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Abstract

The paper looks at the tension between the classical assumption that

representation is vital for e�ective cognition and the relatively recent `re-

activist' movement which takes a contrary view. A statistical analysis

of cognitive tasks is developed and used to support the argument that

purely reactivist approaches cannot hope to deal with anything but the

most primitive of domains.

1 Introduction

Time was, the position of representation in the cognitivist universe seemed unas-

sailable. Most people working in the paradigm appeared fully convinced that

good representation was one of the keys (maybe the key) to successful cogni-

tion. AI researchers threw themselves enthusiastically into the task of thinking

up pithy epigrams which neatly encapsulated the essence of this faith.
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But

now the old, simple trust in the absolute primacy of representation is coming

under attack.
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A recent example appears in [1]: `there are three important aspects to any AI system:

representation, representation, and representation.'
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The name that is often associated with this new attack is that of Rodney Brooks.

As a result of his relatively recent work with mobile robots, Brooks has come

to feel that the use of abstract, representational formalisms can be, and often

is, counter-productive. He stresses that complex, intelligent behaviour can be

more easily and e�caciously produced by systems which have simple `reactive'

behaviours with regard to environmental events. He has lambasted the use

of over-simpli�ed micro-worlds in AI, noting that they may merely serve to

�nesse the di�cult problems that real-world, cognitive systems must confront.

In his own work he has concentrated e�orts on the development of situated

or embedded `Creatures' | simple, insect-like robots which rely primarily on

reactive behaviour to negotiate and interact with genuine (ie. non-simulated),

physical environments [2, 3, 4, 5].

Of course, the line Brooks is taking is not entirely new. The key idea that `the

world is its own best model' [4] can be traced back to Gibson's work on vision

(which stressed the ways in which the world provides information about itself)

while the notion that `Intelligence is determined by the dynamics of interaction

with the world' [4] is perhaps best known to cognitivists through the writings

of Simon and his well-known parable of `the ant on the beach' [6]. But even if

the reactivists position is not entirely novel, it is certainly not lacking in force

as Brooks' recent publications amply testify.

In the context of this developing debate, connectionism �nds itself `pig-in-the-

middle'. Clearly, the rise of the connectionist paradigm has involved a rejection

of the complex declarative and procedural formalisms that earlier AI research

so favoured.
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In this sense, connectionism might be seen as reinforcing and con-

�rming the reactivists' position. On the other hand, connectionist researchers

continue to volubly stress the central importance of representation in all non-

trivial computational tasks (cf. [8, 9]). In fact, much state-of-the-art work on

constructive algorithms, eg. [10], is directly concerned with methods via which

useful representational structures can be learned. Thus, the �eld might be seen

as exerting pressure against the reactivist thesis.

Being the debate's pig-in-the-middle, connectionism might reasonably be ex-

pected to provide a reconciliation of the relatively extreme positions of classical

AI on the one hand and Brooksian reactivism on the other. But if it was to

attempt to do so, it would have a testing time. The problem, of course, is that

virtually everything we `know' about representation boils down to anecdote,

gut-feeling and heresay. Though AI and computer science have both put in

long-service in the support and advancement of the `principle of good represen-

tation', neither discipline has been able to provide any sort of theory that might

give the principle a rational basis.
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In fact hybrid approaches are more eclectic and retain the emphasis on structured repre-

sentation [7].
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When one considers the central role that representation has occupied in the

thoughts and practices of AI researchers, the total absence of any consensual

theory of representation is perplexing. Brooks has certainly done the �eld a great

service in drawing attention to it. By disputing the necessity of representation

he has put the onus on classical AI to demonstrate that necessity. And the sad

fact is, that despite years of work, the demonstration is still very hard to come

by.

The remainder of the paper attempts to remedy this de�ciency to some degree

by putting together a statistical analysis of a series of simple cognitive tasks.

Under reasonable assumptions this analysis demonstrates that abstract repre-

sentational structure is essential for all but the most trivial of cognitive tasks. It

thus provides an argument which suggests that the extreme reactivist position

(`representation is irrelevant') is almost certainly wrong.

2 The simplest description of a cognitive task

At the most basic level, a cognitive task is simply a mapping between certain

`inputs' and certain `outputs'. Thus �nding an explanation for a cognitive task

involves providing a viable computational description of how the mapping can be

implemented.
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In terms of the-Figure 1, it involves substituting an explanation

for the question mark in the box.

Di�erent models make di�erent assumptions about the form taken by the inputs

and the outputs. But perhaps the most common and general assumption is that

both the inputs and the outputs take the form of `vectors' of values.
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This gives

us a basic picture which states that a cognitive task is essentially a mapping

from input vectors to output vectors.

Let us look at a simple example. Imagine that we have a task which involves a

mapping whose initial pairs are as follows.

0 0 1 1 0 --> 1

0 0 0 0 1 --> 0

1 0 1 0 1 --> 1

0 1 1 1 0 --> 1

1 1 1 1 0 --> 1

0 0 1 0 0 --> 1

1 1 1 0 1 --> 1
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The question of how a particular mapping can be learned is usually even more di�cult to

answer [11].
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No generality is lost by making this assumption since more complex representational forms

(eg. structured forms) can always be converted to/from `
at', vector form.
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Inputs

Outputs

? BoxBlack

Figure 1:

0 1 0 0 1 --> 0

0 1 0 0 0 --> 0

0 1 1 0 1 --> 1

Each line here represents a particular entry in the mapping. The sequence

of values before the arrow represents the input vector. The sequence after the

arrow (a single digit in this case) represents the output vector. We might imagine

that the input vector values represents simple sensory inputs to some cognitive

agent (eg. pressure or absence of pressure at some particular site) and that the

output value represents a motor-action signal of some sort (eg. move-hand-left).

A classical model of this task might involve the use of complex, representational

constructs (eg. ISA hierarchies, frames, schemas, declarative and procedural

constructs). A reactivist model might attempt to capture the mapping in a much

more direct way, eg. by making the motor-action output directly dependent on

the presence of particular input values, eg. by `hard-wiring' the response of the

agent.
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3 The statistical analysis of mappings

Rather than ask which of these two models is right we will attempt to determine

what sort of representational structure is necessary for this particular task.

We will base our analysis on the assumption (commonplace in connectionism)

that the role of a representation is to capture the statistics of the underlying

task/mapping. Thus our aim will be to analyze the statistics of the mapping

and to decide what is required for these statistical properties to be adequately

captured. The underlying idea here is that the analysis of the statistics of a

mapping tells us something about the structure of an optimal representation of

that mapping.

The important statistical properties of a mapping are derived from the relative

frequencies with which certain output values are associated with certain input

values. The relative frequencies can be classi�ed by `order'. The �rst-order

statistics
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of a mapping are derived by observing the relative frequencies with

which particular input values are associated (in the mapping) with particular

output values. In the case of the mapping shown above, an initial input value

of 0 is associated with an output value of 1 in exactly four of the ten cases.

Thus the `observed conditional probability' that the output is a 1 given that the

initial input value is 0 is exactly 0.4. We can write this as follows:

P(1 | <0>@1 ) = 0.4

We use the normal notation for a conditional probability but we specify the

condition in terms of a sequence beginning at a certain position in the input

vector. As an illustration of the notation, the string

<0>@1

denotes a subsequence which begins at position 1 of the input vector and consists

of the single digit 0. The string

<3 4 5>@2

denotes a subsequence beginning at position 2 of the input vector which consists

of the digits 3, 4 and 5 (in that order).

The second-order statistics of a mapping are derived by observing the relative

frequencies with which particular 2-tuples of input values are associated with
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We use the term `statistics' interchangeably with `statistical properties.'
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particular outputs. In general, the nth-order statistics of a mapping are derived

by observing the relative frequencies with which n-tuples of input values are

associated with particular output values.

4 Capturing �rst-order statistics

Detailed examination of the mapping shown above reveals that the output value

is directly dependent on the value of the third input value. In fact the output

value is, in all the examples shown, identical to the third input value. The �rst-

order statistics are thus very informative here: they yield an absolute certainty

regarding the output value. There are just two cases to consider and in both, we

have complete certainty as to what the output value should be. The situation

is summarized in terms of the following probabilities:

P(1 | <1>@3 ) = 1

P(0 | <0>@3 ) = 1

Capturing this very simple statistical structure is computationally trivial. If we

are thinking in terms of a network substrate with activation-carrying connec-

tions, then the solution is simply a hard-wired link which connects the stimulus

corresponding to input value three with the main output. `Captures' of this

statistical structure in terms of other substrates are just as trivial. In e�ect all

we need to do to capture this structure is to arrange for a `copycat' response to

input value three.

5 Capturing higher-order statistics

Unfortunately, it is not always this easy to capture the statistics of a particular

mapping. Consider the following sample pairs from a mapping which we call

`centre-parity'.

1 1 0 1 0 1 1 1 0 1 0 0 --> 0

1 1 1 0 1 1 1 1 1 1 1 0 --> 1

0 0 1 1 0 1 0 0 1 0 1 0 --> 0

0 0 0 1 1 1 0 0 0 0 1 0 --> 1

1 1 0 0 1 0 1 0 0 1 0 0 --> 1

0 1 1 1 0 1 1 1 0 0 0 0 --> 0

0 0 1 0 1 1 0 0 0 0 1 1 --> 1

1 1 0 1 1 0 1 1 0 1 1 1 --> 0

6



1 0 1 1 0 1 1 0 1 1 0 1 --> 1

0 1 1 0 0 0 1 1 1 0 0 0 --> 1

The �rst-order statistics of the (total) mapping turn out to be rather unin-

formative. In particular there are no certainties derivable from the �rst-order

observations. In fact, we �nd no certainties whatsoever at any level of analysis

until we reach fourth-order. At this level, the mapping can be captured in terms

of a small number of certainties, which relate to the parity of the second group

of four input values. The certainties are:

P(1 | <0 0 0 0>@5 ) = 1

P(1 | <1 1 0 0>@5 ) = 1

P(1 | <1 0 1 0>@5 ) = 1

P(1 | <1 0 0 1>@5 ) = 1

P(1 | <0 1 1 0>@5 ) = 1

P(1 | <0 1 0 1>@5 ) = 1

P(1 | <0 0 1 1>@5 ) = 1

P(1 | <1 1 1 1>@5 ) = 1

P(0 | any-other-case ) = 1

These probabilities tell us that the `rule' underlying the mapping is that the

output value is 1 provided that the four input values starting at position 5

contain an even number of 1s. What representational implications does this

statistical structure have?

Note that any agent able to perform this task (ie. implement the mapping)

must be able to detect the existence of parity among the second group of four

inputs. Depending on the computational substrate used, the detection of this

property might be e�ected in di�erent ways. However, there is nothing about

the statistical structure which forces us to assume that explicit representational

structures will be involved. An agent could implement the mapping solely by

virtue of having hard-wired circuitry (eg. a network of AND and OR gates)

which enabled it to respond contingently (and in the same way) whenever the

four-bit input value sequence starting at position 5 contains zero, two or four

1s.

In case it is not obvious, it should be stressed at this point, that in the mappings

(tasks) we have considered so far we have had no reason to assume the need for

any kind of explicit, abstract representational structure. In all cases, a simple

reactivist approach would have been quite su�cient.
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6 Capturing covert statistics

We now turn attention to tasks in which there is `covert' statistical structure

in addition to the overt structure. The most easily described cases of this arise

when the task involves detecting the presence of simple patterns on a grid of

sensors (eg. a retina). Consider the input/output pairs shown in the-Figure 2.

(Try to work out the input/output rule before reading on.)

4 6 2 6 4 1 2 1 --> 1

7 6 1 9 1 2 5 1 --> 0

7 2 3 6 1 8 8 5 --> 0

1 5 9 5 1 2 9 2 --> 1

7 2 1 2 7 6 1 6 --> 1

8 6 9 7 4 7 3 4 --> 0

4 3 1 3 4 6 1 6 --> 1

4 7 8 7 4 8 8 8 --> 1

5 5 9 3 1 1 3 9 --> 0

7 1 4 1 5 4 5 4 --> 0

7 1 1 1 7 3 1 3 --> 1

3 4 3 4 3 6 3 6 --> 1

4 3 7 8 5 4 2 4 --> 0

1 7 2 4 7 7 9 5 --> 0

3 6 6 4 9 5 1 7 --> 0

These pairs are taken from a mapping whose rule states that the output value

is 1 only if the input values describe a rectangular pattern when construed as a

sequence of four, 2-dimensional, cartesian coordinates.

So much for the rule; what of the statistics? If we continue to use the method we

have employed above then we should try to write down a set of unit probabilities

(ie. certainties) which mutually exhaust all the relevant input possibilities. The

initial few cases might be taken from the `positive' examples shown. We would

write these down as follows.

P (1 | <4 6 2 6 4 1 2 1>@1 ) = 1

P (1 | <1 5 9 5 1 2 9 2>@1 ) = 1

P (1 | <7 2 1 2 7 6 1 6>@1 ) = 1

. . .

But, of course, if we continue this way we will end up writing down all the

positive examples in the mapping. Given the assumption that coordinate values

range from 1 to 9, the total number of input vectors is 9^9 (387420489). The
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number of input cases satisfying the rule is a substantial proportion of this

(certainly well over a million) so we can see that our list of probabilities will be

exceedingly long.

The problem here is that the statistical structure of the mapping is `covert'

rather than `overt'. The structure has to do with abstract properties and re-

lationships and not with the presence of particular, explicit values. Thus if we

want to represent the statistical structure of the mapping we should do so with

reference to the relevant abstract properties and relationships. A convenient

way of doing this involves making use of an imaginary predicate called `rect-

angle' which takes eight inputs and is satis�ed only if the inputs satisfy the

rectangle rule given above. This enables us to specify the statistics in terms of

two unit-probabilities, the �rst of which simply has as its condition an applica-

tion of the rectangle predicate to the eight input values starting at position 1;

ie.

P (1 | rectangle@1 ) = 1

P (0 | any-other-case ) = 1

Using the rectangle predicate we are able to express the statistical structure

of the mapping in terms of just two unit probabilities rather than the million

or so that it would have taken with our usual method. This dramatic saving

tells us something important about the structure of any implementation of this

mapping. In particular, it tells us that, assuming limited resources, an agent

will never be able to capture this mapping using the simple lookup methods

described above. The number of cases that need to be considered in even this,

relatively simple, task is absurdly large. Thus realistic cognitive agents could not

possibly capture this mapping in terms of hard-wired reactions to explicit input

patterns. To put it rather bluntly, any realistic agentmust compute the rectangle

predicate, ie. it must be capable of recognizing the abstract relationships which

underpin the property of `rectangleness'.

7 The need for structured representations

We have shown that implementing tasks in which output behaviour is related

to relationships among the input values necessarily involves the need to compu-

tationally detect those relationships. Thus, cognitive agents who require to be

sensitive to relationships between sensory inputs must `represent' those relation-

ships (at least in the sense that they must be able to compute them). However,

showing that agents will typically represent abstract relationships does not show

that they will typically use structured representations. To show this we need to

explore the implications of agents having limited computational resources.
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Consider the situation in which a particular agent needs to implement the `rect-

angles' mapping but does not have the computational resources to directly com-

pute the `rectangle' predicate. This limitation might result from any number

of causes. It may be that the agent cannot simultaneously carry out di�erent

types of test as is essential in this predicate. It may be that the agent cannot

deal with anything other than binary-valued inputs. Or it might just be that

the agent has a limited `fan-in', ie. cannot compute any function which takes a

large number of inputs.

One might suppose that the limitations facing this agent mean that it necessar-

ily cannot implement the given mapping (given the assumption that it is also

incapable of implementing a lookup table containing over a million elements).

But this is certainly not the case. The agent may well be able to construct a

composition of its basic computational resources which has the required power.

For example, let us assume that the agent is limited to computing a 2-input

equality test (eq) and 2-input, boolean AND. The agent can construct a com-

position of these predicates which will satisfactorily compute `rectangle'. The

composition e�ectively takes the AND of four coordinate-equality tests. For

illustration, we restate the probability analysis in terms of this speci�c compu-

tational construction:

P(1 | AND ( eq@1,5 eq@2,4 eq@3,7 eq@6,8 ) ) = 1

P(0 | any-other-case ) = 1

Here, the string `eq@1,5' denotes an application of the equality tester to the

�rst and �fth input values, `eq@2,4' denotes the application of the equality test

to the second and fourth input values, and so on. Note that the AND test is

applied to the results of the four equality tests. The general point here is that

with �nite and limited computational resources, a cognitive agent must resort

to computational constructions for the purposes of computing relevant relation-

ships and properties. These constructions necessarily implement representations

of properties at various levels of abstraction and thus constitute what are, in

e�ect, structured representations.

8 The feature-detector rule

In the previous example, the computationally limited agent we envisaged nec-

essarily uses a computational construction to ful�l the given task. However,

viewed as a tree, this structure is quite shallow (it is of depth 2). Can we

make any statements about the degree of representational structure that will be

necessitated in general?
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There are two points to be made. First of all we should note that in all cases

where the statistics of the task mapping are based on relationships between input

values, it is likely that an agent implementing that task will have to compute the

relationship rather than capture it in terms of hard-wired reactions to explicit

input patterns. Lookup tables (which avoid computation) can certainly be used

where the total number of possibilities is small. But where we assume (as we

almost certainly should do) that inputs may take on any one of a range of values,

the number of combinatorial possibilities is likely to be very large.

The second point to note is that the situation in which the agent `just happens'

to have access to a computational primitive which computes a signi�cant rela-

tionship of the relevant task domain is unlikely to be very common. In fact,

assuming that cognitive agents will have special detection hardware for all types

of abstract phenomena is tantamount to believing in the existence `grandmother

cells' | ie. brain cells whose sole role is to signal the presence (eg. in the visual

�eld) of a particular individual.

The �rst point leads directly to the notion that detecting a particular relation-

ship in a given domain requires a special-purpose computation. This leads us

to the feature-detector rule which is stated as follows.

The Feature-Detector Rule

An agent dealing e�ectively with domain D must have a

distinct feature-detector (ie. a distinct computational

mechanism or procedure) for each signi�cant relationship in D.

Given the assumption that a computational procedure for detecting a particu-

lar relationship counts as an abstract representation of that relationships, the

feature-detector rule implies that an agent's representational complexity will be

roughly proportional to the number of signi�cant relationships of the relevant

domain, ie. the number of relationships that must be taken into account in

order to successfully `negotiate' within that domain.

9 Discussion

The paper has shown how statistical analysis of simple cognitive tasks leads us

into a fairly ineluctable series of deductions. When we consider simple tasks

whose overt, low-order statistics are very informative, there is no di�culty in

envisaging how reactivist implementations might succeed very well. However,

as soon as we begin to consider tasks with high-order and/or covert statistics

we are forced to see that a pure reactivist approach seems to necessitate the use

of (the equivalent of) astronomically large lookup tables. A far more plausible
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assumption is that agents will compute abstract relationships so as to preempt

the need to explicitly represent millions of special cases.

Moreover, even a very brief consideration of the rami�cations (to the agent) of

computational-resource limitations suggests that agents will tend to use com-

putational constructions for the detection of abstract properties of the world

(eg. relationships). This, in turn, leads to the feature-detector rule. From this

rule we infer that agents relying on purely reactivist behaviour will not be able

detect anything other than basic, concrete properties of the world and thus will

not be able to negotiate anything but the most primitive of environments.

But how can we account for the experimental success of Brooks' approach? In

particular, how can we account for the fact that reactivist robots have been

built which successfully negotiate simple worlds? The answer seems to be that

Brooks' has (to date) con�ned his e�orts to situations in which the exploitation

of low-order statistical relationships is su�cient for the accomplishment of pur-

poseful behaviour. He has described the way in which one of his robots explores

the o�ce environment at MIT `searching' for soda cans. On �nding a can it

removes it [5]. Brooks characterizes the re
exes involved as follows.

The hand had a grasp re
ex that operated whenever something broke

an infrared beam between the �ngers. When the arm located a

soda can with its local sensors it simply drove the hand so that

the two �ngers lined up on either side of the can. The hand then

independently grasped the can. [4]

It is fairly clear from this and other extracts that Brooks' robots do not at-

tempt to take any cognisance of relationships in the domain that inhabit. It is

perhaps, quite remarkable, how much apparently purposeful behaviour Brooks

has managed to achieve in agents which have no mechanism for understanding

relationships. But it would be dangerous to infer that relationships are therefore

insigni�cant for the purposes of intelligent behaviour.

Consider a slight variant of Brooks' can-retrieving task. Imagine that we wish

to have a robot which takes raincoats draped carelessly over the backs of chairs

and hangs them up. If we take it as read that the robot will have the sort of

insect-like sensing capabilities of Brooks' early robots then we might assume

that the robot will detect the presence of a raincoat by, perhaps, driving under

the relevant chair and feeling the raincoat drag over its upper sensors. The robot

would have to make a sensible decision about which way to drag the coat of the

chair: trying to pull on the highest side might overturn the chair. But to make

this decision the robot will have to detect relationships between the two drag

patterns: the drag pattern created when the robot drove under the forwards

edge of the raincoat and the drag pattern created when the robot drove under
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the backwards edge. In fact to distinguish a raincoat drag pattern at all it will

be necessary to detect relationships between sequences of sensor readings.

Su�ce it to say, it is not hard to think of Brooksian robotic tasks which would

appear to necessitate the ability to detect and measure relationships. Taking

into account our previous conclusions the general implication seems to be that

Brooks has committed the traditional AI error of making the hard problem `go

away' by concentrating on an ultra-simple domain.

The general aim of our argument has been to suggest that the `pure' reactivist

view, which suggests that abstract representation can be largely dispensed with,

is utterly wrong.

6

There is, unfortunately, a great deal of progress still to be

made, before this point can be put on truly �rm, theoretical footing.
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