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Abstract

In an important paper, Hinton and Nowlan

(1987) demonstrate the Baldwin e�ect in a

simple Genetic Algorithm. The ability of the

phenotype to adapt, coupled with the evolu-

tionary process, allows behavioural goals to

become over time genetically speci�ed; this

seems Lamarckian but is not. In that paper,

as a subsidiary point, the slowness of �xa-

tion of the last few goals is commented on,

and a later paper by Belew (1989) attempts

an analysis. In this paper I show that ge-

netic drift is the explanation for this slowness

phenomenon. Using a di�usion equation ap-

proach, I give an analysis of genetic drift for

genetic algorithms, where it is too often ig-

nored. Critical relationships between muta-

tion rate, population size, and forces of selec-

tion are given which decide whether genetic

drift will be of signi�cance or not.

1 Introduction

In an important and elegant paper, Hinton and

Nowlan (1987) demonstrate with a deliberately sim-

ple example the Baldwin e�ect, wherein the ability of

a phenotype to adapt in its lifetime (ability to `learn')

alters the �tness landscape of the corresponding geno-

type. This has the consequence that selection within

a population moves the genotypes towards the region

where the adaptations, that were originally made in

the lifetime of the phenotypes, are genetically �xed.

This has the appearance of Lamarckism, but is not so,

as there has been no direct 
ow of information from

the adapted phenotype to the genotype.

The model chosen as an example uses genotypes with

a number of genes that can be speci�ed as incorrect,

correct, or open to adaptation during the lifetime of

the phenotype. The evaluation function only favours

�
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those phenotypes that, within a �nite lifetime, �nd

a perfect solution through a combination of `correct'

genes, and `adaptive' genes which successfully adapt.

It is demonstrated that with the application of a stan-

dard genetic algorithm (GA) to the population as spec-

i�ed, the number of incorrect alleles on the genotype

rapidly decreases to zero; the number of correct al-

leles increases at �rst rapidly and then slows down;

the number of undecided (adaptive) alleles decreases

slowly. If the same experiment is tried out only with

correct and incorrect genes, and no adaptive ones, then

the `needle in a haystack' nature of the single perfect

solution means that only random search works, and

takes an unreasonably long time.

The main thrust of Hinton and Nowlan's paper is en-

dorsed here, but a subsidiary matter that is mentioned

as an aside there is taken up as the main point for in-

vestigation here in this paper:

One interesting feature of [the �gure] is that

there is very little selective pressure in favor

of genetically specifying the last few potential

connections, because a few learning trials is

almost always su�cient to learn the correct

settings of just a few switches.

The �gure in question indicates that there could be an

asymptote at a relative frequency of about 0.45 below

which the number of undecided alleles will not fall.

My own re-implementation of the model usually shows

an asymptote at between 0.05 and 0.2. A typical run

is shown in �gure 1, showing the dramatic changes in

the �rst 50 generations, and the longer term behaviour

over 500 generations. The variations between runs is

indicated in table 1, showing the values at the end of 20

runs of 500 generations each. The re-implementation

by Belew (1989) shows `an almost steady-state' at

about 0.3. He asserts that the curve is `in fact asymp-

totically approaching : : :0.0'. This I will demonstrate

to be false, in the general case; the analysis of what is

really happening shows that the combinationof genetic

drift and the hitch-hiking e�ect so completely swamps

the selective pressures that some of the genes are com-



Figure 1: The proportions of incorrect, correct, and undecided (adaptive) alleles (0s, 1s, ?s) in the whole

population, against generations. On the left, the �rst 50 generations of a run, and on the right the same

continued for 500 generations.

pletely converged to the undecided value, rather than

the `correct' one.

Strictly speaking, if there is even the smallest amount

of mutation in the system, applied independently at

each locus on each genotype, then if you are willing

to wait long enough you will see any population state;

even a population entirely composed of incorrect alle-

les, or entirely composed of undecideds. This would

be a transitory phenomenon, and the necessary times-

pans are way beyond those being considered here. The

di�usion equation analysis of genetic drift given below

gives a picture of those circumstances under which ge-

netic drift can be expected to be a signi�cant force.

Genetic drift | the consequences of random 
uctua-

tions in relatively small populations | is a matter of

fundamental concern to population geneticists, but ap-

pears to be almost completely ignored by people using

GAs. Since 1000 is often `relatively small' in this con-

text, and GAs frequently use population sizes of 100

or less, to ignore genetic drift is commonly, as in this

example, to ignore one of the fundamental processes

underlying the phenomena.

I include a number of graphs (�gures 3 and 4) indicat-

ing the relative in
uences of selection, mutation and

genetic drift for di�erent parameter values. I also give

a reworking of standard genetic drift analysis taken

from population genetics theory, and adapted to the

haploid models common in GAs.

2 The model

For fuller details of the model used in the demonstra-

tion I refer you to the original paper, and to a subse-

quent analysis by Belew (1989). As a brief summary,

the model has a population of 1000, each with geno-

types with 20 genes having possible values 0, 1 and ?.

In the initial population these are randomly selected

with probabilities 0.25, 0.25 and 0.5. The derived phe-

notypes are taken to be a set of 20 switches, which

undergo a series of up to 1000 trials each. The allele

0 at a particular gene speci�es that the corresponding

switch is set incorrectly, 1 speci�es that the switch is

set correctly, and a ? indicates that the corresponding

switch is 
ipped randomly at each trial. The series

of trials on a phenotype is stopped when all switches

happen to be set correctly, on trial number i, or al-

ternatively at i = 1000, the �nal trial, if there is no

success. Of course, if any of the alleles in the genotype

are 0, i.e. some switch is genetically �xed at the in-

correct position, inevitably the trials will run the full

course until i = 1000.

The �tness F is then calculated from i by the formula

F = 1 + 19(1000 � i)=1000. This gives an all-perfect

phenotype, which needs no trials to reach success, a �t-

ness of 20; while one which never succeeds (i = 1000)

either through being born without a chance (one or

more alleles of 0) or through failing despite having a

chance, has a �tness of 1. The necessary equations

to calculate the expected �tness are given in the ap-

pendix. If q is the number of undecided alleles in a

genotype which otherwise is correct, then for q > 14

the expected �tness is near to 1; for q < 5 the expected

�tness is near to 20. The sharp transition is shown in

�gure 2.

2.1 Early stages : : :

At each generation the relative attained �tnesses of

each member of the population determine the proba-



Table 1: The �nal proportions of undecided alleles after 20 runs each of 500 generations, with no. of loci

converging or converged on ?. 4 runsy have in fact completely converged at all 20 loci, only one runz does not

yet have a locus with ? �xed.

Propn of ?s Loci having Loci having Propn of ?s Loci having Loci having

at 500 gens. >50% ?s 100% ?s at 500 gens. >50% ?s 100% ?s

0.063 1 1 0.108 2 2

0.109 2 2 0.093 2 1

0.082 1 1 0.150 3 3y

0.123 2 2 0.150 3 3y

0.118 2 2 0.112 2 2

0.074 1 1 0.100 2 2y

0.107 2 2 0.093 2 1

0.200 4 4y 0.121 2 1

0.134 3 2 0.115 2 2

0.092 2 0z 0.115 1 1

bility of that member contributing to the reproductive

pool for the next generation. In the early stages, vir-

tually all the members will have the same minimum

�tness. Something similar will happen also at the later

stages, after the incorrect (0) alleles have been elimi-

nated; virtually all members will have small q-values,

and hence, because of the 
atness of the curve for F (q)

at small q, nearly identical �tnesses. At both these

stages there is very little selective pressure.

However, as Figure 1 indicates, typically around gen-

erations 5 to 15 successful members emerge with a �t-

ness nearly 20 times as great as that of the original

random members. This enormous selective di�eren-

tial operates near-exponentially for a few generations,

giving the sharp swings indicated in the �gure. If the

�tness function is adjusted to give a spread of �tnesses

from 1 to 2, rather than 1 to 20, this transition is typ-

ically delayed until perhaps generation 50, but due to

its fundamentally exponential nature it is then a sim-

ilarly sharp transition.

2.2 : : :Hitch-hiking : : :

During this transition the genetic material of the �rst

high-scorers dominates the reproductive pool. By

marking the genetic material of the �rst `winner', and

then tracing the marked genes in later generations as

they are selected and recombined with others, it can

be seen that typically within 10 generations of appear-

ance 50% or more of the whole genetic pool is derived

from that �rst winner. Hence the accidental pattern

of 1s and ?s in that �rst winner has a strong chance

of dominating future generations after selection has

ceased to be a major force | the `hitch-hiking' e�ect.

2.3 : : :then Genetic Drift

Once that has happened, genetic drift will allow the

proportion of ?s at any one locus vary until it has

reached either 0% or 100%, when in the absence of

mutation change will cease; and even in the presence

of low mutation a stable state can be expected. In

the complete absence of selection, then since expected

changes from generation to generation do not alter the

expected mean, from an initial position of x% ? alleles

one can expect x% of the time convergence to all ?s,

and (100� x)% of the time convergence to all 1s.

The run shown in �gure 1, which is also the �rst exam-

ple in table 1, has at 500 generations one locus 100%

converged to ?s. Hence the appearance in the graph

of a long-term trend towards no ?s is deceptive, as the

asymptote will be at 5%. Table 1 gives an idea of the

variations in these �gures over 20 separate runs.

In (Hinton and Nowlan 1987), no mention is made of

any mutation, and I am unable to account for the much

higher asymptote indicated at 45%. It may be an arte-

fact of some idiosyncracies in the programming of the

algorithms, or the fact that the graph is hand-drawn

may show that it is meant to be loosely indicative only.

In Belew's paper (Belew 1989) the asymptote appears

to be at about 30%. This is signi�cantly outside the

range covered in my simulations. Mutation is men-

tioned, without specifying a rate. In the two-bit coding

for each locus there described, what is in my terminol-

ogy 0, 1, and ? translate into respectively 10, 11,

and either 00 or 01. The early selection to eliminate

0s (in my terminology) would eliminate 1s from the

left-hand bit of each pair; the occasional mutation in

these left-hand bits will be swiftly eliminated by strong

selection. The right-hand bits would then distinguish

between (in my terminology) 1s and ?s. No mutation

rate here can explain the high asymptote shown.

Belew gives three versions of an explanation for this

asymptote, which can be summed up as suggesting

that selective pressures are so low that `the probabil-

ity of producing more than an average number of o�-

spring is in�nitesimal'. For a selection as implemented



q F(q) q F(q)

0 20.000

1 19.962 11 4.965

2 19.924 12 3.140

3 19.848 13 2.113

4 19.696 14 1.568

5 19.392 15 1.287

6 18.784 16 1.144

7 17.569 17 1.072

8 15.233 18 1.036

9 11.649 19 1.018

10 7.868 20 1.009

Figure 2: The expected �tness F (q) of a gene with q undecided alleles and (20 � q) correct ones. For q = 0 it

has been assumed that success was on the `zero-th' trial, to give a �tness of 20.

in a standard GA, this would not only be the wrong

answer, but it would be almost diametrically opposite

to the truth. At a single locus which has exactly 300

out of the 1000 population set to the one value, the

probability of the next generation having exactly 300

set again, in the absence of selection, is

�

1000

300

�

(0:3)

700

(0:7)

300

= 0:0421

I.e. only some 4% of the time will exactly 300 of the

next generation have this same allele at this locus, and

of the balance some 48% of the time more than 300 will

(and some 48% of the time less than 300 will). It is

this variation, the improbability of remaining at the

same proportion from generation to generation, which

constitutes genetic drift.

An additional factor to increase genetic drift in this

particular model is the fact that the �tness evalua-

tion is non-deterministic, and has a very large vari-

ance. Where the �tness is deterministic this would

obviously have no variance. In most non-deterministic

evaluations, by taking a reasonably large sample size

the variance is normally reduced to insigni�cance, as

the variance of a sample of size N is 1=N times the

variance of the population it is sampled from.

However, Belew mentions that he uses the GENESIS

(Grefenstette 1983) GA simulation facility. Into this

(or at least the later versions) is built the ingenious se-

lection algorithm, due to Baker (1987), which \guar-

antees that the number of o�spring of any structure

is bounded by the 
oor and the ceiling of the (real-

valued) expected number of o�spring". In other words,

although the expected number of o�spring is main-

tained at the correct value, the variation about this

value | and it is this variation which is associated

with genetic drift | is reduced to a minimum. Nev-

ertheless, this variation is still signi�cant, particularly

at the massive early transition stage.

3 Genetic Drift

If a coin is tossed 100 times, then on average it will be

heads 50 times, but it is unlikely to be exactly 50. The

same holds if 100 random selections are made with re-

placement from 50 heads and 50 tails, without turning

any over. In the selection case, repetition of the pro-

cess will on each occasion on average give you the same

result as on the previous occasion, but the variance al-

lows signi�cant change in this average over time. If at

any stage the selection resulted in all heads (or tails),

then future change would be impossible.

The consequence is that, in the absence of mutation,

and even without any selection, a population will even-

tually converge to all one value or the all the other.

This also holds true for low values of mutation and/or

selective bias, and the critical values which permit ge-

netic drift to be signi�cant can be calculated. The

theory of genetic drift is analysed in the �eld of pop-

ulation genetics, but usually for a diploid population

with �tnesses a�ected by dominant and recessive alle-

les. In general it seems to be ignored in GAs.

4 A Di�usion equation approach to

Genetic Drift

Goldberg and Segrest (1987) give a �nite Markov chain

analysis of genetic drift. The alternative approach is

using a di�usion approximation. The following starts

from Roughgarden (1979), where an analysis is given

for diploid systems, and makes the necessary alter-

ations for a standard haploid genetic algorithm.

The underlying basis for this approach is that of con-

sidering one experiment with a particular set of pa-

rameters such as population size, selective bias, and

mutation rate; considering one particular locus, and



Table 2: The selection s for a gene with q undecided

alleles and (20 � q) correct ones is calculated from

s(q) = (F (q) � F (q � 1))=F (q). The population size

N is 1000.

q F(q) s(q) 2sN

0 20.000

1 19.962 0.00190 3.80

2 19.924 0.00191 3.82

3 19.848 0.00383 7.66

4 19.696 0.00772 15.44

5 19.392 0.01568 31.36

6 18.784 0.03237 64.74

7 17.569 0.06916 138.31

8 15.233 0.15335 306.70

taking a census across the population to �nd the dis-

tribution of the possible alleles at this locus, after suf-

�cient generations have passed for any initial transi-

tional phenomena to have died away.

For instance, in a particular experiment the proportion

of 0s at this locus will be x in the range [0:0; 1:0]. But

because of the stochasticity, a series of experiments

will give di�erent values of x. Hence a whole ensemble

of such experiments are considered | using the same

parameter settings for the whole ensemble. The census

results on di�erent members of the ensemble will vary,

but the probabilities of di�erent census results can be

calculated analytically.

The size of the population N is assumed large enough

for it to be valid to make a continuous approximation

to the discrete steps actually taken | the proportions

of any allele can in fact only change in steps of size

1=N . It is assumed that the proportions in a popula-

tion of each allele at one locus can be analysed inde-

pendently of what is happening at other loci, which are

taken to be either �xed or with no interdependence on

this locus. An ensemble of populations is considered,

all acting under the same forces of selection, mutation

and drift. It is assumed that from any starting posi-

tion, this ensemble will spread out under these forces

until some equilibrium is reached. This equilibrium

will be shown to have strikingly di�erent features de-

pending on the values of the parameters. The �gures

later on characterise the features of such an ensemble,

and hence give a perspective on what might plausibly

happen in any one individual population.

The di�usion can be analysed with the same equations

as are used for physical processes. A `di�usion equa-

tion' is introduced which approximates the Markov

chain. In the analysis of a physical system of di�u-

sion we let �(x; t) denote the density of particles at

location x at time t. (The translation to our ensemble

of populations is: let �(x; t) denote the proportion of

populations in the ensemble that at time t give a cen-

sus return of x for the proportion of 1s at the relevant

locus.) The 
ow across a surface at x is J(x; t). The

change in density at a location is equal to the spatial

derivative of the 
ow.

@

@t

�(x; t) = �

@

@x

J(x; t) (1)

In the current context the expression for J(x; t) con-

tains a term for external forces | mutation and selec-

tion | and another term for di�usion.

J(x; t) = M (x)�(x; t)�

1

2

@

@x

V (x)�(x; t) (2)

In a short time interval �t,M (x)�t is the average dis-

tance travelled from a point x under force of mutation

and selection. V (x)�t is the variance of the distances

travelled.

We are interested in the equilibrium distribution �̂(x),

where it exists. At equilibrium J(x) in (2) will be

constant, and in this context zero. Hence

1

2

d

dx

V (x)�̂(x) = M (x)�̂(x) (3)

Introduce g(x) � V (x)�̂(x).

1

2

d

dx

g(x) =

M (x)

V (x)

g(x)

1

g(x)

dg(x) = 2

M (x)

V (x)

dx

d ln[g(x)] = 2

M (x)

V (x)

dx

ln[g(x)] = 2

Z

M (x)

V (x)

dx+ constant

g(x) = c exp

�

2

Z

M (x)

V (x)

dx

�

�̂(x) =

c

V (x)

exp

�

2

Z

M (x)

V (x)

dx

�

(4)

where c is an appropriate normalizing constant to

make the area under �̂(x) equal to 1 in the range of x

from 0 to 1.

So far the calculations have followed Roughgarden ex-

actly, but now we make adjustments appropriate for a

haploid GA. With a mutation rate of m then �x due

to mutation in one generation is

�x

mut

= x(�m) + (1� x)m = m(1 � 2x) (5)

To calculate the �x in one generation due to selection,

we shall assume that the schema �tness of the allele 0

is f

0

and of allele 1 is f

1

. The average �tness f depends

on the proportion x of 1s in the current population,

f = (1�x)f

0

+xf

1

. We shall de�ne the selective force

s in favour of allele 1 as

s �

f

1

� f

0

f

0

(6)



Figure 3: Equilibrium distributions, varying m for particular values of s. The horizontal scale is the proportion

x of the allele being selected for, in the range x = 0.001 to 0.999. the vertical scale varies from graph to graph,

as the constant c in eqn. 11 has here been set to 1; whereas it should normalise the graph so that the area

underneath is unity. Hence for the U-shaped curves, only the general shape is indicative.

�x

sel

= x

�

f

1

f

� 1

�

=

sx(1� x)

1 + sx

(7)

Using the population size N, we now convert �x to a

new time scale where N generations equals one unit of

time.

M (x) = N (�x

mut

+�x

sel

)

= mN (1� 2x) +

sNx(1� x)

1 + sx

(8)

On calculating V (x) we use the fact that the variance

of �x over one generation is x(1 � x)=N . Converting

to the same time scale as above we have

V (x) = N

x(1� x)

N

= x(1� x) (9)

Substituting (8) and (9) into (4) we have the following

(the constants on integration can be assimilated into

the normalizing constant c):

�̂(x) =

c

x(1� x)

exp (W (x))

where we de�ne W (x) to be

� 2N

R

�

m(1�2x)+

sx(1�x)

1+sx

x(1�x)

�

dx

= 2mN

R

dx

x(1�x)

� 4mN

R

dx

1�x

+ 2sN

R

dx

1+sx

= �2mN ln

�

1�x

x

�

+ 4mN ln(1� x) + 2N ln(1 + sx)

(10)

So we have �̂(x)

=

c

x(1�x)

�

1�x

x

�

�2mN

(1� x)

4mN

(1 + sx)

2N

= cx

2mN�1

(1� x)

2mN�1

(1 + sx)

2N

=

c(1+sx)

2N

[x(1�x)]

1�2mN

(11)

Here it is clear that the term on the top relates to the

forces of selection; whereas the denominator, symmet-

rical in x and (1 � x), shows di�erent characteristics

depending on whether the exponent is positive or neg-

ative | which depends on the relationship between

mutation rate and population size.

4.1 Varying the mutation rate

In the case of zero selective force, s = 0, this becomes

�̂(x) = cx

2mN�1

(1� x)

2mN�1

(12)

The behaviour of eqn. 12 varies dramatically according

as to whether 2mN < 1 or 2mN > 1. In the former

case of low or non-existent mutation the curve is the U-

shaped

1

x(1�x)

, demonstrating that the population will

converge completely on one allele or the other. In the

latter case of mutation signi�cantly high in relation

to the population size, then the reverse will happen

and the distribution will be centred on x = 0:5. If

selection is positive rather than zero, then either the

U-shaped curve or the humped curve, as appropriate,

will be skewed towards the side favoured by selection.

The graphs in �gures 3 and 4 are indicative only of

the general shape. In particular, for the U-shaped

curves demonstrating genetic drift, the constant c in

(12) would need to be zero for the area under the curve

to be unity. This gives a vertical bar at x = 0 and at

x = 1 (emphasized in the �gures), with zero elsewhere.

For this reason the graphs are only shown for x =0.001

to 0.999.

4.2 Varying selection

When m=0, then (11) becomes

�̂(x) =

c(1 + sx)

2N

x(1� x)

(13)

which is the limit of a U-shaped curve. The denomi-

nator is symmetrical in x and 1�x. For an indication



Figure 4: Equilibrium distributions, varying s for particular values of m. See caption to �gure 3

of the relative proportions of the converged population

that settle at x = 0 or x = 1, the numerator should

be considered for these values; although not much re-

liance should be placed on this, as it is exactly here

that the di�usion approximation breaks down with a

�nite size population.

Nevertheless, for s = 0 the numerator is constant, and

as s increases the numerator is more at x = 1 than it

is at x = 0. (1 + s)

2N

becomes O(e) when 2sN = 1,

and increases exponentially as s increases above this

value. Hence when 2sN � 1 we can expect the two

arms of the U-shaped curve to be nearly equal in size

(i.e. selection is insigni�cant), and when 2sN � 1 the

arm that selection favours will predominate.

Returning to the Hinton and Nowlan example, the

value of s can be calculated when there are q undecided

alleles and 20�q correct ones. The selective force s at a

locus which could change one undecided allele to a cor-

rect one can be calculated from the schema �tnesss in

�gure 2. For any q, it is (F (q�1)�F (q))=F (q), which

is calculated in table 2. It can be seen that, whereas

convergence on the `wrong' value can be expected for

2sN � 1, in this case convergence on the wrong value

occurred for q as great as 4, and hence 2sN as big as

15. This can be explained as due to the hitch-hiking

e�ect, where before genetic drift could take over as the

population settled down to equilibrium, the swamping

Figure 5: Eqn. 12 for c = 1, and m ranging from

0 to 0.001. Here the vertical axis is log-scaled, and

selection is zero. The transition between U-shaped

and

T

-shaped curves at 2mN = 1 can be clearly seen.

of the population by the very high selection in favour

of the �rst successful genotype has resulted in near-

convergence on the `wrong' value.

5 Conclusion

A puzzling anomaly in the Hinton and Nowlan pa-

per has been explained as the result of genetic drift,

due to low selective forces, following a period when

very high selective forces and the `hitch-hiking e�ect'

have distorted the proportions of alleles at temporar-

ily irrelevant loci. By analysing this case in detail,

the signi�cance of genetic drift has been brought out,

and using the di�usion equation approach some more

general results demonstrated.

These can be summarised as the following, where m

is the mutation rate, N is the population size, and s

the selective force in favour of a particular allele 1, at

a binary locus, is de�ned as (f

1

� f

0

)=f

0

, f

1

and f

0

being the schema �tness of alleles 1 and 0:

If and only if 2mN < 1 then the popula-

tion will converge at this locus on one value

or another; and if 2sN � 1 it will be al-

most equally likely to converge on the `wrong'

value as the `right' one.

Where `hitch-hiking' takes place, even for

2sN somewhat larger than 1, convergence on

the wrong value can still happen.

\The case has been an interesting one," remarked

Holmes when our visitors had left us, \because it serves

to show very clearly how simple the explanation may

be of an a�air which at �rst sight seems to be almost

inexplicable." Sir A. Conan Doyle, The Adventure of

the Noble Bachelor, 1892.
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A Appendix:

The Hinton & Nowlan model

A.1 Expected �tness of potential winner

To calculate the expected �tness of a genotype com-

posed of q question-marks and (20� q) 1s.

De�ne p = 1=2

q

prob. success on one trial.

r = 1� p prob. failure on one trial.

R = r

1000

prob. failing all 1000 trials.

If success comes on the ith trial, for i � 1000, then the

actual �tness is then given by 1 + 19(1000� i)=1000.

The chance of �rst succeeding on the ith trial, which

necessitates failing the preceding (i�1) trials, is given

by r

i�1

p.

Hence the expected �tness F (q), bearing in mind the

chance R of failing all 1000 trials with a resulting �t-

ness of 1, is given by:

F (q) = R+

1000

X

i=1

r

i�1

p

�

1 +

19(1000� i)

1000

�

= R+ 20p

1000

X

i=1

r

i�1

�

19p

1000

1000

X

i=1

ir

i�1

But we can use:

1000

X

i=1

r

i�1

=

1� r

1000

1� r

and by multiplying each side by r and then di�erenti-

ating w.r.t. r:

1000

X

i=1

ir

i�1

=

d

dr

�

r(1� r

1000

)

1� r

�

=

1� 1001r

1000

+ 1000r

1001

(1� r)

2

Substituting we get:

F (q) =

R+ 20p

(1� r

1000

)

1� r

�

19p(1� 1001r

1000

+ 1000r

1001

)

1000(1� r)

2

= 20�

19(1� r

1000

)

1000(1� r)

+ 19r

1000

This is used to calculate the �gures in table 1, although

care must be taken with the precision in computing as

very small numbers are involved in the intermediate

calculations.

A.2 Expected number of winners at start

In a member of the initial random population, the

probability of having no 0s, i.e. of being a potential

winner, is (3=4)

20

. Such a member will be all ?s and

1s, with ?s being twice as likely as 1s at any locus..

The chance of having exactly q ?s in a potential win-

ner, given by the binomial expansion of (2=3+ 1=3)

20

,

is

�

20

q

��

2

3

�

q

�

1

3

�

20�q

and then the probability of actual success is 1 � (1 �

0:5

q

)

1000

.

So the probability of this initial random member being

a winner is

�

3

4

�

20
20

X

q=0

�

20

q

��

2

3

�

q

�

1

3

�

20�q

�

1� (1� 0:5

q

)

1000

�

' 0:000558

This �gure di�ers from the value 0.028 given in

(Belew 1989). The probability of there being no

winner in an initial random population of 1000 is

(1� 0:000558)

1000

' 0:572.
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