely absent but also (and more commonly)

cases where the raw data is available but it is not presented in a form amenable

to type-1 (curve-�tting) learning. Such a construal seems well suited to Church-

land's actual interest, which is in cases in which what the scientist needs is not

more data as such, but simply to posit a variable which enables her to discern

a regularity in that body of data.

Despite this partial misconception of the nature of the problem, Churchland

�xes on what is surely one powerful solution, viz. he notes the possibility of
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what he terms conceptual redeployment. Conceptual redeployment is a pro-

cess in which a set of categories successfully induced to facilitate success in

one domain is imported to another. Such importation (promoted by e.g. the

chance juxtaposition of the intractable problem with a reference to the other,

successfully-theorized, domain) allows the data from the problematic domain

to be systematically reconceptualized via the lens of the imported categories.

Thus, to follow Churchland's example, we may induce the categories of wave

phenomena to make sense of observable input data concerning liquid behaviour.

But once these categories (wavelength, velocity, frequency, etc.) are available,

they may be redeployed to make sense of bodies of data from other domains

(sound, light, etc.). Churchland comments that:

While the conceptual prototypes of wave phenomena could not have

been learned in either of these comparatively opaque domains, they

were certainly capable of being redeployed there... (Churchland,

forthcoming, p.25)

Without the transforming lens of the feature detectors for wave phenomena,

the bodies of data concerning sound and light presented intractable problems of

search. What Churchland has described, we believe, is a representational trajec-

tory in which more tractable bodies of data (the water data) yield knowledge of

variables (or even just feature detectors) whose use in pre-processing transforms

the sound and light data into a form in which the target regularities are closer
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to the surface and hence prone to succumb to the kind of search methods we

actually have available. Churchland tends to depict conceptual redeployment

(aka analogical reasoning) as a strategy in which no process of `curve-�tting

learning' occurs. But it is not clear that this is so. We claim instead that

the imported categories/features recon�gure the data so that the curve-�tting

is relatively trivial. Achieved representation is thus traded against intractable

computation. But computation is not altogether abandoned.

4 Evolution, Creativity and Cognitive Closure

The single most important key to cognitive success, we have argued, lies in the

use of a variety of diverse methods by which to transform intractable type-2

learning problems into temporally or spatially extended sequences of problems

of an easier statistical stripe. Such methods may range from the genetically

determined provision of simple feature detectors to the analogical redeployment

of achieved knowledge. There is, however, a snag.

The snag is that all the methods available depict the solution of type-2 learning

problems as in a certain sense fortuitous. By this we mean that it looks to be

impossible, if our analysis is correct, to actively take a type-2 problem and work

backwards to unveil a successful problem-solving trajectory. Type-2 problems

get solved, it seems, only when we �nd ourselves in a position to solve them.

We cannot put ourselves in a position to solve them. We cannot put ourselves

47



into that position unless the problem has already been solved and we are merely

recapitulating an achieved decomposition.

There are two possible responses to this observation. We might use it to motivate

a rejection of the claim that all possible learning algorithms will ounder in the

face of unreconstructed type-2 regularity. For it might seem that human beings

typically can non-fortuitously solve type-2 problems. Or we might use it to

motivate a thesis concerning the shape of the space of non-fortuitously solvable

problems, and thus su�er the consequence that certain genuine regularities in

the world may be such as to be unlearnable by any non-chance method.

Despite its initial plausibility, we are inclined to reject the claim that human

beings can non-fortuitously solve type-2 problems. True, we can (and do) de-

liberately set out to solve type-2 problems. And true, we often succeed. But

the solution may still be fortuitous in the relevant sense. Thus it may be that

a lucky juxtaposition of ideas prompts the exportation of an existing set of cat-

egories to a new domain, as in Churchland's scenarios. Or it may even be that

we can search (perhaps even intelligently search) through our various bodies

of knowledge in the hope of �nding such a companion domain. But in either

case, success or failure is determined by our chance possession of such a body

of knowledge.

Similarly, we may be lucky enough to acquire bodies of early knowledge which

suitably (as in Elman's staged learning) reduce the search space for subsequent
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learning. Or we may be lucky enough to be genetically provided with �lters |

pre-processors which transform the gross input data into a manageable form.

What is lacking in all cases, however, is any general purpose type-2 learning

algorithm, i.e. an algorithm capable of either (a) taking a body of data which

is organized around a type-2 regularity and inducing the feature detectors, cat-

egories or early knowledge which will render the mapping learnable or (b) just

inducing the solution directly, without the bene�t of the intervening stages.

Perhaps such a learning algorithm is on the horizon, but we doubt it. (Recall

that the full search space for type-2 regularities is a superspace of the space of

applicable Turing machines.)

If type-2 learning is, in this sense, always a matter of good fortune, just how

serious a problem is this? Three observations suggest that it is not so serious

as it may at �rst appear.

First observation: biological evolution is naturally incremental. The relevant

facts here are well known; the evolutionary process constructs extended path-

ways through a kind of adaptive space. Each step along such a pathway involves

a change to the physical structure of an organism. And each such change must

yield a successful organism. One result of this pressure is that evolutionary

change tends to be both conservative (existing and successful structures are pre-

served) and incremental (new structures are added on, in a progressive manner).

Of course there are exceptions. But the general trend (see e.g. Dawkins, 1986;
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Jacob, 1977; Ridley, 1985) of `preservation and incrementation' means that bio-

logical selection is ideally suited as a way of easing organisms deeper and deeper

into the space of type-2 problems. Thus a creature with an evolved feature de-

tector for a property (say, a relation between input features) P is a candidate

for incremental adaption in which a feature detector for a new complex prop-

erty (say, a relation between P and some other input features) is constructed.

The upshot is that evolutionary search is especially well-suited to scouting the

space of incremental solutions: a space which, we have argued, represents the

accessible face of (otherwise) intractable type-2 learning problems.

As an aside, we note that this may help capture part of what is special about

evolutionary learning. For in a sense, individual connectionist learning and

evolutionary change are no di�erent: both face the problem of searching a space

of potential changes and the statistical di�culty of �nding the changes which

would yield a solution to a type-2 problem are the same in each case. Both,

indeed, perform a kind of gradient descent learning in which changes which

minimize failure messages are preserved, But one di�erence is that the sequence

of changes selected by evolution is constrained to be a sequence in which most

early solutions are preserved and built upon; whereas connectionist learning

is highly prone to totally abandoning early solutions as a search progresses

(see e.g. French (1991) on `catastrophic forgetting'). Evolution may be best

conceived as a kind of learning akin to connectionist (gradient descent) learning

but applied to whole complexes of sub-networks and with an added cost factor
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whose e�ect is to promote the preservation of the structure of the successful sub-

nets of previous generations. The complex problems which will succumb most

gracefully to such a system are, of course, those problems which decompose into

a set of tractable sub-problems.

Second observation: evolution exibly co-constructs problems and solutions.

The point here is that it is easy to overestimate the statistical di�culty of an

evolutionary search which has terminated in a solution to a type-2 problem

(such as conditional-approach). One source of such overestimates is a mistaken

tendency to depict evolution as facing a speci�c problem and needing to search

for a solution. Thus in the case of e.g. supervised connectionist learning, the

system is given the task of learning a speci�c mapping M and must search the

space de�ned by its architecture and inputs for a solution. But the evolutionary

case is rather di�erent. Any `solution' which yields a surviving and reproducing

being will do. If evolution then hits on the solution to a type-2 problem, we

should not imagine that it had to perform a search whose unique terminus was

that solution. If that solution is instead just one out of a multitude of `good

evolutionary moves', the odds change dramatically. Thus if, in a space of 1,000

lottery tickets there is a unique point 28 which represents success, the chances

of drawing a successful ticket at random are small. But if, in a space of 1,000

tickets, 100 are winners (albeit of di�erent prizes) the chances of success increase.

Another (related) source of overestimates is our tendency to think of problem

51



solving rather than problem construction. Evolutionary pressure selects niche

and organism together i.e. it simultaneously de�nes a problem space and organ-

isms adapted to it. It may thus select problems which are satisfactorily solvable

given the limited individual learning abilities of organisms. In the terms of our

earlier discussion, there might indeed be selection for an organism-environment

pairing which provides a nicely staged series of problem-solving tasks and hence

aids incremental learning!

10

It is interesting to note that both of the above observations (that evolution is

natural incremental and conservative, and that it co-constructs problems and

solutions) may have echoes in individual development. Annette Karmilo�-Smith

(1979, 1992) has pioneered the idea of individual development as involving an

endogenously (or partly endogenously) driven process in which existing prob-

lem solutions are conservatively re-described. Re-description consists in a more

abstract, unifying re-coding which enables more exible use of the information

speci�ed in the solution. For example, re-coding a push-down stack of opera-

tions for playing a song on the piano as a random access list, thus enabling you

to begin midway or play jazz variations.

Despite a lack of concrete mechanisms (but see Clark and Karmilo�-Smith

10

In fact, some recent simulation work in which a connectionist net X is allowed to co-

evolve alongside another net Y which sends it training data can be fruitfully conceived as an

exploration of the e�ects of the co-evolution of an environment (net X) and a gradient descent

learning device (net Y), see Nol� and Parisi (1991) and discussion in Clark (forthcoming).
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(forthcoming), Clark (forthcoming) for some suggestions) the idea is attrac-

tive. For endogenous pressure to re-code is precisely self-generated pressure to

explore continuously the space of incremental problem solutions without com-

mitment to the solution of any speci�c problem. Each such re-coding may just

happen to reduce a problem that was previously type-2 (and hence e�ectively

outside the scope of individual learning) to a tractable type-1 incarnation. The

learner will thus be engaged in a kind of continuous search for new problems

insofar as each re-coding changes the shape of the space de�ned by the inputs

and hence opens up new cognitive horizons. An individual, endogenously speci-

�ed tendency to engage in representational redescription would thus amount to

a natural injunction to persistently pull as much as possible into the space ne-

gotiable by our on-line weak type-1 learning methods. With direct task-driven

exploration of type-2 spaces out of the question, evolution bestows on the in-

dividual a generic drive to code and re-code and re-re-code. Once again, we

are trading spaces | using achieved representation to reduce the complexity of

computation.

Third (and �nal) observation: language and culture are just what weak learning

devices need | they enable us to trade achieved representation against compu-

tation on a cosmic scale. Public language may be seen as a ploy which enables

us to preserve the fruits of one generation's or one individual's explorations at

the type-1/type-2 periphery and thus quickly to bring others to the same point

in representational space. Otherwise put, we can now have learning trajectories

53



which criss-cross individuals and outstrip human lifetimes. In addition, we can

(by grace of such cultural institutions as schooling) easily re-create, time and

again, the kind of learning trajectory which leads to the solution of key complex

problems. In these ways, the occasional fruits of good fortune (the discovery of

a powerful input re-coding (a concept) or a potent sequence of training items)

can be preserved and used as the representational base-line of the next gen-

eration's mature explorations. Language and culture thus enable us to trade

achieved representation in any member of the species, past or present, against

computation for all posterity. Given the necessarily fortuitous nature of the

search for new representations, this is an advantage whose signi�cance cannot

be exaggerated.

It is interesting to compare this vision (of language and culture as a means of

preserving representational achievements and extending representational trajec-

tories) with that of Dennett (forthcoming). Dennett usefully identi�es a weak

type of learning which he calls ABC learning and de�nes as the `foundational an-

imal capacity to be gradually trained by an environment'. He depicts standard

connectionist learning as falling into this class and asks what leads us to out-

strip the achievements of such ABC-learners. His answer is: the augmentation

of such learning by the symbol structures of public language. (See also Dennett

(1991) p.190, 220, 298-302.) An augmentation which is itself, he conjectures,

the probable root of our abilities of representational redescription.
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We think Dennett is almost right. He is right to depict language as a key factor

in our abilities to frequently and repeatedly appear to exceed the bounds of ABC

(or, as we would have it, type-1) learning. Yet in a very real sense there is, we

believe, no other type of learning to be had. What looks like type-2 learning

is in fact the occasional re-formulation of a type-2 problem in terms which

reduce it to type-1. Language, we suggest, simply enables us to preserve and

build on such reductions, insofar as the key to each reduction is an achieved

re-representation of a body of data. But language is not, we think, the root

of such re-representations. Instead, such re-representations must be discovered

essentially by chance (perhaps aided by an endogenous, though undirected, drive

to continuously seek re-coding of existing knowledge) in either individual or

species learning. Language is a preserver of chance representational discoveries

and of useful learning trajectories. It also doubtless feeds and augments the

trick of analogical reasoning which we discussed earlier. Language-users will

thus indeed steer a profoundly deeper course into the type-2 problem space

than anyone else, but for reasons which are, we suspect, a little more pedestrian

than Dennett imagines.

The three observations just rehearsed combine, we hope, to make our cognitive

situation seem a little less bleak. True, we are type-1 learning devices inhabiting

a world populated by much more complex regularities. But by trading represen-

tation against computation, in both individual and species time, we nonetheless

make signi�cant inroads into the type-2 space. That said, we must still live with
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two depressing prospects. The �rst is that our image of true creativity threat-

ens to become somewhat emaciated. For the important conceptual innovations

are just those which bring what was previously an intractable type-2 learning

problem down into the space of problems solvable by type-1 methods. These

innovations turn problems which previously could not have been solved (in the

very real sense of being intractable to type-1 learning) into ones which can be

solved. We thus give a precise meaning to the distinction which Boden, in her

(1990) investigation of creativity, makes between ideas which as it happens did

not occur before and ideas which, in some real but elusive sense could not have

occurred before (see Boden, 1990; p.31-41.) But alas, on our account, there is no

intelligent means of searching for the re-codings which turn a previously type-2

problem into a type-1 format. Hard work, the constant juxtaposition of ideas in

the hope of analogical 'trajectory hopping', the blind endogenous exploration of

re-codings and sheer good fortune (genetic or otherwise) just about exhaust the

possibilities. Intelligent reduction of the new categories needed to suck hitherto

intractable problems into our cognitive ambit is, regretfully, just not to be had.

The second depressing prospect is that large tracts of genuine regularity in

the universe threaten to be forever unknowable to us, and probably to any

learning creature. For we can discover deeper (type-2) regularities only when

such regularities lie on a convenient trajectory of achieved representations. But

there is, we suppose, no reason to believe that all the interesting truths about

the universe will lie on such trajectories. If a regularity is type-2 and there
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is no natural sequence of problem solutions relative to whose representational

products it reduces to type-1, then it is e�ectively unlearnable. We are thus

quite dramatically cognitively closed (to use the terminology of McGinn (1989))

to phenomena of a certain well-de�ned type. Of course, we do not actively

perceive this closure, as our universe is conceptualized by a body of achieved

representations, and we continue to solve the problems de�ned in those terms.

If nature itself then looks systematic and incremental to us, it may be because

we are systematic and incremental learning devices who are cognitively closed

to truths which lie outwith cumulative problem-solving trajectories.

To sum up, we have scouted both good news and bad. The good news is

that despite the unexpected weakness of currently conceivable (type-1) learning

methods, there exist a variety of ploys which enable us to solve type-2 problems.

What all these ploys have in common is that they trade achieved representa-

tion against prohibitive computational search. The bad news is that there is no

general, intelligent way of seeking just those re-codings which would transform

a speci�c type-2 learning task so as to present a tractable type-1 regularity.

Instead, the re-coding manoevre will save us only in those cases in which the

required redescriptions are to be encountered along some natural problem solv-

ing trajectory. The boundaries of the genuinely learnable thus probably fall well

short of the boundaries of what is in principle representable by a computing

device such as the brain.
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Conclusions: Probing the Unobservable

It is widely understood that the `di�culty' of a particular computation varies

according to how the input data are presented. With the data presented one

way, achieving particular computational e�ects may require elaborate and ex-

pensive processing. With the data presented di�erently, it may be possible to

achieve the same e�ects much more straightforwardly. (For a classic discussion,

see Marr, 1982, p.21.) What is less well understood is the e�ect of this computa-

tion/representation trade-o� within the learning paradigms. We have suggested

that existing learning algorithms tend to rely predominantly (and in some cases

exclusively) on the extraction of a speci�c type of regularity from a body of

input data. This type of regularity lies close to the surface of the training data,

in the form of pronounced frequency e�ects and is thus fairly straightforwardly

extracted by a variety of strictly empirical methods. Some appearances to the

contrary, the extraction of type-1 regularities is really all we currently know

how to achieve | and no wonder, once the size of the search space for the other

form is appreciated.

The extraction of the more opaque type-2 regularities is not, however, an ad-

vanced or exotic requirement. Even in the domain of apparently simple `arti�cial

life' style robotics behaviours, type-2 regularities are quickly signi�cant. Unlike

Dennett (forthcoming), we do not believe that it is only language-users who

regularly go beyond type-1 (or, as he says, ABC) learning. What, then, is the
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trick by which inherently weak learning devices regularly solve apparently tough

type-2 problems?

The trick, we suggested, is to trade representation against computation; to use

luck, genetic evolution and individual type-1 learning to yield representations

which re-code the input sample and hence gradually transform the nature of the

learning task. Being computationally weak, we compensate by valuing represen-

tational richness and constructing long problem solving trajectories in which a

cascade of coding and re-coding is the essential prerequisite to e�ective learning.

Since no intelligent method of searching for the speci�c representations needed

to render a target mapping learnable exists, good fortune must play a major role

in our successful forays. But this reliance on good fortune begins to look less

counter-intuitive once we see (a) that evolution is itself a naturally incremental

species-level learning device, (b) that problems and solutions co-evolve (so we

never really seek a solution to a speci�c problem) and (c) that language and

culture provide us (the most successful explorers of type-2 problem space) with

an invaluablemeans both of preserving and building on each and every fortuitous

representational movement, and of recapitulating successful learning trajectories

once they are achieved.

It may be useful, �nally, to cast our results in familiar (but not previously well-

de�ned) terms. Our main distinction is between two forms of regularity: type-1

regularity which takes the form of non-chance frequency e�ects in the original
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data, and type-2 regularity which takes the form of non-chance frequency e�ects

in some re-coding of the original data. Type-2 regularities are tractably discov-

erable only if the input data is systematically re-coded so as to highlight certain

properties. Each such re-coding can be seen as e�ectively altering what is ob-

servable to the system in question. The basic task of higher cognition is thus

to progressively expand an organism's `observable' universe so as to suck in as

many useful, previously type-2, regularities as possible. Such expansion always

involves seeking and exploiting re-codings of the input data (representations)

which re-shape the search space for other interesting regularities. This process

is both e�ectively blind (unintelligent) and highly incremental. It results in

a cascade of re-codings most reminiscent of Karmilo�-Smith's hypothesis of re-

peated `representational redescriptions'. What we now see is why such a process

is rapidly forced on us, courtesy of the surprisingly weak nature of achievable

(type-1) learning.

It is no surprise, then, that incremental learning, in a variety of forms, has

loomed so large in recent published attempts to expand the horizons of con-

nectionist knowledge acquisition. Despite important individual di�erences, a

commonthread links all such treatments. What they all add to standard connec-

tionist learning, is an increased opportunity to discover transformation factors:

processing episodes which re-con�gure the statistical task involved in learn-

ing a given mapping. Modularization, incremental memory expansion, batched

and sequenced training and the use of highly multi-layered architectures are all
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means to the achievement of this common, statistically intelligible end. And

the underlying trick is always the same: to maximise the role of achieved repre-

sentation, and thus minimize the space of subsequent search. This now familiar

routine is, as far as can we tell, obligatory. The computationally weak will in-

herit the earth, just as long as they are representationally rich enough to a�ord

it.
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